Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering

Summary The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium‐mediated...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 55; no. 5; pp. 857 - 868
Main Authors Hasunuma, Tomohisa, Miyazawa, Shin‐Ichi, Yoshimura, Satomi, Shinzaki, Yuki, Tomizawa, Ken‐Ichi, Shindo, Kazutoshi, Choi, Seon‐Kang, Misawa, Norihiko, Miyake, Chikahiro
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2008
Blackwell Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium‐mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (β‐carotene ketolase) and CrtZ (β‐carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1‐fold higher than that of wild‐type tobacco. The tobacco transformants also synthesized a novel carotenoid 4‐ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild‐type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild‐type plants under ambient CO2 concentrations of 1500 μmol photons m−2 s−1 light intensity.
AbstractList The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium ‐mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (β‐carotene ketolase) and CrtZ (β‐carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1‐fold higher than that of wild‐type tobacco. The tobacco transformants also synthesized a novel carotenoid 4‐ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild‐type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild‐type plants under ambient CO 2 concentrations of 1500 μmol photons m −2  s −1 light intensity.
The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium-mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (beta-carotene ketolase) and CrtZ (beta-carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1-fold higher than that of wild-type tobacco. The tobacco transformants also synthesized a novel carotenoid 4-ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild-type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild-type plants under ambient CO2 concentrations of 1500 micromol photons m(-2) s(-1) light intensity.SUMMARYThe natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium-mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (beta-carotene ketolase) and CrtZ (beta-carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1-fold higher than that of wild-type tobacco. The tobacco transformants also synthesized a novel carotenoid 4-ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild-type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild-type plants under ambient CO2 concentrations of 1500 micromol photons m(-2) s(-1) light intensity.
The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium-mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW ([beta]-carotene ketolase) and CrtZ ([beta]-carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1-fold higher than that of wild-type tobacco. The tobacco transformants also synthesized a novel carotenoid 4-ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild-type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild-type plants under ambient CO2 concentrations of 1500 mmol photons m-2 s-1 light intensity. [PUBLICATION ABSTRACT]
The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium-mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (β-carotene ketolase) and CrtZ (β-carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1-fold higher than that of wild-type tobacco. The tobacco transformants also synthesized a novel carotenoid 4-ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild-type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild-type plants under ambient CO₂ concentrations of 1500 μmol photons m⁻² s⁻¹ light intensity.
The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium-mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (b-carotene ketolase) and CrtZ (b-carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1-fold higher than that of wild-type tobacco. The tobacco transformants also synthesized a novel carotenoid 4-ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild-type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild-type plants under ambient CO sub(2) concentrations of 1500kmolphotonsm super(-2)&thi nsp; s super(-1) light intensity.
The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium-mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (beta-carotene ketolase) and CrtZ (beta-carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1-fold higher than that of wild-type tobacco. The tobacco transformants also synthesized a novel carotenoid 4-ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild-type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild-type plants under ambient CO2 concentrations of 1500 micromol photons m(-2) s(-1) light intensity.
Summary The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium‐mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (β‐carotene ketolase) and CrtZ (β‐carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1‐fold higher than that of wild‐type tobacco. The tobacco transformants also synthesized a novel carotenoid 4‐ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild‐type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild‐type plants under ambient CO2 concentrations of 1500 μmol photons m−2 s−1 light intensity.
Author Yoshimura, Satomi
Tomizawa, Ken‐Ichi
Miyake, Chikahiro
Shindo, Kazutoshi
Hasunuma, Tomohisa
Misawa, Norihiko
Miyazawa, Shin‐Ichi
Shinzaki, Yuki
Choi, Seon‐Kang
Author_xml – sequence: 1
  givenname: Tomohisa
  surname: Hasunuma
  fullname: Hasunuma, Tomohisa
– sequence: 2
  givenname: Shin‐Ichi
  surname: Miyazawa
  fullname: Miyazawa, Shin‐Ichi
– sequence: 3
  givenname: Satomi
  surname: Yoshimura
  fullname: Yoshimura, Satomi
– sequence: 4
  givenname: Yuki
  surname: Shinzaki
  fullname: Shinzaki, Yuki
– sequence: 5
  givenname: Ken‐Ichi
  surname: Tomizawa
  fullname: Tomizawa, Ken‐Ichi
– sequence: 6
  givenname: Kazutoshi
  surname: Shindo
  fullname: Shindo, Kazutoshi
– sequence: 7
  givenname: Seon‐Kang
  surname: Choi
  fullname: Choi, Seon‐Kang
– sequence: 8
  givenname: Norihiko
  surname: Misawa
  fullname: Misawa, Norihiko
– sequence: 9
  givenname: Chikahiro
  surname: Miyake
  fullname: Miyake, Chikahiro
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20608725$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18494855$$D View this record in MEDLINE/PubMed
BookMark eNqNkstuEzEUhi1URNPCK6AREuxm8N2eBUhQlWslWBSJnXVmcqY4mthhPIHk7etJQhbdBMuSj-zv_-VzuSBnIQYkpGC0Ynm9XlRMaFUKJn5WnFJbUaFUXW0ekdnx4YzMaK1paSTj5-QipQWlzAgtn5BzZmUtrVIz8vW9j2kbxl-YfCpiV0AaYQP5woci7zE20Lax6BH-YCqabTEOENKqz1xc-rbAcOcD4uDD3VPyuIM-4bPDeUl-fLi-vfpU3nz7-Pnq3U3Zasrr0swbDcp0FlAZ1ojaaom2Nk0n58BRMC256UCAoVhLAUowOTfdXEiEjvFaXJJXe9_VEH-vMY1u6VOLfQ8B4zo5XSshRc71FCgtVZzp0yBnQmkjbQZfPAAXcT2EnO2OYdzu3J4foHWzxLlbDX4Jw9b9q3oGXh4ASC30Xa5o69OR41RTa_jEvd1z7RBTGrBzrR9h9DHkJvjeMeqmcXALN3XdTV130zi43Ti4TTawDwyOfzktfbOX_vU9bv9b526_f5kicQ81f8t5
CitedBy_id crossref_primary_10_1016_j_cub_2017_08_044
crossref_primary_10_1016_j_plantsci_2015_01_014
crossref_primary_10_1080_07388551_2024_2410364
crossref_primary_10_1016_j_copbio_2011_01_002
crossref_primary_10_7554_eLife_58984
crossref_primary_10_1016_j_biotechadv_2011_07_019
crossref_primary_10_1007_s00253_010_2976_6
crossref_primary_10_1016_j_pld_2019_04_001
crossref_primary_10_1111_ppl_12900
crossref_primary_10_1111_tpj_13138
crossref_primary_10_1111_tpj_14864
crossref_primary_10_1038_srep41645
crossref_primary_10_1016_j_plaphy_2025_109607
crossref_primary_10_3390_microorganisms7110501
crossref_primary_10_1038_s41467_017_02239_z
crossref_primary_10_3390_md12063487
crossref_primary_10_3389_fpls_2015_00586
crossref_primary_10_1093_plphys_kiab482
crossref_primary_10_3389_fpls_2021_831785
crossref_primary_10_1007_s40003_011_0010_6
crossref_primary_10_1016_j_ymben_2020_06_009
crossref_primary_10_1111_j_1467_7652_2011_00615_x
crossref_primary_10_1111_tpj_16930
crossref_primary_10_1016_j_plipres_2018_04_004
crossref_primary_10_1007_s10068_012_0201_3
crossref_primary_10_1271_kagakutoseibutsu_62_137
crossref_primary_10_1007_s11816_010_0147_y
crossref_primary_10_1016_j_abb_2008_10_029
crossref_primary_10_1007_s11120_014_0055_z
crossref_primary_10_1007_s11816_011_0206_z
crossref_primary_10_5511_plantbiotechnology_26_39
crossref_primary_10_1093_jxb_err070
crossref_primary_10_7554_eLife_13664
crossref_primary_10_1007_s00425_014_2213_0
crossref_primary_10_1007_s11103_013_0045_0
crossref_primary_10_1016_j_indcrop_2025_120480
crossref_primary_10_1146_annurev_arplant_050213_040212
crossref_primary_10_1007_s00299_022_02889_4
crossref_primary_10_1080_07352689_2013_781453
crossref_primary_10_1186_1475_2859_10_29
crossref_primary_10_5511_plantbiotechnology_21_0309a
crossref_primary_10_1007_s12033_023_00693_3
crossref_primary_10_1093_pcp_pcn169
crossref_primary_10_3390_plants14060965
crossref_primary_10_1111_nph_14730
crossref_primary_10_1021_acssynbio_9b00280
crossref_primary_10_1093_pcp_pcv187
crossref_primary_10_3390_md21100514
crossref_primary_10_17221_79_2010_CJGPB
crossref_primary_10_3390_md9050757
crossref_primary_10_1007_s00253_015_7128_6
crossref_primary_10_1093_plphys_kiab583
crossref_primary_10_1111_pbi_12365
crossref_primary_10_1016_j_biortech_2021_125200
crossref_primary_10_1007_s00253_009_2150_1
crossref_primary_10_1016_j_plantsci_2018_03_012
crossref_primary_10_1007_s00299_021_02684_7
crossref_primary_10_1186_s13068_021_01969_z
crossref_primary_10_1080_07388551_2019_1573798
crossref_primary_10_1016_j_biotechadv_2023_108258
crossref_primary_10_1016_j_plantsci_2010_03_009
crossref_primary_10_1007_s40626_024_00309_4
crossref_primary_10_1016_j_btre_2022_e00769
crossref_primary_10_1038_s41598_020_67756_2
crossref_primary_10_1146_annurev_arplant_050213_035825
crossref_primary_10_1134_S2079059712030112
crossref_primary_10_1016_j_molp_2018_09_007
crossref_primary_10_1111_j_1467_7652_2011_00621_x
crossref_primary_10_1016_j_indcrop_2025_120581
crossref_primary_10_1007_s11274_021_03188_y
crossref_primary_10_1016_j_pbi_2022_102185
crossref_primary_10_1016_j_scitotenv_2021_147496
crossref_primary_10_31665_JFB_2020_10225
crossref_primary_10_1016_j_aquaculture_2021_736863
crossref_primary_10_1016_j_ymben_2011_07_003
crossref_primary_10_1371_journal_pone_0138196
crossref_primary_10_5511_plantbiotechnology_26_81
crossref_primary_10_1186_s13068_022_02173_3
crossref_primary_10_1007_s11816_021_00673_6
crossref_primary_10_1016_j_plantsci_2018_02_025
crossref_primary_10_1007_s13593_015_0310_5
crossref_primary_10_3389_fpls_2022_1001756
crossref_primary_10_3389_fpls_2019_01028
crossref_primary_10_1111_pbi_13593
crossref_primary_10_1007_s00425_012_1654_6
crossref_primary_10_1007_s42994_022_00083_4
crossref_primary_10_1080_07388551_2022_2092717
crossref_primary_10_5661_bger_26_139
crossref_primary_10_1016_j_ejbt_2021_03_005
crossref_primary_10_1016_j_tifs_2019_08_016
crossref_primary_10_1101_cshperspect_a023887
crossref_primary_10_1105_tpc_111_086827
crossref_primary_10_1080_01140671_2013_793730
crossref_primary_10_1007_s11120_010_9583_3
crossref_primary_10_1016_j_stress_2022_100122
crossref_primary_10_1093_jxb_erp006
crossref_primary_10_1007_s10695_022_01167_0
crossref_primary_10_1186_s13059_016_1004_2
crossref_primary_10_1038_s41598_017_16641_6
crossref_primary_10_3390_jof9050578
crossref_primary_10_1016_j_copbio_2017_07_004
crossref_primary_10_1111_pbi_13364
crossref_primary_10_1002_jctb_6902
crossref_primary_10_1104_pp_110_170969
crossref_primary_10_1186_s13007_017_0179_1
crossref_primary_10_1016_j_ymben_2011_11_005
crossref_primary_10_1093_jxb_ert134
crossref_primary_10_1111_pbi_12035
crossref_primary_10_1186_s13036_015_0022_z
crossref_primary_10_1016_j_bbalip_2020_158664
crossref_primary_10_1021_np300136t
crossref_primary_10_1007_s11248_013_9750_3
crossref_primary_10_1021_acs_jnatprod_5b00756
crossref_primary_10_1016_j_ymben_2013_02_005
crossref_primary_10_1007_s00217_010_1265_z
crossref_primary_10_1007_s11248_016_9943_7
crossref_primary_10_1111_j_1467_7652_2011_00612_x
crossref_primary_10_5650_oleoscience_9_385
crossref_primary_10_1016_j_tibtech_2020_11_012
crossref_primary_10_1111_pbi_12608
crossref_primary_10_3389_fpls_2022_1034625
crossref_primary_10_1016_j_algal_2020_102178
crossref_primary_10_1080_07352689_2013_789648
crossref_primary_10_5511_plantbiotechnology_26_93
crossref_primary_10_1093_plphys_kiab428
crossref_primary_10_1104_pp_109_139816
crossref_primary_10_1111_tpj_12356
crossref_primary_10_3390_plants9081039
crossref_primary_10_1111_pbi_12572
crossref_primary_10_1016_j_pbi_2014_05_006
crossref_primary_10_4490_algae_2013_28_2_131
crossref_primary_10_3389_fpls_2016_00440
Cites_doi 10.1074/jbc.272.10.6128
10.1093/jxb/erl103
10.1046/j.1365-313X.1993.04050833.x
10.1038/78515
10.1007/s00425-005-1533-5
10.5551/jat1994.7.216
10.1128/AEM.71.8.4286-4296.2005
10.1016/j.febslet.2005.02.066
10.1016/S0098-2997(03)00030-X
10.1002/biot.200700040
10.1104/pp.107.106690
10.1007/s10126-004-5100-z
10.1038/nbt0901-870
10.1016/j.tetlet.2008.03.077
10.1006/abio.1999.4085
10.1016/j.ymben.2006.01.005
10.1007/s11248-007-9120-0
10.1007/s00253-007-0967-z
10.1128/jb.177.22.6575-6584.1995
10.1007/BF00386231
10.1006/mben.2002.0234
10.1016/S0167-7799(00)01433-5
10.1002/bies.950060608
10.1007/s00253-006-0426-2
10.1111/j.1365-313X.2000.00896.x
10.1111/j.1365-313X.2004.02309.x
10.1016/j.ymben.2006.01.001
10.1046/j.1365-313X.1995.08050693.x
10.1093/pcp/pci197
10.1104/pp.104.050054
10.1007/s11248-005-3997-2
10.1111/j.1365-313X.2004.02151.x
10.2331/suisan.48.653
10.1074/jbc.M702831200
10.1111/j.1399-3054.1962.tb08052.x
10.1073/pnas.90.3.913
10.1080/01635589509514373
10.1016/S0167-7799(02)00007-0
10.3109/07388559109040622
10.1093/pcp/pci235
10.1093/carcin/15.1.15
10.1074/jbc.M100854200
10.1007/BF02861058
10.1104/pp.104.045187
10.1351/pac199163010081
10.1038/nature00861
10.1007/978-3-0348-7836-4
10.1146/annurev.arplant.55.031903.141633
ContentType Journal Article
Copyright 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd
2008 INIST-CNRS
Journal compilation © 2008 Blackwell Publishing Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd
– notice: 2008 INIST-CNRS
– notice: Journal compilation © 2008 Blackwell Publishing Ltd and the Society for Experimental Biology
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7QL
C1K
7S9
L.6
7X8
DOI 10.1111/j.1365-313X.2008.03559.x
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
Genetics Abstracts
AGRICOLA
Bacteriology Abstracts (Microbiology B)
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Engineering
EISSN 1365-313X
EndPage 868
ExternalDocumentID 1537651391
18494855
20608725
10_1111_j_1365_313X_2008_03559_x
TPJ3559
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7QL
C1K
7S9
L.6
7X8
ID FETCH-LOGICAL-c6029-7db6a57f8ae571b39864e897bf4da2e316427fa3a70e943a5314d7fd34eaf1293
IEDL.DBID DR2
ISSN 0960-7412
1365-313X
IngestDate Fri Jul 11 10:33:04 EDT 2025
Fri Jul 11 03:37:14 EDT 2025
Thu Jul 10 23:26:55 EDT 2025
Fri Jul 25 11:01:36 EDT 2025
Thu Apr 03 07:05:38 EDT 2025
Mon Jul 21 09:15:27 EDT 2025
Thu Apr 24 23:13:20 EDT 2025
Tue Jul 01 03:57:00 EDT 2025
Wed Jan 22 16:53:47 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Enzyme
Growth
Hydroxylase
Carbon dioxide
Biosynthesis
Plant leaf
Plastid
Nicotiana tabacum
Genetic transfer
astaxanthin
plastid transformation
Gene
Dicotyledones
Angiospermae
Above ground plant part
Spermatophyta
Genetic engineering
Transgenic plant
Oxidoreductases
Solanaceae
metabolic engineering
Photosynthesis
Carotenoid
Chloroplast
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6029-7db6a57f8ae571b39864e897bf4da2e316427fa3a70e943a5314d7fd34eaf1293
Notes Present address: Department of Biological and Environmental Science, Faculty of Agriculture, Kobe University, 1‐1 Rokkodai‐cho, Nada‐ku, Kobe, 657‐8501, Japan.
Present address: Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, 1‐1 Rokkodai‐cho, Nada‐ku, Kobe, 657‐8501, Japan.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-313X.2008.03559.x
PMID 18494855
PQID 213512867
PQPubID 31702
PageCount 12
ParticipantIDs proquest_miscellaneous_69534317
proquest_miscellaneous_48052167
proquest_miscellaneous_21356748
proquest_journals_213512867
pubmed_primary_18494855
pascalfrancis_primary_20608725
crossref_citationtrail_10_1111_j_1365_313X_2008_03559_x
crossref_primary_10_1111_j_1365_313X_2008_03559_x
wiley_primary_10_1111_j_1365_313X_2008_03559_x_TPJ3559
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2008
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: September 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2008
Publisher Blackwell Publishing Ltd
Blackwell Science
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell Science
References 2007; 145
2006; 72
2007; 282
2006; 57
1997; 272
2000; 24
1991; 11
1999; 270
1987; 6
2000; 7
2006; 15
2005; 579
2005; 41
2006; 8
2007
1962; 15
2002; 4
1995
2002; 418
2004
1993; 90
1995; 177
2007; 75
1993; 4
1995; 8
2005; 46
2001; 276
1980; 149
2004; 55
1982; 48
2000; 18
2004; 136
2005; 221
2004; 39
2000; 545
1991; 63
1995; 23
2006; 47
2008; 49
2001; 19
2003; 24
2005; 7
1985; 51
1994; 15
2007; 2
2005; 71
2003; 21
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
Tatsuzawa H. (e_1_2_6_47_1) 2000; 545
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Sokal R.R. (e_1_2_6_43_1) 1995
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 418
  start-page: 203
  year: 2002
  end-page: 206
  article-title: Overexpression of β‐carotene hydroxylase enhances stress tolerance in
  publication-title: Nature
– volume: 8
  start-page: 253
  year: 2006
  end-page: 263
  article-title: Engineering ketocarotenoid biosynthesis in potato tubers
  publication-title: Metab Engl
– volume: 7
  start-page: 515
  year: 2005
  end-page: 522
  article-title: Characterization of β‐carotene ketolases, CrtW, from marine bacteria by complementation analysis in
  publication-title: Mar. Biotechnol.
– year: 2007
  article-title: Metabolic engineering of novel ketocarotenoid production in carrot plants
  publication-title: Transgenic Res.
– volume: 49
  start-page: 3294
  year: 2008
  end-page: 3296
  article-title: 4‐Ketoantheraxanthin, a novel carotenoid produced by the combination of the bacterial enzyme β‐carotene ketolase CrtW and endogeneous carotenoid biosynthetic enzymes in higher plants
  publication-title: Tetrahedron Lett.
– volume: 6
  start-page: 279
  year: 1987
  end-page: 282
  article-title: Why do chloroplasts and mitochondria contain so many copies of their genome?
  publication-title: Bioessays
– volume: 8
  start-page: 693
  year: 1995
  end-page: 701
  article-title: Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway
  publication-title: Plant J.
– volume: 18
  start-page: 888
  year: 2000
  end-page: 892
  article-title: Metabolic engineering of astaxanthin production in tobacco flowers
  publication-title: Nat. Biotechnol.
– volume: 177
  start-page: 6575
  year: 1995
  end-page: 6584
  article-title: Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level
  publication-title: J. Bacteriol.
– volume: 75
  start-page: 1335
  year: 2007
  end-page: 1341
  article-title: Characterization of two β‐carotene ketolases, CrtO and CrtW, by complementation analysis in
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 149
  start-page: 78
  year: 1980
  end-page: 90
  article-title: A biochemical model of photosynthetic CO assimilation in leaves of C3 species
  publication-title: Planta
– volume: 90
  start-page: 913
  year: 1993
  end-page: 917
  article-title: High‐frequency plastid transformation in tobacco by selection for a chimeric gene
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 48
  start-page: 653
  year: 1982
  end-page: 659
  article-title: The first isolation and identification of fritschiellaxanthin from a crab sesarma haematocheir
  publication-title: Bull. Japan. Soc. Sci. Fish.
– volume: 39
  start-page: 477
  year: 2004
  end-page: 486
  article-title: Metabolic engineering of ketocarotenoid formation in higher plants
  publication-title: Plant J.
– volume: 24
  start-page: 345
  year: 2003
  end-page: 351
  article-title: Antioxidant activity of carotenoid
  publication-title: Mol. Asp. Med.
– volume: 47
  start-page: 200
  year: 2006
  end-page: 210
  article-title: Photoinactivation of ascorbate peroxidase in isolated tobacco chloroplasts: APX maintains the electron flux through the water‐water cycle in transplastomic tobacco plants
  publication-title: Plant Cell Physiol.
– volume: 63
  start-page: 81
  year: 1991
  end-page: 88
  article-title: Xanthophylls as precursors of retinoids
  publication-title: Pure Appl. Chem.
– volume: 21
  start-page: 20
  year: 2003
  end-page: 28
  article-title: Progress towards commercialization of plastid transformation technology
  publication-title: Trends Biotechnol.
– volume: 282
  start-page: 22605
  year: 2007
  end-page: 22618
  article-title: Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of to photooxidative stress by a lipid‐protective, antioxidant mechanism
  publication-title: J. Biol. Chem.
– year: 2004
– volume: 270
  start-page: 41
  year: 1999
  end-page: 49
  article-title: Development and validation of real‐time quantitative reverse transcriptase‐polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro
  publication-title: Anal. Biochem.
– volume: 8
  start-page: 291
  year: 2006
  end-page: 302
  article-title: Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants
  publication-title: Metab. Eng.
– volume: 18
  start-page: 160
  year: 2000
  end-page: 167
  article-title: Commercial potential for microalgae as a natural source of astaxanthin
  publication-title: Trends Biotechonol.
– volume: 41
  start-page: 478
  year: 2005
  end-page: 492
  article-title: A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of
  publication-title: Plant J.
– volume: 46
  start-page: 1819
  year: 2005
  end-page: 1830
  article-title: Effects of light intensity on cyclic electron flow around PSI and its relationship to non‐photochemical quenching of Chl fluorescence in tobacco leaves
  publication-title: Plant Cell Physiol.
– volume: 4
  start-page: 263
  year: 2002
  end-page: 272
  article-title: Genetic engineering of a zeaxanthin‐rich potato by antisense inactivation and co‐suppression of carotenoid epoxidation
  publication-title: Metab. Eng.
– volume: 19
  start-page: 870
  year: 2001
  end-page: 875
  article-title: Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit
  publication-title: Nat. Biotechnol.
– volume: 57
  start-page: 3639
  year: 2006
  end-page: 3645
  article-title: Ketocarotenoid formation in transgenic potato
  publication-title: J. Exp. Bot.
– volume: 15
  start-page: 473
  year: 1962
  end-page: 497
  article-title: A revised medium for rapid growth and bioassays with tobacco tissue cultures
  publication-title: Physiol. Plant.
– volume: 11
  start-page: 297
  year: 1991
  end-page: 326
  article-title: Astaxanthin from microbial sources
  publication-title: Crit. Rev. Biotechnol.
– volume: 51
  start-page: 53
  year: 1985
  end-page: 105
  article-title: Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations
  publication-title: Bot. Rev.
– volume: 221
  start-page: 305
  year: 2005
  end-page: 308
  article-title: Recent advances in carotenoid biosynthesis, regulation and manipulation
  publication-title: Planta
– volume: 71
  start-page: 4286
  year: 2005
  end-page: 4296
  article-title: Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2′‐β‐hydroxylase, from sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls
  publication-title: Appl. Environ. Microbiol.
– volume: 72
  start-page: 1238
  year: 2006
  end-page: 1246
  article-title: Characterizationof β‐carotene 3,3′‐hydroxylases, CrtZ, and P450 in astaxanthin biosynthetic pathway and adonirubin production by gene combination in
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 4
  start-page: 833
  year: 1993
  end-page: 840
  article-title: Functional expression of the carotenid biosynthesis gene in transgenic plants showing an increase of β‐carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon
  publication-title: Plant J.
– volume: 55
  start-page: 289
  year: 2004
  end-page: 313
  article-title: Plastid transformation in higher plants
  publication-title: Annu. Rev. Plant. Biol.
– volume: 24
  start-page: 551
  year: 2000
  end-page: 558
  article-title: Application of high‐performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids
  publication-title: Plant J.
– volume: 15
  start-page: 15
  year: 1994
  end-page: 9
  article-title: Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin
  publication-title: Carcinogenesis
– volume: 136
  start-page: 2843
  year: 2004
  end-page: 3854
  article-title: Plastid‐expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance
  publication-title: Plant Physiol.
– volume: 272
  start-page: 6128
  year: 1997
  end-page: 6135
  article-title: characterization of astaxanthin biosynthetic enzymes
  publication-title: J. Biol. Chem.
– volume: 579
  start-page: 2125
  year: 2005
  end-page: 2129
  article-title: The cyanobacterium PCC 7421 uses bacterial‐type phytoene desaturase in carotenoid biosynthesis
  publication-title: FEBS Lett.
– volume: 545
  start-page: 120
  year: 2000
  end-page: 126
  article-title: Quenching of singlet oxygen by carotenoid produced in ‐attenuation of singlet oxygen‐mediated bacterial killing by carotenoids
  publication-title: FEBS Lett.
– volume: 7
  start-page: 216
  year: 2000
  end-page: 222
  article-title: Inhibition of low‐density lipoprotein oxidation by astaxanthin
  publication-title: J. Atheroscler. Thromb.
– volume: 23
  start-page: 171
  year: 1995
  end-page: 183
  article-title: Effect of carotenoids on immunoglobulin production by human peripheral blood mononuclear cells: astaxanthin, a carotenoid without vitamin A activity, enhances immunoglobulin production in response to a T‐dependent stimulant and antigen
  publication-title: Nutr. Cancer
– volume: 136
  start-page: 4048
  year: 2004
  end-page: 4060
  article-title: Metabolic engineering of the chloroplast genome using the gene reveals that chorismate p‐hydroxybenzoic acid biosynthesis
  publication-title: Plant Physiol.
– volume: 15
  start-page: 205
  year: 2006
  end-page: 217
  article-title: Efficient and stable transformation of L. cv Cisco (lettuce) plastid
  publication-title: Transgenic Res.
– year: 1995
– volume: 145
  start-page: 1129
  year: 2007
  end-page: 1143
  article-title: Chloroplast vector systems for biotechnology applications
  publication-title: Plant Physiol.
– volume: 276
  start-page: 22901
  year: 2001
  end-page: 22909
  article-title: 1‐Deoxy‐d‐xylulose‐5‐phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants
  publication-title: J. Biol. Chem.
– volume: 2
  start-page: 1263
  year: 2007
  end-page: 1269
  article-title: Metabolic engineering of ketocarotenoid biosynthesis in leaves and flowers of tobacco species
  publication-title: Biotechnol. J.
– ident: e_1_2_6_11_1
  doi: 10.1074/jbc.272.10.6128
– ident: e_1_2_6_14_1
  doi: 10.1093/jxb/erl103
– ident: e_1_2_6_29_1
  doi: 10.1046/j.1365-313X.1993.04050833.x
– ident: e_1_2_6_26_1
  doi: 10.1038/78515
– ident: e_1_2_6_37_1
  doi: 10.1007/s00425-005-1533-5
– ident: e_1_2_6_16_1
  doi: 10.5551/jat1994.7.216
– ident: e_1_2_6_35_1
  doi: 10.1128/AEM.71.8.4286-4296.2005
– ident: e_1_2_6_48_1
  doi: 10.1016/j.febslet.2005.02.066
– ident: e_1_2_6_44_1
  doi: 10.1016/S0098-2997(03)00030-X
– ident: e_1_2_6_15_1
  doi: 10.1002/biot.200700040
– ident: e_1_2_6_49_1
  doi: 10.1104/pp.107.106690
– ident: e_1_2_6_4_1
  doi: 10.1007/s10126-004-5100-z
– ident: e_1_2_6_39_1
  doi: 10.1038/nbt0901-870
– ident: e_1_2_6_42_1
  doi: 10.1016/j.tetlet.2008.03.077
– ident: e_1_2_6_51_1
  doi: 10.1006/abio.1999.4085
– ident: e_1_2_6_40_1
  doi: 10.1016/j.ymben.2006.01.005
– ident: e_1_2_6_17_1
  doi: 10.1007/s11248-007-9120-0
– ident: e_1_2_6_6_1
  doi: 10.1007/s00253-007-0967-z
– ident: e_1_2_6_30_1
  doi: 10.1128/jb.177.22.6575-6584.1995
– ident: e_1_2_6_10_1
  doi: 10.1007/BF00386231
– ident: e_1_2_6_38_1
  doi: 10.1006/mben.2002.0234
– ident: e_1_2_6_23_1
  doi: 10.1016/S0167-7799(00)01433-5
– ident: e_1_2_6_2_1
  doi: 10.1002/bies.950060608
– ident: e_1_2_6_5_1
  doi: 10.1007/s00253-006-0426-2
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1365-313X.2000.00896.x
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1365-313X.2004.02309.x
– ident: e_1_2_6_33_1
  doi: 10.1016/j.ymben.2006.01.001
– ident: e_1_2_6_13_1
  doi: 10.1046/j.1365-313X.1995.08050693.x
– ident: e_1_2_6_31_1
  doi: 10.1093/pcp/pci197
– ident: e_1_2_6_50_1
  doi: 10.1104/pp.104.050054
– ident: e_1_2_6_21_1
  doi: 10.1007/s11248-005-3997-2
– ident: e_1_2_6_36_1
  doi: 10.1111/j.1365-313X.2004.02151.x
– ident: e_1_2_6_28_1
  doi: 10.2331/suisan.48.653
– ident: e_1_2_6_19_1
  doi: 10.1074/jbc.M702831200
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– ident: e_1_2_6_45_1
  doi: 10.1073/pnas.90.3.913
– ident: e_1_2_6_20_1
  doi: 10.1080/01635589509514373
– ident: e_1_2_6_24_1
  doi: 10.1016/S0167-7799(02)00007-0
– ident: e_1_2_6_18_1
  doi: 10.3109/07388559109040622
– volume: 545
  start-page: 120
  year: 2000
  ident: e_1_2_6_47_1
  article-title: Quenching of singlet oxygen by carotenoid produced in Escherichia coli‐attenuation of singlet oxygen‐mediated bacterial killing by carotenoids
  publication-title: FEBS Lett.
– ident: e_1_2_6_32_1
  doi: 10.1093/pcp/pci235
– volume-title: Biometry
  year: 1995
  ident: e_1_2_6_43_1
– ident: e_1_2_6_46_1
  doi: 10.1093/carcin/15.1.15
– ident: e_1_2_6_9_1
  doi: 10.1074/jbc.M100854200
– ident: e_1_2_6_41_1
  doi: 10.1007/BF02861058
– ident: e_1_2_6_22_1
  doi: 10.1104/pp.104.045187
– ident: e_1_2_6_27_1
  doi: 10.1351/pac199163010081
– ident: e_1_2_6_8_1
  doi: 10.1038/nature00861
– ident: e_1_2_6_3_1
  doi: 10.1007/978-3-0348-7836-4
– ident: e_1_2_6_25_1
  doi: 10.1146/annurev.arplant.55.031903.141633
SSID ssj0017364
Score 2.3519745
Snippet Summary The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In...
The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 857
SubjectTerms aerial parts
astaxanthin
Bacteria
beta-carotene
Biological and medical sciences
Biosynthesis
Botany
Brevundimonas
Carbon dioxide
carotenoid
Caulobacteraceae
Caulobacteraceae - genetics
chloroplasts
color
developmental stages
DNA, Plant
DNA, Plant - genetics
engineering
Fundamental and applied biological sciences. Psychology
Gene expression
gene transfer
genes
Genes, Bacterial
Genetic Engineering
genetics
Genome, Chloroplast
human health
Leaves
Light intensity
market prices
metabolic engineering
Metabolism
Metabolism. Physicochemical requirements
Nicotiana - genetics
Nicotiana - metabolism
Nicotiana tabacum
Nitrogen
Nitrogen - metabolism
Oxygenases
Oxygenases - genetics
photons
Photosynthesis
Plant Leaves
Plant Leaves - genetics
Plant Leaves - metabolism
Plant physiology and development
Plants, Genetically Modified
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
plastid transformation
Plastids
Plastids - genetics
Ribulose-Bisphosphate Carboxylase
Ribulose-Bisphosphate Carboxylase - metabolism
RNA, Plant
RNA, Plant - genetics
Tobacco
Transgenic plants
Xanthophylls
Xanthophylls - biosynthesis
Title Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2008.03559.x
https://www.ncbi.nlm.nih.gov/pubmed/18494855
https://www.proquest.com/docview/213512867
https://www.proquest.com/docview/21356748
https://www.proquest.com/docview/48052167
https://www.proquest.com/docview/69534317
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS90wFD8M8WEwpk631a_lwdde2qRN2kcVRZSNMRTuW0nTlF2UVmzv8PrXe07TW72iIjLoQyEfkOR8_JKc_A7AXmyN5mks_MRKumYMEz_nUvilFCZICxXago4Gfv6SJxfR6Tge9_FP9BbG8UMMB26kGZ29JgXXebOo5BShJUIx7kMi0XWmI8KTVED46M_AJBUq4ZikELD76ESfBPU829GCp_p0rRuctNJlu3gOji6i2849Ha_A5XxgLirlcjRt85G5e8L5-H9GvgqfexTL9p3YrcEHW32B5YMakeZsHc4OJnUzqxBaNpOG1SXTCEFvcQn_TiqGH9kQY2p2ZfU_27B8xtqOYh2BfEuPpJl9IEncgIvjo_PDE79P2uAbSaE0qsiljlWZaBurMBdE_26TVFFAoOZW4PaMq1ILrQKbRkKjDYgKVRYisrok8PEVlqq6st-B8VxK6kwHOo6MCXRIcFLijtEikFHSAzVfoMz0jOaUWOMqe7SzwZnKaKb6fJs0U9mtB-HQ8tqxeryhze6CDAwNeSCDRPHYg625UGS9IWgyThkQeSKVBz-GUtRgupbRla2nrgqlfHm5RtTlnXitD4nqRlDQg29OGh-GlTgCIA9kJ1NvHm92_vuU_jbf23ALPs6Da4JwG5bam6ndQQTX5rudbt4DPOY17A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KUmgh9P1w0iY69OrFlmzJPiahYZsXpWxgb0aWZbJ0sUPtDdn--s5YXqcb0hJKwQeDLYFGM9InafR9AJ9iazRPY-EnVtIxY5j4OZfCL6UwQVqo0Ba0NXB2LscX0fE0nvZyQHQXxvFDDBtuFBndeE0BThvS61FOKVoiFNM-JxLnznSEgHKTBL679dW3gUsqVMJxSSFk93EavZPWc29Na3PV1pVu0Gyl07u4D5Cu49tugjp6DvNV01xeyvfRos1H5ucd1sf_1PYX8KwHsmzfed5LeGSrV_D4oEawuXwNJwezullWiC6bWcPqkmlEoTfYi5eziuFDw4gxNZtbfW0bli9Z27GsI5Zv6Z40s7c8iW_g4ujz5HDs97oNvpGUTaOKXOpYlYm2sQpzQQzwNkkV5QRqbgWu0LgqtdAqsGkkNA4DUaHKQkRWl4Q_3sJGVVf2PTCeS0mV6UDHkTGBDglRSlw0WsQySnqgVj2UmZ7UnLQ15tlvixu0VEaW6iU3yVLZjQfhUPLKEXs8oMzumhMMBXkgg0Tx2IOdlVdk_VjQZJxEEHkilQd7w1cMYjqZ0ZWtF-4XUn358x9RJz3xtzokRhyhQQ_eOXe8bVbiOIA8kJ1TPbi92eTrMb1t_2vBPXgynpydZqdfzk924Okq1yYIP8BG-2NhPyKga_PdLlB_AZZSOgc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9wwDBajG2Mwut9r2q31w15zJHZiJ4_tuqNrt1JGC_cWHMehR0tyLLnS618_Kc6lu9KNMgZ5CCQyWJbkz7b8CeBTbI3maSz8xEo6ZgwTP-dS-KUUJkgLFdqCtga-H8uDs-hwEk_6_Ce6C-P4IYYNN_KMLl6Tg8-KctXJKUNLhGLSp0Ti1JmOEE8-jmSQkIXv_xiopEIlHJUUInYfZ9E7WT33trQyVT2f6Qa1VrpyF_fh0VV4281P4xdwseyZS0u5GM3bfGRu7pA-_p-uv4T1HsayXWd3r-CRrV7Dk70aoebiDRztTetmUSG2bKYNq0umEYNe4xieTyuGDwURY2p2afWVbVi-YG3HsY5IvqVb0szesiS-hbPxl9PPB35ftcE3knJpVJFLHasy0TZWYS6I_90mqaKMQM2twPUZV6UWWgU2jYTGIBAVqixEZHVJ6OMdrFV1ZTeA8VxKakwHOo6MCXRIeFLiktEiklHSA7UcoMz0lOZUWeMy-21pg5rKSFN9wU3SVHbtQThIzhytxwNktldsYBDkAdqb4rEHW0ujyPpI0GScSiDyRCoPdoav6MJ0LqMrW8_dL1Tz5c9_RF3hib-1IdHfCAt68N5Z4223EscA5IHsbOrB_c1OTw7pbfNfBXfg6cn-OPv29fhoC54tE22C8AOstT_n9iOiuTbf7tz0F8aHOL8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biosynthesis+of+astaxanthin+in+tobacco+leaves+by+transplastomic+engineering&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Hasunuma%2C+Tomohisa&rft.au=Miyazawa%2C+Shin%E2%80%90Ichi&rft.au=Yoshimura%2C+Satomi&rft.au=Shinzaki%2C+Yuki&rft.date=2008-09-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=55&rft.issue=5&rft.spage=857&rft.epage=868&rft_id=info:doi/10.1111%2Fj.1365-313X.2008.03559.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_313X_2008_03559_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon