Analysis of longitudinal data with irregular, outcome-dependent follow-up
A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self-selected points in time. As a result, observed outcome data may be highly unbalanced and the availability of the data may be directly related to the outcome measure and/or some auxiliary fact...
Saved in:
Published in | Journal of the Royal Statistical Society. Series B, Statistical methodology Vol. 66; no. 3; pp. 791 - 813 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing
01.08.2004
Blackwell Publishers Blackwell Royal Statistical Society Oxford University Press |
Series | Journal of the Royal Statistical Society Series B |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self-selected points in time. As a result, observed outcome data may be highly unbalanced and the availability of the data may be directly related to the outcome measure and/or some auxiliary factors that are associated with the outcome. If the follow-up visit and outcome processes are correlated, then marginal regression analyses will produce biased estimates. Building on the work of Robins, Rotnitzky and Zhao, we propose a class of inverse intensity-of-visit process-weighted estimators in marginal regression models for longitudinal responses that may be observed in continuous time. This allows us to handle arbitrary patterns of missing data as embedded in a subject's visit process. We derive the large sample distribution for our inverse visit-intensity-weighted estimators and investigate their finite sample behaviour by simulation. Our approach is illustrated with a data set from a health services research study in which homeless people with mental illness were randomized to three different treatments and measures of homelessness (as percentage days homeless in the past 3 months) and other auxiliary factors were recorded at follow-up times that are not fixed by design. |
---|---|
AbstractList | A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self-selected points in time. As a result, observed outcome data may be highly unbalanced and the availability of the data may be directly related to the outcome measure and/or some auxiliary factors that are associated with the outcome. If the follow-up visit and outcome processes are correlated, then marginal regression analyses will produce biased estimates. Building on the work of Robins, Rotnitzky and Zhao, we propose a class of inverse intensity-of-visit process-weighted estimators in marginal regression models for longitudinal responses that may be observed in continuous time. This allows us to handle arbitrary patterns of missing data as embedded in a subject's visit process. We derive the large sample distribution for our inverse visit-intensity-weighted estimators and investigate their finite sample behaviour by simulation. Our approach is illustrated with a data set from a health services research study in which homeless people with mental illness were randomized to three different treatments and measures of homelessness (as percentage days homeless in the past 3 months) and other auxiliary factors were recorded at follow-up times that are not fixed by design. A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self-selected points in time. As a result, observed outcome data may be highly unbalanced and the availability of the data may be directly related to the outcome measure and/or some auxiliary factors that are associated with the outcome. If the follow-up visit and outcome processes are correlated, then marginal regression analyses will produce biased estimates. Building on the work of Robins, Rotnitzky and Zhao, we propose a class of inverse intensity-of-visit process-weighted estimators in marginal regression models for longitudinal responses that may be observed in continuous time. This allows us to handle arbitrary patterns of missing data as embedded in a subject's visit process. We derive the large sample distribution for our inverse visit-intensity-weighted estimators and investigate their finite sample behaviour by simulation. Our approach is illustrated with a data set from a health services research study in which homeless people with mental illness were randomized to three different treatments and measures of homelessness (as percentage days homeless in the past 3 months) and other auxiliary factors were recorded at follow-up times that are not fixed by design. [PUBLICATION ABSTRACT] A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self-selected points in time. As a result, observed outcome data may be highly unbalanced and the availability of the data may be directly related to the outcome measure and/or some auxiliary factors that are associated with the outcome. If the follow-up visit and outcome processes are correlated, then marginal regression analyses will produce biased estimates. Building on the work of Robins, Rotnitzky and Zhao, we propose a class of inverse intensity-of-visit process-weighted estimators in marginal regression models for longitudinal responses that may be observed in continuous time. This allows us to handle arbitrary patterns of missing data as embedded in a subject's visit process. We derive the large sample distribution for our inverse visit-intensity-weighted estimators and investigate their finite sample behaviour by simulation. Our approach is illustrated with a data set from a health services research study in which homeless people with mental illness were randomized to three different treatments and measures of homelessness (as percentage days homeless in the past 3 months) and other auxiliary factors were recorded at follow-up times that are not fixed by design. Reprinted by permission of Blackwell Publishers A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self-selected points in time. As a result, observed outcome data may be highly unbalanced and the availability of the data may be directly related to the outcome measure and/or some auxiliary factors that are associated with the outcome. If the follow-up visit and outcome processes are correlated, then marginal regression analyses will produce biased estimates. Building on the work of Robins, Rotnitzky and Zhao, we propose a class of inverse intensity-of-visit process-weighted estimators in marginal regression models for longitudinal responses that may be observed in continuous time. This allows us to handle arbitrary patterns of missing data as embedded in a subject's visit process. We derive the large sample distribution for our inverse visit-intensity-weighted estimators and investigate their finite sample behaviour by simulation. Our approach is illustrated with a data set from a health services research study in which homeless people with mental illness were randomized to three different treatments and measures of homelessness (as percentage days homeless in the past 3 months) and other auxiliary factors were recorded at follow-up times that are not fixed by design. Copyright 2004 Royal Statistical Society. |
Author | Rosenheck, Robert A. Lin, Haiqun Scharfstein, Daniel O. |
Author_xml | – sequence: 1 givenname: Haiqun surname: Lin fullname: Lin, Haiqun – sequence: 2 givenname: Daniel O. surname: Scharfstein fullname: Scharfstein, Daniel O. – sequence: 3 givenname: Robert A. surname: Rosenheck fullname: Rosenheck, Robert A. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15950807$$DView record in Pascal Francis http://econpapers.repec.org/article/blajorssb/v_3a66_3ay_3a2004_3ai_3a3_3ap_3a791-813.htm$$DView record in RePEc |
BookMark | eNqNUU1v1DAQjVCRaAv_gEOEBCcSnNix4wNIbUU_0KpAW2klLpbj2K2DNw62w-7--zpNtUi9UEvjsTzvvdHMO0j2etvLJEkLkBfxfOryAmGS0RrXeQkAypuqQjDfvEj2d4W9-IaYZgQV5avkwPsOxIMJ3E8ujnputl771KrU2P5Wh7HV8S9teeDpWoe7VDsnb0fD3cfUjkHYlcxaOci-lX1IlTXGrrNxeJ28VNx4-eYxHyY3p19vTs6zxfezi5OjRSYwKMuspQBBVQJCOQJ1UYsGC4IkFiXGSDUQV5IURKqmQRFa8rbChSo5p2XTVkLBw-TDLDs4-2eUPrCV9kIaw3tpR88goQjVFEfguyfAzo4uTuZZ3BPFoKbgP6A6rohMoG8zyMWpBRucXnG3ZY3hnXXeN-wvgxzjeG1jTCbEpGPAGEMMQgtWF5DdhVUUe__YkXvBjXK8F9rvRIuKVqAGJOLqGSec9d5J9Q8C2OQ869hkMJsMZg9NH5xnm0j98oQqdOBB2z44rs1zBD7PAmtt5PbZjdnV9fUxImXkv535nQ_W7fgQI1KByZlsLmsf5GZX5u43mxZeseXlGfuxWF4tL3-es1_wHmMM4eI |
CitedBy_id | crossref_primary_10_1027_1614_2241_a000005 crossref_primary_10_1016_j_artmed_2023_102750 crossref_primary_10_1214_21_AOAS1570 crossref_primary_10_1111_j_1467_9868_2007_00660_x crossref_primary_10_1198_jasa_2009_ap08527 crossref_primary_10_1080_03610926_2012_738841 crossref_primary_10_1002_sim_7805 crossref_primary_10_1093_biostatistics_kxy013 crossref_primary_10_2139_ssrn_498882 crossref_primary_10_1007_s12603_012_0047_7 crossref_primary_10_1002_sim_7641 crossref_primary_10_1186_s12874_024_02160_2 crossref_primary_10_1016_j_artmed_2018_10_002 crossref_primary_10_1515_em_2018_0016 crossref_primary_10_1093_epirev_mxac010 crossref_primary_10_1177_0962280220986193 crossref_primary_10_1007_s10255_016_0624_3 crossref_primary_10_1007_s10985_014_9310_z crossref_primary_10_1111_rssc_12405 crossref_primary_10_1111_sjos_12373 crossref_primary_10_1093_biostatistics_kxn022 crossref_primary_10_1007_s10693_005_4356_4 crossref_primary_10_1186_s12874_017_0418_1 crossref_primary_10_1007_s10255_011_0037_2 crossref_primary_10_1214_16_EJS1141 crossref_primary_10_1002_sim_9151 crossref_primary_10_1080_03610920802395686 crossref_primary_10_1111_j_1467_9868_2005_00512_x crossref_primary_10_1002_sim_3985 crossref_primary_10_1515_ijb_2020_0144 crossref_primary_10_1002_sim_9727 crossref_primary_10_1097_EDE_0000000000001432 crossref_primary_10_1111_biom_12367 crossref_primary_10_1200_CCI_20_00096 crossref_primary_10_1016_j_jspi_2015_08_001 crossref_primary_10_1002_sim_5640 crossref_primary_10_1093_aje_kwp333 crossref_primary_10_1002_sim_8875 crossref_primary_10_1038_s41598_023_41853_4 crossref_primary_10_1093_biomtc_ujae065 crossref_primary_10_1111_j_1541_0420_2006_00726_x crossref_primary_10_1111_j_1541_0420_2012_01794_x crossref_primary_10_1093_biomet_asae055 crossref_primary_10_1111_j_1467_9876_2009_00701_x crossref_primary_10_1111_sjos_12511 crossref_primary_10_1111_j_1541_0420_2008_01076_x crossref_primary_10_1002_acr_23215 crossref_primary_10_1007_s12561_018_9221_8 crossref_primary_10_1360_SSM_2022_0113 crossref_primary_10_2196_19358 crossref_primary_10_1093_aje_kwp353 crossref_primary_10_1007_s11425_016_0112_6 crossref_primary_10_1002_sim_3071 crossref_primary_10_1038_oby_2012_29 crossref_primary_10_1093_aje_kwab031 crossref_primary_10_1111_sjos_12225 crossref_primary_10_1177_09622802231158733 crossref_primary_10_1007_s12561_012_9061_x crossref_primary_10_1016_j_csda_2020_107161 crossref_primary_10_1093_aje_kwy292 crossref_primary_10_1377_hlthaff_2023_00730 crossref_primary_10_1093_jamia_ocac050 crossref_primary_10_1093_jrsssc_qlad076 crossref_primary_10_1016_j_ascom_2024_100818 crossref_primary_10_1016_j_spl_2018_02_015 crossref_primary_10_1080_03610926_2013_851237 crossref_primary_10_1198_016214507000000851 crossref_primary_10_1186_s12874_022_01831_2 crossref_primary_10_1002_sim_3882 crossref_primary_10_1002_acr_23199 crossref_primary_10_1002_sim_2964 crossref_primary_10_1007_s42081_024_00276_9 crossref_primary_10_1177_09622802231225527 crossref_primary_10_1097_01_nmd_0000252313_49043_f2 crossref_primary_10_1002_bimj_201200018 crossref_primary_10_1155_2023_8798997 crossref_primary_10_1111_j_1467_9469_2011_00776_x crossref_primary_10_1080_01621459_2012_682528 crossref_primary_10_1093_jrsssc_qlaf002 crossref_primary_10_1080_03610926_2014_960589 crossref_primary_10_1080_02664763_2016_1155202 crossref_primary_10_1002_sim_3496 crossref_primary_10_1002_cjs_5550350402 crossref_primary_10_1111_j_1541_0420_2008_01104_x crossref_primary_10_1016_j_jspi_2011_03_013 crossref_primary_10_1177_0962280214536537 crossref_primary_10_1016_j_spl_2008_12_022 crossref_primary_10_1002_sim_4359 crossref_primary_10_1093_biostatistics_kxz047 crossref_primary_10_22237_jmasm_1556670000 crossref_primary_10_1093_biostatistics_kxv008 crossref_primary_10_1002_sim_8155 crossref_primary_10_1002_cjs_11782 crossref_primary_10_1002_sim_4198 crossref_primary_10_1002_sim_7189 crossref_primary_10_1111_biom_12693 crossref_primary_10_1002_sim_3265 crossref_primary_10_1002_cjs_11269 crossref_primary_10_1111_sjos_12314 crossref_primary_10_1002_sim_6829 crossref_primary_10_1177_0962280208092345 crossref_primary_10_1002_sim_7913 crossref_primary_10_1111_biom_13646 crossref_primary_10_1016_j_jclinepi_2007_03_006 crossref_primary_10_1007_s11926_019_0874_1 crossref_primary_10_1371_journal_pone_0201590 crossref_primary_10_1002_sim_7234 crossref_primary_10_1080_02664763_2017_1403574 crossref_primary_10_1186_s12874_020_01023_w crossref_primary_10_1093_biomtc_ujae154 crossref_primary_10_1002_sim_6262 |
Cites_doi | 10.1002/sim.718 10.1093/biomet/85.3.661 10.1080/01621459.1999.10473862 10.2307/2531905 10.1007/BFb0098489 10.1111/j.0006-341X.1999.00565.x 10.2307/2533322 10.1080/01621459.1995.10476493 10.1007/978-0-387-21700-0 10.1007/978-1-4757-1229-2_14 10.2307/2986113 10.1111/j.0006-341X.2002.00631.x 10.1111/j.0006-341X.2002.00621.x 10.1080/01621459.1995.10476615 10.2307/2532304 10.1002/9781118032985 10.1093/biomet/85.2.487 10.1002/jae.3950050202 10.1007/978-1-4612-4348-9 10.1093/biomet/73.1.13 10.1017/CBO9780511802256 10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X 10.1001/archpsyc.60.9.940 10.1080/01621459.1998.10473795 10.1080/01621459.2000.10474299 10.1007/978-1-4899-3242-6 10.1002/(SICI)1097-0258(19970215)16:3<285::AID-SIM535>3.0.CO;2-# |
ContentType | Journal Article |
Copyright | Copyright 2004 The Royal Statistical Society 2004 INIST-CNRS 2004 Royal Statistical Society |
Copyright_xml | – notice: Copyright 2004 The Royal Statistical Society – notice: 2004 INIST-CNRS – notice: 2004 Royal Statistical Society |
DBID | BSCLL AAYXX CITATION IQODW DKI X2L 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D |
DOI | 10.1111/j.1467-9868.2004.b5543.x |
DatabaseName | Istex CrossRef Pascal-Francis RePEc IDEAS RePEc Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) CrossRef International Bibliography of the Social Sciences (IBSS) |
Database_xml | – sequence: 1 dbid: DKI name: RePEc IDEAS url: http://ideas.repec.org/ sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1467-9868 |
EndPage | 813 |
ExternalDocumentID | 743222831 923773081 blajorssb_v_3a66_3ay_3a2004_3ai_3a3_3ap_3a791_813_htm 15950807 10_1111_j_1467_9868_2004_b5543_x RSSB472 3647506 ark_67375_WNG_PLWRWNQH_Z |
Genre | article Feature |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 10A 1OC 29L 2AX 3-9 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8UM 8VB 930 A03 AAESR AAEVG AAHBH AAHHS AAONW AARHZ AASGY AAUAY AAXRX AAZKR ABBHK ABCQN ABCUV ABEHJ ABEML ABFAN ABIVO ABLJU ABPFR ABPQH ABPTD ABPVW ABWST ABXSQ ABYAD ABYWD ABZEH ACAHQ ACBWZ ACCFJ ACCZN ACFRR ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACTWD ACUBG ACXBN ACXQS ADACV ADBBV ADEOM ADIPN ADIYS ADIZJ ADKYN ADMGS ADODI ADOZA ADQBN ADRDM ADULT ADVEK ADZMN AEEZP AEGXH AEIMD AELPN AEMOZ AEQDE AEUPB AEUQT AFBPY AFEBI AFGKR AFPWT AFVYC AFXHP AFZJQ AIURR AIWBW AJAOE AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANFBD ARCSS ASPBG AS~ ATGXG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BCRHZ BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CJ0 CO8 COF CS3 D-E DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC EBA EBO EBR EBS EBU ECEWR EDO EJD EMK F00 F5P FEDTE FVMVE G-S G.N GODZA H.T H.X H13 HF~ HGD HQ6 HVGLF HZI HZ~ H~9 IHE IPSME IX1 J0M JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NHB O66 O9- OIG OWPYF P2W P2X P4D PQQKQ Q.N Q11 QB0 QWB R.K RJQFR RNS ROL ROX RX1 SA0 SUPJJ TH9 TN5 TUS UB1 UPT W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ XBAML XG1 YQT ZGI ZL0 ZZTAW ~02 ~IA ~KM ~WT AANHP AAPXW AAWIL ABAWQ ABDFA ABPQP ACHJO ACRPL ACYXJ ADNMO AGLNM AGQPQ AHQJS AIHAF AJNCP ALRMG AMVHM NU- AAYXX CITATION IQODW 02 08R 0R 31 3N 4S 8RP ABHUG ACXME ADAWD ADDAD AFVGU AFXKK AGJLS AIHXQ AS BFHJK DKI EFSUC GA HZ IA IPNFZ KM MEWTI NF P4A PQEST RIG WRC WT X X2L XHC Y3 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c6022-d9043f2079a40818cb6c74e6c2664fb365e717efbb4d902ad561f2aa92bd5cf3 |
IEDL.DBID | DR2 |
ISSN | 1369-7412 |
IngestDate | Fri Jul 11 05:14:20 EDT 2025 Wed Aug 13 11:15:46 EDT 2025 Wed Aug 13 11:15:57 EDT 2025 Wed Aug 18 03:51:57 EDT 2021 Mon Jul 21 09:18:54 EDT 2025 Thu Apr 24 23:10:45 EDT 2025 Tue Jul 01 03:43:01 EDT 2025 Wed Jan 22 16:19:49 EST 2025 Thu Jul 03 21:13:52 EDT 2025 Wed Oct 30 09:49:04 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Data analysis Finite sample Large sample Response model Continuous time Regression analysis Statistical method Missing data Correlation analysis Follow up study Experimental design Marginal distribution Observation data Biased estimation |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6022-d9043f2079a40818cb6c74e6c2664fb365e717efbb4d902ad561f2aa92bd5cf3 |
Notes | ArticleID:RSSB472 ark:/67375/WNG-PLWRWNQH-Z istex:1CA054F8B962639058C021EBBB0C1571A43046FB ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
OpenAccessLink | https://academic.oup.com/jrsssb/article-pdf/66/3/791/49727704/jrsssb_66_3_791.pdf |
PQID | 200867370 |
PQPubID | 39359 |
PageCount | 23 |
ParticipantIDs | proquest_miscellaneous_37944896 proquest_journals_200960890 proquest_journals_200867370 repec_primary_blajorssb_v_3a66_3ay_3a2004_3ai_3a3_3ap_3a791_813_htm pascalfrancis_primary_15950807 crossref_primary_10_1111_j_1467_9868_2004_b5543_x crossref_citationtrail_10_1111_j_1467_9868_2004_b5543_x wiley_primary_10_1111_j_1467_9868_2004_b5543_x_RSSB472 jstor_primary_3647506 istex_primary_ark_67375_WNG_PLWRWNQH_Z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2004 |
PublicationDateYYYYMMDD | 2004-08-01 |
PublicationDate_xml | – month: 08 year: 2004 text: August 2004 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationSeriesTitle | Journal of the Royal Statistical Society Series B |
PublicationTitle | Journal of the Royal Statistical Society. Series B, Statistical methodology |
PublicationYear | 2004 |
Publisher | Blackwell Publishing Blackwell Publishers Blackwell Royal Statistical Society Oxford University Press |
Publisher_xml | – name: Blackwell Publishing – name: Blackwell Publishers – name: Blackwell – name: Royal Statistical Society – name: Oxford University Press |
References | McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd edn. London: Chapman and Hall. Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1995) Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Am. Statist. Ass., 90, 106-121. Follmann, D. and Wu, M. (1995) An approximate generalized linear model with random effects for informative missing data. Biometrics, 51, 151-168. Rosenheck, R. A., Kasprow, W., Frismn, L. K. and Liu-Mares, W. (2003) Cost-effectiveness of supported housing for homeless persons with mental illness. Arch. Gen. Psychiatr., 60, 940-951. Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999) Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion). J. Am. Statist. Ass., 94, 1096-1120. Albert, P. S., Follmann, D. A., Wang, S. A. and Suh, E. B. (2002) A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics, 58, 631-642. Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993) Efficient and Adaptive Estimation for Semiparametric Models. Baltimore: Johns Hopkins University Press. Deltour, I., Richardson, S. and Le Hesran, J. Y. (1999) Stochastic algorithms for Markov model estimation with intermittent missing data. Biometrics, 55, 565-573. Liang, K.-Y. and Zeger, S. L. (1986) Longitudinal data analysis using generalized linear models. Biometrika, 73, 13-22. Rotnitzky, A., Robins, J. M. and Scharfstein, D. O. (1998) Semiparametric regression for repeated outcomes with nonignorable nonresponse. J. Am. Statist. Ass., 93, 1321-1329. Newey, W. K. (1990) Semiparametric efficiency bounds. J. Appl. Econ., 5, 99-135. Fleming, T. R. and Harrington, D. P. (1991) Counting Processes and Survival Analysis. New York: Wiley. Lipsitz, S. R., Fitzmaurice, G. M., Ibrahim, J. G., Gelber, R. and Lipshultz, S. (2002) Parameter estimation in longitudinal studies with outcome-dependent follow-up. Biometrics, 58, 621-630. van der Vaart, A. W. (1998) Asymptotic Statistics. Cambridge: Cambridge University Press. Huber, P. J. (1985) Projection pursuit. Ann. Statist., 13, 435-475. Little, R. J. A. (1995) Modelling the drop-out mechanism in repeated-measures studies. J. Am. Statist. Ass., 90, 1112-1121. Daley, D. J., Vere-Jones, D. and Smirnov, B. M. (2002) An Introduction to the Theory of Point Processes: Elementary Theory and Methods, 2nd edn. New York: Springer. Hogan, J. W. and Laird, N. M. (1997) Mixture models for the joint distribution of repeated measures and event times. Statist. Med., 16, 239-257. Wu, M. C. and Carroll, R. J. (1988) Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics, 44, 175-188. Robins, J. M. and Ritov, Y. (1997) Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models. Statist. Med., 16, 285-319. Troxel, A. B., Lipsitz, S. R. and Harrington, D. P. (1998) Marginal models for the analysis of longitudinal measurements with nonignorable non-monotone missing data. Biometrika, 85, 661-672. Lunn, A. D. and Davies, S. J. (1998) A note on generating correlated binary variables. Biometrika, 85, 487-490. Diggle, P. and Kenward, M. G. (1994) Informative drop-out in longitudinal data analysis (with discussion). Appl. Statist., 43, 49-93. Robins, J. M., Mark, S. D. and Newey, W. K. (1992) Estimating exposure effects by modeling the expectation of exposure conditional on confounders. Biometrics, 48, 479-495. van der Laan, M. J. and Robins, J. M. (2003) Unified Approach for Censored Longitudinal Data and Causality. New York: Springer. Gasser, T. and Müller, H. G. (1979) Kernel estimation of regression functions. Lect. Notes Math., 757, 23-68. Kalbfleisch, J. D. and Prentice, R. L. (2002) The Statistical Analysis of Failure Time Data, 2nd edn. New York: Wiley. Preisser, J. S., Galecki, A. T., Lohman, K. K. and Wagenknecht, L. E. (2000) Analysis of smoking trends with incomplete longitudinal binary response. J. Am. Statist. Ass., 95, 1021-1031. Anderson, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993) Statistical Models based on Counting Processes. New York: Springer. Fitzmaurice, G. M., Laird, N. M. and Shneyer, L. (2001) An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Statist. Med., 20, 1009-1021. 2002; 58 1995; 51 1986; 73 1995; 90 1998 2000; 95 1993 2003 1992 2002 1991 1998; 85 1994; 43 2001; 20 1979; 757 1988; 44 1999; 55 1997; 16 1992; 48 1998; 93 1999; 94 2003; 60 1985; 13 1989 1990; 5 Laan (2023040304322015200_) 2003 Lipsitz (2023040304322015200_) 2002; 58 Lunn (2023040304322015200_) 1998; 85 Rosenheck (2023040304322015200_) 2003; 60 McCullagh (2023040304322015200_) 1989 Robins (2023040304322015200_) 1997; 16 Scharfstein (2023040304322015200_) 1999; 94 Daley (2023040304322015200_) 2002 Bickel (2023040304322015200_) 1993 Diggle (2023040304322015200_) 1994; 43 Hogan (2023040304322015200_) 1997; 16 Vaart (2023040304322015200_) 1998 Huber (2023040304322015200_) 1985; 13 Troxel (2023040304322015200_) 1998; 85 Deltour (2023040304322015200_) 1999; 55 Anderson (2023040304322015200_) 1993 Fitzmaurice (2023040304322015200_) 2001; 20 Wu (2023040304322015200_) 1988; 44 Robins (2023040304322015200_) 1992 Albert (2023040304322015200_) 2002; 58 Liang (2023040304322015200_) 1986; 73 Fleming (2023040304322015200_) 1991 Little (2023040304322015200_) 1995; 90 Follmann (2023040304322015200_) 1995; 51 Preisser (2023040304322015200_) 2000; 95 Robins (2023040304322015200_) 1992; 48 Newey (2023040304322015200_) 1990; 5 Gasser (2023040304322015200_) 1979; 757 Robins (2023040304322015200_) 1995; 90 Rotnitzky (2023040304322015200_) 1998; 93 Kalbfleisch (2023040304322015200_) 2002 |
References_xml | – reference: Preisser, J. S., Galecki, A. T., Lohman, K. K. and Wagenknecht, L. E. (2000) Analysis of smoking trends with incomplete longitudinal binary response. J. Am. Statist. Ass., 95, 1021-1031. – reference: Deltour, I., Richardson, S. and Le Hesran, J. Y. (1999) Stochastic algorithms for Markov model estimation with intermittent missing data. Biometrics, 55, 565-573. – reference: Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1995) Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. J. Am. Statist. Ass., 90, 106-121. – reference: Troxel, A. B., Lipsitz, S. R. and Harrington, D. P. (1998) Marginal models for the analysis of longitudinal measurements with nonignorable non-monotone missing data. Biometrika, 85, 661-672. – reference: Robins, J. M. and Ritov, Y. (1997) Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models. Statist. Med., 16, 285-319. – reference: Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999) Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion). J. Am. Statist. Ass., 94, 1096-1120. – reference: Anderson, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993) Statistical Models based on Counting Processes. New York: Springer. – reference: Lipsitz, S. R., Fitzmaurice, G. M., Ibrahim, J. G., Gelber, R. and Lipshultz, S. (2002) Parameter estimation in longitudinal studies with outcome-dependent follow-up. Biometrics, 58, 621-630. – reference: Daley, D. J., Vere-Jones, D. and Smirnov, B. M. (2002) An Introduction to the Theory of Point Processes: Elementary Theory and Methods, 2nd edn. New York: Springer. – reference: Newey, W. K. (1990) Semiparametric efficiency bounds. J. Appl. Econ., 5, 99-135. – reference: Gasser, T. and Müller, H. G. (1979) Kernel estimation of regression functions. Lect. Notes Math., 757, 23-68. – reference: Huber, P. J. (1985) Projection pursuit. Ann. Statist., 13, 435-475. – reference: Follmann, D. and Wu, M. (1995) An approximate generalized linear model with random effects for informative missing data. Biometrics, 51, 151-168. – reference: Lunn, A. D. and Davies, S. J. (1998) A note on generating correlated binary variables. Biometrika, 85, 487-490. – reference: Wu, M. C. and Carroll, R. J. (1988) Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics, 44, 175-188. – reference: Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993) Efficient and Adaptive Estimation for Semiparametric Models. Baltimore: Johns Hopkins University Press. – reference: Kalbfleisch, J. D. and Prentice, R. L. (2002) The Statistical Analysis of Failure Time Data, 2nd edn. New York: Wiley. – reference: Rotnitzky, A., Robins, J. M. and Scharfstein, D. O. (1998) Semiparametric regression for repeated outcomes with nonignorable nonresponse. J. Am. Statist. Ass., 93, 1321-1329. – reference: van der Laan, M. J. and Robins, J. M. (2003) Unified Approach for Censored Longitudinal Data and Causality. New York: Springer. – reference: van der Vaart, A. W. (1998) Asymptotic Statistics. Cambridge: Cambridge University Press. – reference: Hogan, J. W. and Laird, N. M. (1997) Mixture models for the joint distribution of repeated measures and event times. Statist. Med., 16, 239-257. – reference: Diggle, P. and Kenward, M. G. (1994) Informative drop-out in longitudinal data analysis (with discussion). Appl. Statist., 43, 49-93. – reference: Little, R. J. A. (1995) Modelling the drop-out mechanism in repeated-measures studies. J. Am. Statist. Ass., 90, 1112-1121. – reference: Fleming, T. R. and Harrington, D. P. (1991) Counting Processes and Survival Analysis. New York: Wiley. – reference: Robins, J. M., Mark, S. D. and Newey, W. K. (1992) Estimating exposure effects by modeling the expectation of exposure conditional on confounders. Biometrics, 48, 479-495. – reference: Liang, K.-Y. and Zeger, S. L. (1986) Longitudinal data analysis using generalized linear models. Biometrika, 73, 13-22. – reference: Fitzmaurice, G. M., Laird, N. M. and Shneyer, L. (2001) An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs. Statist. Med., 20, 1009-1021. – reference: Rosenheck, R. A., Kasprow, W., Frismn, L. K. and Liu-Mares, W. (2003) Cost-effectiveness of supported housing for homeless persons with mental illness. Arch. Gen. Psychiatr., 60, 940-951. – reference: McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models, 2nd edn. London: Chapman and Hall. – reference: Albert, P. S., Follmann, D. A., Wang, S. A. and Suh, E. B. (2002) A latent autoregressive model for longitudinal binary data subject to informative missingness. Biometrics, 58, 631-642. – volume: 5 start-page: 99 year: 1990 end-page: 135 article-title: Semiparametric efficiency bounds publication-title: J. Appl. Econ. – volume: 20 start-page: 1009 year: 2001 end-page: 1021 article-title: An alternative parameterization of the general linear mixture model for longitudinal data with non‐ignorable drop‐outs publication-title: Statist. Med. – volume: 85 start-page: 661 year: 1998 end-page: 672 article-title: Marginal models for the analysis of longitudinal measurements with nonignorable non‐monotone missing data publication-title: Biometrika – volume: 90 start-page: 106 year: 1995 end-page: 121 article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data publication-title: J. Am. Statist. Ass. – volume: 44 start-page: 175 year: 1988 end-page: 188 article-title: Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process publication-title: Biometrics – year: 1989 – volume: 51 start-page: 151 year: 1995 end-page: 168 article-title: An approximate generalized linear model with random effects for informative missing data publication-title: Biometrics – year: 2003 – volume: 757 start-page: 23 year: 1979 end-page: 68 article-title: Kernel estimation of regression functions publication-title: Lect. Notes Math. – volume: 16 start-page: 239 year: 1997 end-page: 257 article-title: Mixture models for the joint distribution of repeated measures and event times publication-title: Statist. Med. – volume: 58 start-page: 621 year: 2002 end-page: 630 article-title: Parameter estimation in longitudinal studies with outcome‐dependent follow‐up publication-title: Biometrics – year: 1998 – volume: 85 start-page: 487 year: 1998 end-page: 490 article-title: A note on generating correlated binary variables publication-title: Biometrika – volume: 94 start-page: 1096 year: 1999 end-page: 1120 article-title: Adjusting for nonignorable drop‐out using semiparametric nonresponse models (with discussion) publication-title: J. Am. Statist. Ass. – volume: 60 start-page: 940 year: 2003 end-page: 951 article-title: Cost‐effectiveness of supported housing for homeless persons with mental illness publication-title: Arch. Gen. Psychiatr. – volume: 90 start-page: 1112 year: 1995 end-page: 1121 article-title: Modelling the drop‐out mechanism in repeated‐measures studies publication-title: J. Am. Statist. Ass. – volume: 43 start-page: 49 year: 1994 end-page: 93 article-title: Informative drop‐out in longitudinal data analysis (with discussion) publication-title: Appl. Statist. – volume: 13 start-page: 435 year: 1985 end-page: 475 article-title: Projection pursuit publication-title: Ann. Statist. – volume: 48 start-page: 479 year: 1992 end-page: 495 article-title: Estimating exposure effects by modeling the expectation of exposure conditional on confounders publication-title: Biometrics – year: 2002 – volume: 93 start-page: 1321 year: 1998 end-page: 1329 article-title: Semiparametric regression for repeated outcomes with nonignorable nonresponse publication-title: J. Am. Statist. Ass. – volume: 16 start-page: 285 year: 1997 end-page: 319 article-title: Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi‐parametric models publication-title: Statist. Med. – volume: 58 start-page: 631 year: 2002 end-page: 642 article-title: A latent autoregressive model for longitudinal binary data subject to informative missingness publication-title: Biometrics – year: 1991 – volume: 73 start-page: 13 year: 1986 end-page: 22 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika – volume: 55 start-page: 565 year: 1999 end-page: 573 article-title: Stochastic algorithms for Markov model estimation with intermittent missing data publication-title: Biometrics – year: 1993 – start-page: 297 year: 1992 end-page: 331 – volume: 95 start-page: 1021 year: 2000 end-page: 1031 article-title: Analysis of smoking trends with incomplete longitudinal binary response publication-title: J. Am. Statist. Ass. – volume: 20 start-page: 1009 year: 2001 ident: 2023040304322015200_ article-title: An alternative parameterization of the general linear mixture model for longitudinal data with non-ignorable drop-outs publication-title: Statist. Med. doi: 10.1002/sim.718 – volume: 85 start-page: 661 year: 1998 ident: 2023040304322015200_ article-title: Marginal models for the analysis of longitudinal measurements with nonignorable non-monotone missing data publication-title: Biometrika doi: 10.1093/biomet/85.3.661 – volume-title: An Introduction to the Theory of Point Processes: Elementary Theory and Methods year: 2002 ident: 2023040304322015200_ – volume: 94 start-page: 1096 year: 1999 ident: 2023040304322015200_ article-title: Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion) publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1999.10473862 – volume: 44 start-page: 175 year: 1988 ident: 2023040304322015200_ article-title: Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process publication-title: Biometrics doi: 10.2307/2531905 – volume: 13 start-page: 435 year: 1985 ident: 2023040304322015200_ article-title: Projection pursuit publication-title: Ann. Statist. – volume-title: Counting Processes and Survival Analysis year: 1991 ident: 2023040304322015200_ – volume: 757 start-page: 23 year: 1979 ident: 2023040304322015200_ article-title: Kernel estimation of regression functions publication-title: Lect. Notes Math. doi: 10.1007/BFb0098489 – volume: 55 start-page: 565 year: 1999 ident: 2023040304322015200_ article-title: Stochastic algorithms for Markov model estimation with intermittent missing data publication-title: Biometrics doi: 10.1111/j.0006-341X.1999.00565.x – volume: 51 start-page: 151 year: 1995 ident: 2023040304322015200_ article-title: An approximate generalized linear model with random effects for informative missing data publication-title: Biometrics doi: 10.2307/2533322 – volume: 90 start-page: 106 year: 1995 ident: 2023040304322015200_ article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1995.10476493 – volume-title: Unified Approach for Censored Longitudinal Data and Causality year: 2003 ident: 2023040304322015200_ doi: 10.1007/978-0-387-21700-0 – start-page: 297 volume-title: AIDS Epidemiology—Methodological Issues year: 1992 ident: 2023040304322015200_ doi: 10.1007/978-1-4757-1229-2_14 – volume: 43 start-page: 49 year: 1994 ident: 2023040304322015200_ article-title: Informative drop-out in longitudinal data analysis (with discussion) publication-title: Appl. Statist. doi: 10.2307/2986113 – volume: 58 start-page: 631 year: 2002 ident: 2023040304322015200_ article-title: A latent autoregressive model for longitudinal binary data subject to informative missingness publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00631.x – volume: 58 start-page: 621 year: 2002 ident: 2023040304322015200_ article-title: Parameter estimation in longitudinal studies with outcome-dependent follow-up publication-title: Biometrics doi: 10.1111/j.0006-341X.2002.00621.x – volume: 90 start-page: 1112 year: 1995 ident: 2023040304322015200_ article-title: Modelling the drop-out mechanism in repeated-measures studies publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1995.10476615 – volume: 48 start-page: 479 year: 1992 ident: 2023040304322015200_ article-title: Estimating exposure effects by modeling the expectation of exposure conditional on confounders publication-title: Biometrics doi: 10.2307/2532304 – volume-title: The Statistical Analysis of Failure Time Data year: 2002 ident: 2023040304322015200_ doi: 10.1002/9781118032985 – volume: 85 start-page: 487 year: 1998 ident: 2023040304322015200_ article-title: A note on generating correlated binary variables publication-title: Biometrika doi: 10.1093/biomet/85.2.487 – volume: 5 start-page: 99 year: 1990 ident: 2023040304322015200_ article-title: Semiparametric efficiency bounds publication-title: J. Appl. Econ. doi: 10.1002/jae.3950050202 – volume-title: Efficient and Adaptive Estimation for Semiparametric Models year: 1993 ident: 2023040304322015200_ – volume-title: Statistical Models based on Counting Processes year: 1993 ident: 2023040304322015200_ doi: 10.1007/978-1-4612-4348-9 – volume: 73 start-page: 13 year: 1986 ident: 2023040304322015200_ article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika doi: 10.1093/biomet/73.1.13 – volume-title: Asymptotic Statistics year: 1998 ident: 2023040304322015200_ doi: 10.1017/CBO9780511802256 – volume: 16 start-page: 239 year: 1997 ident: 2023040304322015200_ article-title: Mixture models for the joint distribution of repeated measures and event times publication-title: Statist. Med. doi: 10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X – volume: 60 start-page: 940 year: 2003 ident: 2023040304322015200_ article-title: Cost-effectiveness of supported housing for homeless persons with mental illness publication-title: Arch. Gen. Psychiatr. doi: 10.1001/archpsyc.60.9.940 – volume: 93 start-page: 1321 year: 1998 ident: 2023040304322015200_ article-title: Semiparametric regression for repeated outcomes with nonignorable nonresponse publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.1998.10473795 – volume: 95 start-page: 1021 year: 2000 ident: 2023040304322015200_ article-title: Analysis of smoking trends with incomplete longitudinal binary response publication-title: J. Am. Statist. Ass. doi: 10.1080/01621459.2000.10474299 – volume-title: Generalized Linear Models year: 1989 ident: 2023040304322015200_ doi: 10.1007/978-1-4899-3242-6 – volume: 16 start-page: 285 year: 1997 ident: 2023040304322015200_ article-title: Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models publication-title: Statist. Med. doi: 10.1002/(SICI)1097-0258(19970215)16:3<285::AID-SIM535>3.0.CO;2-# |
SSID | ssj0000673 |
Score | 2.1346314 |
Snippet | A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self-selected points in time. As a result, observed... A frequent problem in longitudinal studies is that subjects may miss scheduled visits or be assessed at self‐selected points in time. As a result, observed... |
SourceID | proquest repec pascalfrancis crossref wiley jstor istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 791 |
SubjectTerms | Confidence interval Consistent estimators Counting process Data analysis Data collection Distribution theory Drop-out Estimation Estimation bias Estimators Evaluation Exact sciences and technology Factor analysis Health service evaluation Health services Homeless people Homelessness Intermittent missingness Linear inference, regression Longitudinal data Longitudinal studies Mathematics Maximum likelihood estimation Modeling Multivariate analysis Non-Gaussian data Parametric models Probability and statistics Probability theory and stochastic processes Regression analysis Sample size Sciences and techniques of general use Semiparametric estimators Sequential ignorability Simulation Statistical methods Statistics Studies Visit process Weighted generalized estimating equations |
Title | Analysis of longitudinal data with irregular, outcome-dependent follow-up |
URI | https://api.istex.fr/ark:/67375/WNG-PLWRWNQH-Z/fulltext.pdf https://www.jstor.org/stable/3647506 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-9868.2004.b5543.x http://econpapers.repec.org/article/blajorssb/v_3a66_3ay_3a2004_3ai_3a3_3ap_3a791-813.htm https://www.proquest.com/docview/200867370 https://www.proquest.com/docview/200960890 https://www.proquest.com/docview/37944896 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQ7mUvPBcRFkoOiBOp0sSJ4yOsWMpjK-gu6oqLZTsOLC1NlQesOPET-I38EmacB2QBaYU4uIc6rpPJzHjG_TwfIfcThQzbeuJB9qM9ylPqcRUwT0mmAp8HJk1xQ_9wFk_f0Ocn0UmLf8KzME19iH7DDS3D-ms0cKnK342cJ3Fi07yxgpUxHGM8idAtjI_mwa9OOWyOYHEPFtFzoJ4__tBgpdpGoZ91oEVEUMoShJg17BeD8HS7MBujh8GuXa0OrpBl95wNSGU5ris11l_OlYD8P4K4Si63Qa37qNHCa-SSWV8nOxjHNmWgb5DDrviJm2fuKkeSpDpFQi4XIaou7ga7p0Vh3iEq9qGb1xXchfn-9VtH0lu5GWhs_hm-qje75PjgyfH-1GuZHDwd43GBlPs0zAKfcUmxhp5WsWbUxBrCA5opeF0G0kqTKUXh0kCmENVlgZQ8UGmks_Am2Vrna3OLuAlNtG-iKGMJZE6GKa5pIE0k5YSF3OcOYd1LE7qtco5kGysxyHaYQHEhBycVVlzizCGTfuSmqfRxgTEPrF70A2SxRKQci8Ri9lS8ermYL2avp-KtQ3at4vQXYtn-yI8dMhoo0s-ZI6Tn9ZlD9jrNEq13KS11KM7i_60X0tKEQ--9vhecBv4TJNcmr0sRghemCYfp962y9tOqlfyQF2WpxCcRyjiGD7hXaZ85lKfQQmgbaIxPRDIJxfvqo0Niq58XFpuYHx09piy4_a8D98hOg6BCIOYdslUVtbkLwWGlRmD2L56NrPH_AD7YV4s |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQ90Av_BYRCm0OiBNZZRMnjo9QURbYXcF20VZcLNtxSumyWeUHKk48As_IkzDjbAJbQKoQB-cQx3EyGY9nnM_zEfIwUciwrQceRD_aozylHlcB85RkKvB5YNIUF_THk3j4lr48jo7XdEC4F6bJD9EtuOHIsPYaBzguSP8-ynkSJzbO6yuYGsM-OJQ9JPi28dU0-NUsh80mLO7BNHoB1vPHO23MVT0U-3kLW0QMpSxBjFnDf7HhoPYKszJ6092189XhdbJo37SBqZz160r19ZcLSSD_kyhukGtrv9Z90ijiTXLFLG-RbXRlm0zQt8m4zX_i5pm7yJEnqU6Rk8tFlKqLC8LuaVGYEwTGPnbzuoLHMN-_fmt5eis3A6XNP8OperVDZofPZgdDb03m4OkYdwyk3KdhFviMS4pp9LSKNaMm1uAh0EyFcWQgsjSZUhQuDWQKjl0WSMkDlUY6C--QrWW-NHeJm9BE-yaKMpZA8GSY4poG0kRSDljIfe4Q1n41odeJzpFvYyE2Ah4mUFxIw0mFFZc4d8iga7lqkn1cos0jqxhdA1mcIViORWI-eS5ej-bT-eTNULxzyI7VnO5CzNwf-bFD9jY06WfPETL0-swhu61qibWBKS17KPbi_60WItOEQ-1-Vwt2A38GyaXJ61KEYIhpwqH7A6utXbdqIT_kRVkq8UmEMo7hAM8q7TuH8hRKCGUFhfGBSAaheF99dEhsFfTSYhPTo6OnlAX3_rXhPrk6nI1HYvRi8mqXbDeAKsRl3idbVVGbB-ArVmrP2oAff_harQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQV0K98FtEKLQ5IE5klY2dOD5Cy7JAuyrboq24WLbjQNlls8oPVJx4BJ6RJ2Em2QS2gFQhDs4hjuNkMh7POJ_nI-RhrJFh2ww8iH6Mx0TCPKED7mnFdeCLwCYJLugfjqPRG_byNDxd4Z9wL0yTH6JbcMORUdtrHODLJP19kIs4iuswr69hZqR98Cd7LPJj1PD9SfCrVabNHizhwSx6AdXzxzutTVU9lPp5i1pECKUqQIppQ3-x5p_2cru0Zt3braer4XUya1-0QanM-lWp--bLhRyQ_0cSN8i1lVfrPmnU8Ca5Yhe3yCY6sk0e6NvksM1-4mapO8-QJalKkJHLRYyqi8vB7lme23cIi33sZlUJT2G_f_3WsvSWbgoqm32GU9Vyi5wMn53sjbwVlYNnItwvkAif0TTwuVAMk-gZHRnObGTAP2CpplFoIa60qdYMLg1UAm5dGiglAp2EJqV3yMYiW9i7xI1ZbHwbhimPIXSyXAvDAmVDpQacCl84hLcfTZpVmnNk25jLtXCHSxQXknAyWYtLnjtk0LVcNqk-LtHmUa0XXQOVzxAqx0M5HT-XRwfTyXT8eiTfOmSrVpzuQszbH_qRQ3bWFOlnzyHy8_rcIdutZsmVeSlq7lDsxf9brcARALW7XS1YDfwVpBY2qwpJwQyzWED3e7Wydt3qufqQ5UWh5SdJVRTBAZ5V1e9M1RkUCmUJhYuBjAdUvi8_OiSq9fPSYpOT4-OnjAf3_rXhLrl6tD-UBy_Gr7bJZoOmQlDmfbJR5pV9AI5iqXdqC_ADPitZZQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+longitudinal+data+with+irregular%2C+outcome%E2%80%90dependent+follow%E2%80%90up&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+B%2C+Statistical+methodology&rft.au=Lin%2C+Haiqun&rft.au=Scharfstein%2C+Daniel+O.&rft.au=Rosenheck%2C+Robert+A.&rft.date=2004-08-01&rft.pub=Blackwell+Publishing&rft.issn=1369-7412&rft.eissn=1467-9868&rft.volume=66&rft.issue=3&rft.spage=791&rft.epage=813&rft_id=info:doi/10.1111%2Fj.1467-9868.2004.b5543.x&rft.externalDBID=10.1111%252Fj.1467-9868.2004.b5543.x&rft.externalDocID=RSSB472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-7412&client=summon |