Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis
Summary In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumula...
Saved in:
Published in | The Plant journal : for cell and molecular biology Vol. 59; no. 4; pp. 588 - 599 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.08.2009
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue‐specific accumulation is largely mediated through differential expression of genes encoding lycopene β‐cyclase and lycopene ε‐cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including δ‐carotene, ε‐carotene and lactucaxanthin (ε,ε‐carotene‐3,3′‐diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene‐accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site‐directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed. |
---|---|
AbstractList | Summary
In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue‐specific accumulation is largely mediated through differential expression of genes encoding lycopene β‐cyclase and lycopene ε‐cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including δ‐carotene, ε‐carotene and lactucaxanthin (ε,ε‐carotene‐3,3′‐diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene‐accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site‐directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed. In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue-specific accumulation is largely mediated through differential expression of genes encoding lycopene beta-cyclase and lycopene epsilon-cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including delta-carotene, epsilon-carotene and lactucaxanthin (epsilon,epsilon-carotene-3,3'-diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene-accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site-directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed.In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue-specific accumulation is largely mediated through differential expression of genes encoding lycopene beta-cyclase and lycopene epsilon-cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including delta-carotene, epsilon-carotene and lactucaxanthin (epsilon,epsilon-carotene-3,3'-diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene-accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site-directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed. In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue-specific accumulation is largely mediated through differential expression of genes encoding lycopene β-cyclase and lycopene ε-cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including δ-carotene, ε-carotene and lactucaxanthin (ε,ε-carotene-3,3'-diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene-accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site-directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed. In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue-specific accumulation is largely mediated through differential expression of genes encoding lycopene beta-cyclase and lycopene epsilon-cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including delta-carotene, epsilon-carotene and lactucaxanthin (epsilon,epsilon-carotene-3,3'-diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene-accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site-directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed. In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue-specific accumulation is largely mediated through differential expression of genes encoding lycopene [beta]-cyclase and lycopene [epsilon]-cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including [delta]-carotene, [epsilon]-carotene and lactucaxanthin ([epsilon],[epsilon]-carotene-3,3'-diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene-accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site-directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed. [PUBLICATION ABSTRACT] In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue‐specific accumulation is largely mediated through differential expression of genes encoding lycopene β‐cyclase and lycopene ε‐cyclase ( LcyB and LcyE ). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including δ‐carotene, ε‐carotene and lactucaxanthin (ε,ε‐carotene‐3,3′‐diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene‐accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site‐directed mutagenesis of LcyE , critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed. SummaryIn maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely untapped in modern breeding programs that have focused nearly exclusively on yield gains. In this paper, we show that carotenoid accumulation patterns differ in maize embryo and endosperm tissues, and that this tissue-specific accumulation is largely mediated through differential expression of genes encoding lycopene beta -cyclase and lycopene epsilon -cyclase (LcyB and LcyE). In the absence of LCYB function, LCYE produces a number of unusual carotenes, including delta -carotene, epsilon -carotene and lactucaxanthin ( epsilon , epsilon -carotene-3,3'-diol), in endosperm tissue. A similar carotene cyclization profile is seen when LcyE is introduced into lycopene-accumulating Escherichia coli cells, suggesting that the carotenoid profile in the endosperm tissue of the lcyB mutant is largely due to the activity of LCYE in the absence of LCYB. Using site-directed mutagenesis of LcyE, critical amino acids were defined that regulate the product specificity of the enzyme. Finally, we show that several genes encoding enzymes in isoprenoid and carotenoid biosynthesis are probably subject to negative transcriptional regulation, mediated by a carotenoid or a molecule derived from a carotenoid. The implications of these findings with respect to breeding for carotenoid composition in maize grain are discussed. |
Author | DellaPenna, Dean Kim, Eun‐Ha Brutnell, Thomas P. Bai, Ling |
Author_xml | – sequence: 1 givenname: Ling surname: Bai fullname: Bai, Ling – sequence: 2 givenname: Eun‐Ha surname: Kim fullname: Kim, Eun‐Ha – sequence: 3 givenname: Dean surname: DellaPenna fullname: DellaPenna, Dean – sequence: 4 givenname: Thomas P. surname: Brutnell fullname: Brutnell, Thomas P. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21839372$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19392686$$D View this record in MEDLINE/PubMed |
BookMark | eNqNksGP1CAUxolZ486u_guGmOitFQqlcNDEbHTVbNTDmngjlL46jEyp0I47-9fbzoxz2MvIBRJ-3_cevO8CnXWhA4QwJTmd1utVTpkoM0bZj7wgROWESaXyu0docbw4QwuiBMkqTotzdJHSihBaMcGfoHOqmCqEFAv060vYgMd-a0MPHWDok_Ohw3ZrvUmAjR3cxg0OEnYdXht3DzjCBoyHBg_LGMafS9xDHMZYm8FNytBia2IYoAuuwbULadsNS0guPUWPW-MTPDvsl-j7h_e3Vx-zm6_Xn67e3WRWkEJlzDBhpOGUEyqJqmVdSSmbltrCUkVKY5qW0bKuGsMtqcqmLWhRG6hkRVvLCbtEr_a-fQy_R0iDXrtkwXvTQRiTFpUgFVPlSZALJijn8iRYUDJ_KZvAFw_AVRhjN712YhhXvNyVfX6AxnoNje6jW5u41f-mMgEvD4BJ1vg2ms66dOQKKqdaVTFxb_ecjSGlCK22bthNYYjGeU2JnuOiV3pOhZ5Toee46F1c9N1kIB8YHHs5LX2zl_5xHrb_rdO33z7PJ_YXTSnYCg |
CitedBy_id | crossref_primary_10_1007_s11032_019_0982_7 crossref_primary_10_1016_j_copbio_2011_01_002 crossref_primary_10_1016_j_abb_2013_07_009 crossref_primary_10_3390_life14121659 crossref_primary_10_1016_j_enzmictec_2019_109426 crossref_primary_10_1038_s41598_022_11544_7 crossref_primary_10_3389_fmicb_2019_01976 crossref_primary_10_1016_j_abb_2018_07_014 crossref_primary_10_1016_j_algal_2021_102246 crossref_primary_10_5511_plantbiotechnology_15_0526a crossref_primary_10_1016_j_abb_2013_07_002 crossref_primary_10_1038_s41598_024_84197_3 crossref_primary_10_1071_FP11192 crossref_primary_10_1016_j_indcrop_2024_118868 crossref_primary_10_1071_CP10025 crossref_primary_10_1002_jsfa_12054 crossref_primary_10_1016_j_jcs_2021_103206 crossref_primary_10_1007_s11295_013_0687_8 crossref_primary_10_1093_jxb_erw356 crossref_primary_10_3390_md21070418 crossref_primary_10_3389_fpls_2016_01867 crossref_primary_10_3390_ijms251810198 crossref_primary_10_1016_j_algal_2025_103974 crossref_primary_10_1007_s11103_013_0160_y crossref_primary_10_3389_fpls_2017_01341 crossref_primary_10_1016_j_jplph_2015_03_018 crossref_primary_10_1093_plphys_kiaa033 crossref_primary_10_1016_S2095_3119_20_63487_6 crossref_primary_10_1007_s11816_016_0390_y crossref_primary_10_1093_g3journal_jkac006 crossref_primary_10_1111_pbr_12618 crossref_primary_10_1128_spectrum_04361_22 crossref_primary_10_1038_s41477_022_01190_2 crossref_primary_10_1007_s11738_015_1958_9 crossref_primary_10_1021_acs_jafc_5b05308 crossref_primary_10_1186_s12870_022_03634_5 crossref_primary_10_1038_s41598_018_38233_8 crossref_primary_10_1186_s12870_021_03236_7 crossref_primary_10_18699_VJGB_23_53 crossref_primary_10_1093_jxb_ers134 crossref_primary_10_1007_s00122_012_1828_4 crossref_primary_10_1093_bfgp_elaa007 crossref_primary_10_1134_S102279542303002X crossref_primary_10_1199_tab_0158 crossref_primary_10_1007_s00425_012_1690_2 crossref_primary_10_1016_j_scienta_2022_111062 crossref_primary_10_1007_s42976_023_00379_1 crossref_primary_10_1111_tpj_12826 crossref_primary_10_1007_s12374_016_0902_x crossref_primary_10_3390_ijms241210310 crossref_primary_10_1007_s11248_010_9381_x crossref_primary_10_1016_j_plantsci_2024_111983 crossref_primary_10_1080_07352689_2019_1682791 crossref_primary_10_1016_j_sajb_2020_05_015 crossref_primary_10_1016_j_plantsci_2019_110331 crossref_primary_10_1007_s11033_014_3714_4 crossref_primary_10_1007_s13205_018_1100_y crossref_primary_10_1007_s11274_021_03188_y crossref_primary_10_1093_pcp_pcr037 crossref_primary_10_1111_j_1399_3054_2012_01688_x crossref_primary_10_17660_ActaHortic_2016_1111_22 crossref_primary_10_3390_life14050576 crossref_primary_10_1007_s00122_021_03944_6 crossref_primary_10_3389_fgene_2016_00131 crossref_primary_10_3390_plants12152788 crossref_primary_10_1016_j_ymben_2022_01_004 crossref_primary_10_1534_genetics_110_124149 crossref_primary_10_1016_j_febslet_2012_07_060 crossref_primary_10_1093_jxb_ers115 crossref_primary_10_1021_acs_jafc_9b06918 crossref_primary_10_1111_j_1541_4337_2010_00117_x crossref_primary_10_1016_j_indcrop_2022_115724 crossref_primary_10_1139_g11_066 crossref_primary_10_3389_fpls_2023_1213086 crossref_primary_10_1371_journal_pone_0200320 crossref_primary_10_1007_s00425_018_2988_5 crossref_primary_10_1093_pcp_pct170 crossref_primary_10_1039_c0np00036a crossref_primary_10_1007_s00425_010_1222_x crossref_primary_10_1016_j_cpb_2023_100303 crossref_primary_10_1371_journal_pone_0162443 crossref_primary_10_1016_j_scienta_2021_110164 crossref_primary_10_3390_ijms150814766 crossref_primary_10_1016_j_molp_2014_12_007 crossref_primary_10_1016_j_ymben_2013_10_007 crossref_primary_10_1016_j_hpj_2023_02_012 crossref_primary_10_1016_j_sajb_2017_01_003 crossref_primary_10_1371_journal_pone_0058144 crossref_primary_10_31857_S0016675823030025 crossref_primary_10_1093_plcell_koab032 crossref_primary_10_1038_ng_551 crossref_primary_10_1111_pbi_14346 crossref_primary_10_1016_j_tplants_2016_06_001 crossref_primary_10_1007_s00122_023_04336_8 crossref_primary_10_1016_j_plantsci_2017_07_010 crossref_primary_10_1007_s11032_017_0718_5 crossref_primary_10_1021_acs_jafc_9b00756 crossref_primary_10_1186_s12870_021_03415_6 crossref_primary_10_1016_j_postharvbio_2022_112089 crossref_primary_10_2135_cropsci2010_06_0335 crossref_primary_10_3389_fpls_2021_699424 crossref_primary_10_3389_fpls_2021_806184 |
Cites_doi | 10.1007/978-94-009-5860-9 10.1046/j.1365-313X.1999.00521.x 10.1073/pnas.0307839101 10.1002/j.1460-2075.1988.tb02939.x 10.1016/S1369-5266(00)00163-1 10.1038/nature02373 10.1093/jxb/erl061 10.1038/nbt1082 10.1046/j.0016-8025.2001.00786.x 10.1111/j.1365-313X.2004.02309.x 10.1105/tpc.010249 10.1104/pp.107.111120 10.1071/FP03239 10.1021/jf053204d 10.1016/0031-9422(81)85222-3 10.1017/S0007114508944123 10.1038/nature07272 10.1073/pnas.051618398 10.1105/tpc.8.9.1613 10.1104/pp.83.4.905 10.1104/pp.102.017053 10.1021/jf050362w 10.1146/annurev.arplant.49.1.557 10.1038/nature07271 10.1104/pp.108.122119 10.1023/A:1011623907959 10.1111/j.1365-3040.1992.tb00991.x 10.1126/science.1150255 10.1046/j.1365-313x.1999.00611.x 10.1073/pnas.0511207103 10.1007/BF00029940 10.1534/genetics.106.066837 10.1104/pp.106.077008 10.1046/j.1365-313X.1999.00381.x 10.1104/pp.104.039818 10.1093/jxb/ern212 10.1126/science.1140516 10.1073/pnas.241374598 10.1023/B:PLAN.0000036371.30528.26 10.1016/S0021-9673(04)01406-2 10.1177/15648265030244S204 10.1128/EC.00265-06 10.1016/j.plipres.2003.10.002 10.1111/j.1365-313X.2007.03362.x 10.1016/j.abb.2004.02.003 10.1105/tpc.012526 |
ContentType | Journal Article |
Copyright | 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd 2009 INIST-CNRS Journal compilation © 2009 Blackwell Publishing Ltd and the Society for Experimental Biology |
Copyright_xml | – notice: 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd – notice: 2009 INIST-CNRS – notice: Journal compilation © 2009 Blackwell Publishing Ltd and the Society for Experimental Biology |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7QL C1K 7S9 L.6 7X8 |
DOI | 10.1111/j.1365-313X.2009.03899.x |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE Genetics Abstracts CrossRef Bacteriology Abstracts (Microbiology B) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1365-313X |
EndPage | 599 |
ExternalDocumentID | 1829687071 19392686 21839372 10_1111_j_1365_313X_2009_03899_x TPJ3899 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FIJ G-S G.N GODZA H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW CGR CUY CVF ECM EIF NPM 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7QL C1K 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c6029-3a36a8a41401809b8b7888df1c2c1905aadf315b7da4c075df212bae7871fc403 |
IEDL.DBID | DR2 |
ISSN | 0960-7412 1365-313X |
IngestDate | Fri Jul 11 04:50:34 EDT 2025 Fri Jul 11 01:26:46 EDT 2025 Fri Jul 11 03:26:04 EDT 2025 Fri Jul 25 11:02:08 EDT 2025 Mon Jul 21 06:02:44 EDT 2025 Mon Jul 21 09:11:54 EDT 2025 Tue Jul 01 03:57:02 EDT 2025 Thu Apr 24 23:10:53 EDT 2025 Wed Jan 22 16:19:48 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | epsilon-carotene Embryo Transcription carotenoids Carotene transcriptional regulation Biosynthesis Perturbation Lycopene Chenopodiaceae Beta Regulation(control) lycopene beta-cyclase Dicotyledones Angiospermae Spermatophyta Endosperm Carotenoid |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6029-3a36a8a41401809b8b7888df1c2c1905aadf315b7da4c075df212bae7871fc403 |
Notes | † These authors contributed equally to this work. SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-313X.2009.03899.x |
PMID | 19392686 |
PQID | 213494595 |
PQPubID | 31702 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_67607395 proquest_miscellaneous_46361448 proquest_miscellaneous_21019393 proquest_journals_213494595 pubmed_primary_19392686 pascalfrancis_primary_21839372 crossref_citationtrail_10_1111_j_1365_313X_2009_03899_x crossref_primary_10_1111_j_1365_313X_2009_03899_x wiley_primary_10_1111_j_1365_313X_2009_03899_x_TPJ3899 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2009 |
PublicationDateYYYYMMDD | 2009-08-01 |
PublicationDate_xml | – month: 08 year: 2009 text: August 2009 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2009 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | 1998; 49 2004; 43 2004; 101 2008a; 146 2006; 57 2006; 54 2002; 99 2008; 59 2005; 41 2003; 15 1999; 20 1992; 15 2008; 53 2004; 428 2008; 100 2001; 24 2001; 47 2003; 132 2005; 23 1981; 20 2004; 54 2004; 430 2004; 31 2007; 316 2004; 135 1987; 83 1999; 19 2001; 4 1999; 17 2007; 175 2008; 319 1995; 43 1988; 7 2006; 141 2003; 24 2007; 6 2005; 53 2004; 1054 2008; 455 1980 2008b; 147 1996; 8 2006; 103 2001; 98 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 Van Tunen A.J. (e_1_2_6_45_1) 1988; 7 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – volume: 24 start-page: S78 year: 2003 end-page: S90 article-title: Vitamin A deficiency disorders in children and women publication-title: Food Nutr. Bull. – volume: 6 start-page: 533 year: 2007 end-page: 545 article-title: Carotenoid biosynthesis in the primitive red alga publication-title: Eukaryot. Cell – volume: 57 start-page: 3007 year: 2006 end-page: 3018 article-title: Overexpression of a bacterial 1‐deoxy‐d‐xylulose 5‐phosphate synthase gene in potato tubers perturbs the isoprenoid metabolic network: implications for the control of the tuber life cycle publication-title: J. Exp. Bot. – volume: 54 start-page: 387 year: 2004 end-page: 404 article-title: Evidence that CTR1‐mediated ethylene signal transduction in tomato is encoded by a multigene family whose members display distinct regulatory features publication-title: Plant Mol. Biol. – volume: 20 start-page: 85 year: 1981 end-page: 88 article-title: Lactucaxanthin, an ɛ,ɛ‐carotene‐3,3′‐diol from publication-title: Phytochemistry – volume: 141 start-page: 220 year: 2006 end-page: 231 article-title: Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity publication-title: Plant Physiol. – volume: 20 start-page: 401 year: 1999 end-page: 412 article-title: Seed‐specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects publication-title: Plant J. – volume: 147 start-page: 1334 year: 2008b end-page: 1346 article-title: The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance publication-title: Plant Physiol. – volume: 4 start-page: 210 year: 2001 end-page: 218 article-title: Carotenoid biosynthesis in flowering plants publication-title: Curr. Opin. Plant Biol. – volume: 319 start-page: 330 year: 2008 end-page: 333 article-title: Natural genetic variation in tapped for maize biofortification publication-title: Science – volume: 43 start-page: 228 year: 2004 end-page: 265 article-title: The biosynthesis and nutritional uses of carotenoids publication-title: Prog. Lipid Res. – volume: 31 start-page: 743 year: 2004 end-page: 756 article-title: Do mature shade leaves of tropical tree seedlings acclimate to high sunlight and UV radiation? publication-title: Funct. Plant Biol. – volume: 17 start-page: 341 year: 1999 end-page: 351 article-title: Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon‐cyclase is down‐regulated during ripening and is elevated in the mutant publication-title: Plant J. – volume: 430 start-page: 22 year: 2004 end-page: 29 article-title: Progress in understanding the origin and functions of carotenoid hydroxylases in plants publication-title: Arch. Biochem. Biophys. – volume: 455 start-page: 195 year: 2008 end-page: 200 article-title: Inhibition of shoot branching by new terpenoid plant hormones publication-title: Nature – volume: 19 start-page: 371 year: 1999 end-page: 377 article-title: Signaling from the embryo conditions ‐mediated repression of α‐amylase genes in the aleurone of developing maize seeds publication-title: Plant J. – volume: 83 start-page: 905 year: 1987 end-page: 909 article-title: Distribution of abscisic acid in maize kernel during grain filling publication-title: Plant Physiol. – volume: 15 start-page: 874 year: 2003 end-page: 884 article-title: mutagenesis of the / locus of maize publication-title: Plant Cell – volume: 316 start-page: 715 year: 2007 end-page: 719 article-title: Signals from chloroplasts converge to regulate nuclear gene expression publication-title: Science – volume: 23 start-page: 482 year: 2005 end-page: 487 article-title: Improving the nutritional value of Golden Rice through increased pro‐vitamin A content publication-title: Nature Biotechnol. – volume: 455 start-page: 189 year: 2008 end-page: 194 article-title: Strigolactone inhibition of shoot branching publication-title: Nature – volume: 7 start-page: 1257 year: 1988 end-page: 1263 article-title: Cloning of the two chalcone flavanone isomerase genes from : coordinate, light‐regulated and differential expression of flavonoid genes publication-title: EMBO J. – volume: 54 start-page: 2267 year: 2006 end-page: 2273 article-title: Xanthophylls in commercial egg yolks: quantification and identification by HPLC and LC‐(APCI)MS using a C30 phase publication-title: J. Agric. Food. Chem. – volume: 100 start-page: 1 year: 2008 end-page: 8 article-title: β‐Cryptoxanthin from supplements or carotenoid‐enhanced maize maintains liver vitamin A in Mongolian gerbils ( ) better than or equal to β‐carotene supplements publication-title: Br. J. Nutr. – year: 1980 – volume: 146 start-page: 1333 year: 2008a end-page: 1345 article-title: PSY3, a new member of the phytoene synthase gene family conserved in the Poaceae and regulator of abiotic stress‐induced root carotenogenesis publication-title: Plant Physiol. – volume: 53 start-page: 6355 year: 2005 end-page: 6361 article-title: Cryptoxanthin structural isomers in oranges, orange juice, and other fruits publication-title: J. Agric. Food. Chem. – volume: 101 start-page: 9885 year: 2004 end-page: 9890 article-title: Long‐range patterns of diversity and linkage disequilibrium surrounding the maize gene are indicative of an asymmetric selective sweep publication-title: Proc. Natl Acad. Sci. USA – volume: 49 start-page: 557 year: 1998 end-page: 583 article-title: Genes and enzymes of carotenoid biosynthesis in plants publication-title: Annu. Rev. Plant Physiol. Plant Mol. Biol. – volume: 103 start-page: 3474 year: 2006 end-page: 3479 article-title: Defining the primary route for lutein synthesis in plants: the role of carotenoid β‐ring hydroxylase CYP97A3 publication-title: Proc. Natl Acad. Sci. USA – volume: 15 start-page: 411 year: 1992 end-page: 419 article-title: Carotenoid composition in sun and shade leaves of plants with different life forms publication-title: Plant Cell Environ. – volume: 99 start-page: 1092 year: 2002 end-page: 1097 article-title: Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit‐specific manner publication-title: Proc. Natl Acad. Sci. USA – volume: 135 start-page: 1776 year: 2004 end-page: 1783 article-title: Gene duplication in the carotenoid biosynthetic pathway preceded evolution of the grasses publication-title: Plant Physiol. – volume: 1054 start-page: 261 year: 2004 end-page: 268 article-title: Improved liquid chromatographic method for determination of carotenoids in Taiwanese mango ( L.) publication-title: J. Chromatogr. A – volume: 8 start-page: 1613 year: 1996 end-page: 1626 article-title: Functional analysis of the β and ε lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation publication-title: Plant Cell – volume: 43 start-page: 273 year: 1995 end-page: 282 article-title: Occurrence of the carotenoid lactucaxanthin in higher plant LHC II publication-title: Photosynth. Res. – volume: 428 start-page: 287 year: 2004 end-page: 292 article-title: Crystal structure of spinach major light‐harvesting complex at 2.72 Å resolution publication-title: Nature – volume: 41 start-page: 478 year: 2005 end-page: 492 article-title: A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of publication-title: Plant J. – volume: 59 start-page: 3551 year: 2008 end-page: 3562 article-title: Generation of transgenic maize with enhanced provitamin A content publication-title: J. Exp. Bot. – volume: 53 start-page: 717 year: 2008 end-page: 730 article-title: Abscisic acid deficiency in the tomato mutant leading to increased plastid number and higher fruit lycopene content publication-title: Plant J. – volume: 47 start-page: 379 year: 2001 end-page: 388 article-title: Characterization of a second carotenoid β‐hydroxylase gene from Arabidopsis and its relationship to the locus publication-title: Plant Mol. Biol. – volume: 175 start-page: 981 year: 2007 end-page: 992 article-title: Generating novel allelic variation through insertional mutagenesis in maize publication-title: Genetics – volume: 98 start-page: 2905 year: 2001 end-page: 2910 article-title: One ring or two? Determination of ring number in carotenoids by lycopene epsilon‐cyclases publication-title: Proc. Natl Acad. Sci. USA – volume: 24 start-page: 1345 year: 2001 end-page: 1352 article-title: Acclimation of tropical tree seedlings to excessive light in simulated tree‐fall gaps publication-title: Plant Cell Environ. – volume: 132 start-page: 779 year: 2003 end-page: 785 article-title: Seed‐specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid publication-title: Plant Physiol. – volume: 15 start-page: 1795 year: 2003 end-page: 1806 article-title: Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci publication-title: Plant Cell – ident: e_1_2_6_19_1 doi: 10.1007/978-94-009-5860-9 – ident: e_1_2_6_22_1 doi: 10.1046/j.1365-313X.1999.00521.x – ident: e_1_2_6_35_1 doi: 10.1073/pnas.0307839101 – volume: 7 start-page: 1257 year: 1988 ident: e_1_2_6_45_1 article-title: Cloning of the two chalcone flavanone isomerase genes from Petunia hybrida: coordinate, light‐regulated and differential expression of flavonoid genes publication-title: EMBO J. doi: 10.1002/j.1460-2075.1988.tb02939.x – ident: e_1_2_6_21_1 doi: 10.1016/S1369-5266(00)00163-1 – ident: e_1_2_6_31_1 doi: 10.1038/nature02373 – ident: e_1_2_6_32_1 doi: 10.1093/jxb/erl061 – ident: e_1_2_6_33_1 doi: 10.1038/nbt1082 – ident: e_1_2_6_26_1 doi: 10.1046/j.0016-8025.2001.00786.x – ident: e_1_2_6_9_1 doi: 10.1111/j.1365-313X.2004.02309.x – ident: e_1_2_6_42_1 doi: 10.1105/tpc.010249 – ident: e_1_2_6_28_1 doi: 10.1104/pp.107.111120 – ident: e_1_2_6_27_1 doi: 10.1071/FP03239 – ident: e_1_2_6_39_1 doi: 10.1021/jf053204d – ident: e_1_2_6_41_1 doi: 10.1016/0031-9422(81)85222-3 – ident: e_1_2_6_12_1 doi: 10.1017/S0007114508944123 – ident: e_1_2_6_46_1 doi: 10.1038/nature07272 – ident: e_1_2_6_8_1 doi: 10.1073/pnas.051618398 – ident: e_1_2_6_10_1 doi: 10.1105/tpc.8.9.1613 – ident: e_1_2_6_23_1 doi: 10.1104/pp.83.4.905 – ident: e_1_2_6_30_1 doi: 10.1104/pp.102.017053 – ident: e_1_2_6_38_1 doi: 10.1021/jf050362w – ident: e_1_2_6_7_1 doi: 10.1146/annurev.arplant.49.1.557 – ident: e_1_2_6_18_1 doi: 10.1038/nature07271 – ident: e_1_2_6_29_1 doi: 10.1104/pp.108.122119 – ident: e_1_2_6_43_1 doi: 10.1023/A:1011623907959 – ident: e_1_2_6_13_1 doi: 10.1111/j.1365-3040.1992.tb00991.x – ident: e_1_2_6_20_1 doi: 10.1126/science.1150255 – ident: e_1_2_6_40_1 doi: 10.1046/j.1365-313x.1999.00611.x – ident: e_1_2_6_24_1 doi: 10.1073/pnas.0511207103 – ident: e_1_2_6_36_1 doi: 10.1007/BF00029940 – ident: e_1_2_6_4_1 doi: 10.1534/genetics.106.066837 – ident: e_1_2_6_5_1 doi: 10.1104/pp.106.077008 – ident: e_1_2_6_37_1 doi: 10.1046/j.1365-313X.1999.00381.x – ident: e_1_2_6_16_1 doi: 10.1104/pp.104.039818 – ident: e_1_2_6_3_1 doi: 10.1093/jxb/ern212 – ident: e_1_2_6_25_1 doi: 10.1126/science.1140516 – ident: e_1_2_6_15_1 doi: 10.1073/pnas.241374598 – ident: e_1_2_6_2_1 doi: 10.1023/B:PLAN.0000036371.30528.26 – ident: e_1_2_6_6_1 doi: 10.1016/S0021-9673(04)01406-2 – ident: e_1_2_6_47_1 doi: 10.1177/15648265030244S204 – ident: e_1_2_6_11_1 doi: 10.1128/EC.00265-06 – ident: e_1_2_6_14_1 doi: 10.1016/j.plipres.2003.10.002 – ident: e_1_2_6_17_1 doi: 10.1111/j.1365-313X.2007.03362.x – ident: e_1_2_6_44_1 doi: 10.1016/j.abb.2004.02.003 – ident: e_1_2_6_34_1 doi: 10.1105/tpc.012526 |
SSID | ssj0017364 |
Score | 2.3240283 |
Snippet | Summary
In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained... In maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained largely... SummaryIn maize, human selection for yellow endosperm has led to diversification of grain carotenoid content and composition. This variation has remained... |
SourceID | proquest pubmed pascalfrancis crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 588 |
SubjectTerms | Accumulation Alleles Amino acids Biochemistry Biological and medical sciences Biosynthesis Botany breeding Carotenoids Carotenoids - biosynthesis Corn E coli embryo embryology Embryos endosperm enzymes enzymology epsilon‐carotene Escherichia coli Fundamental and applied biological sciences. Psychology Gene expression gene expression regulation Gene Expression Regulation, Plant genes genetics humans Intramolecular Lyases Intramolecular Lyases - genetics Intramolecular Lyases - metabolism lycopene lycopene beta‐cyclase metabolism Molecular and cellular biology Molecular genetics Mutagenesis, Site-Directed mutants Mutation Plant Proteins Plant Proteins - genetics Plant Proteins - metabolism RNA, Plant RNA, Plant - genetics Seeds Seeds - enzymology Seeds - genetics site-directed mutagenesis Substrate Specificity Tissues transcription (genetics) Transcription. Transcription factor. Splicing. Rna processing transcriptional regulation Zea mays Zea mays - embryology Zea mays - enzymology Zea mays - genetics |
Title | Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2009.03899.x https://www.ncbi.nlm.nih.gov/pubmed/19392686 https://www.proquest.com/docview/213494595 https://www.proquest.com/docview/21019393 https://www.proquest.com/docview/46361448 https://www.proquest.com/docview/67607395 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5K6KFQ-n44aVMdevUSr2zZPqalIeQQSklgb2b0ArNbe4l3Qze_vjOy1-2GBELpzaAZgaQZzSdr9A3A5xwTj0bxfzfEOJ2aMkY0_ApYOmmMTI0LWb7n6vQyPZtlsyH_id_C9PwQ4w839oywX7ODo-52nZwztGQiZwPtJFPFTRhPcgPjox8jk1SSy55JigB7TEH0VlLPnR3tRKqnS-xo0nxf7eIuOLqLbkN4OnkO8-3A-qyU-WS90hNzc4vz8f-M_AU8G1CsOO7N7iU8cs0rePylJaS5eQ3z8_baLcRiwy9eGifcsqsXbSPMxhBWd4LfUlwHJldRN-In1jdOMJMUxSorhsJBYumuKBrqYDii9YLrCxG-b2srdN12m4aQa1d3b-Dy5NvF19N4KOoQG8WpNhKlwgJTPtgVR6UuNB_CrU_M1BA4yRCtl0mmc4upITxjPQVXjY42lsSb9Ei-hb2mbdx7ENZbm9CORZJIOLDQiS8UCXpab4sOI8i3C1iZgfGcC28sqr9OPjSTFc8k1-MsqzCT1a8IklFz2bN-PEDncMdGRsUAQmU-jeBgazTVsFF0FRPqlWlWZhF8GlvJw_naBhvXrlmEYDj1cL8Ek77Rwbi4X0LlKlzJRvCut9Y_w6Kup6pQEahgcw8eb3Xx_Yy_9v9V8QCe9FdznE35AfZWV2v3kRDeSh8G3_0NZDJElw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9GN9hg7Hur163Vw14d6siW7cdtrGRdF8ZIIW9C1geYenaok9L0r9-d7HhLaaGMvRl8Eki60_1OOv0O4EOqIqe0oHM3pcJ4rPNQKU2vgLnlWvNYW5_lOxWT0_h4nsz7ckD0FqbjhxgO3Mgy_H5NBk4H0ttWTilaPOLznneSuOJGCCjvU4FvH1_9HLikopR3XFII2UN0o9fSem7sactXPV6oFqfNdfUubgKk2_jWO6ijp1BthtblpZyNVstipK-usT7-p7E_gyc9kGUfO817Dvds_QIefGoQbK5fwtm0ubAVq9b06KW2zC7asmpqptca4bpl9JziwpO5srJmv1R5ZRmRSaG7MqyvHcQW9hwdYuF1hzWOUYkhhPhNaVhRNu26RvDalu0rOD36Mvs8Cfu6DqEWlG3DFRcqUzHFdtlhXmQFxeHGRXqsEZ8kShnHo6RIjYo1Qhrj0L8WyuLeEjkdH_LXsFM3td0FZpwxEW5aKKkQCmZF5DKBgg4X3CirAkg3Kyh1T3pOtTcq-VfwgzMpaSapJGcu_UzKywCioeWiI_64Q5v9LSUZGnocytNxAHsbrZH9XtFK4tTL4yRPAjgY_qKR082Nqm2zIhFE4tjD7RLE-4axcXa7hEiFv5UN4E2nrn-GhV2PRSYCEF7p7jxeOftxTF9v_7XhATyczL6fyJOv02978Ki7qaPkynewszxf2fcI-JbFvjfk35ZlSLI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9GO8ZgdN-b163Vw14d4siW7cdtbei6EcpoIW9G1geYpLapk9L0r--d7HhNaaGMvRl8J5B0p_tJOv0O4GssAyuVoHM3Kf1wpFJfSkWvgLnhSvFQGZflOxFHZ-HxNJp2-U_0Fqblh-gP3Mgz3HpNDl5ru-nklKHFAz7taCeJKm6AeHI7FMOELPzgT08lFcS8pZJCxO5jFL2T1XNvSxuh6kUtGxw125a7uA-PbsJbF5_GL2G27lmbljIbLBf5QF3fIX38P11_BTsdjGXfWrt7DU9M-Qaefq8Qaq7ewmxSXZo5m6_oyUtpmKmbYl6VTK0UgnXD6DHFpaNyZUXJzmVxbRhRSWGw0qyrHMRqc4HhMHeWwyrLqMAQAvyq0CwvqmZVInRtiuYdnI0PT38c-V1VB18JyrXhkguZyJB2dskwzZOcduHaBmqkEJ1EUmrLgyiPtQwVAhptMbrm0uDKElgVDvl72Cqr0nwEpq3WAS5ZKCkRCCZ5YBOBghbnW0sjPYjXE5ipjvKcKm_Ms1tbHxzJjEaSCnKmmRvJ7MqDoNesW9qPR-jsbdhIr-hQKI9HHuyujSbrVoomI0a9NIzSyIP9_i-6ON3byNJUSxJBHI4tPCxBrG-4M04elhCxcHeyHnxorfVvt7DpkUiEB8LZ3KP7m52eHNPXp39V3IdnJwfj7PfPya9deN5e01Fm5WfYWlwszRdEe4t8z7nxDZi3R2o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+lycopene+epsilon+cyclase+activities+in+maize+revealed+through+perturbation+of+carotenoid+biosynthesis&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Bai%2C+Ling&rft.au=Kim%2C+Eun+Ha&rft.au=DellaPenna%2C+Dean&rft.au=Brutnell%2C+Thomas+P&rft.date=2009-08-01&rft.issn=0960-7412&rft.volume=59&rft.issue=4+p.588-599&rft.spage=588&rft.epage=599&rft_id=info:doi/10.1111%2Fj.1365-313X.2009.03899.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |