Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis

Summary In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumula...

Full description

Saved in:
Bibliographic Details
Published inThe Plant journal : for cell and molecular biology Vol. 59; no. 4; pp. 588 - 599
Main Authors Bai, Ling, Kim, Eun‐Ha, DellaPenna, Dean, Brutnell, Thomas P.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.08.2009
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue‐specific accumulation is largely mediated through differential expression of genes encoding lycopene β‐cyclase and lycopene ε‐cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including δ‐carotene, ε‐carotene and lactucaxanthin (ε,ε‐carotene‐3,3′‐diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene‐accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site‐directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed.
AbstractList Summary In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue‐specific accumulation is largely mediated through differential expression of genes encoding lycopene β‐cyclase and lycopene ε‐cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including δ‐carotene, ε‐carotene and lactucaxanthin (ε,ε‐carotene‐3,3′‐diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene‐accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site‐directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed.
In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue-specific accumulation is largely mediated through differential expression of genes encoding lycopene beta-cyclase and lycopene epsilon-cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including delta-carotene, epsilon-carotene and lactucaxanthin (epsilon,epsilon-carotene-3,3'-diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene-accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site-directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed.In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue-specific accumulation is largely mediated through differential expression of genes encoding lycopene beta-cyclase and lycopene epsilon-cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including delta-carotene, epsilon-carotene and lactucaxanthin (epsilon,epsilon-carotene-3,3'-diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene-accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site-directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed.
In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue-specific accumulation is largely mediated through differential expression of genes encoding lycopene β-cyclase and lycopene ε-cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including δ-carotene, ε-carotene and lactucaxanthin (ε,ε-carotene-3,3'-diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene-accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site-directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed.
In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue-specific accumulation is largely mediated through differential expression of genes encoding lycopene beta-cyclase and lycopene epsilon-cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including delta-carotene, epsilon-carotene and lactucaxanthin (epsilon,epsilon-carotene-3,3'-diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene-accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site-directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed.
In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue-specific accumulation is largely mediated through differential expression of genes encoding lycopene [beta]-cyclase and lycopene [epsilon]-cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including [delta]-carotene, [epsilon]-carotene and lactucaxanthin ([epsilon],[epsilon]-carotene-3,3'-diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene-accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site-directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed. [PUBLICATION ABSTRACT]
In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue‐specific accumulation is largely mediated through differential expression of genes encoding lycopene β‐cyclase and lycopene ε‐cyclase ( LcyB and LcyE ). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including δ‐carotene, ε‐carotene and lactucaxanthin (ε,ε‐carotene‐3,3′‐diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene‐accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site‐directed mutagenesis of LcyE , critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed.
SummaryIn maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue-specific accumulation is largely mediated through differential expression of genes encoding lycopene beta -cyclase and lycopene epsilon -cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including delta -carotene, epsilon -carotene and lactucaxanthin ( epsilon , epsilon -carotene-3,3'-diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene-accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site-directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed.
Author DellaPenna, Dean
Kim, Eun‐Ha
Brutnell, Thomas P.
Bai, Ling
Author_xml – sequence: 1
  givenname: Ling
  surname: Bai
  fullname: Bai, Ling
– sequence: 2
  givenname: Eun‐Ha
  surname: Kim
  fullname: Kim, Eun‐Ha
– sequence: 3
  givenname: Dean
  surname: DellaPenna
  fullname: DellaPenna, Dean
– sequence: 4
  givenname: Thomas P.
  surname: Brutnell
  fullname: Brutnell, Thomas P.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21839372$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19392686$$D View this record in MEDLINE/PubMed
BookMark eNqNksGP1CAUxolZ486u_guGmOitFQqlcNDEbHTVbNTDmngjlL46jEyp0I47-9fbzoxz2MvIBRJ-3_cevO8CnXWhA4QwJTmd1utVTpkoM0bZj7wgROWESaXyu0docbw4QwuiBMkqTotzdJHSihBaMcGfoHOqmCqEFAv060vYgMd-a0MPHWDok_Ohw3ZrvUmAjR3cxg0OEnYdXht3DzjCBoyHBg_LGMafS9xDHMZYm8FNytBia2IYoAuuwbULadsNS0guPUWPW-MTPDvsl-j7h_e3Vx-zm6_Xn67e3WRWkEJlzDBhpOGUEyqJqmVdSSmbltrCUkVKY5qW0bKuGsMtqcqmLWhRG6hkRVvLCbtEr_a-fQy_R0iDXrtkwXvTQRiTFpUgFVPlSZALJijn8iRYUDJ_KZvAFw_AVRhjN712YhhXvNyVfX6AxnoNje6jW5u41f-mMgEvD4BJ1vg2ms66dOQKKqdaVTFxb_ecjSGlCK22bthNYYjGeU2JnuOiV3pOhZ5Toee46F1c9N1kIB8YHHs5LX2zl_5xHrb_rdO33z7PJ_YXTSnYCg
CitedBy_id crossref_primary_10_1007_s11032_019_0982_7
crossref_primary_10_1016_j_copbio_2011_01_002
crossref_primary_10_1016_j_abb_2013_07_009
crossref_primary_10_3390_life14121659
crossref_primary_10_1016_j_enzmictec_2019_109426
crossref_primary_10_1038_s41598_022_11544_7
crossref_primary_10_3389_fmicb_2019_01976
crossref_primary_10_1016_j_abb_2018_07_014
crossref_primary_10_1016_j_algal_2021_102246
crossref_primary_10_5511_plantbiotechnology_15_0526a
crossref_primary_10_1016_j_abb_2013_07_002
crossref_primary_10_1038_s41598_024_84197_3
crossref_primary_10_1071_FP11192
crossref_primary_10_1016_j_indcrop_2024_118868
crossref_primary_10_1071_CP10025
crossref_primary_10_1002_jsfa_12054
crossref_primary_10_1016_j_jcs_2021_103206
crossref_primary_10_1007_s11295_013_0687_8
crossref_primary_10_1093_jxb_erw356
crossref_primary_10_3390_md21070418
crossref_primary_10_3389_fpls_2016_01867
crossref_primary_10_3390_ijms251810198
crossref_primary_10_1016_j_algal_2025_103974
crossref_primary_10_1007_s11103_013_0160_y
crossref_primary_10_3389_fpls_2017_01341
crossref_primary_10_1016_j_jplph_2015_03_018
crossref_primary_10_1093_plphys_kiaa033
crossref_primary_10_1016_S2095_3119_20_63487_6
crossref_primary_10_1007_s11816_016_0390_y
crossref_primary_10_1093_g3journal_jkac006
crossref_primary_10_1111_pbr_12618
crossref_primary_10_1128_spectrum_04361_22
crossref_primary_10_1038_s41477_022_01190_2
crossref_primary_10_1007_s11738_015_1958_9
crossref_primary_10_1021_acs_jafc_5b05308
crossref_primary_10_1186_s12870_022_03634_5
crossref_primary_10_1038_s41598_018_38233_8
crossref_primary_10_1186_s12870_021_03236_7
crossref_primary_10_18699_VJGB_23_53
crossref_primary_10_1093_jxb_ers134
crossref_primary_10_1007_s00122_012_1828_4
crossref_primary_10_1093_bfgp_elaa007
crossref_primary_10_1134_S102279542303002X
crossref_primary_10_1199_tab_0158
crossref_primary_10_1007_s00425_012_1690_2
crossref_primary_10_1016_j_scienta_2022_111062
crossref_primary_10_1007_s42976_023_00379_1
crossref_primary_10_1111_tpj_12826
crossref_primary_10_1007_s12374_016_0902_x
crossref_primary_10_3390_ijms241210310
crossref_primary_10_1007_s11248_010_9381_x
crossref_primary_10_1016_j_plantsci_2024_111983
crossref_primary_10_1080_07352689_2019_1682791
crossref_primary_10_1016_j_sajb_2020_05_015
crossref_primary_10_1016_j_plantsci_2019_110331
crossref_primary_10_1007_s11033_014_3714_4
crossref_primary_10_1007_s13205_018_1100_y
crossref_primary_10_1007_s11274_021_03188_y
crossref_primary_10_1093_pcp_pcr037
crossref_primary_10_1111_j_1399_3054_2012_01688_x
crossref_primary_10_17660_ActaHortic_2016_1111_22
crossref_primary_10_3390_life14050576
crossref_primary_10_1007_s00122_021_03944_6
crossref_primary_10_3389_fgene_2016_00131
crossref_primary_10_3390_plants12152788
crossref_primary_10_1016_j_ymben_2022_01_004
crossref_primary_10_1534_genetics_110_124149
crossref_primary_10_1016_j_febslet_2012_07_060
crossref_primary_10_1093_jxb_ers115
crossref_primary_10_1021_acs_jafc_9b06918
crossref_primary_10_1111_j_1541_4337_2010_00117_x
crossref_primary_10_1016_j_indcrop_2022_115724
crossref_primary_10_1139_g11_066
crossref_primary_10_3389_fpls_2023_1213086
crossref_primary_10_1371_journal_pone_0200320
crossref_primary_10_1007_s00425_018_2988_5
crossref_primary_10_1093_pcp_pct170
crossref_primary_10_1039_c0np00036a
crossref_primary_10_1007_s00425_010_1222_x
crossref_primary_10_1016_j_cpb_2023_100303
crossref_primary_10_1371_journal_pone_0162443
crossref_primary_10_1016_j_scienta_2021_110164
crossref_primary_10_3390_ijms150814766
crossref_primary_10_1016_j_molp_2014_12_007
crossref_primary_10_1016_j_ymben_2013_10_007
crossref_primary_10_1016_j_hpj_2023_02_012
crossref_primary_10_1016_j_sajb_2017_01_003
crossref_primary_10_1371_journal_pone_0058144
crossref_primary_10_31857_S0016675823030025
crossref_primary_10_1093_plcell_koab032
crossref_primary_10_1038_ng_551
crossref_primary_10_1111_pbi_14346
crossref_primary_10_1016_j_tplants_2016_06_001
crossref_primary_10_1007_s00122_023_04336_8
crossref_primary_10_1016_j_plantsci_2017_07_010
crossref_primary_10_1007_s11032_017_0718_5
crossref_primary_10_1021_acs_jafc_9b00756
crossref_primary_10_1186_s12870_021_03415_6
crossref_primary_10_1016_j_postharvbio_2022_112089
crossref_primary_10_2135_cropsci2010_06_0335
crossref_primary_10_3389_fpls_2021_699424
crossref_primary_10_3389_fpls_2021_806184
Cites_doi 10.1007/978-94-009-5860-9
10.1046/j.1365-313X.1999.00521.x
10.1073/pnas.0307839101
10.1002/j.1460-2075.1988.tb02939.x
10.1016/S1369-5266(00)00163-1
10.1038/nature02373
10.1093/jxb/erl061
10.1038/nbt1082
10.1046/j.0016-8025.2001.00786.x
10.1111/j.1365-313X.2004.02309.x
10.1105/tpc.010249
10.1104/pp.107.111120
10.1071/FP03239
10.1021/jf053204d
10.1016/0031-9422(81)85222-3
10.1017/S0007114508944123
10.1038/nature07272
10.1073/pnas.051618398
10.1105/tpc.8.9.1613
10.1104/pp.83.4.905
10.1104/pp.102.017053
10.1021/jf050362w
10.1146/annurev.arplant.49.1.557
10.1038/nature07271
10.1104/pp.108.122119
10.1023/A:1011623907959
10.1111/j.1365-3040.1992.tb00991.x
10.1126/science.1150255
10.1046/j.1365-313x.1999.00611.x
10.1073/pnas.0511207103
10.1007/BF00029940
10.1534/genetics.106.066837
10.1104/pp.106.077008
10.1046/j.1365-313X.1999.00381.x
10.1104/pp.104.039818
10.1093/jxb/ern212
10.1126/science.1140516
10.1073/pnas.241374598
10.1023/B:PLAN.0000036371.30528.26
10.1016/S0021-9673(04)01406-2
10.1177/15648265030244S204
10.1128/EC.00265-06
10.1016/j.plipres.2003.10.002
10.1111/j.1365-313X.2007.03362.x
10.1016/j.abb.2004.02.003
10.1105/tpc.012526
ContentType Journal Article
Copyright 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd
2009 INIST-CNRS
Journal compilation © 2009 Blackwell Publishing Ltd and the Society for Experimental Biology
Copyright_xml – notice: 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd
– notice: 2009 INIST-CNRS
– notice: Journal compilation © 2009 Blackwell Publishing Ltd and the Society for Experimental Biology
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7QL
C1K
7S9
L.6
7X8
DOI 10.1111/j.1365-313X.2009.03899.x
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Genetics Abstracts
CrossRef
Bacteriology Abstracts (Microbiology B)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1365-313X
EndPage 599
ExternalDocumentID 1829687071
19392686
21839372
10_1111_j_1365_313X_2009_03899_x
TPJ3899
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
TR2
UB1
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7QR
7TM
8FD
FR3
M7N
P64
RC3
7QL
C1K
7S9
L.6
7X8
ID FETCH-LOGICAL-c6029-3a36a8a41401809b8b7888df1c2c1905aadf315b7da4c075df212bae7871fc403
IEDL.DBID DR2
ISSN 0960-7412
1365-313X
IngestDate Fri Jul 11 04:50:34 EDT 2025
Fri Jul 11 01:26:46 EDT 2025
Fri Jul 11 03:26:04 EDT 2025
Fri Jul 25 11:02:08 EDT 2025
Mon Jul 21 06:02:44 EDT 2025
Mon Jul 21 09:11:54 EDT 2025
Tue Jul 01 03:57:02 EDT 2025
Thu Apr 24 23:10:53 EDT 2025
Wed Jan 22 16:19:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords epsilon-carotene
Embryo
Transcription
carotenoids
Carotene
transcriptional regulation
Biosynthesis
Perturbation
Lycopene
Chenopodiaceae
Beta
Regulation(control)
lycopene beta-cyclase
Dicotyledones
Angiospermae
Spermatophyta
Endosperm
Carotenoid
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6029-3a36a8a41401809b8b7888df1c2c1905aadf315b7da4c075df212bae7871fc403
Notes
These authors contributed equally to this work.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-313X.2009.03899.x
PMID 19392686
PQID 213494595
PQPubID 31702
PageCount 12
ParticipantIDs proquest_miscellaneous_67607395
proquest_miscellaneous_46361448
proquest_miscellaneous_21019393
proquest_journals_213494595
pubmed_primary_19392686
pascalfrancis_primary_21839372
crossref_citationtrail_10_1111_j_1365_313X_2009_03899_x
crossref_primary_10_1111_j_1365_313X_2009_03899_x
wiley_primary_10_1111_j_1365_313X_2009_03899_x_TPJ3899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2009
PublicationDateYYYYMMDD 2009-08-01
PublicationDate_xml – month: 08
  year: 2009
  text: August 2009
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle The Plant journal : for cell and molecular biology
PublicationTitleAlternate Plant J
PublicationYear 2009
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References 1998; 49
2004; 43
2004; 101
2008a; 146
2006; 57
2006; 54
2002; 99
2008; 59
2005; 41
2003; 15
1999; 20
1992; 15
2008; 53
2004; 428
2008; 100
2001; 24
2001; 47
2003; 132
2005; 23
1981; 20
2004; 54
2004; 430
2004; 31
2007; 316
2004; 135
1987; 83
1999; 19
2001; 4
1999; 17
2007; 175
2008; 319
1995; 43
1988; 7
2006; 141
2003; 24
2007; 6
2005; 53
2004; 1054
2008; 455
1980
2008b; 147
1996; 8
2006; 103
2001; 98
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
Van Tunen A.J. (e_1_2_6_45_1) 1988; 7
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 24
  start-page: S78
  year: 2003
  end-page: S90
  article-title: Vitamin A deficiency disorders in children and women
  publication-title: Food Nutr. Bull.
– volume: 6
  start-page: 533
  year: 2007
  end-page: 545
  article-title: Carotenoid biosynthesis in the primitive red alga
  publication-title: Eukaryot. Cell
– volume: 57
  start-page: 3007
  year: 2006
  end-page: 3018
  article-title: Overexpression of a bacterial 1‐deoxy‐d‐xylulose 5‐phosphate synthase gene in potato tubers perturbs the isoprenoid metabolic network: implications for the control of the tuber life cycle
  publication-title: J. Exp. Bot.
– volume: 54
  start-page: 387
  year: 2004
  end-page: 404
  article-title: Evidence that CTR1‐mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features
  publication-title: Plant Mol. Biol.
– volume: 20
  start-page: 85
  year: 1981
  end-page: 88
  article-title: Lactucaxanthin, an ɛ,ɛ‐carotene‐3,3′‐diol from
  publication-title: Phytochemistry
– volume: 141
  start-page: 220
  year: 2006
  end-page: 231
  article-title: Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity
  publication-title: Plant Physiol.
– volume: 20
  start-page: 401
  year: 1999
  end-page: 412
  article-title: Seed‐specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects
  publication-title: Plant J.
– volume: 147
  start-page: 1334
  year: 2008b
  end-page: 1346
  article-title: The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance
  publication-title: Plant Physiol.
– volume: 4
  start-page: 210
  year: 2001
  end-page: 218
  article-title: Carotenoid biosynthesis in flowering plants
  publication-title: Curr. Opin. Plant Biol.
– volume: 319
  start-page: 330
  year: 2008
  end-page: 333
  article-title: Natural genetic variation in tapped for maize biofortification
  publication-title: Science
– volume: 43
  start-page: 228
  year: 2004
  end-page: 265
  article-title: The biosynthesis and nutritional uses of carotenoids
  publication-title: Prog. Lipid Res.
– volume: 31
  start-page: 743
  year: 2004
  end-page: 756
  article-title: Do mature shade leaves of tropical tree seedlings acclimate to high sunlight and UV radiation?
  publication-title: Funct. Plant Biol.
– volume: 17
  start-page: 341
  year: 1999
  end-page: 351
  article-title: Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon‐cyclase is down‐regulated during ripening and is elevated in the mutant
  publication-title: Plant J.
– volume: 430
  start-page: 22
  year: 2004
  end-page: 29
  article-title: Progress in understanding the origin and functions of carotenoid hydroxylases in plants
  publication-title: Arch. Biochem. Biophys.
– volume: 455
  start-page: 195
  year: 2008
  end-page: 200
  article-title: Inhibition of shoot branching by new terpenoid plant hormones
  publication-title: Nature
– volume: 19
  start-page: 371
  year: 1999
  end-page: 377
  article-title: Signaling from the embryo conditions ‐mediated repression of α‐amylase genes in the aleurone of developing maize seeds
  publication-title: Plant J.
– volume: 83
  start-page: 905
  year: 1987
  end-page: 909
  article-title: Distribution of abscisic acid in maize kernel during grain filling
  publication-title: Plant Physiol.
– volume: 15
  start-page: 874
  year: 2003
  end-page: 884
  article-title: mutagenesis of the / locus of maize
  publication-title: Plant Cell
– volume: 316
  start-page: 715
  year: 2007
  end-page: 719
  article-title: Signals from chloroplasts converge to regulate nuclear gene expression
  publication-title: Science
– volume: 23
  start-page: 482
  year: 2005
  end-page: 487
  article-title: Improving the nutritional value of Golden Rice through increased pro‐vitamin A content
  publication-title: Nature Biotechnol.
– volume: 455
  start-page: 189
  year: 2008
  end-page: 194
  article-title: Strigolactone inhibition of shoot branching
  publication-title: Nature
– volume: 7
  start-page: 1257
  year: 1988
  end-page: 1263
  article-title: Cloning of the two chalcone flavanone isomerase genes from : coordinate, light‐regulated and differential expression of flavonoid genes
  publication-title: EMBO J.
– volume: 54
  start-page: 2267
  year: 2006
  end-page: 2273
  article-title: Xanthophylls in commercial egg yolks: quantification and identification by HPLC and LC‐(APCI)MS using a C30 phase
  publication-title: J. Agric. Food. Chem.
– volume: 100
  start-page: 1
  year: 2008
  end-page: 8
  article-title: β‐Cryptoxanthin from supplements or carotenoid‐enhanced maize maintains liver vitamin A in Mongolian gerbils ( ) better than or equal to β‐carotene supplements
  publication-title: Br. J. Nutr.
– year: 1980
– volume: 146
  start-page: 1333
  year: 2008a
  end-page: 1345
  article-title: PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress‐induced root carotenogenesis
  publication-title: Plant Physiol.
– volume: 53
  start-page: 6355
  year: 2005
  end-page: 6361
  article-title: Cryptoxanthin structural isomers in oranges, orange juice, and other fruits
  publication-title: J. Agric. Food. Chem.
– volume: 101
  start-page: 9885
  year: 2004
  end-page: 9890
  article-title: Long‐range patterns of diversity and linkage disequilibrium surrounding the maize gene are indicative of an asymmetric selective sweep
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 49
  start-page: 557
  year: 1998
  end-page: 583
  article-title: Genes and enzymes of carotenoid biosynthesis in plants
  publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol.
– volume: 103
  start-page: 3474
  year: 2006
  end-page: 3479
  article-title: Defining the primary route for lutein synthesis in plants: the role of carotenoid β‐ring hydroxylase CYP97A3
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 15
  start-page: 411
  year: 1992
  end-page: 419
  article-title: Carotenoid composition in sun and shade leaves of plants with different life forms
  publication-title: Plant Cell Environ.
– volume: 99
  start-page: 1092
  year: 2002
  end-page: 1097
  article-title: Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit‐specific manner
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 135
  start-page: 1776
  year: 2004
  end-page: 1783
  article-title: Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses
  publication-title: Plant Physiol.
– volume: 1054
  start-page: 261
  year: 2004
  end-page: 268
  article-title: Improved liquid chromatographic method for determination of carotenoids in Taiwanese mango ( L.)
  publication-title: J. Chromatogr. A
– volume: 8
  start-page: 1613
  year: 1996
  end-page: 1626
  article-title: Functional analysis of the β and ε lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation
  publication-title: Plant Cell
– volume: 43
  start-page: 273
  year: 1995
  end-page: 282
  article-title: Occurrence of the carotenoid lactucaxanthin in higher plant LHC II
  publication-title: Photosynth. Res.
– volume: 428
  start-page: 287
  year: 2004
  end-page: 292
  article-title: Crystal structure of spinach major light‐harvesting complex at 2.72 Å resolution
  publication-title: Nature
– volume: 41
  start-page: 478
  year: 2005
  end-page: 492
  article-title: A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of
  publication-title: Plant J.
– volume: 59
  start-page: 3551
  year: 2008
  end-page: 3562
  article-title: Generation of transgenic maize with enhanced provitamin A content
  publication-title: J. Exp. Bot.
– volume: 53
  start-page: 717
  year: 2008
  end-page: 730
  article-title: Abscisic acid deficiency in the tomato mutant leading to increased plastid number and higher fruit lycopene content
  publication-title: Plant J.
– volume: 47
  start-page: 379
  year: 2001
  end-page: 388
  article-title: Characterization of a second carotenoid β‐hydroxylase gene from Arabidopsis and its relationship to the locus
  publication-title: Plant Mol. Biol.
– volume: 175
  start-page: 981
  year: 2007
  end-page: 992
  article-title: Generating novel allelic variation through insertional mutagenesis in maize
  publication-title: Genetics
– volume: 98
  start-page: 2905
  year: 2001
  end-page: 2910
  article-title: One ring or two? Determination of ring number in carotenoids by lycopene epsilon‐cyclases
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 24
  start-page: 1345
  year: 2001
  end-page: 1352
  article-title: Acclimation of tropical tree seedlings to excessive light in simulated tree‐fall gaps
  publication-title: Plant Cell Environ.
– volume: 132
  start-page: 779
  year: 2003
  end-page: 785
  article-title: Seed‐specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid
  publication-title: Plant Physiol.
– volume: 15
  start-page: 1795
  year: 2003
  end-page: 1806
  article-title: Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci
  publication-title: Plant Cell
– ident: e_1_2_6_19_1
  doi: 10.1007/978-94-009-5860-9
– ident: e_1_2_6_22_1
  doi: 10.1046/j.1365-313X.1999.00521.x
– ident: e_1_2_6_35_1
  doi: 10.1073/pnas.0307839101
– volume: 7
  start-page: 1257
  year: 1988
  ident: e_1_2_6_45_1
  article-title: Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light‐regulated and differential expression of flavonoid genes
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1988.tb02939.x
– ident: e_1_2_6_21_1
  doi: 10.1016/S1369-5266(00)00163-1
– ident: e_1_2_6_31_1
  doi: 10.1038/nature02373
– ident: e_1_2_6_32_1
  doi: 10.1093/jxb/erl061
– ident: e_1_2_6_33_1
  doi: 10.1038/nbt1082
– ident: e_1_2_6_26_1
  doi: 10.1046/j.0016-8025.2001.00786.x
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-313X.2004.02309.x
– ident: e_1_2_6_42_1
  doi: 10.1105/tpc.010249
– ident: e_1_2_6_28_1
  doi: 10.1104/pp.107.111120
– ident: e_1_2_6_27_1
  doi: 10.1071/FP03239
– ident: e_1_2_6_39_1
  doi: 10.1021/jf053204d
– ident: e_1_2_6_41_1
  doi: 10.1016/0031-9422(81)85222-3
– ident: e_1_2_6_12_1
  doi: 10.1017/S0007114508944123
– ident: e_1_2_6_46_1
  doi: 10.1038/nature07272
– ident: e_1_2_6_8_1
  doi: 10.1073/pnas.051618398
– ident: e_1_2_6_10_1
  doi: 10.1105/tpc.8.9.1613
– ident: e_1_2_6_23_1
  doi: 10.1104/pp.83.4.905
– ident: e_1_2_6_30_1
  doi: 10.1104/pp.102.017053
– ident: e_1_2_6_38_1
  doi: 10.1021/jf050362w
– ident: e_1_2_6_7_1
  doi: 10.1146/annurev.arplant.49.1.557
– ident: e_1_2_6_18_1
  doi: 10.1038/nature07271
– ident: e_1_2_6_29_1
  doi: 10.1104/pp.108.122119
– ident: e_1_2_6_43_1
  doi: 10.1023/A:1011623907959
– ident: e_1_2_6_13_1
  doi: 10.1111/j.1365-3040.1992.tb00991.x
– ident: e_1_2_6_20_1
  doi: 10.1126/science.1150255
– ident: e_1_2_6_40_1
  doi: 10.1046/j.1365-313x.1999.00611.x
– ident: e_1_2_6_24_1
  doi: 10.1073/pnas.0511207103
– ident: e_1_2_6_36_1
  doi: 10.1007/BF00029940
– ident: e_1_2_6_4_1
  doi: 10.1534/genetics.106.066837
– ident: e_1_2_6_5_1
  doi: 10.1104/pp.106.077008
– ident: e_1_2_6_37_1
  doi: 10.1046/j.1365-313X.1999.00381.x
– ident: e_1_2_6_16_1
  doi: 10.1104/pp.104.039818
– ident: e_1_2_6_3_1
  doi: 10.1093/jxb/ern212
– ident: e_1_2_6_25_1
  doi: 10.1126/science.1140516
– ident: e_1_2_6_15_1
  doi: 10.1073/pnas.241374598
– ident: e_1_2_6_2_1
  doi: 10.1023/B:PLAN.0000036371.30528.26
– ident: e_1_2_6_6_1
  doi: 10.1016/S0021-9673(04)01406-2
– ident: e_1_2_6_47_1
  doi: 10.1177/15648265030244S204
– ident: e_1_2_6_11_1
  doi: 10.1128/EC.00265-06
– ident: e_1_2_6_14_1
  doi: 10.1016/j.plipres.2003.10.002
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1365-313X.2007.03362.x
– ident: e_1_2_6_44_1
  doi: 10.1016/j.abb.2004.02.003
– ident: e_1_2_6_34_1
  doi: 10.1105/tpc.012526
SSID ssj0017364
Score 2.3240283
Snippet Summary In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained...
In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely...
SummaryIn maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 588
SubjectTerms Accumulation
Alleles
Amino acids
Biochemistry
Biological and medical sciences
Biosynthesis
Botany
breeding
Carotenoids
Carotenoids - biosynthesis
Corn
E coli
embryo
embryology
Embryos
endosperm
enzymes
enzymology
epsilon‐carotene
Escherichia coli
Fundamental and applied biological sciences. Psychology
Gene expression
gene expression regulation
Gene Expression Regulation, Plant
genes
genetics
humans
Intramolecular Lyases
Intramolecular Lyases - genetics
Intramolecular Lyases - metabolism
lycopene
lycopene beta‐cyclase
metabolism
Molecular and cellular biology
Molecular genetics
Mutagenesis, Site-Directed
mutants
Mutation
Plant Proteins
Plant Proteins - genetics
Plant Proteins - metabolism
RNA, Plant
RNA, Plant - genetics
Seeds
Seeds - enzymology
Seeds - genetics
site-directed mutagenesis
Substrate Specificity
Tissues
transcription (genetics)
Transcription. Transcription factor. Splicing. Rna processing
transcriptional regulation
Zea mays
Zea mays - embryology
Zea mays - enzymology
Zea mays - genetics
Title Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2009.03899.x
https://www.ncbi.nlm.nih.gov/pubmed/19392686
https://www.proquest.com/docview/213494595
https://www.proquest.com/docview/21019393
https://www.proquest.com/docview/46361448
https://www.proquest.com/docview/67607395
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5K6KFQ-n44aVMdevUSr2zZPqalIeQQSklgb2b0ArNbe4l3Qze_vjOy1-2GBELpzaAZgaQZzSdr9A3A5xwTj0bxfzfEOJ2aMkY0_ApYOmmMTI0LWb7n6vQyPZtlsyH_id_C9PwQ4w839oywX7ODo-52nZwztGQiZwPtJFPFTRhPcgPjox8jk1SSy55JigB7TEH0VlLPnR3tRKqnS-xo0nxf7eIuOLqLbkN4OnkO8-3A-qyU-WS90hNzc4vz8f-M_AU8G1CsOO7N7iU8cs0rePylJaS5eQ3z8_baLcRiwy9eGifcsqsXbSPMxhBWd4LfUlwHJldRN-In1jdOMJMUxSorhsJBYumuKBrqYDii9YLrCxG-b2srdN12m4aQa1d3b-Dy5NvF19N4KOoQG8WpNhKlwgJTPtgVR6UuNB_CrU_M1BA4yRCtl0mmc4upITxjPQVXjY42lsSb9Ei-hb2mbdx7ENZbm9CORZJIOLDQiS8UCXpab4sOI8i3C1iZgfGcC28sqr9OPjSTFc8k1-MsqzCT1a8IklFz2bN-PEDncMdGRsUAQmU-jeBgazTVsFF0FRPqlWlWZhF8GlvJw_naBhvXrlmEYDj1cL8Ek77Rwbi4X0LlKlzJRvCut9Y_w6Kup6pQEahgcw8eb3Xx_Yy_9v9V8QCe9FdznE35AfZWV2v3kRDeSh8G3_0NZDJElw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9GN9hg7Hur163Vw14d6siW7cdtrGRdF8ZIIW9C1geYenaok9L0r9-d7HhLaaGMvRl8Eki60_1OOv0O4EOqIqe0oHM3pcJ4rPNQKU2vgLnlWvNYW5_lOxWT0_h4nsz7ckD0FqbjhxgO3Mgy_H5NBk4H0ttWTilaPOLznneSuOJGCCjvU4FvH1_9HLikopR3XFII2UN0o9fSem7sactXPV6oFqfNdfUubgKk2_jWO6ijp1BthtblpZyNVstipK-usT7-p7E_gyc9kGUfO817Dvds_QIefGoQbK5fwtm0ubAVq9b06KW2zC7asmpqptca4bpl9JziwpO5srJmv1R5ZRmRSaG7MqyvHcQW9hwdYuF1hzWOUYkhhPhNaVhRNu26RvDalu0rOD36Mvs8Cfu6DqEWlG3DFRcqUzHFdtlhXmQFxeHGRXqsEZ8kShnHo6RIjYo1Qhrj0L8WyuLeEjkdH_LXsFM3td0FZpwxEW5aKKkQCmZF5DKBgg4X3CirAkg3Kyh1T3pOtTcq-VfwgzMpaSapJGcu_UzKywCioeWiI_64Q5v9LSUZGnocytNxAHsbrZH9XtFK4tTL4yRPAjgY_qKR082Nqm2zIhFE4tjD7RLE-4axcXa7hEiFv5UN4E2nrn-GhV2PRSYCEF7p7jxeOftxTF9v_7XhATyczL6fyJOv02978Ki7qaPkynewszxf2fcI-JbFvjfk35ZlSLI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9GO8ZgdN-b163Vw14d4siW7cdtbei6EcpoIW9G1geYpLapk9L0r--d7HhNaaGMvRl8J5B0p_tJOv0O4GssAyuVoHM3Kf1wpFJfSkWvgLnhSvFQGZflOxFHZ-HxNJp2-U_0Fqblh-gP3Mgz3HpNDl5ru-nklKHFAz7taCeJKm6AeHI7FMOELPzgT08lFcS8pZJCxO5jFL2T1XNvSxuh6kUtGxw125a7uA-PbsJbF5_GL2G27lmbljIbLBf5QF3fIX38P11_BTsdjGXfWrt7DU9M-Qaefq8Qaq7ewmxSXZo5m6_oyUtpmKmbYl6VTK0UgnXD6DHFpaNyZUXJzmVxbRhRSWGw0qyrHMRqc4HhMHeWwyrLqMAQAvyq0CwvqmZVInRtiuYdnI0PT38c-V1VB18JyrXhkguZyJB2dskwzZOcduHaBmqkEJ1EUmrLgyiPtQwVAhptMbrm0uDKElgVDvl72Cqr0nwEpq3WAS5ZKCkRCCZ5YBOBghbnW0sjPYjXE5ipjvKcKm_Ms1tbHxzJjEaSCnKmmRvJ7MqDoNesW9qPR-jsbdhIr-hQKI9HHuyujSbrVoomI0a9NIzSyIP9_i-6ON3byNJUSxJBHI4tPCxBrG-4M04elhCxcHeyHnxorfVvt7DpkUiEB8LZ3KP7m52eHNPXp39V3IdnJwfj7PfPya9deN5e01Fm5WfYWlwszRdEe4t8z7nxDZi3R2o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+lycopene+epsilon+cyclase+activities+in+maize+revealed+through+perturbation+of+carotenoid+biosynthesis&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Bai%2C+Ling&rft.au=Kim%2C+Eun+Ha&rft.au=DellaPenna%2C+Dean&rft.au=Brutnell%2C+Thomas+P&rft.date=2009-08-01&rft.issn=0960-7412&rft.volume=59&rft.issue=4+p.588-599&rft.spage=588&rft.epage=599&rft_id=info:doi/10.1111%2Fj.1365-313X.2009.03899.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon