Inhibition of bone and muscle metastases of lung cancer cells by a decrease in the number of monocytes/macrophages
Attention has recently focused on the critical role of inflammatory responses in the tumor stroma that provide favorable conditions for cancer‐cell growth and invasion/metastasis. In particular, macrophages recruited into the tumor stroma and activated, known as tumor‐associated macrophages, are sug...
Saved in:
Published in | Cancer science Vol. 99; no. 8; pp. 1595 - 1602 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melbourne, Australia
Blackwell Publishing Asia
01.08.2008
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Attention has recently focused on the critical role of inflammatory responses in the tumor stroma that provide favorable conditions for cancer‐cell growth and invasion/metastasis. In particular, macrophages recruited into the tumor stroma and activated, known as tumor‐associated macrophages, are suggested to promote tumorigenesis. In this study, we examined the effect of a decrease in the number of monocytes/macrophages in peripheral blood and the tumor stroma on the development of bone and muscle metastases by lung cancer cells. Treatment with clodronate encapsulated by liposomes (Cl2MDP‐LIP) has been developed for the depletion of monocytes/macrophages in an animal model. Subcutaneous administration of Cl2MDP‐LIP markedly reduced the number of monocytes in peripheral blood, resulting in efficient suppression of both bone metastasis and muscle metastasis when lung cancer HARA‐B cells were injected into the left cardiac ventricle of mice. Treatment with Cl2MDP‐LIP significantly reduced the number of macrophages in tumors and the number of osteoclasts in bone marrow, as well as peripheral monocytes in mice harboring lung cancer cells. In contrast, treatment with an osteoclast‐targeting antibiotic, reveromycin A, inhibited bone metastasis by lung cancer cells, but not muscle metastasis. The survival of human macrophages in culture was found to be specifically blocked by Cl2MDP‐LIP, but not by reveromycin A. Cl2MDP‐LIP thus exerted antimetastatic effects in both bone and muscle whereas reveromycin A did so only in bone. Liposome‐encapsulated bisphosphonate may modulate metastasis through decreasing the number of monocytes/macrophages in both peripheral blood and the tumor stroma, suggesting that tumor‐associated macrophages might be suitable targets for antimetastatic therapy. (Cancer Sci 2008; 99: 1595–1602) |
---|---|
AbstractList | Attention has recently focused on the critical role of inflammatory responses in the tumor stroma that provide favorable conditions for cancer-cell growth and invasion/metastasis. In particular, macrophages recruited into the tumor stroma and activated, known as tumor-associated macrophages, are suggested to promote tumorigenesis. In this study, we examined the effect of a decrease in the number of monocytes/macrophages in peripheral blood and the tumor stroma on the development of bone and muscle metastases by lung cancer cells. Treatment with clodronate encapsulated by liposomes (Cl(2)MDP-LIP) has been developed for the depletion of monocytes/macrophages in an animal model. Subcutaneous administration of Cl(2)MDP-LIP markedly reduced the number of monocytes in peripheral blood, resulting in efficient suppression of both bone metastasis and muscle metastasis when lung cancer HARA-B cells were injected into the left cardiac ventricle of mice. Treatment with Cl(2)MDP-LIP significantly reduced the number of macrophages in tumors and the number of osteoclasts in bone marrow, as well as peripheral monocytes in mice harboring lung cancer cells. In contrast, treatment with an osteoclast-targeting antibiotic, reveromycin A, inhibited bone metastasis by lung cancer cells, but not muscle metastasis. The survival of human macrophages in culture was found to be specifically blocked by Cl(2)MDP-LIP, but not by reveromycin A. Cl(2)MDP-LIP thus exerted antimetastatic effects in both bone and muscle whereas reveromycin A did so only in bone. Liposome-encapsulated bisphosphonate may modulate metastasis through decreasing the number of monocytes/macrophages in both peripheral blood and the tumor stroma, suggesting that tumor-associated macrophages might be suitable targets for antimetastatic therapy. Attention has recently focused on the critical role of inflammatory responses in the tumor stroma that provide favorable conditions for cancer‐cell growth and invasion/metastasis. In particular, macrophages recruited into the tumor stroma and activated, known as tumor‐associated macrophages, are suggested to promote tumorigenesis. In this study, we examined the effect of a decrease in the number of monocytes/macrophages in peripheral blood and the tumor stroma on the development of bone and muscle metastases by lung cancer cells. Treatment with clodronate encapsulated by liposomes (Cl 2 MDP‐LIP) has been developed for the depletion of monocytes/macrophages in an animal model. Subcutaneous administration of Cl 2 MDP‐LIP markedly reduced the number of monocytes in peripheral blood, resulting in efficient suppression of both bone metastasis and muscle metastasis when lung cancer HARA‐B cells were injected into the left cardiac ventricle of mice. Treatment with Cl 2 MDP‐LIP significantly reduced the number of macrophages in tumors and the number of osteoclasts in bone marrow, as well as peripheral monocytes in mice harboring lung cancer cells. In contrast, treatment with an osteoclast‐targeting antibiotic, reveromycin A, inhibited bone metastasis by lung cancer cells, but not muscle metastasis. The survival of human macrophages in culture was found to be specifically blocked by Cl 2 MDP‐LIP, but not by reveromycin A. Cl 2 MDP‐LIP thus exerted antimetastatic effects in both bone and muscle whereas reveromycin A did so only in bone. Liposome‐encapsulated bisphosphonate may modulate metastasis through decreasing the number of monocytes/macrophages in both peripheral blood and the tumor stroma, suggesting that tumor‐associated macrophages might be suitable targets for antimetastatic therapy. ( Cancer Sci 2008; 99: 1595–1602) Attention has recently focused on the critical role of inflammatory responses in the tumor stroma that provide favorable conditions for cancer-cell growth and invasion/metastasis. In particular, macrophages recruited into the tumor stroma and activated, known as tumor-associated macrophages, are suggested to promote tumorigenesis. In this study, we examined the effect of a decrease in the number of monocytes/macrophages in peripheral blood and the tumor stroma on the development of bone and muscle metastases by lung cancer cells. Treatment with clodronate encapsulated by liposomes (Cl(2)MDP-LIP) has been developed for the depletion of monocytes/macrophages in an animal model. Subcutaneous administration of Cl(2)MDP-LIP markedly reduced the number of monocytes in peripheral blood, resulting in efficient suppression of both bone metastasis and muscle metastasis when lung cancer HARA-B cells were injected into the left cardiac ventricle of mice. Treatment with Cl(2)MDP-LIP significantly reduced the number of macrophages in tumors and the number of osteoclasts in bone marrow, as well as peripheral monocytes in mice harboring lung cancer cells. In contrast, treatment with an osteoclast-targeting antibiotic, reveromycin A, inhibited bone metastasis by lung cancer cells, but not muscle metastasis. The survival of human macrophages in culture was found to be specifically blocked by Cl(2)MDP-LIP, but not by reveromycin A. Cl(2)MDP-LIP thus exerted antimetastatic effects in both bone and muscle whereas reveromycin A did so only in bone. Liposome-encapsulated bisphosphonate may modulate metastasis through decreasing the number of monocytes/macrophages in both peripheral blood and the tumor stroma, suggesting that tumor-associated macrophages might be suitable targets for antimetastatic therapy.Attention has recently focused on the critical role of inflammatory responses in the tumor stroma that provide favorable conditions for cancer-cell growth and invasion/metastasis. In particular, macrophages recruited into the tumor stroma and activated, known as tumor-associated macrophages, are suggested to promote tumorigenesis. In this study, we examined the effect of a decrease in the number of monocytes/macrophages in peripheral blood and the tumor stroma on the development of bone and muscle metastases by lung cancer cells. Treatment with clodronate encapsulated by liposomes (Cl(2)MDP-LIP) has been developed for the depletion of monocytes/macrophages in an animal model. Subcutaneous administration of Cl(2)MDP-LIP markedly reduced the number of monocytes in peripheral blood, resulting in efficient suppression of both bone metastasis and muscle metastasis when lung cancer HARA-B cells were injected into the left cardiac ventricle of mice. Treatment with Cl(2)MDP-LIP significantly reduced the number of macrophages in tumors and the number of osteoclasts in bone marrow, as well as peripheral monocytes in mice harboring lung cancer cells. In contrast, treatment with an osteoclast-targeting antibiotic, reveromycin A, inhibited bone metastasis by lung cancer cells, but not muscle metastasis. The survival of human macrophages in culture was found to be specifically blocked by Cl(2)MDP-LIP, but not by reveromycin A. Cl(2)MDP-LIP thus exerted antimetastatic effects in both bone and muscle whereas reveromycin A did so only in bone. Liposome-encapsulated bisphosphonate may modulate metastasis through decreasing the number of monocytes/macrophages in both peripheral blood and the tumor stroma, suggesting that tumor-associated macrophages might be suitable targets for antimetastatic therapy. Attention has recently focused on the critical role of inflammatory responses in the tumor stroma that provide favorable conditions for cancer‐cell growth and invasion/metastasis. In particular, macrophages recruited into the tumor stroma and activated, known as tumor‐associated macrophages, are suggested to promote tumorigenesis. In this study, we examined the effect of a decrease in the number of monocytes/macrophages in peripheral blood and the tumor stroma on the development of bone and muscle metastases by lung cancer cells. Treatment with clodronate encapsulated by liposomes (Cl2MDP‐LIP) has been developed for the depletion of monocytes/macrophages in an animal model. Subcutaneous administration of Cl2MDP‐LIP markedly reduced the number of monocytes in peripheral blood, resulting in efficient suppression of both bone metastasis and muscle metastasis when lung cancer HARA‐B cells were injected into the left cardiac ventricle of mice. Treatment with Cl2MDP‐LIP significantly reduced the number of macrophages in tumors and the number of osteoclasts in bone marrow, as well as peripheral monocytes in mice harboring lung cancer cells. In contrast, treatment with an osteoclast‐targeting antibiotic, reveromycin A, inhibited bone metastasis by lung cancer cells, but not muscle metastasis. The survival of human macrophages in culture was found to be specifically blocked by Cl2MDP‐LIP, but not by reveromycin A. Cl2MDP‐LIP thus exerted antimetastatic effects in both bone and muscle whereas reveromycin A did so only in bone. Liposome‐encapsulated bisphosphonate may modulate metastasis through decreasing the number of monocytes/macrophages in both peripheral blood and the tumor stroma, suggesting that tumor‐associated macrophages might be suitable targets for antimetastatic therapy. (Cancer Sci 2008; 99: 1595–1602) Attention has recently focused on the critical role of inflammatory responses in the tumor stroma that provide favorable conditions for cancer-cell growth and invasion/metastasis. In particular, macrophages recruited into the tumor stroma and activated, known as tumor-associated macrophages, are suggested to promote tumorigenesis. In this study, we examined the effect of a decrease in the number of monocytes/macrophages in peripheral blood and the tumor stroma on the development of bone and muscle metastases by lung cancer cells. Treatment with clodronate encapsulated by liposomes (Cl sub(2)MDP-LIP) has been developed for the depletion of monocytes/macrophages in an animal model. Subcutaneous administration of Cl sub(2)MDP-LIP markedly reduced the number of monocytes in peripheral blood, resulting in efficient suppression of both bone metastasis and muscle metastasis when lung cancer HARA-B cells were injected into the left cardiac ventricle of mice. Treatment with Cl sub(2)MDP-LIP significantly reduced the number of macrophages in tumors and the number of osteoclasts in bone marrow, as well as peripheral monocytes in mice harboring lung cancer cells. In contrast, treatment with an osteoclast-targeting antibiotic, reveromycin A, inhibited bone metastasis by lung cancer cells, but not muscle metastasis. The survival of human macrophages in culture was found to be specifically blocked by Cl sub(2)MDP-LIP, but not by reveromycin A. Cl sub(2)MDP-LIP thus exerted antimetastatic effects in both bone and muscle whereas reveromycin A did so only in bone. Liposome-encapsulated bisphosphonate may modulate metastasis through decreasing the number of monocytes/macrophages in both peripheral blood and the tumor stroma, suggesting that tumor-associated macrophages might be suitable targets for antimetastatic therapy. (Cancer Sci 2008; 99: 1595-1602) |
Author | Hosoi, Fumihito Osada, Hiroyuki Fotovati, Abbas Shoda, Takanori Kuwano, Michihiko Zenmyo, Michihisa Watari, Kousuke Hiraoka, Koji Nagata, Kensei Ono, Mayumi Iguchi, Haruo Kimura, Yusuke N. |
AuthorAffiliation | 6 Innovative Center for Medical Redox Navigation, Kyushu University, Fukuoka 812‐8582, Japan 3 Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812‐8582 1 Department of Orthopedic Surgery and 4 Clinical Research Institute, Shikoku Cancer Center, Matsuyama 791‐0280 5 Antibiotics Laboratory, Discovery Research institute, RIKEN, Saitama 351‐0198 2 Research Center of Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 830‐0011 |
AuthorAffiliation_xml | – name: 2 Research Center of Innovative Cancer Therapy, Kurume University School of Medicine, Kurume 830‐0011 – name: 4 Clinical Research Institute, Shikoku Cancer Center, Matsuyama 791‐0280 – name: 1 Department of Orthopedic Surgery and – name: 6 Innovative Center for Medical Redox Navigation, Kyushu University, Fukuoka 812‐8582, Japan – name: 5 Antibiotics Laboratory, Discovery Research institute, RIKEN, Saitama 351‐0198 – name: 3 Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812‐8582 |
Author_xml | – sequence: 1 givenname: Koji surname: Hiraoka fullname: Hiraoka, Koji – sequence: 2 givenname: Michihisa surname: Zenmyo fullname: Zenmyo, Michihisa – sequence: 3 givenname: Kousuke surname: Watari fullname: Watari, Kousuke – sequence: 4 givenname: Haruo surname: Iguchi fullname: Iguchi, Haruo – sequence: 5 givenname: Abbas surname: Fotovati fullname: Fotovati, Abbas – sequence: 6 givenname: Yusuke N. surname: Kimura fullname: Kimura, Yusuke N. – sequence: 7 givenname: Fumihito surname: Hosoi fullname: Hosoi, Fumihito – sequence: 8 givenname: Takanori surname: Shoda fullname: Shoda, Takanori – sequence: 9 givenname: Kensei surname: Nagata fullname: Nagata, Kensei – sequence: 10 givenname: Hiroyuki surname: Osada fullname: Osada, Hiroyuki – sequence: 11 givenname: Mayumi surname: Ono fullname: Ono, Mayumi – sequence: 12 givenname: Michihiko surname: Kuwano fullname: Kuwano, Michihiko |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20599667$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18754872$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkVtrFDEUx4NU7EW_guRF32aa2yQTEKQs2hYKPqjPIclkdrPMJGsyU7vf3kx3WfVJQ0IOnN-5_i_BWYjBAQAxqnE519saUyYrgRCvCUJtXV6L6qcX4OLkOHu2RSURJefgMuctQpQzyV6Bc9yKhrWCXIB0Hzbe-MnHAGMPTakDdejgOGc7ODi6SedyXV68wxzW0OpgXYLWDUOGZg817JxNrjDQBzhtHAzzaApRAsYYot1PLl-P2qa42-i1y6_By14P2b05_lfg--dP31Z31cOX2_vVzUNlOSKowoRZ2mApSUuMZbLpJeutY0YYI3rHKKYtk9wUjGvDeHHSjglpOssE4YRegY-HvLvZjK6zLkxJD2qX_KjTXkXt1d-e4DdqHR9V2XDTNlKUDO-PGVL8Mbs8qdHnZXAdXJyz4pK1nGD5T5Bg1CBBeQHbA1i2kXNy_akdjJa6WG3VoqBaFFSLtOpZWvVUQt_-Oc7vwKOWBXh3BHS2euhTEcrnE0dQIyXny1QfDtxPP7j9fzegVjdfi0F_AVOywmc |
CitedBy_id | crossref_primary_10_1016_j_tips_2015_04_006 crossref_primary_10_1016_j_lfs_2023_121399 crossref_primary_10_1021_mp4007216 crossref_primary_10_1093_jncimonographs_lgz009 crossref_primary_10_1189_jlb_0609385 crossref_primary_10_1007_s13277_015_4741_z crossref_primary_10_1155_2022_3399311 crossref_primary_10_3389_fimmu_2021_609762 crossref_primary_10_1097_JTO_0b013e3182037b76 crossref_primary_10_3390_ijms25031396 crossref_primary_10_3390_ijms22105078 crossref_primary_10_1007_s11604_014_0281_5 crossref_primary_10_1111_j_1349_7006_2009_01294_x crossref_primary_10_4161_onci_21317 crossref_primary_10_1038_s41392_021_00761_7 crossref_primary_10_2217_imt_13_102 crossref_primary_10_1177_0300985815586223 crossref_primary_10_1007_s10555_012_9415_3 crossref_primary_10_1007_s12307_011_0081_8 crossref_primary_10_1111_j_1349_7006_2008_00853_x crossref_primary_10_1016_j_ctrv_2013_10_005 crossref_primary_10_1038_bonekey_2014_95 crossref_primary_10_2217_nnm_14_13 crossref_primary_10_1517_14712598_2012_685715 crossref_primary_10_1186_1471_2172_12_43 crossref_primary_10_2217_imt_11_112 crossref_primary_10_12677_WJCR_2022_121004 crossref_primary_10_1158_1078_0432_CCR_09_2904 crossref_primary_10_1007_s12282_021_01231_2 crossref_primary_10_1007_s13277_015_4127_2 crossref_primary_10_1016_j_jbo_2013_07_002 crossref_primary_10_3389_fonc_2020_585284 crossref_primary_10_1007_s13346_017_0431_2 crossref_primary_10_2217_nnm_09_78 crossref_primary_10_1080_19336950_2021_1909301 crossref_primary_10_4049_jimmunol_1100841 crossref_primary_10_3389_fonc_2019_01077 crossref_primary_10_1172_jci_insight_124267 crossref_primary_10_3389_fimmu_2017_01106 crossref_primary_10_3390_cancers13092053 crossref_primary_10_1038_nrc2618 crossref_primary_10_1074_jbc_M114_598391 crossref_primary_10_1007_s00262_009_0755_y crossref_primary_10_3389_fcell_2020_00507 crossref_primary_10_1074_jbc_M115_677195 crossref_primary_10_3892_mco_2016_917 crossref_primary_10_1038_onc_2013_432 crossref_primary_10_1016_j_biomaterials_2021_120761 crossref_primary_10_3389_fendo_2021_763846 crossref_primary_10_1016_j_tvjl_2015_10_008 crossref_primary_10_1038_nchembio_326 crossref_primary_10_1016_j_prp_2021_153747 crossref_primary_10_3390_cancers14030757 crossref_primary_10_1111_j_1476_5829_2012_00319_x crossref_primary_10_3109_1061186X_2015_1073295 crossref_primary_10_1016_j_biopha_2019_108988 crossref_primary_10_3892_etm_2011_222 crossref_primary_10_1111_imm_12023 crossref_primary_10_1158_2326_6066_CIR_18_0342 crossref_primary_10_1074_jbc_M113_508994 crossref_primary_10_3390_cancers12041014 crossref_primary_10_1517_14728222_2011_561201 crossref_primary_10_3389_fimmu_2024_1335366 crossref_primary_10_1038_ja_2012_115 crossref_primary_10_1007_s13402_020_00512_w crossref_primary_10_1177_0300985810371310 crossref_primary_10_1038_ncomms7354 crossref_primary_10_1016_j_biopha_2023_116014 crossref_primary_10_1016_j_ajpath_2011_05_034 crossref_primary_10_3389_fimmu_2014_00587 crossref_primary_10_3390_cancers10050141 crossref_primary_10_1007_s00005_017_0480_8 crossref_primary_10_3390_ijms20194719 crossref_primary_10_1007_s10555_021_09965_3 crossref_primary_10_1038_nrd_2018_169 crossref_primary_10_3390_cancers13184712 crossref_primary_10_1111_febs_14325 crossref_primary_10_1155_2011_727241 crossref_primary_10_1111_j_1349_7006_2009_01300_x crossref_primary_10_3389_fmed_2024_1372495 crossref_primary_10_1002_1873_3468_12146 crossref_primary_10_1615_JEnvironPatholToxicolOncol_2024051317 crossref_primary_10_1016_j_jconrel_2015_10_055 crossref_primary_10_3390_cells10061529 crossref_primary_10_1007_s00424_017_1952_8 crossref_primary_10_1186_1479_5876_9_177 crossref_primary_10_1089_dna_2020_6087 crossref_primary_10_1371_journal_pone_0099568 |
Cites_doi | 10.1634/theoncologist.9-90004-3 10.1016/S0140-6736(00)04046-0 10.1172/JCI27648 10.1038/269804a0 10.1002/jlb.55.3.410 10.1016/0022-1759(89)90178-6 10.1002/1097-0142(20000615)88:12 <2892::AID-CNCR2>3.0.CO;2-Y 10.1016/j.ejca.2004.03.016 10.1172/JCI118947 10.1093/jnci/82.3.166 10.1073/pnas.0505663103 10.1111/j.1349-7006.2008.00853.x 10.1007/978-3-642-71806-9_21 10.1002/ijc.21011 10.1038/nrc1256 10.1172/JCI23298 10.1097/00000421-200212001-00002 10.1038/nature01322 10.1038/sj.onc.1209456 10.1016/j.cellbi.2006.12.008 10.1158/1078-0432.CCR-05-1335 10.1002/(SICI)1097-0215(20000115)85:2<182::AID-IJC6>3.0.CO;2-M 10.1172/JCI0211936 10.1038/nature04524 10.1158/0008-5472.CAN-04-1449 10.1038/sj.bjc.6603240 10.1111/j.1349-7006.2007.00633.x 10.1038/nrc867 10.7164/antibiotics.44.259 10.1158/1078-0432.CCR-05-0674 |
ContentType | Journal Article |
Copyright | 2008 Japanese Cancer Association 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 Japanese Cancer Association – notice: 2008 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7T5 H94 7X8 5PM |
DOI | 10.1111/j.1349-7006.2008.00880.x |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Immunology Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef AIDS and Cancer Research Abstracts Calcium & Calcified Tissue Abstracts Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1349-7006 |
EndPage | 1602 |
ExternalDocumentID | 10_1111_j_1349_7006_2008_00880_x 18754872 20599667 CAS880 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 1OC 24P 29B 2WC 31~ 36B 3O- 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FH 8UM 930 A01 A03 AAHHS AAZKR ABCQN ABEML ACCFJ ACSCC ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFEBI AFFNX AFKRA AFPKN AFZJQ AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BFHJK BHPHI BY8 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DIK DR2 DU5 E3Z EBS EJD EMB EMOBN EX3 F00 F01 F04 F5P FIJ GODZA GROUPED_DOAJ HCIFZ HF~ HOLLA HYE HZI HZ~ IAO IHR IPNFZ IX1 J0M K.9 K48 KQ8 LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P MK4 N04 N05 N9A O9- OIG OK1 OVD P2P P2X P2Z P4B P4D PIMPY PROAC Q11 ROL RPM RX1 SJN SUPJJ SV3 TEORI UB1 W8V WIN WOW WQJ WRC WXI X7M XG1 ZXP ~IA ~WT AAPBV AAUGY AEUQT IQODW CGR CUY CVF ECM EIF ITC NPM AAYXX CITATION 7QP 7T5 H94 7X8 5PM |
ID | FETCH-LOGICAL-c6020-124c35199282bc495f94fce4b7bb7fe43138496b24c6ab464fc3d479bdc472623 |
IEDL.DBID | RPM |
ISSN | 1347-9032 1349-7006 |
IngestDate | Tue Sep 17 21:29:14 EDT 2024 Sat Oct 26 04:54:10 EDT 2024 Wed Jul 17 03:50:09 EDT 2024 Thu Sep 26 15:41:31 EDT 2024 Sat Nov 02 12:05:31 EDT 2024 Sun Oct 22 16:03:54 EDT 2023 Sat Aug 24 00:54:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Lung disease Monocyte Respiratory disease Diseases of the osteoarticular system Malignant tumor Myocyte Bone metastasis Cancerology Lung metastasis Inhibitor Tumor cell Cancer Macrophage |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6020-124c35199282bc495f94fce4b7bb7fe43138496b24c6ab464fc3d479bdc472623 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 18754872 |
PQID | 21050736 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11158597 proquest_miscellaneous_69486219 proquest_miscellaneous_21050736 crossref_primary_10_1111_j_1349_7006_2008_00880_x pubmed_primary_18754872 pascalfrancis_primary_20599667 wiley_primary_10_1111_j_1349_7006_2008_00880_x_CAS880 |
PublicationCentury | 2000 |
PublicationDate | August 2008 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: August 2008 |
PublicationDecade | 2000 |
PublicationPlace | Melbourne, Australia |
PublicationPlace_xml | – name: Melbourne, Australia – name: Tokyo – name: England |
PublicationTitle | Cancer science |
PublicationTitleAlternate | Cancer Sci |
PublicationYear | 2008 |
Publisher | Blackwell Publishing Asia Blackwell |
Publisher_xml | – name: Blackwell Publishing Asia – name: Blackwell |
References | 2004; 64 2004; 40 2006; 95 2002; 110 2000; 88 2005; 115 2005; 116 2000; 85 2004; 9 2004; 4 2002; 2 2008 1977; 269 2005 2007; 31 2006; 116 2007; 98 1996; 98 1990; 82 1996; 56 2002; 25 2000; 17 1989; 124 1991; 44 2006; 25 2002; 420 1994; 55 2006; 440 1988; 83 2001; 357 2005; 11 2006; 103 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_11_2 Kuwano M (e_1_2_7_10_2) 2005 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 e_1_2_7_29_2 Iguch H (e_1_2_7_4_2) 1996; 56 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 Iguchi H (e_1_2_7_21_2) 2000; 17 Leek RD (e_1_2_7_12_2) 1996; 56 |
References_xml | – volume: 11 start-page: 8789 year: 2005 end-page: 98 article-title: Antitumor vascular strategy for controlling experimental metastatic spread of human small‐cell lung cancer cells with ZD6474 in natural killer cell‐depleted severe combined immunodeficient mice publication-title: Clin Cancer Res – volume: 85 start-page: 182 year: 2000 end-page: 8 article-title: Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNF alpha and IL‐1 alpha publication-title: Int J Cancer – volume: 17 start-page: 329 year: 2000 end-page: 33 article-title: Overproduction of IL‐8 results in suppression of bone metastasis by lung cancer cells publication-title: Int J Oncol – volume: 25 start-page: S3 year: 2002 end-page: 9 article-title: Mechanisms of bisphosphonate effects on osteoclasts, tumor cell growth, and metastasis publication-title: Am J Clin Oncol – volume: 115 start-page: 2979 year: 2005 end-page: 91 article-title: Infiltration of COX2‐expressiong macrophages is prerequisite for IL‐1b‐induced neovascularization and tumor growth publication-title: J Clinic Invest – volume: 64 start-page: 7022 year: 2004 end-page: 9 article-title: A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors publication-title: Cancer Res – volume: 357 start-page: 539 year: 2001 end-page: 45 article-title: Inflammation and cancer: back to Vichow? publication-title: Lancet – volume: 98 start-page: 2009 year: 2007 end-page: 18 article-title: Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis publication-title: Cancer Sci – volume: 44 start-page: 259 year: 1991 end-page: 61 article-title: Reveromycin A, a new antibiotic which inhibits the mitogenic activity of epidermal growth factor publication-title: J Antibiot – volume: 56 start-page: 4040 year: 1996 end-page: 3 article-title: An experimental model of bone metastasis by human lung cancer cells: the role of parathyroid hormone‐related protein in bone metastasis publication-title: Cancer Res – volume: 110 start-page: 1559 year: 2002 end-page: 72 article-title: Guanosine nucleotides inhibit different syndromes of PTHrP excess caused by human cancers publication-title: J Clin Invest – volume: 116 start-page: 458 year: 2005 end-page: 63 article-title: Aerosol gemcitabine inhibits the growth of primary osteosarcoma and osteosarcoma lung metastases publication-title: Int J Cancer – volume: 31 start-page: 672 year: 2007 end-page: 82 article-title: Morphological analysis of osteoclastogenesis induced by RANKL in mouse bone marrow cell cultures publication-title: Cell Biol Int – volume: 98 start-page: 1544 year: 1996 end-page: 9 article-title: Evidence for a causal role of parathyroid hormone‐related protein in the pathogenesis of human breast cancer‐mediated osteolysis publication-title: J Clin Invest – volume: 56 start-page: 4625 year: 1996 end-page: 9 article-title: Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma publication-title: Cancer Res – volume: 11 start-page: 8822 year: 2005 end-page: 8 article-title: Reveromycin A inhibits osteolytic bone metastasis of small‐cell lung cancer cells, SBC‐5, through an antiosteoclastic activity publication-title: Clin Cancer Res – volume: 82 start-page: 166 year: 1990 end-page: 8 article-title: Genetic control of cancer metastasis publication-title: J Natl Cancer Inst – volume: 420 start-page: 860 year: 2002 end-page: 7 article-title: Inflammation and cancer publication-title: Nature – volume: 4 start-page: 71 year: 2004 end-page: 8 article-title: Tumor‐educated macrophages promote tumor progression and metastasis publication-title: Nat Rev Cancer – volume: 88 start-page: 2892 year: 2000 end-page: 8 article-title: Molecular mechanism of osteolytic bone metastasis publication-title: Cancer – volume: 83 start-page: 441 year: 1988 article-title: Bisphosphonates: a new class of drugs in disease of bone and calcium metabolism publication-title: Handbook Exp Pharmacol – volume: 440 start-page: 692 year: 2006 end-page: 6 article-title: Regulation of cancer cell migration and bone metastasis by RANKL publication-title: Nature – volume: 40 start-page: 1660 year: 2004 end-page: 7 article-title: Tumor‐associated macrphages as a prototypic type II plarised phagocytic population: role in tumor progression publication-title: Eur J Cancer – volume: 9 start-page: 3 issue: Suppl 4 year: 2004 end-page: 13 article-title: Bisphosphonates: preclinical review publication-title: Oncologist – volume: 103 start-page: 4729 year: 2006 end-page: 34 article-title: Reveromycin A, an agent for osteoporosis, inhibits bone resorption by inducing apoptosis specifically in osteoclasts publication-title: Proc Natl Acad Sci USA – volume: 269 start-page: 804 year: 1977 end-page: 6 article-title: Activated macrophages induce vascular proliferation publication-title: Nature – volume: 116 start-page: 2132 year: 2006 end-page: 41 article-title: Targeting tumor‐associated macrophages as a novel strategy against breast cancer publication-title: J Clin Invest – volume: 25 start-page: 4257 year: 2006 end-page: 66 article-title: Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma publication-title: Oncogene – volume: 2 start-page: 584 year: 2002 end-page: 93 article-title: Metastasis to bone: causes, consequences and therapeutic opportunities publication-title: Nat Rev Cancer – year: 2008 article-title: Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy publication-title: Cancer Sci – start-page: 157 year: 2005 end-page: 70 – volume: 95 start-page: 272 year: 2006 end-page: 81 article-title: Clodronate‐liposome‐mediated depletion of tumor‐associated macrophages: a new and highly effective antiangiogenic therapy approach publication-title: Br J Cancer – volume: 124 start-page: 1 year: 1989 end-page: 6 article-title: The liposome‐mediated macrophage ‘suicide’ technique publication-title: J Immunol Meth – volume: 55 start-page: 410 year: 1994 end-page: 22 article-title: Macrophages and angiogenesis publication-title: J Leukoc Biol – ident: e_1_2_7_24_2 doi: 10.1634/theoncologist.9-90004-3 – ident: e_1_2_7_5_2 doi: 10.1016/S0140-6736(00)04046-0 – volume: 56 start-page: 4040 year: 1996 ident: e_1_2_7_4_2 article-title: An experimental model of bone metastasis by human lung cancer cells: the role of parathyroid hormone‐related protein in bone metastasis publication-title: Cancer Res contributor: fullname: Iguch H – start-page: 157 volume-title: New Angiogenesis Research year: 2005 ident: e_1_2_7_10_2 contributor: fullname: Kuwano M – ident: e_1_2_7_29_2 doi: 10.1172/JCI27648 – ident: e_1_2_7_8_2 doi: 10.1038/269804a0 – ident: e_1_2_7_11_2 doi: 10.1002/jlb.55.3.410 – ident: e_1_2_7_22_2 doi: 10.1016/0022-1759(89)90178-6 – ident: e_1_2_7_3_2 doi: 10.1002/1097-0142(20000615)88:12 <2892::AID-CNCR2>3.0.CO;2-Y – ident: e_1_2_7_9_2 doi: 10.1016/j.ejca.2004.03.016 – ident: e_1_2_7_19_2 doi: 10.1172/JCI118947 – ident: e_1_2_7_2_2 doi: 10.1093/jnci/82.3.166 – ident: e_1_2_7_28_2 doi: 10.1073/pnas.0505663103 – ident: e_1_2_7_34_2 doi: 10.1111/j.1349-7006.2008.00853.x – ident: e_1_2_7_25_2 doi: 10.1007/978-3-642-71806-9_21 – volume: 56 start-page: 4625 year: 1996 ident: e_1_2_7_12_2 article-title: Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma publication-title: Cancer Res contributor: fullname: Leek RD – ident: e_1_2_7_23_2 doi: 10.1002/ijc.21011 – ident: e_1_2_7_7_2 doi: 10.1038/nrc1256 – ident: e_1_2_7_13_2 doi: 10.1172/JCI23298 – ident: e_1_2_7_35_2 doi: 10.1097/00000421-200212001-00002 – ident: e_1_2_7_6_2 doi: 10.1038/nature01322 – ident: e_1_2_7_16_2 doi: 10.1038/sj.onc.1209456 – ident: e_1_2_7_17_2 doi: 10.1016/j.cellbi.2006.12.008 – ident: e_1_2_7_27_2 doi: 10.1158/1078-0432.CCR-05-1335 – ident: e_1_2_7_31_2 doi: 10.1002/(SICI)1097-0215(20000115)85:2<182::AID-IJC6>3.0.CO;2-M – volume: 17 start-page: 329 year: 2000 ident: e_1_2_7_21_2 article-title: Overproduction of IL‐8 results in suppression of bone metastasis by lung cancer cells in vivo publication-title: Int J Oncol contributor: fullname: Iguchi H – ident: e_1_2_7_18_2 doi: 10.1172/JCI0211936 – ident: e_1_2_7_33_2 doi: 10.1038/nature04524 – ident: e_1_2_7_32_2 doi: 10.1158/0008-5472.CAN-04-1449 – ident: e_1_2_7_14_2 doi: 10.1038/sj.bjc.6603240 – ident: e_1_2_7_15_2 doi: 10.1111/j.1349-7006.2007.00633.x – ident: e_1_2_7_20_2 doi: 10.1038/nrc867 – ident: e_1_2_7_26_2 doi: 10.7164/antibiotics.44.259 – ident: e_1_2_7_30_2 doi: 10.1158/1078-0432.CCR-05-0674 |
SSID | ssj0036494 |
Score | 2.3122518 |
Snippet | Attention has recently focused on the critical role of inflammatory responses in the tumor stroma that provide favorable conditions for cancer‐cell growth and... Attention has recently focused on the critical role of inflammatory responses in the tumor stroma that provide favorable conditions for cancer-cell growth and... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1595 |
SubjectTerms | Animals Biological and medical sciences Bone Density Conservation Agents - pharmacology Bone Neoplasms - drug therapy Bone Neoplasms - secondary Clodronic Acid - pharmacology Disease Models, Animal Diseases of the osteoarticular system Female Humans Lung Neoplasms - drug therapy Lung Neoplasms - pathology Macrophages - drug effects Medical sciences Mice Mice, Inbred BALB C Monocytes - drug effects Muscle Neoplasms - drug therapy Muscle Neoplasms - secondary Neoplasm Invasiveness Original Pyrans - pharmacology Spiro Compounds - pharmacology Tumors Tumors of striated muscle and skeleton |
SummonAdditionalLinks | – databaseName: Wiley Online Library dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9swFBWjhTEYpd3Wzdva6aGv3hJbkaLHUlbaQcdgLfTN6JMEGqdECaz_vufaTlZvLYy9GSQZWfdD50jX9zJ2FH0ce2McDEkXuXDDmJuR8bn0Y2ujka6wdDRw8V2eXYlv16PrLv6J_oVp80NsDtzIMhp_TQZubOobeSl0rug6oQuJhC5-Bp7cpgQylEe_ED_WXrmUQrcFboXK9aD8I6rn0Tf1tqqXtyZh1WJb7uIxPPp3WOVDuNvsV6e7bKcDmvy41Yw99izUr9jzi-4q_TVbnNeTqW0Ctvg8cjuvAze157NVQn8-C0sD4JhCotYbuATuSEEWnI76E7d33HDfYM4U-LTmAJK8LS9CA6Dcc3cHGPtlZqhI2ARuK71hV6dfL0_O8q4AQ-4k0Urs_Y4K-GnwMutApaIW0QVhlbUqBmCPciy0tOgmjRUSjaUXSlvvhCoArPbZVo3pv2Pc6cIryMAPKMWWdboMFGIKcuicVgOTseF6ravbNs9G9YCfQD4VyaermknyqX5l7LAnlM3Aokk6I1XGPq2lVMFqaH1MHearVIHoAgiX8ukeUguQvaHO2NtWqr-nBYoHmldkbNyT96YDZezut9TTSZO5G18DeqYxsVGjGv_8qdXJ8U88vP_PcR_YizbOhQIXP7Kt5WIVDgCmlvawsZJ7vpMUyw priority: 102 providerName: Wiley-Blackwell |
Title | Inhibition of bone and muscle metastases of lung cancer cells by a decrease in the number of monocytes/macrophages |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1349-7006.2008.00880.x https://www.ncbi.nlm.nih.gov/pubmed/18754872 https://search.proquest.com/docview/21050736 https://www.proquest.com/docview/69486219 https://pubmed.ncbi.nlm.nih.gov/PMC11158597 |
Volume | 99 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-aDsZgjH3P-8j0sFc3ia1I0WOXtXSDlNCt0DejTxKolRAnsP73O0l21-wDxt5sdMKS7iT9Tvr5DuCDM25ipNQ4kUSRUz1yuRxLkzMzUcpJpgsVjgZm5-zskn65Gl8dAOv-hYmkfa2WR_66PvLLReRWrms96Hhig_lsivMTUa7ggx700EI7Hz2tvyWjIqWypTwXw_IX_k5JRc7DFURLo0T7TcGoEbgjeC_29qeHa9ngULmU4-JPIPR3LuVdjBs3qdPH8KhFl-Q49eIJHFj_FO7P2vvzZ7D57BdLFVlaZOWIWnlLpDek3jUoT2q7lYgWG9uE0mtcB4gOVrEh4Xy_IeqGSGIi0GwsWXqC6JGknCKhAlr0St8gdh3UMmQGW-Ba1TyHy9OTb9OzvM26kGsWfEnc8HXI2ifQGVMa_ScnqNOWKq4UdxYBRzmhgikUY1JRhoWloVwooykvEE29gEOPzX8FRIvCcFSHGYa4WkqL0gZeKXqEWgs-lBmMurGu1im4RnXHKUFVVUFVbarMoKrqewb9PaXcVixipBnGM3jfaanCqRLGR3q72jUVereIfkv2dwkmKHp4I5HBy6TVn81qzSODyZ6-bwVCmO79ErTeGK67s9YMxtE0_rmr1fT4Kz68_v9PvoEHid8SCItv4XC72dl3CKK2qg-9gs77cO_jyfn8At8-XRT9OI9-AJdSG4c |
link.rule.ids | 230,315,730,783,787,888,1378,11574,27936,27937,33757,46064,46306,46488,46730,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQwIkxP0SBpsfeE0viWvXj1O1qYN1QmITe4t8VSsWt2paifHrOY6TsW5DAt4i2VZ8-Y79nfjLOQAfnXFDI6VGQxJZSnXfpXIgTcrMUCknmc5U-DQwOWHjM_rpfHC-Baz9F6YW7Ws16_iLsuNn01pbuSh1t9WJdb9MRmifyHIF796D-2iwPdp66XEHzhkVMZkt5ano5TcUPDkVKQ-XEI2QEhEcw1EjdUf6nm2cUI8XssLJcjHLxV009Laa8jrLrY-pw6fwrR1gVKd876xXqqN_3oj9-O8z8AyeNMyV7Mfy57Bl_Qt4MGnu5l_C8shPZ6pWgJG5I2ruLZHekHJdYX1S2pVEJlrZKpRe4B5DdEDckoS7g4qoSyKJqUlsZcnME2SmJOYrCQ3QWub6Enlxt5Qh69gU98HqFZwdHpyOxmmT0SHVLPipSCZ0yAgo0NFTGn0zJ6jTliquFHcWyUw-pIIprMakogwLc0O5UEZTniFTew3bHrv_FogWmeG40KYXYnYpLXIbNKvobWoteE8m0G9XsVjEwB3FNYcHQVAEEDRpOAMIih8J7G4s91XDrI5iw3gCe-36F2iGYX6kt_N1VaDnjMw6Z3-uwQRF77EvEngT8fK7Ww3wEhhuIOmqQggBvlmCuKhDgbc4SGBQg-6vh1qM9r_iw7v_f-UePByfTo6L46OTzzvwKOpogjDyPWyvlmv7AcnaSu3WlvkLxNU6WQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD5sHZTB2L2bd2n1sFfHia1I0WPJFtptKYWtUNiD0ZWE1UqIE1j363dk2V3TbTD6ZtARlqXvSN-xPs4BeOeMGxkpNTqSyFOqBy6VQ2lSZkZKOcl0rsKvgekJOzqjH8-H562qsm5llV6rec9fVD0_nzXaymWls04nlp1Ox-ifyHIFz5bGZXfhHjptn3WRetyFC0ZFLGhLeSr6xQ0VT0FFysNFRCumRBTHlNRI35HC51un1IOlrHHCXKx08Tcq-qei8jrTbY6qySP41n1kVKh8723Wqqd_3sj_eLtZeAwPWwZLDqPNE7hj_VPYnbZ39M9gdexnc9UowcjCEbXwlkhvSLWp0Z5Udi2Rkda2Dq0XuNcQHZC3IuEOoSbqkkhiGjJbWzL3BBkqiXVLQgf0moW-RH6cVTJUH5vhflg_h7PJh6_jo7St7JBqFuJVJBU6VAYUGPApjTGaE9RpSxVXijuLpKYYUcEUmjGpKMPGwlAulNGU58jY9mDH4_BfAtEiNxwX2_RD7i6lRWGDdhWjTq0F78sEBt1KlsuYwKO8FvggEMoAhLYcZwBC-SOB_a0lv-qYN9lsGE_goMNAie4Y5kd6u9jUJUbQyLAL9m8LJihGkQORwIuImd_DasGXwGgLTVcGIRX4dgtio0kJ3mEhgWEDvP_-1HJ8-AUfXt3-lQewe_p-Un4-Pvn0Gu5HOU3QR76BnfVqY98iZ1ur_cY5fwGvHjzZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inhibition+of+bone+and+muscle+metastases+of+lung+cancer+cells+by+a+decrease+in+the+number+of+monocytes%2Fmacrophages&rft.jtitle=Cancer+science&rft.au=Hiraoka%2C+Koji&rft.au=Zenmyo%2C+Michihisa&rft.au=Watari%2C+Kousuke&rft.au=Iguchi%2C+Haruo&rft.date=2008-08-01&rft.eissn=1349-7006&rft.volume=99&rft.issue=8&rft.spage=1595&rft_id=info:doi/10.1111%2Fj.1349-7006.2008.00880.x&rft_id=info%3Apmid%2F18754872&rft.externalDocID=18754872 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-9032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-9032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-9032&client=summon |