Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering
Summary The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium‐mediated...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 55; no. 5; pp. 857 - 868 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.09.2008
Blackwell Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium‐mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (β‐carotene ketolase) and CrtZ (β‐carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1‐fold higher than that of wild‐type tobacco. The tobacco transformants also synthesized a novel carotenoid 4‐ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild‐type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild‐type plants under ambient CO2 concentrations of 1500 μmol photons m−2 s−1 light intensity. |
---|---|
AbstractList | The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of
Agrobacterium
‐mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (β‐carotene ketolase) and CrtZ (β‐carotene hydroxylase) from a marine bacterium
Brevundimonas
sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1‐fold higher than that of wild‐type tobacco. The tobacco transformants also synthesized a novel carotenoid 4‐ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild‐type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild‐type plants under ambient CO
2
concentrations of 1500 μmol photons m
−2
s
−1
light intensity. The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium-mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (beta-carotene ketolase) and CrtZ (beta-carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1-fold higher than that of wild-type tobacco. The tobacco transformants also synthesized a novel carotenoid 4-ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild-type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild-type plants under ambient CO2 concentrations of 1500 micromol photons m(-2) s(-1) light intensity.SUMMARYThe natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium-mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (beta-carotene ketolase) and CrtZ (beta-carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1-fold higher than that of wild-type tobacco. The tobacco transformants also synthesized a novel carotenoid 4-ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild-type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild-type plants under ambient CO2 concentrations of 1500 micromol photons m(-2) s(-1) light intensity. The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium-mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW ([beta]-carotene ketolase) and CrtZ ([beta]-carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1-fold higher than that of wild-type tobacco. The tobacco transformants also synthesized a novel carotenoid 4-ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild-type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild-type plants under ambient CO2 concentrations of 1500 mmol photons m-2 s-1 light intensity. [PUBLICATION ABSTRACT] The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium-mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (β-carotene ketolase) and CrtZ (β-carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1-fold higher than that of wild-type tobacco. The tobacco transformants also synthesized a novel carotenoid 4-ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild-type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild-type plants under ambient CO₂ concentrations of 1500 μmol photons m⁻² s⁻¹ light intensity. The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium-mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (b-carotene ketolase) and CrtZ (b-carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1-fold higher than that of wild-type tobacco. The tobacco transformants also synthesized a novel carotenoid 4-ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild-type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild-type plants under ambient CO sub(2) concentrations of 1500kmolphotonsm super(-2)&thi nsp; s super(-1) light intensity. The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium-mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (beta-carotene ketolase) and CrtZ (beta-carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1-fold higher than that of wild-type tobacco. The tobacco transformants also synthesized a novel carotenoid 4-ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild-type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild-type plants under ambient CO2 concentrations of 1500 micromol photons m(-2) s(-1) light intensity. Summary The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to produce astaxanthin, transgenic plants have so far been generated through conventional genetic engineering of Agrobacterium‐mediated gene transfer. The results of trials have revealed that the method is far from practicable because of low yields, i.e. instead of astaxanthin, large quantities of the astaxanthin intermediates, including ketocarotenoids, accumulated in the transgenic plants. In the present study, we have overcome this problem, and have succeeded in producing more than 0.5% (dry weight) astaxanthin (more than 70% of total caroteniods) in tobacco leaves, which turns their green color to reddish brown, by expressing both genes encoding CrtW (β‐carotene ketolase) and CrtZ (β‐carotene hydroxylase) from a marine bacterium Brevundimonas sp., strain SD212, in the chloroplasts. Moreover, the total carotenoid content in the transplastomic tobacco plants was 2.1‐fold higher than that of wild‐type tobacco. The tobacco transformants also synthesized a novel carotenoid 4‐ketoantheraxanthin. There was no significant difference in the size of the aerial part of the plant between the transformants and wild‐type plants at the final stage of their growth. The photosynthesis rate of the transformants was also found to be similar to that of wild‐type plants under ambient CO2 concentrations of 1500 μmol photons m−2 s−1 light intensity. |
Author | Yoshimura, Satomi Tomizawa, Ken‐Ichi Miyake, Chikahiro Shindo, Kazutoshi Hasunuma, Tomohisa Misawa, Norihiko Miyazawa, Shin‐Ichi Shinzaki, Yuki Choi, Seon‐Kang |
Author_xml | – sequence: 1 givenname: Tomohisa surname: Hasunuma fullname: Hasunuma, Tomohisa – sequence: 2 givenname: Shin‐Ichi surname: Miyazawa fullname: Miyazawa, Shin‐Ichi – sequence: 3 givenname: Satomi surname: Yoshimura fullname: Yoshimura, Satomi – sequence: 4 givenname: Yuki surname: Shinzaki fullname: Shinzaki, Yuki – sequence: 5 givenname: Ken‐Ichi surname: Tomizawa fullname: Tomizawa, Ken‐Ichi – sequence: 6 givenname: Kazutoshi surname: Shindo fullname: Shindo, Kazutoshi – sequence: 7 givenname: Seon‐Kang surname: Choi fullname: Choi, Seon‐Kang – sequence: 8 givenname: Norihiko surname: Misawa fullname: Misawa, Norihiko – sequence: 9 givenname: Chikahiro surname: Miyake fullname: Miyake, Chikahiro |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20608725$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18494855$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkstuEzEUhi1URNPCK6AREuxm8N2eBUhQlWslWBSJnXVmcqY4mthhPIHk7etJQhbdBMuSj-zv_-VzuSBnIQYkpGC0Ynm9XlRMaFUKJn5WnFJbUaFUXW0ekdnx4YzMaK1paSTj5-QipQWlzAgtn5BzZmUtrVIz8vW9j2kbxl-YfCpiV0AaYQP5woci7zE20Lax6BH-YCqabTEOENKqz1xc-rbAcOcD4uDD3VPyuIM-4bPDeUl-fLi-vfpU3nz7-Pnq3U3Zasrr0swbDcp0FlAZ1ojaaom2Nk0n58BRMC256UCAoVhLAUowOTfdXEiEjvFaXJJXe9_VEH-vMY1u6VOLfQ8B4zo5XSshRc71FCgtVZzp0yBnQmkjbQZfPAAXcT2EnO2OYdzu3J4foHWzxLlbDX4Jw9b9q3oGXh4ASC30Xa5o69OR41RTa_jEvd1z7RBTGrBzrR9h9DHkJvjeMeqmcXALN3XdTV130zi43Ti4TTawDwyOfzktfbOX_vU9bv9b526_f5kicQ81f8t5 |
CitedBy_id | crossref_primary_10_1016_j_cub_2017_08_044 crossref_primary_10_1016_j_plantsci_2015_01_014 crossref_primary_10_1080_07388551_2024_2410364 crossref_primary_10_1016_j_copbio_2011_01_002 crossref_primary_10_7554_eLife_58984 crossref_primary_10_1016_j_biotechadv_2011_07_019 crossref_primary_10_1007_s00253_010_2976_6 crossref_primary_10_1016_j_pld_2019_04_001 crossref_primary_10_1111_ppl_12900 crossref_primary_10_1111_tpj_13138 crossref_primary_10_1111_tpj_14864 crossref_primary_10_1038_srep41645 crossref_primary_10_1016_j_plaphy_2025_109607 crossref_primary_10_3390_microorganisms7110501 crossref_primary_10_1038_s41467_017_02239_z crossref_primary_10_3390_md12063487 crossref_primary_10_3389_fpls_2015_00586 crossref_primary_10_1093_plphys_kiab482 crossref_primary_10_3389_fpls_2021_831785 crossref_primary_10_1007_s40003_011_0010_6 crossref_primary_10_1016_j_ymben_2020_06_009 crossref_primary_10_1111_j_1467_7652_2011_00615_x crossref_primary_10_1111_tpj_16930 crossref_primary_10_1016_j_plipres_2018_04_004 crossref_primary_10_1007_s10068_012_0201_3 crossref_primary_10_1271_kagakutoseibutsu_62_137 crossref_primary_10_1007_s11816_010_0147_y crossref_primary_10_1016_j_abb_2008_10_029 crossref_primary_10_1007_s11120_014_0055_z crossref_primary_10_1007_s11816_011_0206_z crossref_primary_10_5511_plantbiotechnology_26_39 crossref_primary_10_1093_jxb_err070 crossref_primary_10_7554_eLife_13664 crossref_primary_10_1007_s00425_014_2213_0 crossref_primary_10_1007_s11103_013_0045_0 crossref_primary_10_1016_j_indcrop_2025_120480 crossref_primary_10_1146_annurev_arplant_050213_040212 crossref_primary_10_1007_s00299_022_02889_4 crossref_primary_10_1080_07352689_2013_781453 crossref_primary_10_1186_1475_2859_10_29 crossref_primary_10_5511_plantbiotechnology_21_0309a crossref_primary_10_1007_s12033_023_00693_3 crossref_primary_10_1093_pcp_pcn169 crossref_primary_10_3390_plants14060965 crossref_primary_10_1111_nph_14730 crossref_primary_10_1021_acssynbio_9b00280 crossref_primary_10_1093_pcp_pcv187 crossref_primary_10_3390_md21100514 crossref_primary_10_17221_79_2010_CJGPB crossref_primary_10_3390_md9050757 crossref_primary_10_1007_s00253_015_7128_6 crossref_primary_10_1093_plphys_kiab583 crossref_primary_10_1111_pbi_12365 crossref_primary_10_1016_j_biortech_2021_125200 crossref_primary_10_1007_s00253_009_2150_1 crossref_primary_10_1016_j_plantsci_2018_03_012 crossref_primary_10_1007_s00299_021_02684_7 crossref_primary_10_1186_s13068_021_01969_z crossref_primary_10_1080_07388551_2019_1573798 crossref_primary_10_1016_j_biotechadv_2023_108258 crossref_primary_10_1016_j_plantsci_2010_03_009 crossref_primary_10_1007_s40626_024_00309_4 crossref_primary_10_1016_j_btre_2022_e00769 crossref_primary_10_1038_s41598_020_67756_2 crossref_primary_10_1146_annurev_arplant_050213_035825 crossref_primary_10_1134_S2079059712030112 crossref_primary_10_1016_j_molp_2018_09_007 crossref_primary_10_1111_j_1467_7652_2011_00621_x crossref_primary_10_1016_j_indcrop_2025_120581 crossref_primary_10_1007_s11274_021_03188_y crossref_primary_10_1016_j_pbi_2022_102185 crossref_primary_10_1016_j_scitotenv_2021_147496 crossref_primary_10_31665_JFB_2020_10225 crossref_primary_10_1016_j_aquaculture_2021_736863 crossref_primary_10_1016_j_ymben_2011_07_003 crossref_primary_10_1371_journal_pone_0138196 crossref_primary_10_5511_plantbiotechnology_26_81 crossref_primary_10_1186_s13068_022_02173_3 crossref_primary_10_1007_s11816_021_00673_6 crossref_primary_10_1016_j_plantsci_2018_02_025 crossref_primary_10_1007_s13593_015_0310_5 crossref_primary_10_3389_fpls_2022_1001756 crossref_primary_10_3389_fpls_2019_01028 crossref_primary_10_1111_pbi_13593 crossref_primary_10_1007_s00425_012_1654_6 crossref_primary_10_1007_s42994_022_00083_4 crossref_primary_10_1080_07388551_2022_2092717 crossref_primary_10_5661_bger_26_139 crossref_primary_10_1016_j_ejbt_2021_03_005 crossref_primary_10_1016_j_tifs_2019_08_016 crossref_primary_10_1101_cshperspect_a023887 crossref_primary_10_1105_tpc_111_086827 crossref_primary_10_1080_01140671_2013_793730 crossref_primary_10_1007_s11120_010_9583_3 crossref_primary_10_1016_j_stress_2022_100122 crossref_primary_10_1093_jxb_erp006 crossref_primary_10_1007_s10695_022_01167_0 crossref_primary_10_1186_s13059_016_1004_2 crossref_primary_10_1038_s41598_017_16641_6 crossref_primary_10_3390_jof9050578 crossref_primary_10_1016_j_copbio_2017_07_004 crossref_primary_10_1111_pbi_13364 crossref_primary_10_1002_jctb_6902 crossref_primary_10_1104_pp_110_170969 crossref_primary_10_1186_s13007_017_0179_1 crossref_primary_10_1016_j_ymben_2011_11_005 crossref_primary_10_1093_jxb_ert134 crossref_primary_10_1111_pbi_12035 crossref_primary_10_1186_s13036_015_0022_z crossref_primary_10_1016_j_bbalip_2020_158664 crossref_primary_10_1021_np300136t crossref_primary_10_1007_s11248_013_9750_3 crossref_primary_10_1021_acs_jnatprod_5b00756 crossref_primary_10_1016_j_ymben_2013_02_005 crossref_primary_10_1007_s00217_010_1265_z crossref_primary_10_1007_s11248_016_9943_7 crossref_primary_10_1111_j_1467_7652_2011_00612_x crossref_primary_10_5650_oleoscience_9_385 crossref_primary_10_1016_j_tibtech_2020_11_012 crossref_primary_10_1111_pbi_12608 crossref_primary_10_3389_fpls_2022_1034625 crossref_primary_10_1016_j_algal_2020_102178 crossref_primary_10_1080_07352689_2013_789648 crossref_primary_10_5511_plantbiotechnology_26_93 crossref_primary_10_1093_plphys_kiab428 crossref_primary_10_1104_pp_109_139816 crossref_primary_10_1111_tpj_12356 crossref_primary_10_3390_plants9081039 crossref_primary_10_1111_pbi_12572 crossref_primary_10_1016_j_pbi_2014_05_006 crossref_primary_10_4490_algae_2013_28_2_131 crossref_primary_10_3389_fpls_2016_00440 |
Cites_doi | 10.1074/jbc.272.10.6128 10.1093/jxb/erl103 10.1046/j.1365-313X.1993.04050833.x 10.1038/78515 10.1007/s00425-005-1533-5 10.5551/jat1994.7.216 10.1128/AEM.71.8.4286-4296.2005 10.1016/j.febslet.2005.02.066 10.1016/S0098-2997(03)00030-X 10.1002/biot.200700040 10.1104/pp.107.106690 10.1007/s10126-004-5100-z 10.1038/nbt0901-870 10.1016/j.tetlet.2008.03.077 10.1006/abio.1999.4085 10.1016/j.ymben.2006.01.005 10.1007/s11248-007-9120-0 10.1007/s00253-007-0967-z 10.1128/jb.177.22.6575-6584.1995 10.1007/BF00386231 10.1006/mben.2002.0234 10.1016/S0167-7799(00)01433-5 10.1002/bies.950060608 10.1007/s00253-006-0426-2 10.1111/j.1365-313X.2000.00896.x 10.1111/j.1365-313X.2004.02309.x 10.1016/j.ymben.2006.01.001 10.1046/j.1365-313X.1995.08050693.x 10.1093/pcp/pci197 10.1104/pp.104.050054 10.1007/s11248-005-3997-2 10.1111/j.1365-313X.2004.02151.x 10.2331/suisan.48.653 10.1074/jbc.M702831200 10.1111/j.1399-3054.1962.tb08052.x 10.1073/pnas.90.3.913 10.1080/01635589509514373 10.1016/S0167-7799(02)00007-0 10.3109/07388559109040622 10.1093/pcp/pci235 10.1093/carcin/15.1.15 10.1074/jbc.M100854200 10.1007/BF02861058 10.1104/pp.104.045187 10.1351/pac199163010081 10.1038/nature00861 10.1007/978-3-0348-7836-4 10.1146/annurev.arplant.55.031903.141633 |
ContentType | Journal Article |
Copyright | 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd 2008 INIST-CNRS Journal compilation © 2008 Blackwell Publishing Ltd and the Society for Experimental Biology |
Copyright_xml | – notice: 2008 The Authors. Journal compilation © 2008 Blackwell Publishing Ltd – notice: 2008 INIST-CNRS – notice: Journal compilation © 2008 Blackwell Publishing Ltd and the Society for Experimental Biology |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7QL C1K 7S9 L.6 7X8 |
DOI | 10.1111/j.1365-313X.2008.03559.x |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Genetics Abstracts AGRICOLA Bacteriology Abstracts (Microbiology B) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Engineering |
EISSN | 1365-313X |
EndPage | 868 |
ExternalDocumentID | 1537651391 18494855 20608725 10_1111_j_1365_313X_2008_03559_x TPJ3559 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7QL C1K 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c6029-7db6a57f8ae571b39864e897bf4da2e316427fa3a70e943a5314d7fd34eaf1293 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 1365-313X |
IngestDate | Fri Jul 11 10:33:04 EDT 2025 Fri Jul 11 03:37:14 EDT 2025 Thu Jul 10 23:26:55 EDT 2025 Fri Jul 25 11:01:36 EDT 2025 Thu Apr 03 07:05:38 EDT 2025 Mon Jul 21 09:15:27 EDT 2025 Thu Apr 24 23:13:20 EDT 2025 Tue Jul 01 03:57:00 EDT 2025 Wed Jan 22 16:53:47 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Enzyme Growth Hydroxylase Carbon dioxide Biosynthesis Plant leaf Plastid Nicotiana tabacum Genetic transfer astaxanthin plastid transformation Gene Dicotyledones Angiospermae Above ground plant part Spermatophyta Genetic engineering Transgenic plant Oxidoreductases Solanaceae metabolic engineering Photosynthesis Carotenoid Chloroplast |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6029-7db6a57f8ae571b39864e897bf4da2e316427fa3a70e943a5314d7fd34eaf1293 |
Notes | Present address: Department of Biological and Environmental Science, Faculty of Agriculture, Kobe University, 1‐1 Rokkodai‐cho, Nada‐ku, Kobe, 657‐8501, Japan. Present address: Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, 1‐1 Rokkodai‐cho, Nada‐ku, Kobe, 657‐8501, Japan. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-313X.2008.03559.x |
PMID | 18494855 |
PQID | 213512867 |
PQPubID | 31702 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_69534317 proquest_miscellaneous_48052167 proquest_miscellaneous_21356748 proquest_journals_213512867 pubmed_primary_18494855 pascalfrancis_primary_20608725 crossref_citationtrail_10_1111_j_1365_313X_2008_03559_x crossref_primary_10_1111_j_1365_313X_2008_03559_x wiley_primary_10_1111_j_1365_313X_2008_03559_x_TPJ3559 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2008 |
PublicationDateYYYYMMDD | 2008-09-01 |
PublicationDate_xml | – month: 09 year: 2008 text: September 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2008 |
Publisher | Blackwell Publishing Ltd Blackwell Science |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell Science |
References | 2007; 145 2006; 72 2007; 282 2006; 57 1997; 272 2000; 24 1991; 11 1999; 270 1987; 6 2000; 7 2006; 15 2005; 579 2005; 41 2006; 8 2007 1962; 15 2002; 4 1995 2002; 418 2004 1993; 90 1995; 177 2007; 75 1993; 4 1995; 8 2005; 46 2001; 276 1980; 149 2004; 55 1982; 48 2000; 18 2004; 136 2005; 221 2004; 39 2000; 545 1991; 63 1995; 23 2006; 47 2008; 49 2001; 19 2003; 24 2005; 7 1985; 51 1994; 15 2007; 2 2005; 71 2003; 21 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 Tatsuzawa H. (e_1_2_6_47_1) 2000; 545 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Sokal R.R. (e_1_2_6_43_1) 1995 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 418 start-page: 203 year: 2002 end-page: 206 article-title: Overexpression of β‐carotene hydroxylase enhances stress tolerance in publication-title: Nature – volume: 8 start-page: 253 year: 2006 end-page: 263 article-title: Engineering ketocarotenoid biosynthesis in potato tubers publication-title: Metab Engl – volume: 7 start-page: 515 year: 2005 end-page: 522 article-title: Characterization of β‐carotene ketolases, CrtW, from marine bacteria by complementation analysis in publication-title: Mar. Biotechnol. – year: 2007 article-title: Metabolic engineering of novel ketocarotenoid production in carrot plants publication-title: Transgenic Res. – volume: 49 start-page: 3294 year: 2008 end-page: 3296 article-title: 4‐Ketoantheraxanthin, a novel carotenoid produced by the combination of the bacterial enzyme β‐carotene ketolase CrtW and endogeneous carotenoid biosynthetic enzymes in higher plants publication-title: Tetrahedron Lett. – volume: 6 start-page: 279 year: 1987 end-page: 282 article-title: Why do chloroplasts and mitochondria contain so many copies of their genome? publication-title: Bioessays – volume: 8 start-page: 693 year: 1995 end-page: 701 article-title: Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway publication-title: Plant J. – volume: 18 start-page: 888 year: 2000 end-page: 892 article-title: Metabolic engineering of astaxanthin production in tobacco flowers publication-title: Nat. Biotechnol. – volume: 177 start-page: 6575 year: 1995 end-page: 6584 article-title: Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level publication-title: J. Bacteriol. – volume: 75 start-page: 1335 year: 2007 end-page: 1341 article-title: Characterization of two β‐carotene ketolases, CrtO and CrtW, by complementation analysis in publication-title: Appl. Microbiol. Biotechnol. – volume: 149 start-page: 78 year: 1980 end-page: 90 article-title: A biochemical model of photosynthetic CO assimilation in leaves of C3 species publication-title: Planta – volume: 90 start-page: 913 year: 1993 end-page: 917 article-title: High‐frequency plastid transformation in tobacco by selection for a chimeric gene publication-title: Proc. Natl Acad. Sci. USA – volume: 48 start-page: 653 year: 1982 end-page: 659 article-title: The first isolation and identification of fritschiellaxanthin from a crab sesarma haematocheir publication-title: Bull. Japan. Soc. Sci. Fish. – volume: 39 start-page: 477 year: 2004 end-page: 486 article-title: Metabolic engineering of ketocarotenoid formation in higher plants publication-title: Plant J. – volume: 24 start-page: 345 year: 2003 end-page: 351 article-title: Antioxidant activity of carotenoid publication-title: Mol. Asp. Med. – volume: 47 start-page: 200 year: 2006 end-page: 210 article-title: Photoinactivation of ascorbate peroxidase in isolated tobacco chloroplasts: APX maintains the electron flux through the water‐water cycle in transplastomic tobacco plants publication-title: Plant Cell Physiol. – volume: 63 start-page: 81 year: 1991 end-page: 88 article-title: Xanthophylls as precursors of retinoids publication-title: Pure Appl. Chem. – volume: 21 start-page: 20 year: 2003 end-page: 28 article-title: Progress towards commercialization of plastid transformation technology publication-title: Trends Biotechnol. – volume: 282 start-page: 22605 year: 2007 end-page: 22618 article-title: Elevated zeaxanthin bound to oligomeric LHCII enhances the resistance of to photooxidative stress by a lipid‐protective, antioxidant mechanism publication-title: J. Biol. Chem. – year: 2004 – volume: 270 start-page: 41 year: 1999 end-page: 49 article-title: Development and validation of real‐time quantitative reverse transcriptase‐polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro publication-title: Anal. Biochem. – volume: 8 start-page: 291 year: 2006 end-page: 302 article-title: Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants publication-title: Metab. Eng. – volume: 18 start-page: 160 year: 2000 end-page: 167 article-title: Commercial potential for microalgae as a natural source of astaxanthin publication-title: Trends Biotechonol. – volume: 41 start-page: 478 year: 2005 end-page: 492 article-title: A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of publication-title: Plant J. – volume: 46 start-page: 1819 year: 2005 end-page: 1830 article-title: Effects of light intensity on cyclic electron flow around PSI and its relationship to non‐photochemical quenching of Chl fluorescence in tobacco leaves publication-title: Plant Cell Physiol. – volume: 4 start-page: 263 year: 2002 end-page: 272 article-title: Genetic engineering of a zeaxanthin‐rich potato by antisense inactivation and co‐suppression of carotenoid epoxidation publication-title: Metab. Eng. – volume: 19 start-page: 870 year: 2001 end-page: 875 article-title: Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit publication-title: Nat. Biotechnol. – volume: 57 start-page: 3639 year: 2006 end-page: 3645 article-title: Ketocarotenoid formation in transgenic potato publication-title: J. Exp. Bot. – volume: 15 start-page: 473 year: 1962 end-page: 497 article-title: A revised medium for rapid growth and bioassays with tobacco tissue cultures publication-title: Physiol. Plant. – volume: 11 start-page: 297 year: 1991 end-page: 326 article-title: Astaxanthin from microbial sources publication-title: Crit. Rev. Biotechnol. – volume: 51 start-page: 53 year: 1985 end-page: 105 article-title: Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations publication-title: Bot. Rev. – volume: 221 start-page: 305 year: 2005 end-page: 308 article-title: Recent advances in carotenoid biosynthesis, regulation and manipulation publication-title: Planta – volume: 71 start-page: 4286 year: 2005 end-page: 4296 article-title: Elucidation of a carotenoid biosynthesis gene cluster encoding a novel enzyme, 2,2′‐β‐hydroxylase, from sp. strain SD212 and combinatorial biosynthesis of new or rare xanthophylls publication-title: Appl. Environ. Microbiol. – volume: 72 start-page: 1238 year: 2006 end-page: 1246 article-title: Characterizationof β‐carotene 3,3′‐hydroxylases, CrtZ, and P450 in astaxanthin biosynthetic pathway and adonirubin production by gene combination in publication-title: Appl. Microbiol. Biotechnol. – volume: 4 start-page: 833 year: 1993 end-page: 840 article-title: Functional expression of the carotenid biosynthesis gene in transgenic plants showing an increase of β‐carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon publication-title: Plant J. – volume: 55 start-page: 289 year: 2004 end-page: 313 article-title: Plastid transformation in higher plants publication-title: Annu. Rev. Plant. Biol. – volume: 24 start-page: 551 year: 2000 end-page: 558 article-title: Application of high‐performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids publication-title: Plant J. – volume: 15 start-page: 15 year: 1994 end-page: 9 article-title: Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin publication-title: Carcinogenesis – volume: 136 start-page: 2843 year: 2004 end-page: 3854 article-title: Plastid‐expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance publication-title: Plant Physiol. – volume: 272 start-page: 6128 year: 1997 end-page: 6135 article-title: characterization of astaxanthin biosynthetic enzymes publication-title: J. Biol. Chem. – volume: 579 start-page: 2125 year: 2005 end-page: 2129 article-title: The cyanobacterium PCC 7421 uses bacterial‐type phytoene desaturase in carotenoid biosynthesis publication-title: FEBS Lett. – volume: 545 start-page: 120 year: 2000 end-page: 126 article-title: Quenching of singlet oxygen by carotenoid produced in ‐attenuation of singlet oxygen‐mediated bacterial killing by carotenoids publication-title: FEBS Lett. – volume: 7 start-page: 216 year: 2000 end-page: 222 article-title: Inhibition of low‐density lipoprotein oxidation by astaxanthin publication-title: J. Atheroscler. Thromb. – volume: 23 start-page: 171 year: 1995 end-page: 183 article-title: Effect of carotenoids on immunoglobulin production by human peripheral blood mononuclear cells: astaxanthin, a carotenoid without vitamin A activity, enhances immunoglobulin production in response to a T‐dependent stimulant and antigen publication-title: Nutr. Cancer – volume: 136 start-page: 4048 year: 2004 end-page: 4060 article-title: Metabolic engineering of the chloroplast genome using the gene reveals that chorismate p‐hydroxybenzoic acid biosynthesis publication-title: Plant Physiol. – volume: 15 start-page: 205 year: 2006 end-page: 217 article-title: Efficient and stable transformation of L. cv Cisco (lettuce) plastid publication-title: Transgenic Res. – year: 1995 – volume: 145 start-page: 1129 year: 2007 end-page: 1143 article-title: Chloroplast vector systems for biotechnology applications publication-title: Plant Physiol. – volume: 276 start-page: 22901 year: 2001 end-page: 22909 article-title: 1‐Deoxy‐d‐xylulose‐5‐phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants publication-title: J. Biol. Chem. – volume: 2 start-page: 1263 year: 2007 end-page: 1269 article-title: Metabolic engineering of ketocarotenoid biosynthesis in leaves and flowers of tobacco species publication-title: Biotechnol. J. – ident: e_1_2_6_11_1 doi: 10.1074/jbc.272.10.6128 – ident: e_1_2_6_14_1 doi: 10.1093/jxb/erl103 – ident: e_1_2_6_29_1 doi: 10.1046/j.1365-313X.1993.04050833.x – ident: e_1_2_6_26_1 doi: 10.1038/78515 – ident: e_1_2_6_37_1 doi: 10.1007/s00425-005-1533-5 – ident: e_1_2_6_16_1 doi: 10.5551/jat1994.7.216 – ident: e_1_2_6_35_1 doi: 10.1128/AEM.71.8.4286-4296.2005 – ident: e_1_2_6_48_1 doi: 10.1016/j.febslet.2005.02.066 – ident: e_1_2_6_44_1 doi: 10.1016/S0098-2997(03)00030-X – ident: e_1_2_6_15_1 doi: 10.1002/biot.200700040 – ident: e_1_2_6_49_1 doi: 10.1104/pp.107.106690 – ident: e_1_2_6_4_1 doi: 10.1007/s10126-004-5100-z – ident: e_1_2_6_39_1 doi: 10.1038/nbt0901-870 – ident: e_1_2_6_42_1 doi: 10.1016/j.tetlet.2008.03.077 – ident: e_1_2_6_51_1 doi: 10.1006/abio.1999.4085 – ident: e_1_2_6_40_1 doi: 10.1016/j.ymben.2006.01.005 – ident: e_1_2_6_17_1 doi: 10.1007/s11248-007-9120-0 – ident: e_1_2_6_6_1 doi: 10.1007/s00253-007-0967-z – ident: e_1_2_6_30_1 doi: 10.1128/jb.177.22.6575-6584.1995 – ident: e_1_2_6_10_1 doi: 10.1007/BF00386231 – ident: e_1_2_6_38_1 doi: 10.1006/mben.2002.0234 – ident: e_1_2_6_23_1 doi: 10.1016/S0167-7799(00)01433-5 – ident: e_1_2_6_2_1 doi: 10.1002/bies.950060608 – ident: e_1_2_6_5_1 doi: 10.1007/s00253-006-0426-2 – ident: e_1_2_6_12_1 doi: 10.1111/j.1365-313X.2000.00896.x – ident: e_1_2_6_7_1 doi: 10.1111/j.1365-313X.2004.02309.x – ident: e_1_2_6_33_1 doi: 10.1016/j.ymben.2006.01.001 – ident: e_1_2_6_13_1 doi: 10.1046/j.1365-313X.1995.08050693.x – ident: e_1_2_6_31_1 doi: 10.1093/pcp/pci197 – ident: e_1_2_6_50_1 doi: 10.1104/pp.104.050054 – ident: e_1_2_6_21_1 doi: 10.1007/s11248-005-3997-2 – ident: e_1_2_6_36_1 doi: 10.1111/j.1365-313X.2004.02151.x – ident: e_1_2_6_28_1 doi: 10.2331/suisan.48.653 – ident: e_1_2_6_19_1 doi: 10.1074/jbc.M702831200 – ident: e_1_2_6_34_1 doi: 10.1111/j.1399-3054.1962.tb08052.x – ident: e_1_2_6_45_1 doi: 10.1073/pnas.90.3.913 – ident: e_1_2_6_20_1 doi: 10.1080/01635589509514373 – ident: e_1_2_6_24_1 doi: 10.1016/S0167-7799(02)00007-0 – ident: e_1_2_6_18_1 doi: 10.3109/07388559109040622 – volume: 545 start-page: 120 year: 2000 ident: e_1_2_6_47_1 article-title: Quenching of singlet oxygen by carotenoid produced in Escherichia coli‐attenuation of singlet oxygen‐mediated bacterial killing by carotenoids publication-title: FEBS Lett. – ident: e_1_2_6_32_1 doi: 10.1093/pcp/pci235 – volume-title: Biometry year: 1995 ident: e_1_2_6_43_1 – ident: e_1_2_6_46_1 doi: 10.1093/carcin/15.1.15 – ident: e_1_2_6_9_1 doi: 10.1074/jbc.M100854200 – ident: e_1_2_6_41_1 doi: 10.1007/BF02861058 – ident: e_1_2_6_22_1 doi: 10.1104/pp.104.045187 – ident: e_1_2_6_27_1 doi: 10.1351/pac199163010081 – ident: e_1_2_6_8_1 doi: 10.1038/nature00861 – ident: e_1_2_6_3_1 doi: 10.1007/978-3-0348-7836-4 – ident: e_1_2_6_25_1 doi: 10.1146/annurev.arplant.55.031903.141633 |
SSID | ssj0017364 |
Score | 2.3519745 |
Snippet | Summary
The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In... The natural pigment astaxanthin has attracted much attention because of its beneficial effects on human health, despite its expensive market price. In order to... |
SourceID | proquest pubmed pascalfrancis crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 857 |
SubjectTerms | aerial parts astaxanthin Bacteria beta-carotene Biological and medical sciences Biosynthesis Botany Brevundimonas Carbon dioxide carotenoid Caulobacteraceae Caulobacteraceae - genetics chloroplasts color developmental stages DNA, Plant DNA, Plant - genetics engineering Fundamental and applied biological sciences. Psychology Gene expression gene transfer genes Genes, Bacterial Genetic Engineering genetics Genome, Chloroplast human health Leaves Light intensity market prices metabolic engineering Metabolism Metabolism. Physicochemical requirements Nicotiana - genetics Nicotiana - metabolism Nicotiana tabacum Nitrogen Nitrogen - metabolism Oxygenases Oxygenases - genetics photons Photosynthesis Plant Leaves Plant Leaves - genetics Plant Leaves - metabolism Plant physiology and development Plants, Genetically Modified Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism plastid transformation Plastids Plastids - genetics Ribulose-Bisphosphate Carboxylase Ribulose-Bisphosphate Carboxylase - metabolism RNA, Plant RNA, Plant - genetics Tobacco Transgenic plants Xanthophylls Xanthophylls - biosynthesis |
Title | Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2008.03559.x https://www.ncbi.nlm.nih.gov/pubmed/18494855 https://www.proquest.com/docview/213512867 https://www.proquest.com/docview/21356748 https://www.proquest.com/docview/48052167 https://www.proquest.com/docview/69534317 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS90wFD8M8WEwpk631a_lwdde2qRN2kcVRZSNMRTuW0nTlF2UVmzv8PrXe07TW72iIjLoQyEfkOR8_JKc_A7AXmyN5mks_MRKumYMEz_nUvilFCZICxXago4Gfv6SJxfR6Tge9_FP9BbG8UMMB26kGZ29JgXXebOo5BShJUIx7kMi0XWmI8KTVED46M_AJBUq4ZikELD76ESfBPU829GCp_p0rRuctNJlu3gOji6i2849Ha_A5XxgLirlcjRt85G5e8L5-H9GvgqfexTL9p3YrcEHW32B5YMakeZsHc4OJnUzqxBaNpOG1SXTCEFvcQn_TiqGH9kQY2p2ZfU_27B8xtqOYh2BfEuPpJl9IEncgIvjo_PDE79P2uAbSaE0qsiljlWZaBurMBdE_26TVFFAoOZW4PaMq1ILrQKbRkKjDYgKVRYisrok8PEVlqq6st-B8VxK6kwHOo6MCXRIcFLijtEikFHSAzVfoMz0jOaUWOMqe7SzwZnKaKb6fJs0U9mtB-HQ8tqxeryhze6CDAwNeSCDRPHYg625UGS9IWgyThkQeSKVBz-GUtRgupbRla2nrgqlfHm5RtTlnXitD4nqRlDQg29OGh-GlTgCIA9kJ1NvHm92_vuU_jbf23ALPs6Da4JwG5bam6ndQQTX5rudbt4DPOY17A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KUmgh9P1w0iY69OrFlmzJPiahYZsXpWxgb0aWZbJ0sUPtDdn--s5YXqcb0hJKwQeDLYFGM9InafR9AJ9iazRPY-EnVtIxY5j4OZfCL6UwQVqo0Ba0NXB2LscX0fE0nvZyQHQXxvFDDBtuFBndeE0BThvS61FOKVoiFNM-JxLnznSEgHKTBL679dW3gUsqVMJxSSFk93EavZPWc29Na3PV1pVu0Gyl07u4D5Cu49tugjp6DvNV01xeyvfRos1H5ucd1sf_1PYX8KwHsmzfed5LeGSrV_D4oEawuXwNJwezullWiC6bWcPqkmlEoTfYi5eziuFDw4gxNZtbfW0bli9Z27GsI5Zv6Z40s7c8iW_g4ujz5HDs97oNvpGUTaOKXOpYlYm2sQpzQQzwNkkV5QRqbgWu0LgqtdAqsGkkNA4DUaHKQkRWl4Q_3sJGVVf2PTCeS0mV6UDHkTGBDglRSlw0WsQySnqgVj2UmZ7UnLQ15tlvixu0VEaW6iU3yVLZjQfhUPLKEXs8oMzumhMMBXkgg0Tx2IOdlVdk_VjQZJxEEHkilQd7w1cMYjqZ0ZWtF-4XUn358x9RJz3xtzokRhyhQQ_eOXe8bVbiOIA8kJ1TPbi92eTrMb1t_2vBPXgynpydZqdfzk924Okq1yYIP8BG-2NhPyKga_PdLlB_AZZSOgc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9wwDBajG2Mwut9r2q31w15zJHZiJ4_tuqNrt1JGC_cWHMehR0tyLLnS618_Kc6lu9KNMgZ5CCQyWJbkz7b8CeBTbI3maSz8xEo6ZgwTP-dS-KUUJkgLFdqCtga-H8uDs-hwEk_6_Ce6C-P4IYYNN_KMLl6Tg8-KctXJKUNLhGLSp0Ti1JmOEE8-jmSQkIXv_xiopEIlHJUUInYfZ9E7WT33trQyVT2f6Qa1VrpyF_fh0VV4281P4xdwseyZS0u5GM3bfGRu7pA-_p-uv4T1HsayXWd3r-CRrV7Dk70aoebiDRztTetmUSG2bKYNq0umEYNe4xieTyuGDwURY2p2afWVbVi-YG3HsY5IvqVb0szesiS-hbPxl9PPB35ftcE3knJpVJFLHasy0TZWYS6I_90mqaKMQM2twPUZV6UWWgU2jYTGIBAVqixEZHVJ6OMdrFV1ZTeA8VxKakwHOo6MCXRIeFLiktEiklHSA7UcoMz0lOZUWeMy-21pg5rKSFN9wU3SVHbtQThIzhytxwNktldsYBDkAdqb4rEHW0ujyPpI0GScSiDyRCoPdoav6MJ0LqMrW8_dL1Tz5c9_RF3hib-1IdHfCAt68N5Z4223EscA5IHsbOrB_c1OTw7pbfNfBXfg6cn-OPv29fhoC54tE22C8AOstT_n9iOiuTbf7tz0F8aHOL8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biosynthesis+of+astaxanthin+in+tobacco+leaves+by+transplastomic+engineering&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Hasunuma%2C+Tomohisa&rft.au=Miyazawa%2C+Shin%E2%80%90Ichi&rft.au=Yoshimura%2C+Satomi&rft.au=Shinzaki%2C+Yuki&rft.date=2008-09-01&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=55&rft.issue=5&rft.spage=857&rft.epage=868&rft_id=info:doi/10.1111%2Fj.1365-313X.2008.03559.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_313X_2008_03559_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |