COVID-19 and Parkinson’s Disease: Shared Inflammatory Pathways Under Oxidative Stress

The current coronavirus pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a serious global health crisis. It is a major concern for individuals living with chronic disorders such as Parkinson’s disease (PD). Increasing evidence suggests an involvemen...

Full description

Saved in:
Bibliographic Details
Published inBrain Sciences Vol. 10; no. 11; p. 807
Main Authors Chaudhry, Zaharah L, Klenja, Donika, Janjua, Najma, Cami-Kobeci, Gerta, Ahmad, Bushra Y
Format Journal Article
LanguageEnglish
Published MDPI AG 31.10.2020
MDPI
Subjects
Online AccessGet full text
ISSN2076-3425
2076-3425
DOI10.3390/brainsci10110807

Cover

Abstract The current coronavirus pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a serious global health crisis. It is a major concern for individuals living with chronic disorders such as Parkinson’s disease (PD). Increasing evidence suggests an involvement of oxidative stress and contribution of NFκB in the development of both COVID-19 and PD. Although, it is early to identify if SARS-CoV-2 led infection enhances PD complications, it is likely that oxidative stress may exacerbate PD progression in COVID-19 affected individuals and/or vice versa. In the current study, we sought to investigate whether NFκB-associated inflammatory pathways following oxidative stress in SARS-CoV-2 and PD patients are correlated. Toward this goal, we have integrated bioinformatics analysis obtained from Basic Local Alignment Search Tool of Protein Database (BLASTP) search for similarities of SARS-CoV-2 proteins against human proteome, literature review, and laboratory data obtained in a human cell model of PD. A Parkinson’s like state was created in 6-hydroxydopamine (6OHDA)-induced differentiated dopamine-containing neurons (dDCNs) obtained from an immortalized human neural progenitor cell line derived from the ventral mesencephalon region of the brain (ReNVM). The results indicated that SARS-CoV-2 infection and 6OHDA-induced toxicity triggered stimulation of caspases-2, -3 and -8 via the NFκB pathway resulting in the death of dDCNs. Furthermore, specific inhibitors for NFκB and studied caspases reduced the death of stressed dDCNs. The findings suggest that knowledge of the selective inhibition of caspases and NFκB activation may contribute to the development of potential therapeutic approaches for the treatment of COVID-19 and PD.
AbstractList The current coronavirus pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a serious global health crisis. It is a major concern for individuals living with chronic disorders such as Parkinson’s disease (PD). Increasing evidence suggests an involvement of oxidative stress and contribution of NFκB in the development of both COVID-19 and PD. Although, it is early to identify if SARS-CoV-2 led infection enhances PD complications, it is likely that oxidative stress may exacerbate PD progression in COVID-19 affected individuals and/or vice versa. In the current study, we sought to investigate whether NFκB-associated inflammatory pathways following oxidative stress in SARS-CoV-2 and PD patients are correlated. Toward this goal, we have integrated bioinformatics analysis obtained from Basic Local Alignment Search Tool of Protein Database (BLASTP) search for similarities of SARS-CoV-2 proteins against human proteome, literature review, and laboratory data obtained in a human cell model of PD. A Parkinson’s like state was created in 6-hydroxydopamine (6OHDA)-induced differentiated dopamine-containing neurons (dDCNs) obtained from an immortalized human neural progenitor cell line derived from the ventral mesencephalon region of the brain (ReNVM). The results indicated that SARS-CoV-2 infection and 6OHDA-induced toxicity triggered stimulation of caspases-2, -3 and -8 via the NFκB pathway resulting in the death of dDCNs. Furthermore, specific inhibitors for NFκB and studied caspases reduced the death of stressed dDCNs. The findings suggest that knowledge of the selective inhibition of caspases and NFκB activation may contribute to the development of potential therapeutic approaches for the treatment of COVID-19 and PD.
The current coronavirus pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a serious global health crisis. It is a major concern for individuals living with chronic disorders such as Parkinson's disease (PD). Increasing evidence suggests an involvement of oxidative stress and contribution of NF[kappa]B in the development of both COVID-19 and PD. Although, it is early to identify if SARS-CoV-2 led infection enhances PD complications, it is likely that oxidative stress may exacerbate PD progression in COVID-19 affected individuals and/or vice versa. In the current study, we sought to investigate whether NF[kappa]B-associated inflammatory pathways following oxidative stress in SARS-CoV-2 and PD patients are correlated. Toward this goal, we have integrated bioinformatics analysis obtained from Basic Local Alignment Search Tool of Protein Database (BLASTP) search for similarities of SARS-CoV-2 proteins against human proteome, literature review, and laboratory data obtained in a human cell model of PD. A Parkinson's like state was created in 6-hydroxydopamine (6OHDA)-induced differentiated dopamine-containing neurons (dDCNs) obtained from an immortalized human neural progenitor cell line derived from the ventral mesencephalon region of the brain (ReNVM). The results indicated that SARS-CoV-2 infection and 6OHDA-induced toxicity triggered stimulation of caspases-2, -3 and -8 via the NF[kappa]B pathway resulting in the death of dDCNs. Furthermore, specific inhibitors for NF[kappa]B and studied caspases reduced the death of stressed dDCNs. The findings suggest that knowledge of the selective inhibition of caspases and NF[kappa]B activation may contribute to the development of potential therapeutic approaches for the treatment of COVID-19 and PD.
The current coronavirus pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a serious global health crisis. It is a major concern for individuals living with chronic disorders such as Parkinson's disease (PD). Increasing evidence suggests an involvement of oxidative stress and contribution of NF[kappa]B in the development of both COVID-19 and PD. Although, it is early to identify if SARS-CoV-2 led infection enhances PD complications, it is likely that oxidative stress may exacerbate PD progression in COVID-19 affected individuals and/or vice versa. In the current study, we sought to investigate whether NF[kappa]B-associated inflammatory pathways following oxidative stress in SARS-CoV-2 and PD patients are correlated. Toward this goal, we have integrated bioinformatics analysis obtained from Basic Local Alignment Search Tool of Protein Database (BLASTP) search for similarities of SARS-CoV-2 proteins against human proteome, literature review, and laboratory data obtained in a human cell model of PD. A Parkinson's like state was created in 6-hydroxydopamine (6OHDA)-induced differentiated dopamine-containing neurons (dDCNs) obtained from an immortalized human neural progenitor cell line derived from the ventral mesencephalon region of the brain (ReNVM). The results indicated that SARS-CoV-2 infection and 6OHDA-induced toxicity triggered stimulation of caspases-2, -3 and -8 via the NF[kappa]B pathway resulting in the death of dDCNs. Furthermore, specific inhibitors for NF[kappa]B and studied caspases reduced the death of stressed dDCNs. The findings suggest that knowledge of the selective inhibition of caspases and NF[kappa]B activation may contribute to the development of potential therapeutic approaches for the treatment of COVID-19 and PD. Keywords: Parkinson's disease; SARS-CoV-2; caspase; inhibitors; nuclear factor kappa B (NF[kappa]B); 6OHDA; oxidative stress; apoptosis
The current coronavirus pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a serious global health crisis. It is a major concern for individuals living with chronic disorders such as Parkinson's disease (PD). Increasing evidence suggests an involvement of oxidative stress and contribution of NFκB in the development of both COVID-19 and PD. Although, it is early to identify if SARS-CoV-2 led infection enhances PD complications, it is likely that oxidative stress may exacerbate PD progression in COVID-19 affected individuals and/or vice versa. In the current study, we sought to investigate whether NFκB-associated inflammatory pathways following oxidative stress in SARS-CoV-2 and PD patients are correlated. Toward this goal, we have integrated bioinformatics analysis obtained from Basic Local Alignment Search Tool of Protein Database (BLASTP) search for similarities of SARS-CoV-2 proteins against human proteome, literature review, and laboratory data obtained in a human cell model of PD. A Parkinson's like state was created in 6-hydroxydopamine (6OHDA)-induced differentiated dopamine-containing neurons (dDCNs) obtained from an immortalized human neural progenitor cell line derived from the ventral mesencephalon region of the brain (ReNVM). The results indicated that SARS-CoV-2 infection and 6OHDA-induced toxicity triggered stimulation of caspases-2, -3 and -8 via the NFκB pathway resulting in the death of dDCNs. Furthermore, specific inhibitors for NFκB and studied caspases reduced the death of stressed dDCNs. The findings suggest that knowledge of the selective inhibition of caspases and NFκB activation may contribute to the development of potential therapeutic approaches for the treatment of COVID-19 and PD.The current coronavirus pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a serious global health crisis. It is a major concern for individuals living with chronic disorders such as Parkinson's disease (PD). Increasing evidence suggests an involvement of oxidative stress and contribution of NFκB in the development of both COVID-19 and PD. Although, it is early to identify if SARS-CoV-2 led infection enhances PD complications, it is likely that oxidative stress may exacerbate PD progression in COVID-19 affected individuals and/or vice versa. In the current study, we sought to investigate whether NFκB-associated inflammatory pathways following oxidative stress in SARS-CoV-2 and PD patients are correlated. Toward this goal, we have integrated bioinformatics analysis obtained from Basic Local Alignment Search Tool of Protein Database (BLASTP) search for similarities of SARS-CoV-2 proteins against human proteome, literature review, and laboratory data obtained in a human cell model of PD. A Parkinson's like state was created in 6-hydroxydopamine (6OHDA)-induced differentiated dopamine-containing neurons (dDCNs) obtained from an immortalized human neural progenitor cell line derived from the ventral mesencephalon region of the brain (ReNVM). The results indicated that SARS-CoV-2 infection and 6OHDA-induced toxicity triggered stimulation of caspases-2, -3 and -8 via the NFκB pathway resulting in the death of dDCNs. Furthermore, specific inhibitors for NFκB and studied caspases reduced the death of stressed dDCNs. The findings suggest that knowledge of the selective inhibition of caspases and NFκB activation may contribute to the development of potential therapeutic approaches for the treatment of COVID-19 and PD.
Audience Academic
Author Ahmad, Bushra Y
Janjua, Najma
Cami-Kobeci, Gerta
Klenja, Donika
Chaudhry, Zaharah L
AuthorAffiliation 1 Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK; zohara.chaudhry@beds.ac.uk (Z.L.C.); Gerta.Cami-Kobeci@beds.ac.uk (G.C.-K.)
3 Faculty of Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan; jann@med.kawasaki-m.ac.jp
2 School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK; wo18459@bristol.ac.uk
AuthorAffiliation_xml – name: 1 Institute of Biomedical & Environmental Science and Technology, School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University Square, University of Bedfordshire, Luton LU1 3JU, UK; zohara.chaudhry@beds.ac.uk (Z.L.C.); Gerta.Cami-Kobeci@beds.ac.uk (G.C.-K.)
– name: 3 Faculty of Medicine, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan; jann@med.kawasaki-m.ac.jp
– name: 2 School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK; wo18459@bristol.ac.uk
Author_xml – sequence: 1
  fullname: Chaudhry, Zaharah L
– sequence: 2
  fullname: Klenja, Donika
– sequence: 3
  fullname: Janjua, Najma
– sequence: 4
  fullname: Cami-Kobeci, Gerta
– sequence: 5
  fullname: Ahmad, Bushra Y
BackLink https://cir.nii.ac.jp/crid/1872835443118643584$$DView record in CiNii
BookMark eNp9kk1vEzEQhleoiJbSO8eV4MAlxWN7vV4OSFXKR6RKQSqFozXrj9RlY7f2ppAbf4O_xy_BIUUiFcKWPNb4fR-P5Xlc7YUYbFU9BXLMWEde9gl9yNoDASCStA-qA0paMWGcNnt_7fero5yvSBmSENaQR9U-Y8CphO6g-jydf5qdTqCrMZj6A6YvhRnDz-8_cn3qs8VsX9Xnl5isqWfBDbhc4hjTukjHy6-4zvVFMDbV82_e4OhvbX0-Jpvzk-qhwyHbo7t4WF28ffNx-n5yNn83m56cTbQgME6ccagN7SVYJA2AaRnFDgB7y7veakAE4pBz4kpgtudAZatNq6EF6hw7rGZbrol4pa6TX2Jaq4he_U7EtFCYRq8HqxwVwITVpjfA0UgpUAtJqbZcMNJgYb3esq5X_dIabcOYcNiB7p4Ef6kW8Va1omMSeAG8uAOkeLOyeVRLn7UdBgw2rrKivGkF59DRIn22lS6wlOaDi4WoN3J1UiStYEBFUR3_Q1WmsUuvSzs4X_I7BrE16BRzTtYp7cfyL3FTsB8UELXpHXW_d4qR3DP-efZ_LM-3luB9uWazgmypZA3nDEAKzhrJ2S9VndPp
CitedBy_id crossref_primary_10_1155_2022_3012778
crossref_primary_10_2147_JIR_S333887
crossref_primary_10_3390_brainsci12020143
crossref_primary_10_1038_s41420_024_01915_6
crossref_primary_10_3390_pharmaceutics15051562
crossref_primary_10_1007_s12035_023_03756_3
crossref_primary_10_1080_03623319_2024_2413785
crossref_primary_10_3390_brainsci12040507
crossref_primary_10_1097_MD_0000000000031813
crossref_primary_10_1055_a_1634_2377
crossref_primary_10_3389_fnins_2022_867825
crossref_primary_10_3390_ijms23179739
crossref_primary_10_3389_fimmu_2025_1515768
crossref_primary_10_1038_s42004_023_01043_9
crossref_primary_10_1093_bib_bbab169
crossref_primary_10_3390_brainsci11121654
crossref_primary_10_1007_s12035_021_02450_6
crossref_primary_10_2147_JIR_S460161
crossref_primary_10_1055_a_1678_3250
crossref_primary_10_1093_narmme_ugae012
crossref_primary_10_3390_nano12132267
crossref_primary_10_3233_JPD_202320
crossref_primary_10_3390_brainsci12050536
Cites_doi 10.1002/bies.1089
10.1016/j.brainres.2011.02.092
10.1186/s12974-018-1193-6
10.1042/BJ20052026
10.3233/JPD-160804
10.4172/2161-0460.1000461
10.12659/MSMBR.910307
10.1016/S0006-291X(03)00309-7
10.1523/JNEUROSCI.5175-08.2009
10.1186/s12576-020-00743-4
10.1128/MCB.01430-12
10.1016/S0140-6736(20)30251-8
10.1074/jbc.M203885200
10.1016/j.thromres.2019.07.013
10.18632/aging.103511
10.1016/j.tiv.2005.01.006
10.1038/366580a0
10.1016/j.cell.2020.02.052
10.5607/en.2015.24.4.325
10.1038/sj.cdd.4402047
10.1038/s41423-020-0485-9
10.1016/j.bbabio.2009.03.010
10.1016/j.abb.2019.05.011
10.1002/emmm.201000080
10.1016/j.resp.2011.09.012
10.1016/j.tcb.2012.08.001
10.1038/sj.onc.1205255
10.1212/WNL.0b013e3182703f76
10.1073/pnas.94.14.7531
10.1152/japplphysiol.00391.2007
10.1016/j.dsx.2020.04.020
10.1038/nrmicro.2016.81
10.1074/jbc.M307774200
10.1073/pnas.0704908104
10.1152/ajprenal.00166.2017
10.1016/j.bbadis.2009.09.002
10.1016/j.immuni.2020.04.003
10.1038/sj.embor.7400380
10.1016/j.redox.2017.02.014
10.1146/annurev.biochem.74.082803.133400
10.1016/S0006-2952(99)00296-8
10.1016/j.freeradbiomed.2014.03.011
10.1016/j.freeradbiomed.2009.10.045
10.1016/S0301-0082(01)00003-X
10.1046/j.1471-4159.2000.0741384.x
10.1016/j.cytogfr.2020.05.002
10.1016/j.nbd.2013.08.007
10.1038/ni.3279
10.1006/exnr.2002.7891
10.5607/en.2015.24.2.103
10.1097/WNR.0b013e328364d616
10.1016/j.neulet.2013.08.020
10.1124/mol.63.4.784
10.3390/v12060646
10.1016/j.redox.2015.08.016
10.1152/ajpregu.00057.2009
10.3389/fnana.2015.00091
10.1038/s41586-020-2012-7
10.1016/S0140-6736(20)30183-5
10.4062/biomolther.2018.047
10.1523/JNEUROSCI.5537-06.2007
10.3349/ymj.2015.56.3.862
10.1101/cshperspect.a009365
10.1016/j.freeradbiomed.2006.10.047
10.1038/ncomms12849
ContentType Journal Article
Contributor University of Bristol
University of Bedfordshire
Kawasaki Medical School
Contributor_xml – sequence: 1
  fullname: University of Bedfordshire
– sequence: 2
  fullname: University of Bristol
– sequence: 3
  fullname: Kawasaki Medical School
Copyright COPYRIGHT 2020 MDPI AG
2020 by the authors. 2020
Copyright_xml – notice: COPYRIGHT 2020 MDPI AG
– notice: 2020 by the authors. 2020
DBID RYH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3390/brainsci10110807
DatabaseName CiNii Complete
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList



MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2076-3425
ExternalDocumentID oai_doaj_org_article_f26136ecdbd14ad886ac6822ce46305a
PMC7693814
A644763126
10_3390_brainsci10110807
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID 53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
RYH
AAYXX
CITATION
PMFND
7X8
PQGLB
PUEGO
5PM
ID FETCH-LOGICAL-c601t-fdfacd2b81ea0511d732a911abe49bec1aa10fa440f0fa3eb41287cd7c1712ff3
IEDL.DBID M48
ISSN 2076-3425
IngestDate Wed Aug 27 01:22:53 EDT 2025
Thu Aug 21 13:52:29 EDT 2025
Fri Sep 05 07:51:19 EDT 2025
Tue Jun 17 21:25:24 EDT 2025
Tue Jun 10 20:39:27 EDT 2025
Tue Jul 01 02:32:44 EDT 2025
Thu Apr 24 23:08:16 EDT 2025
Thu Jun 26 22:27:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c601t-fdfacd2b81ea0511d732a911abe49bec1aa10fa440f0fa3eb41287cd7c1712ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This is part of the doctoral thesis of Zahara L. Chaudhry.
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/brainsci10110807
PMID 33142819
PQID 2457644192
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f26136ecdbd14ad886ac6822ce46305a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7693814
proquest_miscellaneous_2457644192
gale_infotracmisc_A644763126
gale_infotracacademiconefile_A644763126
crossref_citationtrail_10_3390_brainsci10110807
crossref_primary_10_3390_brainsci10110807
nii_cinii_1872835443118643584
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201031
PublicationDateYYYYMMDD 2020-10-31
PublicationDate_xml – month: 10
  year: 2020
  text: 20201031
  day: 31
PublicationDecade 2020
PublicationTitle Brain Sciences
PublicationYear 2020
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chen (ref_9) 2018; 15
Hunot (ref_45) 1997; 94
Erekat (ref_46) 2018; 24
ref_12
ref_55
Nicholls (ref_28) 2009; 1787
Midwinter (ref_18) 2006; 396
Kim (ref_65) 2013; 60
Kim (ref_66) 2002; 277
Han (ref_52) 2019; 27
Apelbaum (ref_61) 2013; 33
Gazewood (ref_26) 2013; 87
Tornatore (ref_16) 2012; 22
Chaudhry (ref_44) 2014; 4
Hyrc (ref_74) 2003; 63
McStay (ref_53) 2014; 2014
Bowie (ref_15) 2000; 59
Henn (ref_48) 2007; 27
Ho (ref_73) 2009; 29
Huang (ref_2) 2020; 395
Gupta (ref_20) 2019; 181
Shuai (ref_67) 1993; 366
Lalley (ref_35) 2009; 296
ref_68
Nile (ref_6) 2020; 53
Dong (ref_21) 2020; 12
Glinka (ref_34) 1995; 292
Blesa (ref_40) 2015; 9
Lu (ref_3) 2020; 395
Lamkanfi (ref_72) 2007; 14
Zhang (ref_59) 2015; 16
Jia (ref_14) 2007; 42
Falzarano (ref_1) 2016; 14
Jiang (ref_69) 2012; 79
Deumens (ref_30) 2002; 175
Cha (ref_13) 2015; 56
Cookson (ref_51) 2005; 74
Astuti (ref_57) 2020; 14
Asanuma (ref_75) 2004; 58
Moon (ref_42) 2015; 24
Alva (ref_22) 2017; 12
Krappmann (ref_19) 2005; 6
Ramos (ref_24) 2014; 71
Sinkovics (ref_10) 2015; 47
Baille (ref_36) 2016; 16
Ghosh (ref_47) 2007; 104
Hoffmann (ref_5) 2020; 181
Zhou (ref_4) 2020; 579
Niizuma (ref_27) 2010; 1802
Tirmenstein (ref_32) 2005; 19
Benigni (ref_8) 2010; 2
Kim (ref_41) 2015; 24
Blum (ref_33) 2001; 65
Niizuma (ref_25) 2009; 109
Ye (ref_71) 2013; 553
Dimova (ref_23) 2015; 6
Kumar (ref_11) 2017; 313
Butturini (ref_64) 2019; 669
Cassarino (ref_43) 2000; 74
Donnelly (ref_31) 2007; 103
Andersen (ref_50) 2001; 23
Salvesen (ref_54) 2012; 824
Flood (ref_17) 2011; 2011
Masumoto (ref_70) 2003; 303
Gong (ref_39) 2017; 14
Xiang (ref_49) 2011; 1387
Sironi (ref_62) 2004; 279
Ahmed (ref_56) 2013; 24
Iwata (ref_58) 2016; 7
Ren (ref_63) 2020; 8
Hirano (ref_7) 2020; 52
Seccombe (ref_37) 2011; 179
Andrzejewski (ref_29) 2020; 70
Kalivendi (ref_38) 2010; 48
Fulda (ref_60) 2002; 21
References_xml – volume: 23
  start-page: 640
  year: 2001
  ident: ref_50
  article-title: Does neuronal loss in Parkinson’s disease involve programmed cell death?
  publication-title: Bioessays
  doi: 10.1002/bies.1089
– volume: 1387
  start-page: 29
  year: 2011
  ident: ref_49
  article-title: Cathepsin L is involved in 6-hydroxydopamine induced apoptosis of SH-SY5Y neuroblastoma cells
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2011.02.092
– volume: 15
  start-page: 150
  year: 2018
  ident: ref_9
  article-title: Valproic acid attenuates traumatic spinal cord injury-induced inflammation via STAT1 and NF-κB pathway dependent of HDAC3
  publication-title: J. Neuroinflamm.
  doi: 10.1186/s12974-018-1193-6
– volume: 47
  start-page: 1211
  year: 2015
  ident: ref_10
  article-title: The cnidarian origin of the proto-oncogenes NF-κB/STAT and WNT-like oncogenic pathway drives the ctenophores
  publication-title: Int. J. Oncol.
– volume: 824
  start-page: 113
  year: 2012
  ident: ref_54
  article-title: Proliferative versus apoptotic functions of caspase-8 Hetero or homo: The caspase-8 dimer controls cell fate
  publication-title: Biochimica Biophysica Acta
– volume: 396
  start-page: 71
  year: 2006
  ident: ref_18
  article-title: IkappaB is a sensitive target for oxidation by cell-permeable chloramines: Inhibition of NF-kappaB activity by glycine chloramine through methionine oxidation
  publication-title: Biochem. J.
  doi: 10.1042/BJ20052026
– volume: 16
  start-page: 463
  year: 2016
  ident: ref_36
  article-title: Ventilatory dysfunction in Parkinson’s disease
  publication-title: J. Parkinson’s Dis.
  doi: 10.3233/JPD-160804
– ident: ref_55
  doi: 10.4172/2161-0460.1000461
– volume: 24
  start-page: 120
  year: 2018
  ident: ref_46
  article-title: Association of Parkinson disease induction with cardiac upregulation of apoptotic mediators P53 and active caspase-3: An immunohistochemistry study
  publication-title: Med. Sci. Monit. Basic Res.
  doi: 10.12659/MSMBR.910307
– volume: 303
  start-page: 69
  year: 2003
  ident: ref_70
  article-title: ASC is an activating adaptor for NF-kappa B and caspase-8-dependent apoptosis
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(03)00309-7
– volume: 29
  start-page: 1011
  year: 2009
  ident: ref_73
  article-title: The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5175-08.2009
– volume: 70
  start-page: 16
  year: 2020
  ident: ref_29
  article-title: Respiratory pattern and phrenic and hypoglossal nerve activity during normoxia and hypoxia in 6-OHDA-induced bilateral model of Parkinson’s disease. 25
  publication-title: J. Physiol. Sci.
  doi: 10.1186/s12576-020-00743-4
– volume: 33
  start-page: 800
  year: 2013
  ident: ref_61
  article-title: Type I interferons induce apoptosis by balancing cFLIP and caspase-8 independent of death ligands
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01430-12
– volume: 395
  start-page: 565
  year: 2020
  ident: ref_3
  article-title: Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30251-8
– volume: 277
  start-page: 40594
  year: 2002
  ident: ref_66
  article-title: JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M203885200
– volume: 181
  start-page: 77
  year: 2019
  ident: ref_20
  article-title: The stimulation of thrombosis by hypoxia
  publication-title: Thromb. Res.
  doi: 10.1016/j.thromres.2019.07.013
– volume: 12
  start-page: 13791
  year: 2020
  ident: ref_21
  article-title: Pathophysiology of SARS-CoV-2 infection in patients with intracerebral hemorrhage
  publication-title: Aging
  doi: 10.18632/aging.103511
– volume: 19
  start-page: 471
  year: 2005
  ident: ref_32
  article-title: Effects of 6-hydroxydopamine on mitochondrial function and glutathione status in SH-SY5Y human neuroblastoma cells
  publication-title: Toxicol. In Vitro
  doi: 10.1016/j.tiv.2005.01.006
– volume: 366
  start-page: 580
  year: 1993
  ident: ref_67
  article-title: Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins
  publication-title: Nature
  doi: 10.1038/366580a0
– volume: 2011
  start-page: 216298
  year: 2011
  ident: ref_17
  article-title: Transcriptional factor NF-κB as a target for therapy in Parkinson’s disease
  publication-title: Parkinson’s Dis.
– volume: 181
  start-page: 271
  year: 2020
  ident: ref_5
  article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 24
  start-page: 325
  year: 2015
  ident: ref_41
  article-title: The role of oxidative stress in neurodegenerative diseases
  publication-title: Exp. Neurobiol.
  doi: 10.5607/en.2015.24.4.325
– volume: 14
  start-page: 44
  year: 2007
  ident: ref_72
  article-title: Caspase in cell survival, proliferation and differentiation
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4402047
– volume: 8
  start-page: 881
  year: 2020
  ident: ref_63
  article-title: The ORF3a protein of SARS-CoV-2 induces apoptosis in cells
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/s41423-020-0485-9
– volume: 1787
  start-page: 1416
  year: 2009
  ident: ref_28
  article-title: Mitochondrial calcium function and dysfunction in the central nervous system
  publication-title: Biochimica Biophysica Acta
  doi: 10.1016/j.bbabio.2009.03.010
– volume: 669
  start-page: 22
  year: 2019
  ident: ref_64
  article-title: STAT1 drives M1 microglia activation and neuroinflammation under Hypoxia
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2019.05.011
– volume: 2014
  start-page: 799
  year: 2014
  ident: ref_53
  article-title: Measuring apoptosis: Caspase inhibitors and activity assays
  publication-title: Cold Spring Harb. Protoc.
– volume: 2
  start-page: 247
  year: 2010
  ident: ref_8
  article-title: Angiotensin II revisited: New roles in inflammation, immunology and aging
  publication-title: EMBO Mol. Med.
  doi: 10.1002/emmm.201000080
– volume: 87
  start-page: 267
  year: 2013
  ident: ref_26
  article-title: Parkinson disease: An update
  publication-title: Am. Fam. Physician
– volume: 179
  start-page: 300
  year: 2011
  ident: ref_37
  article-title: Abnormal ventilatory control in Parkinson’s disease- further evidence for non-motor dysfunction
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2011.09.012
– volume: 22
  start-page: 557
  year: 2012
  ident: ref_16
  article-title: The nuclear factor kappa B signaling pathway: Integrating metabolism with inflammation
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2012.08.001
– volume: 21
  start-page: 2295
  year: 2002
  ident: ref_60
  article-title: IFNγ sensitizes for apoptosis by upregulating caspase-8 expression through the Stat1 pathway
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1205255
– volume: 79
  start-page: 1767
  year: 2012
  ident: ref_69
  article-title: Bid signal pathway components are identified in the temporal cortex with Parkinson disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3182703f76
– volume: 94
  start-page: 7531
  year: 1997
  ident: ref_45
  article-title: Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.14.7531
– volume: 103
  start-page: 1269
  year: 2007
  ident: ref_31
  article-title: Hypoxia transduction by carotid body chemoreceptors in mice lacking dopamine D(2) receptors
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00391.2007
– volume: 4
  start-page: 1
  year: 2014
  ident: ref_44
  article-title: The role of Caspase in Parkinson’s disease pathogenesis: A brief look at the mitochondrial pathway
  publication-title: Austin J. Alzheimer’s Parkinson’s Dis.
– volume: 14
  start-page: 407
  year: 2020
  ident: ref_57
  article-title: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response
  publication-title: Diabetes Metab. Syndr.
  doi: 10.1016/j.dsx.2020.04.020
– volume: 14
  start-page: 523
  year: 2016
  ident: ref_1
  article-title: SARS and MERS: Recent insights into emerging coronaviruses
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2016.81
– volume: 279
  start-page: 4066
  year: 2004
  ident: ref_62
  article-title: STAT1-induced apoptosis is mediated by caspase 2, 3, and 7
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M307774200
– volume: 104
  start-page: 18754
  year: 2007
  ident: ref_47
  article-title: Selective inhibition of NF-kappaB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0704908104
– volume: 109
  start-page: S133
  year: 2009
  ident: ref_25
  article-title: Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival
  publication-title: J. Neurosci.
– volume: 313
  start-page: F781
  year: 2017
  ident: ref_11
  article-title: Inhibition of HDAC enhances STAT acetylation, blocks NF-κB, and suppresses the renal inflammation and fibrosis in Npr1 haplotype male mice
  publication-title: Am. J. Physiol. Ren. Physiol.
  doi: 10.1152/ajprenal.00166.2017
– volume: 1802
  start-page: 92
  year: 2010
  ident: ref_27
  article-title: Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia
  publication-title: Biochimica Biophysica Acta
  doi: 10.1016/j.bbadis.2009.09.002
– volume: 52
  start-page: 731
  year: 2020
  ident: ref_7
  article-title: COVID-19: A new virus, but a familiar receptor and cytokine release syndrome
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.04.003
– volume: 6
  start-page: 321
  year: 2005
  ident: ref_19
  article-title: A pervasive role of ubiquitin conjugation in activation and termination of IkappaB kinase pathways
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400380
– volume: 12
  start-page: 216
  year: 2017
  ident: ref_22
  article-title: Oxidative stress and apoptosis after acute respiratory hypoxia and reoxygenation in rat brain
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2017.02.014
– volume: 74
  start-page: 29
  year: 2005
  ident: ref_51
  article-title: The Biochemistry of Parkinson’s Disease
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.74.082803.133400
– volume: 59
  start-page: 13
  year: 2000
  ident: ref_15
  article-title: Oxidative stress and nuclear factor-kappaB activation: A reassessment of the evidence in the light of recent discoveries
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/S0006-2952(99)00296-8
– volume: 71
  start-page: 146
  year: 2014
  ident: ref_24
  article-title: Acute hypoxia produces a superoxide burst in cells
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2014.03.011
– volume: 48
  start-page: 377
  year: 2010
  ident: ref_38
  article-title: Oxidants induce alternative splicing of α-synuclein: Implications for Parkinson’s disease
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2009.10.045
– volume: 65
  start-page: 135
  year: 2001
  ident: ref_33
  article-title: Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: Contribution to the apoptotic theory in Parkinson’s disease
  publication-title: Prog. Neurobiol.
  doi: 10.1016/S0301-0082(01)00003-X
– volume: 74
  start-page: 1384
  year: 2000
  ident: ref_43
  article-title: Interaction among mitochondria, mitogen-activated protein kinases, and nuclear factor-kappaB in cellular models of Parkinson’s disease
  publication-title: J. Neurochem.
  doi: 10.1046/j.1471-4159.2000.0741384.x
– volume: 53
  start-page: 66
  year: 2020
  ident: ref_6
  article-title: COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2020.05.002
– volume: 60
  start-page: 1
  year: 2013
  ident: ref_65
  article-title: DJ-1 facilitates the interaction between STAT1 and its phosphatase, SHP-1, in brain microglia and astrocytes: A novel anti-inflammatory function of DJ-1
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2013.08.007
– volume: 16
  start-page: 1215
  year: 2015
  ident: ref_59
  article-title: PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection
  publication-title: Nature Immunol.
  doi: 10.1038/ni.3279
– volume: 175
  start-page: 303
  year: 2002
  ident: ref_30
  article-title: Modeling Parkinson’s disease in rats: An evaluation of 6-OHDA lesions of the Nigrostriatal pathway
  publication-title: Exp. Neurol.
  doi: 10.1006/exnr.2002.7891
– volume: 24
  start-page: 103
  year: 2015
  ident: ref_42
  article-title: Mitochondrial dysfunction in Parkinson’s disease
  publication-title: Exp. Neurobiol.
  doi: 10.5607/en.2015.24.2.103
– volume: 24
  start-page: 757
  year: 2013
  ident: ref_56
  article-title: Hyperphosphorylation of CREB induced by 6 OHDA treatment in human dopaminergic neurons: A kinetic study of distribution of tCREB and pCREB following oxidative stress
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e328364d616
– volume: 553
  start-page: 72
  year: 2013
  ident: ref_71
  article-title: Protective effect of SIRT1 on toxicity of microglial-derived factors induced by LPS to PC12 cells via the p53-caspase-3-dependent apoptotic pathway
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2013.08.020
– volume: 63
  start-page: 784
  year: 2003
  ident: ref_74
  article-title: Nuclear translocation of nuclear transcription factor-kappa B by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors leads to transcription of p53 and cell death in dopaminergic neurons
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.63.4.784
– ident: ref_12
  doi: 10.3390/v12060646
– volume: 6
  start-page: 372
  year: 2015
  ident: ref_23
  article-title: Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved?
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2015.08.016
– volume: 296
  start-page: R1829
  year: 2009
  ident: ref_35
  article-title: D1/D2-dopamine receptor agonist dihydrexidine stimulates inspiratory motor output and depresses medullary expiratory neurons
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00057.2009
– volume: 9
  start-page: 91
  year: 2015
  ident: ref_40
  article-title: Oxidative stress and Parkinson’s disease
  publication-title: Front. Neuroanat.
  doi: 10.3389/fnana.2015.00091
– volume: 579
  start-page: 270
  year: 2020
  ident: ref_4
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 395
  start-page: 497
  year: 2020
  ident: ref_2
  article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30183-5
– volume: 27
  start-page: 41
  year: 2019
  ident: ref_52
  article-title: Shikonin exerts cytotoxic effects in human colon cancers by inducing apoptotic cell death via the endoplasmic reticulum and mitochondria-mediated pathways
  publication-title: Biomol. Ther.
  doi: 10.4062/biomolther.2018.047
– volume: 27
  start-page: 1868
  year: 2007
  ident: ref_48
  article-title: Parkin mediates neuroprotection through activation of IkappaB kinase/nuclear factor-kappa B signalling
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5537-06.2007
– volume: 56
  start-page: 862
  year: 2015
  ident: ref_13
  article-title: Jak1/Stat3 is an upstream signaling of NF-κB activation in Helicobacter pylori-induced IL-8 production in gastric epithelial AGS cells
  publication-title: Yonsei Med J.
  doi: 10.3349/ymj.2015.56.3.862
– volume: 14
  start-page: 4431
  year: 2017
  ident: ref_39
  article-title: Tectorigenin attenuates the MPP+-induced SH-SY5Y cell damage, indicating a potential beneficial role in Parkinson’s disease by oxidative stress inhibition
  publication-title: Exp. Ther. Med.
– ident: ref_68
  doi: 10.1101/cshperspect.a009365
– volume: 58
  start-page: 221
  year: 2004
  ident: ref_75
  article-title: Quinone formation as dopaminergic neuron-specific oxidative stress in the pathogenesis of sporadic parkinson’s disease and neurotoxin-induced parkinsonism
  publication-title: Acta Medica Okayama
– volume: 292
  start-page: 329
  year: 1995
  ident: ref_34
  article-title: Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine
  publication-title: Eur. J. Pharmacol.
– volume: 42
  start-page: 288
  year: 2007
  ident: ref_14
  article-title: Reactive oxygen species in in vitro pesticide-induced neuronal cell (SH-SY5Y) cytotoxicity: Role of NFκB and caspase-3
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2006.10.047
– volume: 7
  start-page: 12849
  year: 2016
  ident: ref_58
  article-title: PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12849
SSID ssj0000800350
Score 2.2677689
Snippet The current coronavirus pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a serious global health crisis. It...
SourceID doaj
pubmedcentral
proquest
gale
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 807
SubjectTerms 6OHDA
apoptosis
caspase
coronavirus
COVID-19
COVID-19 pandemic
Covid19
Development and progression
dk/atira/pure/core/keywords/uob_covid19
dk/atira/pure/core/keywords/uob_covid19; name=Covid19
Inflammation
inhibitors
Neurosciences. Biological psychiatry. Neuropsychiatry
nuclear factor kappa B ((NFκB))
Observations
Oxidative stress
Parkinson's disease
RC321-571
SARS-CoV-2
Subject Categories::B140 Neuroscience
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgJy6IUhCBFhkJgThE6691Em5LS9UiQQ9Q6M3yp7qIuqi7FfTG3-Dv8UuYcdLVhgNcuGykjSPFnmfPm9jzhpCnzKJwVtS14CrUSttYOx9kHQHRPASRZIe5w2_f6YNj9eZkerJW6gvPhPXywP3ATRJQfKmjDy5wZUPbaus1eDUflQasFmrEOrYWTH0eeJCcsn5fUkJcP3FYcQG8CkeH12L12DU_VOT6V4vyzTyfjwjn-Ljkmv_Zv0NuD8SRzvoX3iQ3Yr5LtmYZguazK_qMlqOc5Rv5Fvm0e_TxcK_mHbU5UExsLjlev378XNC9fkfmJUWp5hjoYU4AirOy2Q5Nl6ff7NWClnJI9Oj7PBRhcPq-pJTcI8f7rz_sHtRDBYXaQ6C1rFNI1gfhWh4tzD4eGiksLG_WRdWB9bi1nCWrFEtwkdEpcFeND43nDRcpyftkI5_n-IBQLASThGDRuqCmMnTMAdmT1jENpEK7ikyux9P4QV4cq1x8MRBmoAXMnxaoyIvVE197aY2_tH2FJlq1Q1Hs8gdAxQxQMf-CSkWeo4ENTl14NW-HDAToIIpgmRlwQ1huudAV2R61hCnnR7d3ACLQTfzlbYOadQqYGG-B3wGjq8iTa_AYfBTPseV4frkwQkF8p3DnvSLNCFWjro3v5Plp0f3GspUtVw__x1g8IrcEfjkoXnibbCwvLuMO0Kule1xm0m__nCNS
  priority: 102
  providerName: Directory of Open Access Journals
Title COVID-19 and Parkinson’s Disease: Shared Inflammatory Pathways Under Oxidative Stress
URI https://cir.nii.ac.jp/crid/1872835443118643584
https://www.proquest.com/docview/2457644192
https://pubmed.ncbi.nlm.nih.gov/PMC7693814
https://doaj.org/article/f26136ecdbd14ad886ac6822ce46305a
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELagvXBBQEFsaSMjIRCHpetHvBskhNKXWqS2CAj0ZvlJU7UbSFLR3Pgb_D1-CTPONrCogktWytra9c6M5xvb8w0hTwqDxFlB5ZxJn0tlQm6dF3kAjWbe8yh6mDt8cKj2BvLNcff4d3p08wEn14Z2WE9qMD57cfl19hoM_hVGnBCyb1gspgAOg6EvqzC1fBn8ksJQ7KAB-6cNNhLdYr5XeW3Hlm9KFP6LifpmPRy2QGj7COUfPmn3DrndgEnan0v_Lrlxau6RlX4NgfT5jD6l6XhnWjdfIZ-2jj7ub-esR03tKSY7p7yvn99_TOj2fJfmJUX65uDpfh1BUc7TBjw0nZ58M7MJTSWS6NHl0CeycPo-pZncJ4PdnQ9be3lTVSF3EHxN8-ijcZ7bigUDFsl8KbiBKc_YIHsgUWYMK6KRsohwEcFKcGGl86VjJeMxigdkqR7V4SGhWBwmcl4EY73sCt8rLABAYWyhAGgom5GNq--pXUM5jpUvzjSEHigB_bcEMvJ80ePLnG7jH203UUSLdkiUnf4YjT_rxu50hAhRqOC89UwaX1XKOAWgyAWpYKozGXmGAtaoYPBqzjRZCTBAJMbSfcCLMAUzrjKy1moJZuhat9dBRWCY-MuqEnnsJKAzVgHmA5SXkcdXyqOxK55tq8PoYqK5hJhP4m58RsqWVrWG1r5TD08SFziWsqyYXP3P0x-RWxwXCpLTXSNL0_FFWAc0NbUdsry5c_j2XSetRnSSyfwC9qIfaQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+and+Parkinson%E2%80%99s+Disease%3A+Shared+Inflammatory+Pathways+Under+Oxidative+Stress&rft.jtitle=Brain+Sciences&rft.au=Chaudhry%2C+Zaharah+L&rft.au=Klenja%2C+Donika&rft.au=Janjua%2C+Najma&rft.au=Cami-Kobeci%2C+Gerta&rft.date=2020-10-31&rft.pub=MDPI+AG&rft.eissn=2076-3425&rft.volume=10&rft.spage=807&rft_id=info:doi/10.3390%2Fbrainsci10110807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3425&client=summon