Analysis of longitudinal data with irregular, outcome-dependent follow-up

A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self-selected points in time. As a result, observed outcome data may be highly unbalanced and the availability of the data may be directly related to the outcome measure and/or some auxiliary fact...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Statistical Society. Series B, Statistical methodology Vol. 66; no. 3; pp. 791 - 813
Main Authors Lin, Haiqun, Scharfstein, Daniel O., Rosenheck, Robert A.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing 01.08.2004
Blackwell Publishers
Blackwell
Royal Statistical Society
Oxford University Press
SeriesJournal of the Royal Statistical Society Series B
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self-selected points in time. As a result, observed outcome data may be highly unbalanced and the availability of the data may be directly related to the outcome measure and/or some auxiliary factors that are associated with the outcome. If the follow-up visit and outcome processes are correlated, then marginal regression analyses will produce biased estimates. Building on the work of Robins, Rotnitzky and Zhao, we propose a class of inverse intensity-of-visit process-weighted estimators in marginal regression models for longitudinal responses that may be observed in continuous time. This allows us to handle arbitrary patterns of missing data as embedded in a subject's visit process. We derive the large sample distribution for our inverse visit-intensity-weighted estimators and investigate their finite sample behaviour by simulation. Our approach is illustrated with a data set from a health services research study in which homeless people with mental illness were randomized to three different treatments and measures of homelessness (as percentage days homeless in the past 3 months) and other auxiliary factors were recorded at follow-up times that are not fixed by design.
AbstractList A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self-selected points in time. As a result, observed outcome data may be highly unbalanced and the availability of the data may be directly related to the outcome measure and/or some auxiliary factors that are associated with the outcome. If the follow-up visit and outcome processes are correlated, then marginal regression analyses will produce biased estimates. Building on the work of Robins, Rotnitzky and Zhao, we propose a class of inverse intensity-of-visit process-weighted estimators in marginal regression models for longitudinal responses that may be observed in continuous time. This allows us to handle arbitrary patterns of missing data as embedded in a subject's visit process. We derive the large sample distribution for our inverse visit-intensity-weighted estimators and investigate their finite sample behaviour by simulation. Our approach is illustrated with a data set from a health services research study in which homeless people with mental illness were randomized to three different treatments and measures of homelessness (as percentage days homeless in the past 3 months) and other auxiliary factors were recorded at follow-up times that are not fixed by design.
A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self-selected points in time. As a result, observed outcome data may be highly unbalanced and the availability of the data may be directly related to the outcome measure and/or some auxiliary factors that are associated with the outcome. If the follow-up visit and outcome processes are correlated, then marginal regression analyses will produce biased estimates. Building on the work of Robins, Rotnitzky and Zhao, we propose a class of inverse intensity-of-visit process-weighted estimators in marginal regression models for longitudinal responses that may be observed in continuous time. This allows us to handle arbitrary patterns of missing data as embedded in a subject's visit process. We derive the large sample distribution for our inverse visit-intensity-weighted estimators and investigate their finite sample behaviour by simulation. Our approach is illustrated with a data set from a health services research study in which homeless people with mental illness were randomized to three different treatments and measures of homelessness (as percentage days homeless in the past 3 months) and other auxiliary factors were recorded at follow-up times that are not fixed by design. [PUBLICATION ABSTRACT]
A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self-selected points in time. As a result, observed outcome data may be highly unbalanced and the availability of the data may be directly related to the outcome measure and/or some auxiliary factors that are associated with the outcome. If the follow-up visit and outcome processes are correlated, then marginal regression analyses will produce biased estimates. Building on the work of Robins, Rotnitzky and Zhao, we propose a class of inverse intensity-of-visit process-weighted estimators in marginal regression models for longitudinal responses that may be observed in continuous time. This allows us to handle arbitrary patterns of missing data as embedded in a subject's visit process. We derive the large sample distribution for our inverse visit-intensity-weighted estimators and investigate their finite sample behaviour by simulation. Our approach is illustrated with a data set from a health services research study in which homeless people with mental illness were randomized to three different treatments and measures of homelessness (as percentage days homeless in the past 3 months) and other auxiliary factors were recorded at follow-up times that are not fixed by design. Reprinted by permission of Blackwell Publishers
A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self-selected points in time. As a result, observed outcome data may be highly unbalanced and the availability of the data may be directly related to the outcome measure and/or some auxiliary factors that are associated with the outcome. If the follow-up visit and outcome processes are correlated, then marginal regression analyses will produce biased estimates. Building on the work of Robins, Rotnitzky and Zhao, we propose a class of inverse intensity-of-visit process-weighted estimators in marginal regression models for longitudinal responses that may be observed in continuous time. This allows us to handle arbitrary patterns of missing data as embedded in a subject's visit process. We derive the large sample distribution for our inverse visit-intensity-weighted estimators and investigate their finite sample behaviour by simulation. Our approach is illustrated with a data set from a health services research study in which homeless people with mental illness were randomized to three different treatments and measures of homelessness (as percentage days homeless in the past 3 months) and other auxiliary factors were recorded at follow-up times that are not fixed by design. Copyright 2004 Royal Statistical Society.
Author Rosenheck, Robert A.
Lin, Haiqun
Scharfstein, Daniel O.
Author_xml – sequence: 1
  givenname: Haiqun
  surname: Lin
  fullname: Lin, Haiqun
– sequence: 2
  givenname: Daniel O.
  surname: Scharfstein
  fullname: Scharfstein, Daniel O.
– sequence: 3
  givenname: Robert A.
  surname: Rosenheck
  fullname: Rosenheck, Robert A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15950807$$DView record in Pascal Francis
http://econpapers.repec.org/article/blajorssb/v_3a66_3ay_3a2004_3ai_3a3_3ap_3a791-813.htm$$DView record in RePEc
BookMark eNqNUU1v1DAQjVCRaAv_gEOEBCcSnNix4wNIbUU_0KpAW2klLpbj2K2DNw62w-7--zpNtUi9UEvjsTzvvdHMO0j2etvLJEkLkBfxfOryAmGS0RrXeQkAypuqQjDfvEj2d4W9-IaYZgQV5avkwPsOxIMJ3E8ujnputl771KrU2P5Wh7HV8S9teeDpWoe7VDsnb0fD3cfUjkHYlcxaOci-lX1IlTXGrrNxeJ28VNx4-eYxHyY3p19vTs6zxfezi5OjRSYwKMuspQBBVQJCOQJ1UYsGC4IkFiXGSDUQV5IURKqmQRFa8rbChSo5p2XTVkLBw-TDLDs4-2eUPrCV9kIaw3tpR88goQjVFEfguyfAzo4uTuZZ3BPFoKbgP6A6rohMoG8zyMWpBRucXnG3ZY3hnXXeN-wvgxzjeG1jTCbEpGPAGEMMQgtWF5DdhVUUe__YkXvBjXK8F9rvRIuKVqAGJOLqGSec9d5J9Q8C2OQ869hkMJsMZg9NH5xnm0j98oQqdOBB2z44rs1zBD7PAmtt5PbZjdnV9fUxImXkv535nQ_W7fgQI1KByZlsLmsf5GZX5u43mxZeseXlGfuxWF4tL3-es1_wHmMM4eI
CitedBy_id crossref_primary_10_1027_1614_2241_a000005
crossref_primary_10_1016_j_artmed_2023_102750
crossref_primary_10_1214_21_AOAS1570
crossref_primary_10_1111_j_1467_9868_2007_00660_x
crossref_primary_10_1198_jasa_2009_ap08527
crossref_primary_10_1080_03610926_2012_738841
crossref_primary_10_1002_sim_7805
crossref_primary_10_1093_biostatistics_kxy013
crossref_primary_10_2139_ssrn_498882
crossref_primary_10_1007_s12603_012_0047_7
crossref_primary_10_1002_sim_7641
crossref_primary_10_1186_s12874_024_02160_2
crossref_primary_10_1016_j_artmed_2018_10_002
crossref_primary_10_1515_em_2018_0016
crossref_primary_10_1093_epirev_mxac010
crossref_primary_10_1177_0962280220986193
crossref_primary_10_1007_s10255_016_0624_3
crossref_primary_10_1007_s10985_014_9310_z
crossref_primary_10_1111_rssc_12405
crossref_primary_10_1111_sjos_12373
crossref_primary_10_1093_biostatistics_kxn022
crossref_primary_10_1007_s10693_005_4356_4
crossref_primary_10_1186_s12874_017_0418_1
crossref_primary_10_1007_s10255_011_0037_2
crossref_primary_10_1214_16_EJS1141
crossref_primary_10_1002_sim_9151
crossref_primary_10_1080_03610920802395686
crossref_primary_10_1111_j_1467_9868_2005_00512_x
crossref_primary_10_1002_sim_3985
crossref_primary_10_1515_ijb_2020_0144
crossref_primary_10_1002_sim_9727
crossref_primary_10_1097_EDE_0000000000001432
crossref_primary_10_1111_biom_12367
crossref_primary_10_1200_CCI_20_00096
crossref_primary_10_1016_j_jspi_2015_08_001
crossref_primary_10_1002_sim_5640
crossref_primary_10_1093_aje_kwp333
crossref_primary_10_1002_sim_8875
crossref_primary_10_1038_s41598_023_41853_4
crossref_primary_10_1093_biomtc_ujae065
crossref_primary_10_1111_j_1541_0420_2006_00726_x
crossref_primary_10_1111_j_1541_0420_2012_01794_x
crossref_primary_10_1093_biomet_asae055
crossref_primary_10_1111_j_1467_9876_2009_00701_x
crossref_primary_10_1111_sjos_12511
crossref_primary_10_1111_j_1541_0420_2008_01076_x
crossref_primary_10_1002_acr_23215
crossref_primary_10_1007_s12561_018_9221_8
crossref_primary_10_1360_SSM_2022_0113
crossref_primary_10_2196_19358
crossref_primary_10_1093_aje_kwp353
crossref_primary_10_1007_s11425_016_0112_6
crossref_primary_10_1002_sim_3071
crossref_primary_10_1038_oby_2012_29
crossref_primary_10_1093_aje_kwab031
crossref_primary_10_1111_sjos_12225
crossref_primary_10_1177_09622802231158733
crossref_primary_10_1007_s12561_012_9061_x
crossref_primary_10_1016_j_csda_2020_107161
crossref_primary_10_1093_aje_kwy292
crossref_primary_10_1377_hlthaff_2023_00730
crossref_primary_10_1093_jamia_ocac050
crossref_primary_10_1093_jrsssc_qlad076
crossref_primary_10_1016_j_ascom_2024_100818
crossref_primary_10_1016_j_spl_2018_02_015
crossref_primary_10_1080_03610926_2013_851237
crossref_primary_10_1198_016214507000000851
crossref_primary_10_1186_s12874_022_01831_2
crossref_primary_10_1002_sim_3882
crossref_primary_10_1002_acr_23199
crossref_primary_10_1002_sim_2964
crossref_primary_10_1007_s42081_024_00276_9
crossref_primary_10_1177_09622802231225527
crossref_primary_10_1097_01_nmd_0000252313_49043_f2
crossref_primary_10_1002_bimj_201200018
crossref_primary_10_1155_2023_8798997
crossref_primary_10_1111_j_1467_9469_2011_00776_x
crossref_primary_10_1080_01621459_2012_682528
crossref_primary_10_1093_jrsssc_qlaf002
crossref_primary_10_1080_03610926_2014_960589
crossref_primary_10_1080_02664763_2016_1155202
crossref_primary_10_1002_sim_3496
crossref_primary_10_1002_cjs_5550350402
crossref_primary_10_1111_j_1541_0420_2008_01104_x
crossref_primary_10_1016_j_jspi_2011_03_013
crossref_primary_10_1177_0962280214536537
crossref_primary_10_1016_j_spl_2008_12_022
crossref_primary_10_1002_sim_4359
crossref_primary_10_1093_biostatistics_kxz047
crossref_primary_10_22237_jmasm_1556670000
crossref_primary_10_1093_biostatistics_kxv008
crossref_primary_10_1002_sim_8155
crossref_primary_10_1002_cjs_11782
crossref_primary_10_1002_sim_4198
crossref_primary_10_1002_sim_7189
crossref_primary_10_1111_biom_12693
crossref_primary_10_1002_sim_3265
crossref_primary_10_1002_cjs_11269
crossref_primary_10_1111_sjos_12314
crossref_primary_10_1002_sim_6829
crossref_primary_10_1177_0962280208092345
crossref_primary_10_1002_sim_7913
crossref_primary_10_1111_biom_13646
crossref_primary_10_1016_j_jclinepi_2007_03_006
crossref_primary_10_1007_s11926_019_0874_1
crossref_primary_10_1371_journal_pone_0201590
crossref_primary_10_1002_sim_7234
crossref_primary_10_1080_02664763_2017_1403574
crossref_primary_10_1186_s12874_020_01023_w
crossref_primary_10_1093_biomtc_ujae154
crossref_primary_10_1002_sim_6262
Cites_doi 10.1002/sim.718
10.1093/biomet/85.3.661
10.1080/01621459.1999.10473862
10.2307/2531905
10.1007/BFb0098489
10.1111/j.0006-341X.1999.00565.x
10.2307/2533322
10.1080/01621459.1995.10476493
10.1007/978-0-387-21700-0
10.1007/978-1-4757-1229-2_14
10.2307/2986113
10.1111/j.0006-341X.2002.00631.x
10.1111/j.0006-341X.2002.00621.x
10.1080/01621459.1995.10476615
10.2307/2532304
10.1002/9781118032985
10.1093/biomet/85.2.487
10.1002/jae.3950050202
10.1007/978-1-4612-4348-9
10.1093/biomet/73.1.13
10.1017/CBO9780511802256
10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X
10.1001/archpsyc.60.9.940
10.1080/01621459.1998.10473795
10.1080/01621459.2000.10474299
10.1007/978-1-4899-3242-6
10.1002/(SICI)1097-0258(19970215)16:3<285::AID-SIM535>3.0.CO;2-#
ContentType Journal Article
Copyright Copyright 2004 The Royal Statistical Society
2004 INIST-CNRS
2004 Royal Statistical Society
Copyright_xml – notice: Copyright 2004 The Royal Statistical Society
– notice: 2004 INIST-CNRS
– notice: 2004 Royal Statistical Society
DBID BSCLL
AAYXX
CITATION
IQODW
DKI
X2L
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
DOI 10.1111/j.1467-9868.2004.b5543.x
DatabaseName Istex
CrossRef
Pascal-Francis
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)

International Bibliography of the Social Sciences (IBSS)
CrossRef

International Bibliography of the Social Sciences (IBSS)

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1467-9868
EndPage 813
ExternalDocumentID 743222831
923773081
blajorssb_v_3a66_3ay_3a2004_3ai_3a3_3ap_3a791_813_htm
15950807
10_1111_j_1467_9868_2004_b5543_x
RSSB472
3647506
ark_67375_WNG_PLWRWNQH_Z
Genre article
Feature
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
10A
1OC
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAONW
AARHZ
AASGY
AAUAY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEHJ
ABEML
ABFAN
ABIVO
ABLJU
ABPFR
ABPQH
ABPTD
ABPVW
ABWST
ABXSQ
ABYAD
ABYWD
ABZEH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFRR
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACTWD
ACUBG
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIPN
ADIYS
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
ADZMN
AEEZP
AEGXH
AEIMD
AELPN
AEMOZ
AEQDE
AEUPB
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFVYC
AFXHP
AFZJQ
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANFBD
ARCSS
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EDO
EJD
EMK
F00
F5P
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
H13
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
NHB
O66
O9-
OIG
OWPYF
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
TUS
UB1
UPT
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YQT
ZGI
ZL0
ZZTAW
~02
~IA
~KM
~WT
AANHP
AAPXW
AAWIL
ABAWQ
ABDFA
ABPQP
ACHJO
ACRPL
ACYXJ
ADNMO
AGLNM
AGQPQ
AHQJS
AIHAF
AJNCP
ALRMG
AMVHM
NU-
AAYXX
CITATION
IQODW
02
08R
0R
31
3N
4S
8RP
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AFXKK
AGJLS
AIHXQ
AS
BFHJK
DKI
EFSUC
GA
HZ
IA
IPNFZ
KM
MEWTI
NF
P4A
PQEST
RIG
WRC
WT
X
X2L
XHC
Y3
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c6022-d9043f2079a40818cb6c74e6c2664fb365e717efbb4d902ad561f2aa92bd5cf3
IEDL.DBID DR2
ISSN 1369-7412
IngestDate Fri Jul 11 05:14:20 EDT 2025
Wed Aug 13 11:15:46 EDT 2025
Wed Aug 13 11:15:57 EDT 2025
Wed Aug 18 03:51:57 EDT 2021
Mon Jul 21 09:18:54 EDT 2025
Thu Apr 24 23:10:45 EDT 2025
Tue Jul 01 03:43:01 EDT 2025
Wed Jan 22 16:19:49 EST 2025
Thu Jul 03 21:13:52 EDT 2025
Wed Oct 30 09:49:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Data analysis
Finite sample
Large sample
Response model
Continuous time
Regression analysis
Statistical method
Missing data
Correlation analysis
Follow up study
Experimental design
Marginal distribution
Observation data
Biased estimation
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6022-d9043f2079a40818cb6c74e6c2664fb365e717efbb4d902ad561f2aa92bd5cf3
Notes ArticleID:RSSB472
ark:/67375/WNG-PLWRWNQH-Z
istex:1CA054F8B962639058C021EBBB0C1571A43046FB
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
OpenAccessLink https://academic.oup.com/jrsssb/article-pdf/66/3/791/49727704/jrsssb_66_3_791.pdf
PQID 200867370
PQPubID 39359
PageCount 23
ParticipantIDs proquest_miscellaneous_37944896
proquest_journals_200960890
proquest_journals_200867370
repec_primary_blajorssb_v_3a66_3ay_3a2004_3ai_3a3_3ap_3a791_813_htm
pascalfrancis_primary_15950807
crossref_primary_10_1111_j_1467_9868_2004_b5543_x
crossref_citationtrail_10_1111_j_1467_9868_2004_b5543_x
wiley_primary_10_1111_j_1467_9868_2004_b5543_x_RSSB472
jstor_primary_3647506
istex_primary_ark_67375_WNG_PLWRWNQH_Z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2004
PublicationDateYYYYMMDD 2004-08-01
PublicationDate_xml – month: 08
  year: 2004
  text: August 2004
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationSeriesTitle Journal of the Royal Statistical Society Series B
PublicationTitle Journal of the Royal Statistical Society. Series B, Statistical methodology
PublicationYear 2004
Publisher Blackwell Publishing
Blackwell Publishers
Blackwell
Royal Statistical Society
Oxford University Press
Publisher_xml – name: Blackwell Publishing
– name: Blackwell Publishers
– name: Blackwell
– name: Royal Statistical Society
– name: Oxford University Press
References McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd edn. London: Chapman and Hall.
Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1995) Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Am. Statist. Ass., 90, 106-121.
Follmann, D. and Wu, M. (1995) An approximate generalized linear model with random effects for informative missing data. Biometrics, 51, 151-168.
Rosenheck, R. A., Kasprow, W., Frismn, L. K. and Liu-Mares, W. (2003) Cost-effectiveness of supported housing for homeless persons with mental illness. Arch. Gen. Psychiatr., 60, 940-951.
Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999) Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion). J. Am. Statist. Ass., 94, 1096-1120.
Albert, P. S., Follmann, D. A., Wang, S. A. and Suh, E. B. (2002) A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics, 58, 631-642.
Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993) Efficient and Adaptive Estimation for Semiparametric Models. Baltimore: Johns Hopkins University Press.
Deltour, I., Richardson, S. and Le Hesran, J. Y. (1999) Stochastic algorithms for Markov model estimation with intermittent missing data. Biometrics, 55, 565-573.
Liang, K.-Y. and Zeger, S. L. (1986) Longitudinal data analysis using generalized linear models. Biometrika, 73, 13-22.
Rotnitzky, A., Robins, J. M. and Scharfstein, D. O. (1998) Semiparametric regression for repeated outcomes with nonignorable nonresponse. J. Am. Statist. Ass., 93, 1321-1329.
Newey, W. K. (1990) Semiparametric efficiency bounds. J. Appl. Econ., 5, 99-135.
Fleming, T. R. and Harrington, D. P. (1991) Counting Processes and Survival Analysis. New York: Wiley.
Lipsitz, S. R., Fitzmaurice, G. M., Ibrahim, J. G., Gelber, R. and Lipshultz, S. (2002) Parameter estimation in longitudinal studies with outcome-dependent follow-up. Biometrics, 58, 621-630.
van der Vaart, A. W. (1998) Asymptotic Statistics. Cambridge: Cambridge University Press.
Huber, P. J. (1985) Projection pursuit. Ann. Statist., 13, 435-475.
Little, R. J. A. (1995) Modelling the drop-out mechanism in repeated-measures studies. J. Am. Statist. Ass., 90, 1112-1121.
Daley, D. J., Vere-Jones, D. and Smirnov, B. M. (2002) An Introduction to the Theory of Point Processes: Elementary Theory and Methods, 2nd edn. New York: Springer.
Hogan, J. W. and Laird, N. M. (1997) Mixture models for the joint distribution of repeated measures and event times. Statist. Med., 16, 239-257.
Wu, M. C. and Carroll, R. J. (1988) Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics, 44, 175-188.
Robins, J. M. and Ritov, Y. (1997) Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models. Statist. Med., 16, 285-319.
Troxel, A. B., Lipsitz, S. R. and Harrington, D. P. (1998) Marginal models for the analysis of longitudinal measurements with nonignorable non-monotone missing data. Biometrika, 85, 661-672.
Lunn, A. D. and Davies, S. J. (1998) A note on generating correlated binary variables. Biometrika, 85, 487-490.
Diggle, P. and Kenward, M. G. (1994) Informative drop-out in longitudinal data analysis (with discussion). Appl. Statist., 43, 49-93.
Robins, J. M., Mark, S. D. and Newey, W. K. (1992) Estimating exposure effects by modeling the expectation of exposure conditional on confounders. Biometrics, 48, 479-495.
van der Laan, M. J. and Robins, J. M. (2003) Unified Approach for Censored Longitudinal Data and Causality. New York: Springer.
Gasser, T. and Müller, H. G. (1979) Kernel estimation of regression functions. Lect. Notes Math., 757, 23-68.
Kalbfleisch, J. D. and Prentice, R. L. (2002) The Statistical Analysis of Failure Time Data, 2nd edn. New York: Wiley.
Preisser, J. S., Galecki, A. T., Lohman, K. K. and Wagenknecht, L. E. (2000) Analysis of smoking trends with incomplete longitudinal binary response. J. Am. Statist. Ass., 95, 1021-1031.
Anderson, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993) Statistical Models based on Counting Processes. New York: Springer.
Fitzmaurice, G. M., Laird, N. M. and Shneyer, L. (2001) An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Statist. Med., 20, 1009-1021.
2002; 58
1995; 51
1986; 73
1995; 90
1998
2000; 95
1993
2003
1992
2002
1991
1998; 85
1994; 43
2001; 20
1979; 757
1988; 44
1999; 55
1997; 16
1992; 48
1998; 93
1999; 94
2003; 60
1985; 13
1989
1990; 5
Laan (2023040304322015200_) 2003
Lipsitz (2023040304322015200_) 2002; 58
Lunn (2023040304322015200_) 1998; 85
Rosenheck (2023040304322015200_) 2003; 60
McCullagh (2023040304322015200_) 1989
Robins (2023040304322015200_) 1997; 16
Scharfstein (2023040304322015200_) 1999; 94
Daley (2023040304322015200_) 2002
Bickel (2023040304322015200_) 1993
Diggle (2023040304322015200_) 1994; 43
Hogan (2023040304322015200_) 1997; 16
Vaart (2023040304322015200_) 1998
Huber (2023040304322015200_) 1985; 13
Troxel (2023040304322015200_) 1998; 85
Deltour (2023040304322015200_) 1999; 55
Anderson (2023040304322015200_) 1993
Fitzmaurice (2023040304322015200_) 2001; 20
Wu (2023040304322015200_) 1988; 44
Robins (2023040304322015200_) 1992
Albert (2023040304322015200_) 2002; 58
Liang (2023040304322015200_) 1986; 73
Fleming (2023040304322015200_) 1991
Little (2023040304322015200_) 1995; 90
Follmann (2023040304322015200_) 1995; 51
Preisser (2023040304322015200_) 2000; 95
Robins (2023040304322015200_) 1992; 48
Newey (2023040304322015200_) 1990; 5
Gasser (2023040304322015200_) 1979; 757
Robins (2023040304322015200_) 1995; 90
Rotnitzky (2023040304322015200_) 1998; 93
Kalbfleisch (2023040304322015200_) 2002
References_xml – reference: Preisser, J. S., Galecki, A. T., Lohman, K. K. and Wagenknecht, L. E. (2000) Analysis of smoking trends with incomplete longitudinal binary response. J. Am. Statist. Ass., 95, 1021-1031.
– reference: Deltour, I., Richardson, S. and Le Hesran, J. Y. (1999) Stochastic algorithms for Markov model estimation with intermittent missing data. Biometrics, 55, 565-573.
– reference: Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1995) Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Am. Statist. Ass., 90, 106-121.
– reference: Troxel, A. B., Lipsitz, S. R. and Harrington, D. P. (1998) Marginal models for the analysis of longitudinal measurements with nonignorable non-monotone missing data. Biometrika, 85, 661-672.
– reference: Robins, J. M. and Ritov, Y. (1997) Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models. Statist. Med., 16, 285-319.
– reference: Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999) Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion). J. Am. Statist. Ass., 94, 1096-1120.
– reference: Anderson, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993) Statistical Models based on Counting Processes. New York: Springer.
– reference: Lipsitz, S. R., Fitzmaurice, G. M., Ibrahim, J. G., Gelber, R. and Lipshultz, S. (2002) Parameter estimation in longitudinal studies with outcome-dependent follow-up. Biometrics, 58, 621-630.
– reference: Daley, D. J., Vere-Jones, D. and Smirnov, B. M. (2002) An Introduction to the Theory of Point Processes: Elementary Theory and Methods, 2nd edn. New York: Springer.
– reference: Newey, W. K. (1990) Semiparametric efficiency bounds. J. Appl. Econ., 5, 99-135.
– reference: Gasser, T. and Müller, H. G. (1979) Kernel estimation of regression functions. Lect. Notes Math., 757, 23-68.
– reference: Huber, P. J. (1985) Projection pursuit. Ann. Statist., 13, 435-475.
– reference: Follmann, D. and Wu, M. (1995) An approximate generalized linear model with random effects for informative missing data. Biometrics, 51, 151-168.
– reference: Lunn, A. D. and Davies, S. J. (1998) A note on generating correlated binary variables. Biometrika, 85, 487-490.
– reference: Wu, M. C. and Carroll, R. J. (1988) Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics, 44, 175-188.
– reference: Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993) Efficient and Adaptive Estimation for Semiparametric Models. Baltimore: Johns Hopkins University Press.
– reference: Kalbfleisch, J. D. and Prentice, R. L. (2002) The Statistical Analysis of Failure Time Data, 2nd edn. New York: Wiley.
– reference: Rotnitzky, A., Robins, J. M. and Scharfstein, D. O. (1998) Semiparametric regression for repeated outcomes with nonignorable nonresponse. J. Am. Statist. Ass., 93, 1321-1329.
– reference: van der Laan, M. J. and Robins, J. M. (2003) Unified Approach for Censored Longitudinal Data and Causality. New York: Springer.
– reference: van der Vaart, A. W. (1998) Asymptotic Statistics. Cambridge: Cambridge University Press.
– reference: Hogan, J. W. and Laird, N. M. (1997) Mixture models for the joint distribution of repeated measures and event times. Statist. Med., 16, 239-257.
– reference: Diggle, P. and Kenward, M. G. (1994) Informative drop-out in longitudinal data analysis (with discussion). Appl. Statist., 43, 49-93.
– reference: Little, R. J. A. (1995) Modelling the drop-out mechanism in repeated-measures studies. J. Am. Statist. Ass., 90, 1112-1121.
– reference: Fleming, T. R. and Harrington, D. P. (1991) Counting Processes and Survival Analysis. New York: Wiley.
– reference: Robins, J. M., Mark, S. D. and Newey, W. K. (1992) Estimating exposure effects by modeling the expectation of exposure conditional on confounders. Biometrics, 48, 479-495.
– reference: Liang, K.-Y. and Zeger, S. L. (1986) Longitudinal data analysis using generalized linear models. Biometrika, 73, 13-22.
– reference: Fitzmaurice, G. M., Laird, N. M. and Shneyer, L. (2001) An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Statist. Med., 20, 1009-1021.
– reference: Rosenheck, R. A., Kasprow, W., Frismn, L. K. and Liu-Mares, W. (2003) Cost-effectiveness of supported housing for homeless persons with mental illness. Arch. Gen. Psychiatr., 60, 940-951.
– reference: McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd edn. London: Chapman and Hall.
– reference: Albert, P. S., Follmann, D. A., Wang, S. A. and Suh, E. B. (2002) A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics, 58, 631-642.
– volume: 5
  start-page: 99
  year: 1990
  end-page: 135
  article-title: Semiparametric efficiency bounds
  publication-title: J. Appl. Econ.
– volume: 20
  start-page: 1009
  year: 2001
  end-page: 1021
  article-title: An alternative parameterization of the general linear mixture model for longitudinal data with non‐ignorable drop‐outs
  publication-title: Statist. Med.
– volume: 85
  start-page: 661
  year: 1998
  end-page: 672
  article-title: Marginal models for the analysis of longitudinal measurements with nonignorable non‐monotone missing data
  publication-title: Biometrika
– volume: 90
  start-page: 106
  year: 1995
  end-page: 121
  article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
  publication-title: J. Am. Statist. Ass.
– volume: 44
  start-page: 175
  year: 1988
  end-page: 188
  article-title: Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
  publication-title: Biometrics
– year: 1989
– volume: 51
  start-page: 151
  year: 1995
  end-page: 168
  article-title: An approximate generalized linear model with random effects for informative missing data
  publication-title: Biometrics
– year: 2003
– volume: 757
  start-page: 23
  year: 1979
  end-page: 68
  article-title: Kernel estimation of regression functions
  publication-title: Lect. Notes Math.
– volume: 16
  start-page: 239
  year: 1997
  end-page: 257
  article-title: Mixture models for the joint distribution of repeated measures and event times
  publication-title: Statist. Med.
– volume: 58
  start-page: 621
  year: 2002
  end-page: 630
  article-title: Parameter estimation in longitudinal studies with outcome‐dependent follow‐up
  publication-title: Biometrics
– year: 1998
– volume: 85
  start-page: 487
  year: 1998
  end-page: 490
  article-title: A note on generating correlated binary variables
  publication-title: Biometrika
– volume: 94
  start-page: 1096
  year: 1999
  end-page: 1120
  article-title: Adjusting for nonignorable drop‐out using semiparametric nonresponse models (with discussion)
  publication-title: J. Am. Statist. Ass.
– volume: 60
  start-page: 940
  year: 2003
  end-page: 951
  article-title: Cost‐effectiveness of supported housing for homeless persons with mental illness
  publication-title: Arch. Gen. Psychiatr.
– volume: 90
  start-page: 1112
  year: 1995
  end-page: 1121
  article-title: Modelling the drop‐out mechanism in repeated‐measures studies
  publication-title: J. Am. Statist. Ass.
– volume: 43
  start-page: 49
  year: 1994
  end-page: 93
  article-title: Informative drop‐out in longitudinal data analysis (with discussion)
  publication-title: Appl. Statist.
– volume: 13
  start-page: 435
  year: 1985
  end-page: 475
  article-title: Projection pursuit
  publication-title: Ann. Statist.
– volume: 48
  start-page: 479
  year: 1992
  end-page: 495
  article-title: Estimating exposure effects by modeling the expectation of exposure conditional on confounders
  publication-title: Biometrics
– year: 2002
– volume: 93
  start-page: 1321
  year: 1998
  end-page: 1329
  article-title: Semiparametric regression for repeated outcomes with nonignorable nonresponse
  publication-title: J. Am. Statist. Ass.
– volume: 16
  start-page: 285
  year: 1997
  end-page: 319
  article-title: Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi‐parametric models
  publication-title: Statist. Med.
– volume: 58
  start-page: 631
  year: 2002
  end-page: 642
  article-title: A latent autoregressive model for longitudinal binary data subject to informative missingness
  publication-title: Biometrics
– year: 1991
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
– volume: 55
  start-page: 565
  year: 1999
  end-page: 573
  article-title: Stochastic algorithms for Markov model estimation with intermittent missing data
  publication-title: Biometrics
– year: 1993
– start-page: 297
  year: 1992
  end-page: 331
– volume: 95
  start-page: 1021
  year: 2000
  end-page: 1031
  article-title: Analysis of smoking trends with incomplete longitudinal binary response
  publication-title: J. Am. Statist. Ass.
– volume: 20
  start-page: 1009
  year: 2001
  ident: 2023040304322015200_
  article-title: An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs
  publication-title: Statist. Med.
  doi: 10.1002/sim.718
– volume: 85
  start-page: 661
  year: 1998
  ident: 2023040304322015200_
  article-title: Marginal models for the analysis of longitudinal measurements with nonignorable non-monotone missing data
  publication-title: Biometrika
  doi: 10.1093/biomet/85.3.661
– volume-title: An Introduction to the Theory of Point Processes: Elementary Theory and Methods
  year: 2002
  ident: 2023040304322015200_
– volume: 94
  start-page: 1096
  year: 1999
  ident: 2023040304322015200_
  article-title: Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion)
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1999.10473862
– volume: 44
  start-page: 175
  year: 1988
  ident: 2023040304322015200_
  article-title: Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
  publication-title: Biometrics
  doi: 10.2307/2531905
– volume: 13
  start-page: 435
  year: 1985
  ident: 2023040304322015200_
  article-title: Projection pursuit
  publication-title: Ann. Statist.
– volume-title: Counting Processes and Survival Analysis
  year: 1991
  ident: 2023040304322015200_
– volume: 757
  start-page: 23
  year: 1979
  ident: 2023040304322015200_
  article-title: Kernel estimation of regression functions
  publication-title: Lect. Notes Math.
  doi: 10.1007/BFb0098489
– volume: 55
  start-page: 565
  year: 1999
  ident: 2023040304322015200_
  article-title: Stochastic algorithms for Markov model estimation with intermittent missing data
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.1999.00565.x
– volume: 51
  start-page: 151
  year: 1995
  ident: 2023040304322015200_
  article-title: An approximate generalized linear model with random effects for informative missing data
  publication-title: Biometrics
  doi: 10.2307/2533322
– volume: 90
  start-page: 106
  year: 1995
  ident: 2023040304322015200_
  article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1995.10476493
– volume-title: Unified Approach for Censored Longitudinal Data and Causality
  year: 2003
  ident: 2023040304322015200_
  doi: 10.1007/978-0-387-21700-0
– start-page: 297
  volume-title: AIDS Epidemiology—Methodological Issues
  year: 1992
  ident: 2023040304322015200_
  doi: 10.1007/978-1-4757-1229-2_14
– volume: 43
  start-page: 49
  year: 1994
  ident: 2023040304322015200_
  article-title: Informative drop-out in longitudinal data analysis (with discussion)
  publication-title: Appl. Statist.
  doi: 10.2307/2986113
– volume: 58
  start-page: 631
  year: 2002
  ident: 2023040304322015200_
  article-title: A latent autoregressive model for longitudinal binary data subject to informative missingness
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00631.x
– volume: 58
  start-page: 621
  year: 2002
  ident: 2023040304322015200_
  article-title: Parameter estimation in longitudinal studies with outcome-dependent follow-up
  publication-title: Biometrics
  doi: 10.1111/j.0006-341X.2002.00621.x
– volume: 90
  start-page: 1112
  year: 1995
  ident: 2023040304322015200_
  article-title: Modelling the drop-out mechanism in repeated-measures studies
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1995.10476615
– volume: 48
  start-page: 479
  year: 1992
  ident: 2023040304322015200_
  article-title: Estimating exposure effects by modeling the expectation of exposure conditional on confounders
  publication-title: Biometrics
  doi: 10.2307/2532304
– volume-title: The Statistical Analysis of Failure Time Data
  year: 2002
  ident: 2023040304322015200_
  doi: 10.1002/9781118032985
– volume: 85
  start-page: 487
  year: 1998
  ident: 2023040304322015200_
  article-title: A note on generating correlated binary variables
  publication-title: Biometrika
  doi: 10.1093/biomet/85.2.487
– volume: 5
  start-page: 99
  year: 1990
  ident: 2023040304322015200_
  article-title: Semiparametric efficiency bounds
  publication-title: J. Appl. Econ.
  doi: 10.1002/jae.3950050202
– volume-title: Efficient and Adaptive Estimation for Semiparametric Models
  year: 1993
  ident: 2023040304322015200_
– volume-title: Statistical Models based on Counting Processes
  year: 1993
  ident: 2023040304322015200_
  doi: 10.1007/978-1-4612-4348-9
– volume: 73
  start-page: 13
  year: 1986
  ident: 2023040304322015200_
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
– volume-title: Asymptotic Statistics
  year: 1998
  ident: 2023040304322015200_
  doi: 10.1017/CBO9780511802256
– volume: 16
  start-page: 239
  year: 1997
  ident: 2023040304322015200_
  article-title: Mixture models for the joint distribution of repeated measures and event times
  publication-title: Statist. Med.
  doi: 10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X
– volume: 60
  start-page: 940
  year: 2003
  ident: 2023040304322015200_
  article-title: Cost-effectiveness of supported housing for homeless persons with mental illness
  publication-title: Arch. Gen. Psychiatr.
  doi: 10.1001/archpsyc.60.9.940
– volume: 93
  start-page: 1321
  year: 1998
  ident: 2023040304322015200_
  article-title: Semiparametric regression for repeated outcomes with nonignorable nonresponse
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.1998.10473795
– volume: 95
  start-page: 1021
  year: 2000
  ident: 2023040304322015200_
  article-title: Analysis of smoking trends with incomplete longitudinal binary response
  publication-title: J. Am. Statist. Ass.
  doi: 10.1080/01621459.2000.10474299
– volume-title: Generalized Linear Models
  year: 1989
  ident: 2023040304322015200_
  doi: 10.1007/978-1-4899-3242-6
– volume: 16
  start-page: 285
  year: 1997
  ident: 2023040304322015200_
  article-title: Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models
  publication-title: Statist. Med.
  doi: 10.1002/(SICI)1097-0258(19970215)16:3<285::AID-SIM535>3.0.CO;2-#
SSID ssj0000673
Score 2.1346314
Snippet A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self-selected points in time. As a result, observed...
A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self‐selected points in time. As a result, observed...
SourceID proquest
repec
pascalfrancis
crossref
wiley
jstor
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 791
SubjectTerms Confidence interval
Consistent estimators
Counting process
Data analysis
Data collection
Distribution theory
Drop-out
Estimation
Estimation bias
Estimators
Evaluation
Exact sciences and technology
Factor analysis
Health service evaluation
Health services
Homeless people
Homelessness
Intermittent missingness
Linear inference, regression
Longitudinal data
Longitudinal studies
Mathematics
Maximum likelihood estimation
Modeling
Multivariate analysis
Non-Gaussian data
Parametric models
Probability and statistics
Probability theory and stochastic processes
Regression analysis
Sample size
Sciences and techniques of general use
Semiparametric estimators
Sequential ignorability
Simulation
Statistical methods
Statistics
Studies
Visit process
Weighted generalized estimating equations
Title Analysis of longitudinal data with irregular, outcome-dependent follow-up
URI https://api.istex.fr/ark:/67375/WNG-PLWRWNQH-Z/fulltext.pdf
https://www.jstor.org/stable/3647506
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-9868.2004.b5543.x
http://econpapers.repec.org/article/blajorssb/v_3a66_3ay_3a2004_3ai_3a3_3ap_3a791-813.htm
https://www.proquest.com/docview/200867370
https://www.proquest.com/docview/200960890
https://www.proquest.com/docview/37944896
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQ7mUvPBcRFkoOiBOp0sSJ4yOsWMpjK-gu6oqLZTsOLC1NlQesOPET-I38EmacB2QBaYU4uIc6rpPJzHjG_TwfIfcThQzbeuJB9qM9ylPqcRUwT0mmAp8HJk1xQ_9wFk_f0Ocn0UmLf8KzME19iH7DDS3D-ms0cKnK342cJ3Fi07yxgpUxHGM8idAtjI_mwa9OOWyOYHEPFtFzoJ4__tBgpdpGoZ91oEVEUMoShJg17BeD8HS7MBujh8GuXa0OrpBl95wNSGU5ris11l_OlYD8P4K4Si63Qa37qNHCa-SSWV8nOxjHNmWgb5DDrviJm2fuKkeSpDpFQi4XIaou7ga7p0Vh3iEq9qGb1xXchfn-9VtH0lu5GWhs_hm-qje75PjgyfH-1GuZHDwd43GBlPs0zAKfcUmxhp5WsWbUxBrCA5opeF0G0kqTKUXh0kCmENVlgZQ8UGmks_Am2Vrna3OLuAlNtG-iKGMJZE6GKa5pIE0k5YSF3OcOYd1LE7qtco5kGysxyHaYQHEhBycVVlzizCGTfuSmqfRxgTEPrF70A2SxRKQci8Ri9lS8ermYL2avp-KtQ3at4vQXYtn-yI8dMhoo0s-ZI6Tn9ZlD9jrNEq13KS11KM7i_60X0tKEQ--9vhecBv4TJNcmr0sRghemCYfp962y9tOqlfyQF2WpxCcRyjiGD7hXaZ85lKfQQmgbaIxPRDIJxfvqo0Niq58XFpuYHx09piy4_a8D98hOg6BCIOYdslUVtbkLwWGlRmD2L56NrPH_AD7YV4s
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQ90Av_BYRCm0OiBNZZRMnjo9QURbYXcF20VZcLNtxSumyWeUHKk48As_IkzDjbAJbQKoQB-cQx3EyGY9nnM_zEfIwUciwrQceRD_aozylHlcB85RkKvB5YNIUF_THk3j4lr48jo7XdEC4F6bJD9EtuOHIsPYaBzguSP8-ynkSJzbO6yuYGsM-OJQ9JPi28dU0-NUsh80mLO7BNHoB1vPHO23MVT0U-3kLW0QMpSxBjFnDf7HhoPYKszJ6092189XhdbJo37SBqZz160r19ZcLSSD_kyhukGtrv9Z90ijiTXLFLG-RbXRlm0zQt8m4zX_i5pm7yJEnqU6Rk8tFlKqLC8LuaVGYEwTGPnbzuoLHMN-_fmt5eis3A6XNP8OperVDZofPZgdDb03m4OkYdwyk3KdhFviMS4pp9LSKNaMm1uAh0EyFcWQgsjSZUhQuDWQKjl0WSMkDlUY6C--QrWW-NHeJm9BE-yaKMpZA8GSY4poG0kRSDljIfe4Q1n41odeJzpFvYyE2Ah4mUFxIw0mFFZc4d8iga7lqkn1cos0jqxhdA1mcIViORWI-eS5ej-bT-eTNULxzyI7VnO5CzNwf-bFD9jY06WfPETL0-swhu61qibWBKS17KPbi_60WItOEQ-1-Vwt2A38GyaXJ61KEYIhpwqH7A6utXbdqIT_kRVkq8UmEMo7hAM8q7TuH8hRKCGUFhfGBSAaheF99dEhsFfTSYhPTo6OnlAX3_rXhPrk6nI1HYvRi8mqXbDeAKsRl3idbVVGbB-ArVmrP2oAff_harQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQV0K98FtEKLQ5IE5klY2dOD5Cy7JAuyrboq24WLbjQNlls8oPVJx4BJ6RJ2Em2QS2gFQhDs4hjuNkMh7POJ_nI-RhrJFh2ww8iH6Mx0TCPKED7mnFdeCLwCYJLugfjqPRG_byNDxd4Z9wL0yTH6JbcMORUdtrHODLJP19kIs4iuswr69hZqR98Cd7LPJj1PD9SfCrVabNHizhwSx6AdXzxzutTVU9lPp5i1pECKUqQIppQ3-x5p_2cru0Zt3braer4XUya1-0QanM-lWp--bLhRyQ_0cSN8i1lVfrPmnU8Ca5Yhe3yCY6sk0e6NvksM1-4mapO8-QJalKkJHLRYyqi8vB7lme23cIi33sZlUJT2G_f_3WsvSWbgoqm32GU9Vyi5wMn53sjbwVlYNnItwvkAif0TTwuVAMk-gZHRnObGTAP2CpplFoIa60qdYMLg1UAm5dGiglAp2EJqV3yMYiW9i7xI1ZbHwbhimPIXSyXAvDAmVDpQacCl84hLcfTZpVmnNk25jLtXCHSxQXknAyWYtLnjtk0LVcNqk-LtHmUa0XXQOVzxAqx0M5HT-XRwfTyXT8eiTfOmSrVpzuQszbH_qRQ3bWFOlnzyHy8_rcIdutZsmVeSlq7lDsxf9brcARALW7XS1YDfwVpBY2qwpJwQyzWED3e7Wydt3qufqQ5UWh5SdJVRTBAZ5V1e9M1RkUCmUJhYuBjAdUvi8_OiSq9fPSYpOT4-OnjAf3_rXhLrl6tD-UBy_Gr7bJZoOmQlDmfbJR5pV9AI5iqXdqC_ADPitZZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+longitudinal+data+with+irregular%2C+outcome%E2%80%90dependent+follow%E2%80%90up&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Lin%2C+Haiqun&rft.au=Scharfstein%2C+Daniel+O.&rft.au=Rosenheck%2C+Robert+A.&rft.date=2004-08-01&rft.pub=Blackwell+Publishing&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=66&rft.issue=3&rft.spage=791&rft.epage=813&rft_id=info:doi/10.1111%2Fj.1467-9868.2004.b5543.x&rft.externalDBID=10.1111%252Fj.1467-9868.2004.b5543.x&rft.externalDocID=RSSB472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon