An image processing pipeline for electron cryo‐tomography in RELION‐5

Electron tomography of frozen, hydrated samples allows structure determination of macromolecular complexes that are embedded in complex environments. Provided that the target complexes may be localised in noisy, three‐dimensional tomographic reconstructions, averaging images of multiple instances of...

Full description

Saved in:
Bibliographic Details
Published inFEBS open bio Vol. 14; no. 11; pp. 1788 - 1804
Main Authors Burt, Alister, Toader, Bogdan, Warshamanage, Rangana, Kügelgen, Andriko, Pyle, Euan, Zivanov, Jasenko, Kimanius, Dari, Bharat, Tanmay A. M., Scheres, Sjors H. W.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.11.2024
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electron tomography of frozen, hydrated samples allows structure determination of macromolecular complexes that are embedded in complex environments. Provided that the target complexes may be localised in noisy, three‐dimensional tomographic reconstructions, averaging images of multiple instances of these molecules can lead to structures with sufficient resolution for de novo atomic modelling. Although many research groups have contributed image processing tools for these tasks, a lack of standardisation and interoperability represents a barrier for newcomers to the field. Here, we present an image processing pipeline for electron tomography data in RELION‐5, with functionality ranging from the import of unprocessed movies to the automated building of atomic models in the final maps. Our explicit definition of metadata items that describe the steps of our pipeline has been designed for interoperability with other software tools and provides a framework for further standardisation. We present an image processing pipeline for electron cryo‐tomography data in RELION‐5 with functionality ranging from unprocessed movie import to the automated building of atomic models in final maps. The metadata describing the pipeline steps is aimed at standardisation and interoperability with other software, while the performance improvements and visual tools lead to short processing times and ease of use.
AbstractList Electron tomography of frozen, hydrated samples allows structure determination of macromolecular complexes that are embedded in complex environments. Provided that the target complexes may be localised in noisy, three‐dimensional tomographic reconstructions, averaging images of multiple instances of these molecules can lead to structures with sufficient resolution for de novo atomic modelling. Although many research groups have contributed image processing tools for these tasks, a lack of standardisation and interoperability represents a barrier for newcomers to the field. Here, we present an image processing pipeline for electron tomography data in RELION‐5, with functionality ranging from the import of unprocessed movies to the automated building of atomic models in the final maps. Our explicit definition of metadata items that describe the steps of our pipeline has been designed for interoperability with other software tools and provides a framework for further standardisation.
Electron tomography of frozen, hydrated samples allows structure determination of macromolecular complexes that are embedded in complex environments. Provided that the target complexes may be localised in noisy, three‐dimensional tomographic reconstructions, averaging images of multiple instances of these molecules can lead to structures with sufficient resolution for de novo atomic modelling. Although many research groups have contributed image processing tools for these tasks, a lack of standardisation and interoperability represents a barrier for newcomers to the field. Here, we present an image processing pipeline for electron tomography data in RELION‐5, with functionality ranging from the import of unprocessed movies to the automated building of atomic models in the final maps. Our explicit definition of metadata items that describe the steps of our pipeline has been designed for interoperability with other software tools and provides a framework for further standardisation.
Electron tomography of frozen, hydrated samples allows structure determination of macromolecular complexes that are embedded in complex environments. Provided that the target complexes may be localised in noisy, three‐dimensional tomographic reconstructions, averaging images of multiple instances of these molecules can lead to structures with sufficient resolution for de novo atomic modelling. Although many research groups have contributed image processing tools for these tasks, a lack of standardisation and interoperability represents a barrier for newcomers to the field. Here, we present an image processing pipeline for electron tomography data in RELION‐5, with functionality ranging from the import of unprocessed movies to the automated building of atomic models in the final maps. Our explicit definition of metadata items that describe the steps of our pipeline has been designed for interoperability with other software tools and provides a framework for further standardisation. We present an image processing pipeline for electron cryo‐tomography data in RELION‐5 with functionality ranging from unprocessed movie import to the automated building of atomic models in final maps. The metadata describing the pipeline steps is aimed at standardisation and interoperability with other software, while the performance improvements and visual tools lead to short processing times and ease of use.
Electron tomography of frozen, hydrated samples allows structure determination of macromolecular complexes that are embedded in complex environments. Provided that the target complexes may be localised in noisy, three-dimensional tomographic reconstructions, averaging images of multiple instances of these molecules can lead to structures with sufficient resolution for de novo atomic modelling. Although many research groups have contributed image processing tools for these tasks, a lack of standardisation and interoperability represents a barrier for newcomers to the field. Here, we present an image processing pipeline for electron tomography data in RELION-5, with functionality ranging from the import of unprocessed movies to the automated building of atomic models in the final maps. Our explicit definition of metadata items that describe the steps of our pipeline has been designed for interoperability with other software tools and provides a framework for further standardisation.Electron tomography of frozen, hydrated samples allows structure determination of macromolecular complexes that are embedded in complex environments. Provided that the target complexes may be localised in noisy, three-dimensional tomographic reconstructions, averaging images of multiple instances of these molecules can lead to structures with sufficient resolution for de novo atomic modelling. Although many research groups have contributed image processing tools for these tasks, a lack of standardisation and interoperability represents a barrier for newcomers to the field. Here, we present an image processing pipeline for electron tomography data in RELION-5, with functionality ranging from the import of unprocessed movies to the automated building of atomic models in the final maps. Our explicit definition of metadata items that describe the steps of our pipeline has been designed for interoperability with other software tools and provides a framework for further standardisation.
Electron tomography of frozen, hydrated samples allows structure determination of macromolecular complexes that are embedded in complex environments. Provided that the target complexes may be localised in noisy, three‐dimensional tomographic reconstructions, averaging images of multiple instances of these molecules can lead to structures with sufficient resolution for de novo atomic modelling. Although many research groups have contributed image processing tools for these tasks, a lack of standardisation and interoperability represents a barrier for newcomers to the field. Here, we present an image processing pipeline for electron tomography data in RELION‐5, with functionality ranging from the import of unprocessed movies to the automated building of atomic models in the final maps. Our explicit definition of metadata items that describe the steps of our pipeline has been designed for interoperability with other software tools and provides a framework for further standardisation. We present an image processing pipeline for electron cryo‐tomography data in RELION‐5 with functionality ranging from unprocessed movie import to the automated building of atomic models in final maps. The metadata describing the pipeline steps is aimed at standardisation and interoperability with other software, while the performance improvements and visual tools lead to short processing times and ease of use.
Author Toader, Bogdan
Kimanius, Dari
Zivanov, Jasenko
Warshamanage, Rangana
Scheres, Sjors H. W.
Pyle, Euan
Burt, Alister
Kügelgen, Andriko
Bharat, Tanmay A. M.
AuthorAffiliation 6 The Francis Crick Institute London UK
5 Institute of Structural and Molecular Biology, Birkbeck College London UK
3 CCP‐EM, Scientific Computing Department UKRI Science and Technology Facilities Council, Harwell Campus Didcot UK
7 Present address: European Molecular Biology Laboratory Heidelberg Germany
1 MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Cambridge UK
2 Department of Structural Biology Genentech South San Francisco CA USA
8 Present address: CZ Imaging Institute Redwood City CA USA
4 Department of Psychiatry University of Pittsburgh Pittsburgh PA USA
AuthorAffiliation_xml – name: 2 Department of Structural Biology Genentech South San Francisco CA USA
– name: 5 Institute of Structural and Molecular Biology, Birkbeck College London UK
– name: 4 Department of Psychiatry University of Pittsburgh Pittsburgh PA USA
– name: 7 Present address: European Molecular Biology Laboratory Heidelberg Germany
– name: 3 CCP‐EM, Scientific Computing Department UKRI Science and Technology Facilities Council, Harwell Campus Didcot UK
– name: 6 The Francis Crick Institute London UK
– name: 1 MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus Cambridge UK
– name: 8 Present address: CZ Imaging Institute Redwood City CA USA
Author_xml – sequence: 1
  givenname: Alister
  orcidid: 0000-0002-9341-2295
  surname: Burt
  fullname: Burt, Alister
  organization: Genentech
– sequence: 2
  givenname: Bogdan
  orcidid: 0000-0001-5444-2179
  surname: Toader
  fullname: Toader, Bogdan
  organization: MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus
– sequence: 3
  givenname: Rangana
  orcidid: 0000-0001-9756-0001
  surname: Warshamanage
  fullname: Warshamanage, Rangana
  organization: University of Pittsburgh
– sequence: 4
  givenname: Andriko
  orcidid: 0000-0002-0017-2414
  surname: Kügelgen
  fullname: Kügelgen, Andriko
  organization: MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus
– sequence: 5
  givenname: Euan
  orcidid: 0000-0002-4633-4917
  surname: Pyle
  fullname: Pyle, Euan
  organization: The Francis Crick Institute
– sequence: 6
  givenname: Jasenko
  orcidid: 0000-0001-8407-0759
  surname: Zivanov
  fullname: Zivanov, Jasenko
  organization: MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus
– sequence: 7
  givenname: Dari
  orcidid: 0000-0002-2662-6373
  surname: Kimanius
  fullname: Kimanius, Dari
  organization: MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus
– sequence: 8
  givenname: Tanmay A. M.
  orcidid: 0000-0002-0168-0277
  surname: Bharat
  fullname: Bharat, Tanmay A. M.
  organization: MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus
– sequence: 9
  givenname: Sjors H. W.
  orcidid: 0000-0002-0462-6540
  surname: Scheres
  fullname: Scheres, Sjors H. W.
  email: scheres@mrc-lmb.cam.ac.uk
  organization: MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39147729$$D View this record in MEDLINE/PubMed
BookMark eNqFksFu1DAQhi1UREvpmRuKxIXLth47duITKtUWVlpRCcHZcpxJ6lXWDk4WtLc-Qp-RJ8G7aau2EsIXWzP___mXx6_JgQ8eCXkL9BQoZWeMAcxELvkp8LLgL8jRQ-Xg0fmQnAzDiqYlKUhKX5FDriAvCqaOyOLcZ25tWsz6GCwOg_Nt1rseO-cxa0LMsEM7xuAzG7fhz83tGNahjaa_3mbOZ9_my8XV11QWb8jLxnQDntztx-TH5fz7xZfZ8urz4uJ8ObOSMj5jOVRWNFCbRoGS0NSFKFMHZI6GVdbkIm94BbJGwWtMMqiUqKhQUlLOFD8mi4lbB7PSfUzp41YH4_S-EGKrTRyd7VCLphLpBjS0xlyJsiwKMFDwshHGCsYT6-PE6jfVGmuLfoymewJ92vHuWrfhlwYQKUvJEuHDHSGGnxscRr12g8WuMx7DZtCcKi5UDnvp-2fSVdhEn95Kc2BcioIXRVK9exzpIcv9yJJATAIbwzBEbLR1oxld2CV0nQaqd79D7-avd_PX-9-RfGfPfPfofzvk5PjtOtz-T64v55_yyfgX1tDJqQ
CitedBy_id crossref_primary_10_1038_s41592_024_02384_6
crossref_primary_10_1016_j_molcel_2025_01_018
crossref_primary_10_1038_s41589_025_01858_8
crossref_primary_10_1038_s41594_024_01413_4
crossref_primary_10_1088_1402_4896_ad9a1a
crossref_primary_10_1038_s41467_025_56045_z
crossref_primary_10_1371_journal_ppat_1012773
crossref_primary_10_1126_sciadv_ads5255
crossref_primary_10_1107_S1600576724010264
crossref_primary_10_1038_s41467_025_57955_8
crossref_primary_10_1017_qrd_2024_10
crossref_primary_10_1093_nar_gkae1192
Cites_doi 10.7554/eLife.42166
10.1093/emboj/20.20.5636
10.1101/2023.07.28.550950
10.1016/j.jsb.2016.06.005
10.7554/eLife.97227.1
10.1093/micmic/ozad067.470
10.3389/fmolb.2021.663121
10.1016/0022-5193(72)90180-4
10.1016/j.jsb.2015.04.016
10.1021/ci00002a020
10.1371/journal.pbio.3002447
10.1016/j.jsb.2005.07.007
10.1002/jemt.1060090405
10.1093/bioinformatics/btq692
10.1016/j.jsb.2024.108067
10.1038/s41592-020-01054-7
10.1126/science.adh1411
10.1109/ISBI.2019.8759519
10.1038/s41592-023-01878-z
10.1016/j.ultramic.2023.113860
10.1371/journal.pbio.3001319
10.1016/j.jsb.2012.09.006
10.1038/s41592-023-02045-0
10.1016/j.jsb.2011.05.011
10.1016/j.jsb.2023.108015
10.1016/j.jsb.2016.07.011
10.1016/j.str.2012.10.016
10.1101/2024.01.17.576008
10.7554/eLife.83724
10.1038/nmeth.4193
10.1038/s41592-019-0396-9
10.1107/S1399004714018070
10.1016/j.jsb.2005.06.001
10.1016/j.jsb.2021.107808
10.1016/j.jsb.2023.107990
10.1016/j.jsb.2022.107872
10.1016/j.jsb.2014.09.010
10.1038/s41592-021-01275-4
10.1016/j.str.2021.12.010
10.1016/j.jsb.2011.12.017
10.3390/ijms241713375
10.1038/s41592-024-02210-z
10.1101/2024.04.09.588664
10.1016/j.jsb.2018.02.001
10.1107/S205979832400295X
10.3791/64435
10.1016/bs.mcb.2019.05.001
10.1038/s41586-024-07215-4
10.1126/science.aaf9620
10.1038/s41467-022-33957-8
10.1038/s41592-022-01746-2
10.1016/0022-5193(70)90109-8
10.1039/D2FD00022A
10.1016/S0304-3991(97)00127-7
10.1038/s41467-023-42085-w
10.1038/s41467-023-38539-w
10.1016/j.jsb.2017.07.007
10.1016/j.yjsbx.2022.100068
10.1038/s41592-019-0580-y
10.1107/S2059798323010902
10.1016/j.jsb.2015.08.008
10.3389/fmolb.2020.613347
10.1038/nprot.2016.124
10.1038/s41586-022-05255-2
10.1016/j.jsb.2016.04.010
10.1016/j.cmpb.2022.106990
10.1038/s41592-018-0167-z
10.1038/s41467-020-18952-1
10.1107/S2059798317007859
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
2024 The Author(s). FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
– notice: 2024 The Author(s). FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1002/2211-5463.13873
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE


MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate A tomography pipeline in RELION‐5
EISSN 2211-5463
EndPage 1804
ExternalDocumentID oai_doaj_org_article_5fb561fea0de49588771a1738f5ac523
PMC11532982
1010022211546313873
39147729
10_1002_2211_5463_13873
FEB413873
Genre methodAndProtocol
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  funderid: BB/T002670/1
– fundername: Pittsburgh Foundation
– fundername: H2020 European Research Council
  funderid: 852915
– fundername: Medical Research Council
  funderid: MC_UP_1201/31; MC_UP_1201/6; MC_UP_A025_1013
– fundername: Medical Research Council
  grantid: MC_UP_A025_1013
– fundername: H2020 European Research Council
  grantid: 852915
– fundername: Medical Research Council
  grantid: MC_UP_1201/31
– fundername: Medical Research Council
  grantid: MC_UP_1201/6
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/T002670/1
GroupedDBID ---
--K
0R~
0SF
1OC
24P
4.4
53G
5VS
8FE
8FH
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAHBH
AAHHS
AAIKJ
AALRI
AAXUO
AAZKR
ABMAC
ACCFJ
ACCMX
ACXQS
ADBBV
ADEZE
ADKYN
ADPDF
ADRAZ
ADVLN
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AEXQZ
AFKRA
AGHFR
AITUG
AIWBW
AJBDE
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
AOIJS
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
DIK
EBS
EJD
EMOBN
FDB
GROUPED_DOAJ
HCIFZ
HYE
HZ~
IAO
IGS
IHR
INH
IPNFZ
ITC
IXB
KQ8
LK8
M41
M48
M7P
M~E
NCXOZ
O-L
O9-
OK1
OVD
OVEED
PIMPY
PROAC
R9-
RIG
ROL
RPM
SSZ
TEORI
WIN
XH2
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPKN
AFPUW
AIGII
AKBMS
AKYEP
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c6023-241bc5f1daf91961fd758602164ea2bca454f3b16de53dedaf1b95b0596603293
IEDL.DBID M48
ISSN 2211-5463
IngestDate Wed Aug 27 01:30:42 EDT 2025
Thu Aug 21 18:43:49 EDT 2025
Fri Jul 11 08:47:05 EDT 2025
Wed Aug 13 04:28:07 EDT 2025
Mon Jul 21 06:05:20 EDT 2025
Tue Jul 01 01:14:17 EDT 2025
Thu Apr 24 22:54:54 EDT 2025
Wed Jan 22 17:15:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords image processing
electron microscopy
software
electron tomography
Language English
License Attribution
2024 The Author(s). FEBS Open Bio published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6023-241bc5f1daf91961fd758602164ea2bca454f3b16de53dedaf1b95b0596603293
Notes Edited by Cláudio Soares
Alister Burt and Bogdan Toader contributed equally to this article.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9756-0001
0000-0001-8407-0759
0000-0002-4633-4917
0000-0002-2662-6373
0000-0002-0017-2414
0000-0002-0168-0277
0000-0002-9341-2295
0000-0002-0462-6540
0000-0001-5444-2179
OpenAccessLink https://doaj.org/article/5fb561fea0de49588771a1738f5ac523
PMID 39147729
PQID 3123657377
PQPubID 4368360
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_5fb561fea0de49588771a1738f5ac523
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11532982
proquest_miscellaneous_3093594182
proquest_journals_3123657377
pubmed_primary_39147729
crossref_citationtrail_10_1002_2211_5463_13873
crossref_primary_10_1002_2211_5463_13873
wiley_primary_10_1002_2211_5463_13873_FEB413873
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Amsterdam
– name: Hoboken
PublicationTitle FEBS open bio
PublicationTitleAlternate FEBS Open Bio
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2015; 71
2023; 381
2024; 80
2018; 202
2024; 628
2019; 16
2017; 197
2020; 11
2024
2017; 199
2022; 610
2022; 214
2023; 20
2017; 73
2018; 7
2020; 7
2023; 24
2022; 240
2012; 178
2023; 29
2023; 215
2016; 353
2022; 30
2011; 27
2019; 152
1970; 29
2012; 20
2016; 195
2021; 8
2023; 14
2005; 151
2005; 152
1991; 31
2012; 180
2011; 175
2016; 11
2015; 192
2015; 190
2023
1988; 9
2017; 14
2022
2024; 216
2022; 6
2021; 213
2021; 18
2021; 19
2022; 12
2022; 13
2018
2024; 255
1998; 72
2022; 11
1972; 36
2014; 188
2018; 15
1996; 116
2022; 224
e_1_2_11_70_1
e_1_2_11_72_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
Sazzed S (e_1_2_11_61_1) 2022; 12
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – volume: 29
  start-page: 471
  year: 1970
  end-page: 481
  article-title: Algebraic reconstruction techniques (ART) for three‐dimensional electron microscopy and x‐ray photography
  publication-title: J Theor Biol
– volume: 71
  start-page: 123
  year: 2015
  end-page: 126
  article-title: Collaborative computational project for electron cryo‐microscopy
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 13
  start-page: 6482
  year: 2022
  article-title: Isotropic reconstruction for electron tomography with deep learning
  publication-title: Nat Commun
– volume: 175
  start-page: 288
  year: 2011
  end-page: 299
  article-title: Clustering and variance maps for cryo‐electron tomography using wedge‐masked differences
  publication-title: J Struct Biol
– volume: 12
  year: 2022
  article-title: Spaghetti tracer: a framework for tracing semiregular filamentous densities in 3D tomograms
  publication-title: Biomol Ther
– volume: 610
  start-page: 205
  year: 2022
  end-page: 211
  article-title: Visualizing translation dynamics at atomic detail inside a bacterial cell
  publication-title: Nature
– volume: 178
  start-page: 139
  year: 2012
  end-page: 151
  article-title: Dynamo: a flexible, user‐friendly development tool for subtomogram averaging of cryo‐EM data in high‐performance computing environments
  publication-title: J Struct Biol
– volume: 116
  start-page: 71
  year: 1996
  end-page: 76
  article-title: Computer visualization of three‐dimensional image data using IMOD
  publication-title: J Struct Biol
– volume: 19
  year: 2021
  article-title: A flexible framework for multi‐particle refinement in cryo‐electron tomography
  publication-title: PLoS Biol
– volume: 192
  start-page: 216
  year: 2015
  end-page: 221
  article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs
  publication-title: J Struct Biol
– volume: 20
  start-page: 2003
  year: 2012
  end-page: 2013
  article-title: Protein secondary structure determination by constrained single‐particle cryo‐electron tomography
  publication-title: Structure
– year: 2024
– volume: 16
  start-page: 1146
  year: 2019
  end-page: 1152
  article-title: Real‐time cryo‐electron microscopy data preprocessing with Warp
  publication-title: Nat Methods
– volume: 72
  start-page: 53
  year: 1998
  end-page: 65
  article-title: 3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs)
  publication-title: Ultramicroscopy
– volume: 20
  start-page: 284
  year: 2023
  end-page: 294
  article-title: Convolutional networks for supervised mining of molecular patterns within cellular context
  publication-title: Nat Methods
– volume: 30
  start-page: 408
  year: 2022
  end-page: 417.e4
  article-title: Compressed sensing for electron cryotomography and high‐resolution subtomogram averaging of biological specimens
  publication-title: Structure
– year: 2022
  article-title: Deep learning‐based segmentation of Cryo‐electron tomograms
  publication-title: J Vis Exp
– year: 2018
– volume: 215
  year: 2023
  article-title: PickYOLO: fast deep learning particle detector for annotation of cryo electron tomograms
  publication-title: J Struct Biol
– volume: 11
  start-page: 2054
  year: 2016
  end-page: 2065
  article-title: Resolving macromolecular structures from electron cryo‐tomography data using subtomogram averaging in RELION
  publication-title: Nat Protoc
– volume: 9
  start-page: 359
  year: 1988
  end-page: 394
  article-title: Three‐dimensional reconstruction of single particles from random and nonrandom tilt series
  publication-title: J Electron Microsc Tech
– volume: 73
  start-page: 469
  year: 2017
  end-page: 477
  article-title: Recent developments in the CCP‐EM software suite
  publication-title: Acta Crystallogr D Struct Biol
– volume: 11
  start-page: 5208
  year: 2020
  article-title: Topaz‐denoise: general deep denoising models for cryoEM and cryoET
  publication-title: Nat Commun
– volume: 31
  start-page: 326
  year: 1991
  end-page: 333
  article-title: The STAR file: a new format for electronic data transfer and archiving
  publication-title: J Chem Inf Comput Sci
– volume: 20
  start-page: 1909
  year: 2023
  end-page: 1919
  article-title: nextPYP: a comprehensive and scalable platform for characterizing protein variability in situ using single‐particle cryo‐electron tomography
  publication-title: Nat Methods
– volume: 255
  year: 2024
  article-title: Self‐supervised noise modeling and sparsity guided electron tomography volumetric image denoising
  publication-title: Ultramicroscopy
– volume: 190
  start-page: 279
  year: 2015
  end-page: 290
  article-title: Single particle tomography in EMAN2
  publication-title: J Struct Biol
– volume: 152
  start-page: 36
  year: 2005
  end-page: 51
  article-title: Automated electron microscope tomography using robust prediction of specimen movements
  publication-title: J Struct Biol
– volume: 180
  start-page: 519
  year: 2012
  end-page: 530
  article-title: RELION: implementation of a Bayesian approach to cryo‐EM structure determination
  publication-title: J Struct Biol
– volume: 216
  start-page: 108067
  year: 2024
  article-title: ColabSeg: an interactive tool for editing, processing, and visualizing membrane segmentations from cryo-ET data
  publication-title: J Struct Biol
– volume: 16
  start-page: 471
  year: 2019
  end-page: 477
  article-title: Software tools for automated transmission electron microscopy
  publication-title: Nat Methods
– volume: 151
  start-page: 196
  year: 2005
  end-page: 207
  article-title: Common conventions for interchange and archiving of three‐dimensional electron microscopy information in structural biology
  publication-title: J Struct Biol
– volume: 29
  start-page: 943
  year: 2023
  end-page: 944
  article-title: Workflow for high‐resolution sub‐volume averaging from heterogenous viral and virus‐like assemblies
  publication-title: Microsc Microanal
– volume: 36
  start-page: 105
  year: 1972
  end-page: 117
  article-title: Iterative methods for the three‐dimensional reconstruction of an object from projections
  publication-title: J Theor Biol
– volume: 14
  start-page: 331
  year: 2017
  end-page: 332
  article-title: MotionCor2: anisotropic correction of beam‐induced motion for improved cryo‐electron microscopy
  publication-title: Nat Methods
– volume: 80
  start-page: 93
  year: 2024
  end-page: 100
  article-title: A web‐based dashboard for RELION metadata visualization
  publication-title: Acta Cryst D
– volume: 14
  start-page: 2937
  year: 2023
  article-title: A method for restoring signals and revealing individual macromolecule states in cryo‐ET, REST
  publication-title: Nat Commun
– volume: 11
  year: 2022
  article-title: A Bayesian approach to single‐particle electron cryo‐tomography in RELION‐4.0
  publication-title: eLife
– start-page: 1
  year: 2024
  end-page: 2
  article-title: Learning structural heterogeneity from cryo-electron sub-tomograms with tomoDRGN
  publication-title: Nat Methods
– volume: 15
  start-page: 955
  year: 2018
  end-page: 961
  article-title: emClarity: software for high‐resolution cryo‐electron tomography and subtomogram averaging
  publication-title: Nat Methods
– volume: 7
  year: 2020
  article-title: One‐shot learning with attention‐guided segmentation in Cryo‐electron tomography
  publication-title: Front Mol Biosci
– volume: 202
  start-page: 200
  year: 2018
  end-page: 209
  article-title: Cryo‐tomography tilt‐series alignment with consideration of the beam‐induced sample motion
  publication-title: J Struct Biol
– volume: 7
  year: 2018
  article-title: New tools for automated high‐resolution cryo‐EM structure determination in RELION‐3
  publication-title: eLife
– volume: 213
  start-page: 107808
  year: 2021
  article-title: Computational toolbox for ultrastructural quantitative analysis of filament networks in cryo-ET data
  publication-title: J Struct Biol
– volume: 20
  start-page: 871
  year: 2023
  end-page: 880
  article-title: TomoTwin: generalized 3D localization of macromolecules in cryo‐electron tomograms with structural data mining
  publication-title: Nat Methods
– volume: 24
  year: 2023
  article-title: Extensive angular sampling enables the sensitive localization of macromolecules in electron tomograms
  publication-title: Int J Mol Sci
– volume: 18
  start-page: 186
  year: 2021
  end-page: 193
  article-title: Multi‐particle cryo‐EM refinement with M visualizes ribosome‐antibiotic complex at 3.5 Å in cells
  publication-title: Nat Methods
– volume: 381
  start-page: 70
  year: 2023
  end-page: 75
  article-title: Translation dynamics in human cells visualized at high resolution reveal cancer drug action
  publication-title: Science
– volume: 18
  start-page: 1386
  year: 2021
  end-page: 1394
  article-title: Deep learning improves macromolecule identification in 3D cellular cryo‐electron tomograms
  publication-title: Nat Methods
– volume: 224
  year: 2022
  article-title: MemBrain: a deep learning‐aided pipeline for detection of membrane proteins in Cryo‐electron tomograms
  publication-title: Comput Methods Prog Biomed
– volume: 6
  year: 2022
  article-title: AreTomo: an integrated software package for automated marker‐free, motion‐corrected cryo‐electron tomographic alignment and reconstruction
  publication-title: J Struct Biol X
– volume: 197
  start-page: 135
  year: 2017
  end-page: 144
  article-title: Dynamo catalogue: geometrical tools and data management for particle picking in subtomogram averaging of cryo‐electron tomograms
  publication-title: J Struct Biol
– volume: 199
  start-page: 187
  year: 2017
  end-page: 195
  article-title: Efficient 3D‐CTF correction for cryo‐electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4 Å
  publication-title: J Struct Biol
– volume: 80
  year: 2024
  article-title: STOPGAP: an open-source package for template matching, subtomogram alignment and classification
  publication-title: Acta Cryst, Sect D: Struct Biol
– volume: 8
  year: 2021
  article-title: HEMNMA‐3D: Cryo electron tomography method based on Normal mode analysis to study continuous conformational variability of macromolecular complexes
  publication-title: Front Mol Biosci
– volume: 188
  start-page: 107
  year: 2014
  end-page: 115
  article-title: Super‐sampling SART with ordered subsets
  publication-title: J Struct Biol
– volume: 197
  start-page: 102
  year: 2017
  end-page: 113
  article-title: Automated tilt series alignment and tomographic reconstruction in IMOD
  publication-title: J Struct Biol
– start-page: 2024-02
  year: 2024
  article-title: CTFFIND5 provides improved insight into quality, tilt and thickness of TEM samples
  publication-title: bioRxiv
– volume: 240
  start-page: 101
  year: 2022
  end-page: 113
  article-title: Strategies for picking membrane‐associated particles within subtomogram averaging workflows
  publication-title: Faraday Discuss
– start-page: 2023-12
  year: 2024
  article-title: blik: an extensible napari plugin for cryo-ET data visualisation, annotation and analysis
  publication-title: bioRxiv
– volume: 215
  year: 2023
  article-title: Focused classifications and refinements in high‐resolution single particle cryo‐EM analysis
  publication-title: J Struct Biol
– volume: 195
  start-page: 93
  year: 2016
  end-page: 99
  article-title: Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy
  publication-title: J Struct Biol
– year: 2023
– volume: 214
  year: 2022
  article-title: ScipionTomo: towards cryo‐electron tomography software integration, reproducibility, and validation
  publication-title: J Struct Biol
– volume: 353
  start-page: 506
  year: 2016
  end-page: 508
  article-title: An atomic model of HIV‐1 capsid‐SP1 reveals structures regulating assembly and maturation
  publication-title: Science
– volume: 152
  start-page: 277
  year: 2019
  end-page: 289
  article-title: Content‐aware image restoration for electron microscopy
  publication-title: Methods Cell Biol
– volume: 27
  start-page: 582
  year: 2011
  end-page: 583
  article-title: Fast tomographic reconstruction on multicore computers
  publication-title: Bioinformatics
– volume: 628
  start-page: 450
  year: 2024
  end-page: 457
  article-title: Automated model building and protein identification in cryo‐EM maps
  publication-title: Nature
– volume: 14
  start-page: 6543
  year: 2023
  article-title: Streamlined structure determination by cryo‐electron tomography and subtomogram averaging using TomoBEAR
  publication-title: Nat Commun
– ident: e_1_2_11_43_1
  doi: 10.7554/eLife.42166
– ident: e_1_2_11_7_1
  doi: 10.1093/emboj/20.20.5636
– ident: e_1_2_11_48_1
  doi: 10.1101/2023.07.28.550950
– ident: e_1_2_11_49_1
  doi: 10.1016/j.jsb.2016.06.005
– ident: e_1_2_11_40_1
  doi: 10.7554/eLife.97227.1
– ident: e_1_2_11_70_1
  doi: 10.1093/micmic/ozad067.470
– ident: e_1_2_11_68_1
  doi: 10.3389/fmolb.2021.663121
– ident: e_1_2_11_11_1
  doi: 10.1016/0022-5193(72)90180-4
– ident: e_1_2_11_29_1
  doi: 10.1016/j.jsb.2015.04.016
– ident: e_1_2_11_39_1
  doi: 10.1021/ci00002a020
– ident: e_1_2_11_46_1
  doi: 10.1371/journal.pbio.3002447
– ident: e_1_2_11_5_1
  doi: 10.1016/j.jsb.2005.07.007
– ident: e_1_2_11_10_1
  doi: 10.1002/jemt.1060090405
– ident: e_1_2_11_12_1
  doi: 10.1093/bioinformatics/btq692
– ident: e_1_2_11_60_1
  doi: 10.1016/j.jsb.2024.108067
– ident: e_1_2_11_2_1
  doi: 10.1038/s41592-020-01054-7
– ident: e_1_2_11_3_1
  doi: 10.1126/science.adh1411
– ident: e_1_2_11_47_1
  doi: 10.1109/ISBI.2019.8759519
– ident: e_1_2_11_64_1
  doi: 10.1038/s41592-023-01878-z
– ident: e_1_2_11_56_1
  doi: 10.1016/j.ultramic.2023.113860
– ident: e_1_2_11_55_1
  doi: 10.1371/journal.pbio.3001319
– ident: e_1_2_11_72_1
  doi: 10.1016/j.jsb.2012.09.006
– ident: e_1_2_11_20_1
  doi: 10.1038/s41592-023-02045-0
– ident: e_1_2_11_28_1
  doi: 10.1016/j.jsb.2011.05.011
– ident: e_1_2_11_69_1
  doi: 10.1016/j.jsb.2023.108015
– ident: e_1_2_11_8_1
  doi: 10.1016/j.jsb.2016.07.011
– ident: e_1_2_11_21_1
  doi: 10.1016/j.str.2012.10.016
– ident: e_1_2_11_52_1
  doi: 10.1101/2024.01.17.576008
– ident: e_1_2_11_19_1
  doi: 10.7554/eLife.83724
– ident: e_1_2_11_42_1
  doi: 10.1038/nmeth.4193
– ident: e_1_2_11_6_1
  doi: 10.1038/s41592-019-0396-9
– ident: e_1_2_11_37_1
  doi: 10.1107/S1399004714018070
– ident: e_1_2_11_50_1
  doi: 10.1016/j.jsb.2005.06.001
– ident: e_1_2_11_62_1
  doi: 10.1016/j.jsb.2021.107808
– ident: e_1_2_11_65_1
  doi: 10.1016/j.jsb.2023.107990
– ident: e_1_2_11_34_1
  doi: 10.1016/j.jsb.2022.107872
– ident: e_1_2_11_16_1
  doi: 10.1016/j.jsb.2014.09.010
– ident: e_1_2_11_27_1
  doi: 10.1038/s41592-021-01275-4
– ident: e_1_2_11_17_1
  doi: 10.1016/j.str.2021.12.010
– ident: e_1_2_11_30_1
  doi: 10.1016/j.jsb.2011.12.017
– ident: e_1_2_11_66_1
  doi: 10.3390/ijms241713375
– ident: e_1_2_11_67_1
  doi: 10.1038/s41592-024-02210-z
– ident: e_1_2_11_51_1
  doi: 10.1101/2024.04.09.588664
– ident: e_1_2_11_13_1
  doi: 10.1016/j.jsb.2018.02.001
– ident: e_1_2_11_31_1
  doi: 10.1107/S205979832400295X
– volume: 12
  year: 2022
  ident: e_1_2_11_61_1
  article-title: Spaghetti tracer: a framework for tracing semiregular filamentous densities in 3D tomograms
  publication-title: Biomol Ther
– ident: e_1_2_11_57_1
  doi: 10.3791/64435
– ident: e_1_2_11_23_1
  doi: 10.1016/bs.mcb.2019.05.001
– ident: e_1_2_11_35_1
  doi: 10.1038/s41586-024-07215-4
– ident: e_1_2_11_53_1
  doi: 10.1126/science.aaf9620
– ident: e_1_2_11_22_1
  doi: 10.1038/s41467-022-33957-8
– ident: e_1_2_11_26_1
  doi: 10.1038/s41592-022-01746-2
– ident: e_1_2_11_14_1
  doi: 10.1016/0022-5193(70)90109-8
– ident: e_1_2_11_63_1
  doi: 10.1039/D2FD00022A
– ident: e_1_2_11_15_1
  doi: 10.1016/S0304-3991(97)00127-7
– ident: e_1_2_11_32_1
  doi: 10.1038/s41467-023-42085-w
– ident: e_1_2_11_25_1
  doi: 10.1038/s41467-023-38539-w
– ident: e_1_2_11_54_1
  doi: 10.1016/j.jsb.2017.07.007
– ident: e_1_2_11_9_1
  doi: 10.1016/j.yjsbx.2022.100068
– ident: e_1_2_11_41_1
  doi: 10.1038/s41592-019-0580-y
– ident: e_1_2_11_44_1
  doi: 10.1107/S2059798323010902
– ident: e_1_2_11_36_1
  doi: 10.1016/j.jsb.2015.08.008
– ident: e_1_2_11_45_1
– ident: e_1_2_11_58_1
  doi: 10.3389/fmolb.2020.613347
– ident: e_1_2_11_71_1
  doi: 10.1038/nprot.2016.124
– ident: e_1_2_11_4_1
  doi: 10.1038/s41586-022-05255-2
– ident: e_1_2_11_33_1
  doi: 10.1016/j.jsb.2016.04.010
– ident: e_1_2_11_59_1
  doi: 10.1016/j.cmpb.2022.106990
– ident: e_1_2_11_18_1
  doi: 10.1038/s41592-018-0167-z
– ident: e_1_2_11_24_1
  doi: 10.1038/s41467-020-18952-1
– ident: e_1_2_11_38_1
  doi: 10.1107/S2059798317007859
SSID ssj0000601600
Score 2.4473622
Snippet Electron tomography of frozen, hydrated samples allows structure determination of macromolecular complexes that are embedded in complex environments. Provided...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1788
SubjectTerms Automation
Bioinformatics
Cryoelectron Microscopy - methods
Electron Microscope Tomography - methods
Electron microscopes
Electron Microscopy
electron tomography
Image processing
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Metadata
Method
Microscopy
Models, Molecular
Open source software
Software
Structural Biology
Tomography
User interface
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NaxsxEB1CIJBLaT7abuMEBXLoZePdlbQfRyfYOKHNITTgm5C0EjU0uya1D771J_Q39pd0JK2NTRJy6W1ZaRfxNKM3g6Q3ABeacal4UcfWlHnMSpvESHo2ZpQpxZAQlL8k9u0uHz-w2wmfbJT6cmfCgjxwAK7PrUKKt0YmtcFgHn2iSGVa0NJyqTGLcqsvct5GMhXWYKeclqy0fJKsn2GmEzvt98uUlgXdoiGv1v9SiPn8pORmBOspaPQe3nWxIxmEMR_AjmkOYS9Uk1wewc2gIdNHXB_ILJz-R1Yis-nM3Tg3BINTsqp5Q_TTsv37-8-8fewUq8m0IffDr7iw4mt-DA-j4ffrcdxVSoh1jqQbIw0rzW1aS1uhS6W2xjQAWzAXMjJTWjLOLFVpXhtOa4PdUlVx5Urv5AlFxv8Au03bmE9AqFaWl1opm1GWybrSBXppjcjlUluTR3C5Ak7oTkbcVbP4KYIAciYc0sIhLTzSEXxZfzALChqvd71yM7Hu5qSv_Qs0CNEZhHjLICLoreZRdP74S1AnMsMLWhQRnK-b0ZPc9ohsTLvAPm5PuGKYcEXwMUz7eiS0SpnLQyIotwxia6jbLc30h1frxpAbEXY_7XvbeQsEMRpeMf_0-X_AcQL7GcZh4fpkD3bnTwtzinHUXJ15l_kHyQsWZw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwEB5BKyQuiDeBgozEgYu7SWzncUJdtKuCoEIVlXqzbMcuK9EkbLeH3vgJ_EZ-CWPHCax43SJ7Ejljz8v2fAPwwnChtCgb6mxVUF65lKLRc5QzrjVHg6BDktj7o-LwhL89Fadxw-0iXqscdWJQ1E1n_B75jHmYEFGysnzVf6G-apQ_XY0lNK7DLqrgCoOv3fni6MPxtMsS0EbSdMT0SfNZjhEP9Rjw-xmrSrZljgJq_59czd9vTP7qyQZTtLwNt6IPSQ6GSb8D12x7F24MVSWv7sGbg5aszlFPkH7IAkDrRPpV7zPPLUEnlYy1b4hZX3Xfv37bdOcRuZqsWnK8eIcKFpvFfThZLj6-PqSxYgI1BRpfiuZYG-GyRrkaRStzDYYD2IMxkVW5NooL7pjOisYK1lgky3QttC_BU6QMLf8D2Gm71j4Cwox2ojJau5zxXDW1KVFaG-RcoYyzRQL7I-OkiXDivqrFZzkAIefSc1p6TsvA6QReTi_0A5LG30nnfiYmMg-BHRq69ZmMEiWF0-j7OavSxmKUh8qyzFRWssoJZTC8TmBvnEcZ5fJC_lxFCTyfulGi_DGJam13iTT-bLjmGHgl8HCY9mkkrM64j0cSqLYWxNZQt3va1aeA2o2uN3LYf3QW1s7_mCCXizkPT4___SdP4GaOntaQILkHO5v1pX2KntJGP4vi8ANz_Q-E
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61VEi9VH1AG0orI_XAJewmtvM4QrUrWrWoqkDiZtmOTVcqyWpZDtz4CfxGfklnnEe7FFT1FsWTKBp7Zr6xM98AfLBCaiPzKvauyGJR-HGMQc_HggtjBAYEE4rEvh5lhyfi86ns_yakWpiWH2LYcCPLCP6aDFybi9Fv0tAUU5eYyNz3El7k_DE8oQJbos9PxbdhmyXQjYRClEG-J_gZp6M771iJTYHC_z7c-ffvk3_C2hCXps_hWQco2X67Al7AI1e_hPW2xeTVK_i0X7PZOToNNm9LAjBUsflsTmXojiFiZX0jHGYXV83t9c2yOe9orNmsZt8nX9Db4m25ASfTyfHHw7hrnxDbDCNxjLHZWOmTSvsS7SzxFeYGOIIJktOpsVpI4blJsspJXjkUS0wpDfXjycYcYcAmrNVN7d4A49Z4WVhjfMpFqqvS5mi6FWou09a7LIK9XnHKdtzi1OLip2pZkVNFmlakaRU0HcHu8MC8pdV4WPSAZmIQIz7scKNZnKnOvJT0BoGgd3pcOUz50HPmiU5yXnipLebaEWz386g6I71QnJhnZM7zPIKdYRjNi85MdO2aS5Shg-JSYBYWwet22ocv4WUiKDmJoFhZECufujpSz34ECm_E4ahheukorJ1_KUFNJwciXG399xNv4WmKSKwtoNyGteXi0r1DJLU074Ot_AJg-BFy
  priority: 102
  providerName: Wiley-Blackwell
Title An image processing pipeline for electron cryo‐tomography in RELION‐5
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2211-5463.13873
https://www.ncbi.nlm.nih.gov/pubmed/39147729
https://www.proquest.com/docview/3123657377
https://www.proquest.com/docview/3093594182
https://pubmed.ncbi.nlm.nih.gov/PMC11532982
https://doaj.org/article/5fb561fea0de49588771a1738f5ac523
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6ahEIvpe86TRcVeuhFm7Ul-XEoJVu8hNKEELqQm5BkKV1I7O1mA91_35H8aJektDdjjY34pNF8I1vfALw3XCgtsoo6m6eU525CMeg5yhnXmmNA0OGQ2MlpejznXy7Exe9yQB2AN_emdr6e1Hx1Nf75Y_MJHf5jJyB6mGASQ72s-zhmecZ2YA_DUua99KTj-u2y7MXU_J7LYN9L_dx9x1aUCmL-9zHQuz9S_klwQ4SaPYHHHbUkR-1ceAoPbP0MHrbFJjfPoTyqyeIalw-ybA8HYNAiy8XSH0i3BLkr6UviELPaNHTdXHdy1mRRk_Pyq191xQuYz8pvn49pV0SBmhTjMUUotBEurpQr0NtiV2GGgC2YJlmVaKO44I7pOK2sYJVFs1gXQvuqPOmEIRl4Cbt1U9vXQJjRTuRGa5cwnqiqMBk6cIWopco4m0Yw7kGTplMY94UurmSrjZxIj7L0KMuAcgQfhgeWrbjG302nfhQGM6-KHW40q0vZOZkUTiMddFZNKouJH66fWazijOVOKIMZdwQH_RjKfqZJ5vVnRMayLIJ3QzM6mf9yomrb3KKN_1xccMzFInjVDvnQE1bE3KcoEeRbk2Grq9st9eJ7EPJGNo4I-5cehnnzLxDkrJzycLX_H119A48SZGDtwckD2F2vbu1bZFBrPYKdhJ-NYG9anp6dj8I-xCh4yy8d7BQg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5VWyG4IP4bKGAkkLikm8R2kj0g1IVd7dLtClWt1JuxHRtWoknYboX2xiPwJDwUT8I4f7Di79RbZDuRMx7PfBNnvgF4qhmXiieZb00a-yy1gY9Oz_qMMqUYOgRVJYkdzuPJCXtzyk-34FubC-N-q2xtYmWos0K7b-R96mhCeEKT5GX5yXdVo9zpaltCo1aLA7P-jCHb-Yvpa1zfZ1E0Hh2_mvhNVQFfx-igfHRZSnMbZtIOUP1CmyFkxh6MG4yMlJaMM0tVGGeG08zgsFANuHJlauKARo58CU3-NqMYyvRgeziavz3qvupU7CZB0HIIBVE_wgjLd5zzeyFNE7rh_qoqAX-Ctr__ofkrcq5c3_gGXG8wK9mvlewmbJn8Flypq1iub8N0PyeLM7RLpKyzDtAbknJRukx3QxAUk7bWDtHLdfH9y9dVcdYwZZNFTo5GMzTo2MzvwMmlyPIu9PIiNztAqFaWp1opG1EWyWygE7QOGUoultqa2IO9VnBCN_TlrorGR1ETL0fCSVo4SYtK0h48724oa-aOvw8dupXohjnK7aqhWL4XzQ4W3CrEmtbIIDMYVaJxTkIZJjS1XGoM5z3YbddRNHbgXPzUWg-edN24g92xjMxNcYFj3Fn0gGGg58G9etm7mdBByFz840G6oRAbU93syRcfKpZwhPooYffQfqU7_xOCGI-GrLq6_-83eQxXJ8eHMzGbzg8ewLUIUV6dnLkLvdXywjxElLZSj5qtQeDdZe_GH3k0S4k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4IN4NFDASSFzSTWI7jwNCXbqrLi2rqqJSb8Z2bFiJJmG7FdobP4Hfw8_hlzDOC1a8Tr1FsTfKjufxTez5BuCpZlwqnuS-NWnss9QGPgY96zPKlGIYEFRdJPZmFu-fsNen_HQDvnW1MO5YZecTa0edl9p9Ix9SRxPCE5okQ9seizjam7ysPvmug5Tbae3aaTQqcmBWnzF9O38x3cO1fhZFk_HbV_t-22HA1zEGKx_Dl9Lchrm0GapiaHOEzziCOYSRkdKScWapCuPccJobnBaqjCvXsiYOaOSImND9byaYFQUD2ByNZ0fH_ReemukkCDo-oSAaRpht-Y5_fiekaULXQmHdMeBPMPf305q_oug6DE5uwPUWv5LdRuFuwoYpbsGVpqPl6jZMdwsyP0MfRaqmAgEjI6nmlat6NwQBMun67hC9WJXfv3xdlmctazaZF-R4fIjOHW_zO3ByKbK8C4OiLMwWEKqV5alWykaURTLPdIKeIkfJxVJbE3uw0wlO6JbK3HXU-CgaEuZIOEkLJ2lRS9qD5_0PqobF4-9TR24l-mmOfru-US7ei9aaBbcKcac1MsgNZpjoqJNQhglNLZcaU3sPtrt1FK1POBc_NdiDJ_0wWrPbopGFKS9wjtuXzhgmfR7ca5a9fxOahczlQh6kawqx9qrrI8X8Q80YjrAfJeweOqx1539CEJPxiNVX9__9Tx7DVbRCcTidHTyAaxECvqZOcxsGy8WFeYiAbaketZZB4N1lG-MPFrJPvg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+image+processing+pipeline+for+electron+cryo-tomography+in+RELION-5&rft.jtitle=FEBS+open+bio&rft.au=Burt%2C+Alister&rft.au=Toader%2C+Bogdan&rft.au=Warshamanage%2C+Rangana&rft.au=von+K%C3%BCgelgen%2C+Andriko&rft.date=2024-11-01&rft.issn=2211-5463&rft.eissn=2211-5463&rft.volume=14&rft.issue=11&rft.spage=1788&rft_id=info:doi/10.1002%2F2211-5463.13873&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-5463&client=summon