融合局部加权余弦与稀疏表示的目标跟踪算法

针对目标跟踪算法的鲁棒性难题,在粒子滤波框架下提出基于联合模型的目标跟踪算法.首先,由局部加权余弦相似对目标模板和候选目标进行匹配,其中的局部加权算法增加了未受遮挡、形变等影响的候选目标的权重;其次,通过对目标区域局部图像块稀疏编码来表示目标观测模型,其中字典不进行更新,重建误差的构建考虑了局部图像块之间的空间布局;最后,利用最大后验概率估计目标状态.联合模型将目标的当前状态和原始状态都考虑在内,提高了观测模型的可靠性.实验结果表明,该算法具有较强的鲁棒性....

Full description

Saved in:
Bibliographic Details
Published in电讯技术 Vol. 58; no. 1; pp. 66 - 71
Main Author 薛斌;范馨月;周非
Format Journal Article
LanguageChinese
Published 重庆邮电大学光通信与网络重点实验室,重庆,400065 2018
Subjects
Online AccessGet full text
ISSN1001-893X
DOI10.3969/j.issn.1001-893x.2018.01.012

Cover

Abstract 针对目标跟踪算法的鲁棒性难题,在粒子滤波框架下提出基于联合模型的目标跟踪算法.首先,由局部加权余弦相似对目标模板和候选目标进行匹配,其中的局部加权算法增加了未受遮挡、形变等影响的候选目标的权重;其次,通过对目标区域局部图像块稀疏编码来表示目标观测模型,其中字典不进行更新,重建误差的构建考虑了局部图像块之间的空间布局;最后,利用最大后验概率估计目标状态.联合模型将目标的当前状态和原始状态都考虑在内,提高了观测模型的可靠性.实验结果表明,该算法具有较强的鲁棒性.
AbstractList TN911.73%TP391.4; 针对目标跟踪算法的鲁棒性难题,在粒子滤波框架下提出基于联合模型的目标跟踪算法.首先,由局部加权余弦相似对目标模板和候选目标进行匹配,其中的局部加权算法增加了未受遮挡、形变等影响的候选目标的权重;其次,通过对目标区域局部图像块稀疏编码来表示目标观测模型,其中字典不进行更新,重建误差的构建考虑了局部图像块之间的空间布局;最后,利用最大后验概率估计目标状态.联合模型将目标的当前状态和原始状态都考虑在内,提高了观测模型的可靠性.实验结果表明,该算法具有较强的鲁棒性.
针对目标跟踪算法的鲁棒性难题,在粒子滤波框架下提出基于联合模型的目标跟踪算法.首先,由局部加权余弦相似对目标模板和候选目标进行匹配,其中的局部加权算法增加了未受遮挡、形变等影响的候选目标的权重;其次,通过对目标区域局部图像块稀疏编码来表示目标观测模型,其中字典不进行更新,重建误差的构建考虑了局部图像块之间的空间布局;最后,利用最大后验概率估计目标状态.联合模型将目标的当前状态和原始状态都考虑在内,提高了观测模型的可靠性.实验结果表明,该算法具有较强的鲁棒性.
Abstract_FL Focusing on the robustness problem of target tracking algorithm,this paper proposes a target tracking method based on joint model in the particle filter framework.Firstly,the target template and the candidate targets are matched by the weighted local cosine similarity.The proposed local weighted algorithm increases the weights of the candidate targets which are not affected by occlusion,deformation,etc.Secondly,the target observation model makes use of the local information of the target by sparse coding and the dictionary is not updated.The construction of the reconstruction error considers the spatial layout between the local image patches.Finally,the maximum posterior probability is used to estimate the target state.The joint model considers the current state and the original state of the target so as to improve the reliability of the observation model.The experimental results demonstrate the robustness of the algorithm.
Author 薛斌;范馨月;周非
AuthorAffiliation 重庆邮电大学光通信与网络重点实验室,重庆400065
AuthorAffiliation_xml – name: 重庆邮电大学光通信与网络重点实验室,重庆,400065
Author_FL ZHOU Fei
XUE Bin
FAN Xinyue
Author_FL_xml – sequence: 1
  fullname: XUE Bin
– sequence: 2
  fullname: FAN Xinyue
– sequence: 3
  fullname: ZHOU Fei
Author_xml – sequence: 1
  fullname: 薛斌;范馨月;周非
BookMark eNo1j81Kw0AcxPdQwVr7EuLBS-Ju_sluFrxI8QsKXnrwVjbZpKboVhvEeitUqAh-XFRU1AoiwUNBPFhE36Zp4lsYqcLAwPBjhplCOdVQHkKzBOvAKZ-v60EYKp1gTDSbQ0s3MLF1TDIZOZT_zzcmUTEMAwcbQE1q2iSPFtL7k_j8KH5tf3ei-Lg3uusMv67jz-fh4DSJ2snlWfoYJU8fyc1hctsf9brp-0M6eEn6V6O3i2k04Yut0Cv-eQFVlpcqpVWtvL6yVlosay7FhuZY0mCeRbCLJWVUAFDpGraPLV-4jvQdLjEQi4DDPW5TyQU1CROcCWIxDh4U0Ny4dl8oX6hatd7Ya6pssCoDoVr18PctJtnXDJ0Zo-5mQ9V2gwzeaQbbonlQpcwERsEG-AFq_G8l
ClassificationCodes TN911.73%TP391.4
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-893x.2018.01.012
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate An Object Tracking Algorithm Fused by Weighted Local Cosine and Sparse Representation
DocumentTitle_FL An Object Tracking Algorithm Fused by Weighted Local Cosine and Sparse Representation
EndPage 71
ExternalDocumentID dianxjs201801012
674376383
GrantInformation_xml – fundername: 国家自然科学基金资助项目
  funderid: (61471077)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c602-b5d27e510c0d676a336dc28f05facbdfb9d031513b9e986d9a6417a97a15793e3
ISSN 1001-893X
IngestDate Thu May 29 03:55:22 EDT 2025
Wed Feb 14 10:08:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 联合模型
局部加权
local weighted
余弦相似
object tracking
目标跟踪
cosine similarity
joint model
稀疏表示
sparse representation
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c602-b5d27e510c0d676a336dc28f05facbdfb9d031513b9e986d9a6417a97a15793e3
Notes object tracking ; local weighted; cosine similarity; sparse representation ;joint model
XUE Bin,FAN Xinyue,ZHOU Fei(Chongqing Key Laboratory of Optical Communication and Networks,Chongqing University of Posts and Telecommunications,Chongqing 400065, China)
Focusing on the robustness problem of target tracking algorithm,this paper proposes a target tracking method based on joint model in the particle filter framework. Firstly,the target template and the candidate targets are matched by the weighted local cosine similarity. The proposed local weighted algo-rithm increases the weights of the candidate targets which are not affected by occlusion, deformation, etc. Secondly,the target observation model makes use of the local information of the target by sparse coding and the dictionary is not updated. The construction of the reconstruction error considers the spatial layout be-tween the local image patches. Finally,the maximum posterior probability is used to estimate the target state. The joint model considers the
PageCount 6
ParticipantIDs wanfang_journals_dianxjs201801012
chongqing_primary_674376383
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle 电讯技术
PublicationTitleAlternate Telecommunication Engineering
PublicationTitle_FL Telecommunication Engineering
PublicationYear 2018
Publisher 重庆邮电大学光通信与网络重点实验室,重庆,400065
Publisher_xml – name: 重庆邮电大学光通信与网络重点实验室,重庆,400065
SSID ssib023646481
ssib001102885
ssib036437028
ssib051374628
ssib000459929
ssib009282364
ssib006568479
ssib018830122
Score 2.1015134
Snippet ...
TN911.73%TP391.4;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 66
SubjectTerms 余弦相似
局部加权
目标跟踪
稀疏表示
联合模型
Title 融合局部加权余弦与稀疏表示的目标跟踪算法
URI http://lib.cqvip.com/qk/91166X/201801/674376383.html
https://d.wanfangdata.com.cn/periodical/dianxjs201801012
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxNBdIgpiBdRVKxVqdA5pu5mMl_gZbfZUMR6MUJuYSfZbfGQqk2h9FSooAh-XFRU1AoiwUNBPFhE_02Tjf_C92Y36ValWC_L5M2bN_PmTd7H7rwZQmZkqHhkDCxeJ4whQHF4KRQiLEkeQ0AEAUvIMN954bqYv1m52uCNQqGX27W02jWzrfW_5pX8j1QBBnLFLNlDSHZMFABQBvnCEyQMz3-SMQ0U1QFVVRpwqh2qFBZ8F7cvBJoqRj0LUR71ACKoriIwqFC_SrW2yHPUExaiqApoILEJNpdUC6pq2IXnWjpQBWierfKoqtiCT70AKQN9JRHZB6BtBQQ9iwwIWiKOz2h61eXIG7YUgCa3vQTUqyEajFalo4WxjTceW14Fdog1gDVHmY9AKCBPGvnAYdp2MBNYC7OSjl0j6zrIv-PYp5Bxyxf4VI28xubqj5WZql8hcoY8vdrldxPBtNDWRCD52RH5Ndzkp-wBrtmu7v2HcGOqBmhixY6QibKULi-SCa-6cO1G3jXWeVfTRc8tdy4Q-M3gCOzV6zJeNT_Wha5SDL9yjn5jncjlSDP8wOrshYrcZRLTiu3H_GyKjpKZjMHLB7GHp4gsLXcW74BvZFPVOnHYWcx5VfUT5HgWDk176do-SQrrS6fIleHbR_2nD_qfN35u9voPtwZvNnd_vOx__7i78zjpbSTPnwzf95IP35JX95LX24Ot-8Ov74Y7n5LtF4Mvz06Tei2oz82Xsls-Si0B1tjwdllGYBlaTltIETIm2q2yih0ehy3Tjo1u40UkLjM60kq0dSgqrgy1DF0OtiViZ0ixs9yJzpJp2TJCcR5JY2KIAiKYUmm4ASe4EoKjzifJ1Jjx5u30MJfmWLKT5FI2Fc3sL77SRBW9dmsFJw_PYiyfO5DCFDmGmOkLuvOk2L27Gl0Al7VrLmar5Rd_D3Uq
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%9E%8D%E5%90%88%E5%B1%80%E9%83%A8%E5%8A%A0%E6%9D%83%E4%BD%99%E5%BC%A6%E4%B8%8E%E7%A8%80%E7%96%8F%E8%A1%A8%E7%A4%BA%E7%9A%84%E7%9B%AE%E6%A0%87%E8%B7%9F%E8%B8%AA%E7%AE%97%E6%B3%95&rft.jtitle=%E7%94%B5%E8%AE%AF%E6%8A%80%E6%9C%AF&rft.au=%E8%96%9B%E6%96%8C%3B%E8%8C%83%E9%A6%A8%E6%9C%88%3B%E5%91%A8%E9%9D%9E&rft.date=2018&rft.issn=1001-893X&rft.volume=58&rft.issue=1&rft.spage=66&rft.epage=71&rft_id=info:doi/10.3969%2Fj.issn.1001-893x.2018.01.012&rft.externalDocID=674376383
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F91166X%2F91166X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdianxjs%2Fdianxjs.jpg