Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture
[Display omitted] Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were f...
Saved in:
Published in | Acta biomaterialia Vol. 27; pp. 294 - 304 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30×, 10×, 5×, 3×, 2× and 1×). Phenotype characterization documented that while 2× dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1× dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2× and 1× dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment.
An attractive human osteoblasts and osteoclasts cocultivation regime was developed as an in vitro cytocompatibility model for magnesium implants. Parameters in terms of cellular proliferation and differentiation behaviors were investigated and we conclude that high concentration of magnesium extract could lead to a promotion in osteoblastogenesis but an inhibition in osteoclastogenesis. It could contribute to the repeated observations of enhanced bone growth adjacent to degradable magnesium alloys. More interestingly, it demonstrates that compared to monoculture, osteoclasts in cocultures with osteoblasts exhibited higher tolerance to the culture environment with high magnesium extract. It might attribute to the neutralization process of the alkaline medium by acid generated by increased amount of osteoblasts in the condition with high concentration of Mg extract. The submitted work could be of significant importance to other researchers working in the related field(s), thus appealing to the readership of Acta Biomaterialia. |
---|---|
AbstractList | Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30, 10, 5, 3, 2 and 1). Phenotype characterization documented that while 2 dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1 dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2 and 1 dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment. Statement of Significance An attractive human osteoblasts and osteoclasts cocultivation regime was developed as an in vitro cytocompatibility model for magnesium implants. Parameters in terms of cellular proliferation and differentiation behaviors were investigated and we conclude that high concentration of magnesium extract could lead to a promotion in osteoblastogenesis but an inhibition in osteoclastogenesis. It could contribute to the repeated observations of enhanced bone growth adjacent to degradable magnesium alloys. More interestingly, it demonstrates that compared to monoculture, osteoclasts in cocultures with osteoblasts exhibited higher tolerance to the culture environment with high magnesium extract. It might attribute to the neutralization process of the alkaline medium by acid generated by increased amount of osteoblasts in the condition with high concentration of Mg extract. The submitted work could be of significant importance to other researchers working in the related field(s), thus appealing to the readership of Acta Biomaterialia. Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30×, 10×, 5×, 3×, 2× and 1×). Phenotype characterization documented that while 2× dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1× dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2× and 1× dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment.Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30×, 10×, 5×, 3×, 2× and 1×). Phenotype characterization documented that while 2× dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1× dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2× and 1× dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment.An attractive human osteoblasts and osteoclasts cocultivation regime was developed as an in vitro cytocompatibility model for magnesium implants. Parameters in terms of cellular proliferation and differentiation behaviors were investigated and we conclude that high concentration of magnesium extract could lead to a promotion in osteoblastogenesis but an inhibition in osteoclastogenesis. It could contribute to the repeated observations of enhanced bone growth adjacent to degradable magnesium alloys. More interestingly, it demonstrates that compared to monoculture, osteoclasts in cocultures with osteoblasts exhibited higher tolerance to the culture environment with high magnesium extract. It might attribute to the neutralization process of the alkaline medium by acid generated by increased amount of osteoblasts in the condition with high concentration of Mg extract. The submitted work could be of significant importance to other researchers working in the related field(s), thus appealing to the readership of Acta Biomaterialia.STATEMENT OF SIGNIFICANCEAn attractive human osteoblasts and osteoclasts cocultivation regime was developed as an in vitro cytocompatibility model for magnesium implants. Parameters in terms of cellular proliferation and differentiation behaviors were investigated and we conclude that high concentration of magnesium extract could lead to a promotion in osteoblastogenesis but an inhibition in osteoclastogenesis. It could contribute to the repeated observations of enhanced bone growth adjacent to degradable magnesium alloys. More interestingly, it demonstrates that compared to monoculture, osteoclasts in cocultures with osteoblasts exhibited higher tolerance to the culture environment with high magnesium extract. It might attribute to the neutralization process of the alkaline medium by acid generated by increased amount of osteoblasts in the condition with high concentration of Mg extract. The submitted work could be of significant importance to other researchers working in the related field(s), thus appealing to the readership of Acta Biomaterialia. Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30×, 10×, 5×, 3×, 2× and 1×). Phenotype characterization documented that while 2× dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1× dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2× and 1× dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment. An attractive human osteoblasts and osteoclasts cocultivation regime was developed as an in vitro cytocompatibility model for magnesium implants. Parameters in terms of cellular proliferation and differentiation behaviors were investigated and we conclude that high concentration of magnesium extract could lead to a promotion in osteoblastogenesis but an inhibition in osteoclastogenesis. It could contribute to the repeated observations of enhanced bone growth adjacent to degradable magnesium alloys. More interestingly, it demonstrates that compared to monoculture, osteoclasts in cocultures with osteoblasts exhibited higher tolerance to the culture environment with high magnesium extract. It might attribute to the neutralization process of the alkaline medium by acid generated by increased amount of osteoblasts in the condition with high concentration of Mg extract. The submitted work could be of significant importance to other researchers working in the related field(s), thus appealing to the readership of Acta Biomaterialia. [Display omitted] Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30×, 10×, 5×, 3×, 2× and 1×). Phenotype characterization documented that while 2× dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1× dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2× and 1× dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment. An attractive human osteoblasts and osteoclasts cocultivation regime was developed as an in vitro cytocompatibility model for magnesium implants. Parameters in terms of cellular proliferation and differentiation behaviors were investigated and we conclude that high concentration of magnesium extract could lead to a promotion in osteoblastogenesis but an inhibition in osteoclastogenesis. It could contribute to the repeated observations of enhanced bone growth adjacent to degradable magnesium alloys. More interestingly, it demonstrates that compared to monoculture, osteoclasts in cocultures with osteoblasts exhibited higher tolerance to the culture environment with high magnesium extract. It might attribute to the neutralization process of the alkaline medium by acid generated by increased amount of osteoblasts in the condition with high concentration of Mg extract. The submitted work could be of significant importance to other researchers working in the related field(s), thus appealing to the readership of Acta Biomaterialia. |
Author | Schilling, Arndt F. Luthringer, Bérengère J.C. Feyerabend, Frank Wu, Lili Willumeit-Römer, Regine |
Author_xml | – sequence: 1 givenname: Lili surname: Wu fullname: Wu, Lili organization: Institute of Materials Research, Division of Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany – sequence: 2 givenname: Frank surname: Feyerabend fullname: Feyerabend, Frank organization: Institute of Materials Research, Division of Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany – sequence: 3 givenname: Arndt F. surname: Schilling fullname: Schilling, Arndt F. organization: Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University Munich (TUM), D-81675 Munich, Germany – sequence: 4 givenname: Regine surname: Willumeit-Römer fullname: Willumeit-Römer, Regine organization: Institute of Materials Research, Division of Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany – sequence: 5 givenname: Bérengère J.C. surname: Luthringer fullname: Luthringer, Bérengère J.C. email: berengere.luthringer@hzg.de organization: Institute of Materials Research, Division of Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26318802$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1uFiEUhompsT96B8bM0s2M_BUYFyamqa1JEze6JgwcLF9moAJj6gV43_J1Pl240K445-R5X3J4OUVHMUVA6CXBA8FEvNkNxtYppIFicj5gNWBOn6AToqTq5blQR62WnPYSC3KMTkvZYcwUoeoZOqaCEaUwPUE_L70HW0uXfAf3NRsL87zOJneL-RqhhHU5zGuXYldvobvLaQ4esqmhTUx0nQvNJEOsYZs1r9t1Ma0oFdI0m9Iu2IMPvd36EDub7DrXNcNz9NSbucCLw3mGvny4_Hxx3d98uvp48f6mtwKT2o-eUAlcMMW9dWoSTIIfuSNCWsNHC5Q7S42arGSGMKzMqMAp7ymzjhrOztDrzbft8G2FUvUSyn5jEyGtRRMpKMGKiPERKJVilKOUj0HpSMVIWENfHdB1WsDpuxwWk3_o34E0gG-AzamUDP4PQrDe5653estd73PXWOmWe5O9_UtmQ30Io0UX5v-J321iaE__PUDWxQaIFlzI7W9ol8K_DX4BGmfN-w |
CitedBy_id | crossref_primary_10_1016_j_msec_2022_112692 crossref_primary_10_1021_acsami_1c07453 crossref_primary_10_3390_biom13061006 crossref_primary_10_1002_jbm_a_37673 crossref_primary_10_1007_s10856_018_6145_2 crossref_primary_10_1016_j_actbio_2024_08_015 crossref_primary_10_7759_cureus_54597 crossref_primary_10_1016_j_actbio_2022_06_005 crossref_primary_10_1016_j_jot_2022_09_013 crossref_primary_10_34133_bmr_0122 crossref_primary_10_1039_d0mt00028k crossref_primary_10_1016_j_bone_2019_05_008 crossref_primary_10_3390_ph14121281 crossref_primary_10_1002_advs_201902443 crossref_primary_10_1038_s41598_020_76063_9 crossref_primary_10_1039_C7TB00165G crossref_primary_10_1016_j_bioadv_2024_213984 crossref_primary_10_1016_j_cca_2019_11_037 crossref_primary_10_1016_j_pnsc_2024_12_017 crossref_primary_10_3389_fnins_2017_00087 crossref_primary_10_3390_biomimetics8080618 crossref_primary_10_3390_nu15061304 crossref_primary_10_1016_j_jma_2024_05_028 crossref_primary_10_1016_j_jma_2024_11_028 crossref_primary_10_1021_acsbiomaterials_0c00983 crossref_primary_10_2147_IJN_S239550 crossref_primary_10_1002_advs_202306428 crossref_primary_10_3390_ijms21197084 crossref_primary_10_1039_D0BM00834F crossref_primary_10_1016_j_msec_2019_01_053 crossref_primary_10_1016_j_actbio_2017_09_039 crossref_primary_10_1007_s41970_018_0041_6 crossref_primary_10_1016_j_matdes_2021_110242 crossref_primary_10_1016_j_mtbio_2024_101234 crossref_primary_10_1021_acsbiomaterials_6b00056 crossref_primary_10_3389_fendo_2024_1375871 crossref_primary_10_3390_ijms19051410 crossref_primary_10_1016_j_msec_2016_07_016 crossref_primary_10_1039_D4TB01123F crossref_primary_10_1021_acs_nanolett_6b00636 crossref_primary_10_1016_j_jmrt_2025_03_188 crossref_primary_10_1016_j_actbio_2020_06_013 crossref_primary_10_1016_j_surfin_2025_105936 crossref_primary_10_1039_C6TB01449F crossref_primary_10_3390_polym13132183 crossref_primary_10_1007_s12011_023_03970_z crossref_primary_10_1016_j_bioactmat_2023_03_009 crossref_primary_10_3390_molecules21091260 crossref_primary_10_2109_jcersj2_24085 crossref_primary_10_1007_s00204_020_02906_z crossref_primary_10_1016_j_colsurfb_2019_04_013 crossref_primary_10_1016_j_msec_2017_02_139 crossref_primary_10_1557_jmr_2019_367 crossref_primary_10_1002_jcp_25875 crossref_primary_10_1002_adfm_202206992 crossref_primary_10_1016_j_mtbio_2022_100412 crossref_primary_10_1177_0885328219825568 crossref_primary_10_1002_adtp_202400296 crossref_primary_10_1038_s41598_018_36200_x crossref_primary_10_1016_j_nutres_2021_03_002 crossref_primary_10_3390_ma14040946 crossref_primary_10_1016_j_surfcoat_2020_126005 crossref_primary_10_1016_j_actbio_2017_11_033 crossref_primary_10_1002_adhm_202100053 crossref_primary_10_1016_j_bioactmat_2021_06_024 crossref_primary_10_3390_bioengineering12020201 crossref_primary_10_1134_S1990793124010202 crossref_primary_10_1021_acsbiomaterials_9b00270 crossref_primary_10_1002_jbm4_10370 crossref_primary_10_1088_1748_605X_ace9a5 crossref_primary_10_1016_j_biomaterials_2019_119727 crossref_primary_10_1016_j_colsurfb_2020_111360 crossref_primary_10_1016_j_surfcoat_2022_128589 crossref_primary_10_1302_2046_3758_98_BJR_2020_0017_R2 crossref_primary_10_1111_ijac_13577 crossref_primary_10_2109_jcersj2_23102 crossref_primary_10_1016_j_actbio_2016_03_041 crossref_primary_10_1080_00084433_2024_2427455 crossref_primary_10_3390_cryst12101468 crossref_primary_10_1016_j_msec_2018_09_032 crossref_primary_10_1016_j_cej_2023_143460 crossref_primary_10_1021_acsbiomaterials_9b00938 crossref_primary_10_1002_pssa_202200348 crossref_primary_10_1016_j_addma_2020_101321 crossref_primary_10_1021_acsomega_9b02976 crossref_primary_10_3390_biomedicines12010074 crossref_primary_10_1093_ndt_gfaa222 crossref_primary_10_3390_ma14174857 crossref_primary_10_1016_j_msec_2019_110026 crossref_primary_10_1016_j_mser_2024_100801 crossref_primary_10_1109_TCBB_2018_2885757 crossref_primary_10_1016_j_jnutbio_2018_02_006 crossref_primary_10_1016_j_jma_2022_07_002 crossref_primary_10_1016_j_jconrel_2022_08_036 crossref_primary_10_1111_os_12973 crossref_primary_10_1016_j_cej_2024_158712 crossref_primary_10_1016_j_jma_2021_03_004 crossref_primary_10_1021_acsnano_2c05110 crossref_primary_10_1016_j_apt_2021_01_038 crossref_primary_10_1016_j_jma_2022_11_014 crossref_primary_10_3389_fbioe_2022_998254 crossref_primary_10_1016_j_jot_2022_03_004 crossref_primary_10_1021_acsami_4c02795 crossref_primary_10_1016_j_bioactmat_2023_05_019 crossref_primary_10_1016_j_biomaterials_2024_122779 crossref_primary_10_1016_j_bj_2024_100750 crossref_primary_10_3390_nu11061387 crossref_primary_10_3389_fbioe_2023_1142095 crossref_primary_10_3389_fnut_2021_738000 crossref_primary_10_1002_jbm_b_34332 crossref_primary_10_1007_s10853_022_07439_7 crossref_primary_10_1177_0885328216664839 crossref_primary_10_1021_acs_biomac_1c00842 crossref_primary_10_1016_j_bioactmat_2023_06_009 crossref_primary_10_1016_j_csbj_2021_07_005 crossref_primary_10_1016_j_mtla_2020_100852 crossref_primary_10_1016_j_actbio_2016_08_039 crossref_primary_10_1039_D1TB00178G crossref_primary_10_1039_D2MA00768A crossref_primary_10_1002_jbm_a_37862 crossref_primary_10_1089_ten_tec_2018_0301 crossref_primary_10_1016_j_jmrt_2023_06_237 crossref_primary_10_3390_ijms25116242 crossref_primary_10_3390_ijms20112784 crossref_primary_10_1016_j_ceramint_2021_12_169 crossref_primary_10_1007_s44174_024_00217_w crossref_primary_10_1038_s41598_017_13169_7 crossref_primary_10_1002_jbm_a_36397 crossref_primary_10_1039_C6TB00449K crossref_primary_10_1039_D0RA09395E crossref_primary_10_3390_ma15093142 crossref_primary_10_1039_D1TB01080H crossref_primary_10_1007_s12666_023_02928_y crossref_primary_10_1016_j_biomaterials_2018_05_003 crossref_primary_10_1016_j_colsurfb_2019_110684 crossref_primary_10_1016_j_jma_2022_02_013 crossref_primary_10_1016_j_msec_2021_111942 crossref_primary_10_1016_j_ceramint_2022_04_118 crossref_primary_10_1016_j_bonr_2020_100707 crossref_primary_10_1186_s12938_019_0739_x crossref_primary_10_1371_journal_pcbi_1010482 crossref_primary_10_1016_j_matdes_2021_109834 crossref_primary_10_1016_j_cbi_2019_108748 crossref_primary_10_1016_j_arabjc_2020_03_031 crossref_primary_10_1016_j_bioactmat_2021_02_003 crossref_primary_10_1016_j_jeurceramsoc_2024_116983 crossref_primary_10_1016_j_actbio_2020_12_016 crossref_primary_10_1097_NT_0000000000000691 crossref_primary_10_1016_j_jma_2024_02_002 crossref_primary_10_1016_j_biomaterials_2017_11_032 crossref_primary_10_1155_2024_1325004 crossref_primary_10_1088_1748_605X_aa69c3 crossref_primary_10_3390_ijms20020385 crossref_primary_10_1515_iss_2018_0006 crossref_primary_10_1002_smll_201704252 crossref_primary_10_1016_j_jma_2023_08_016 crossref_primary_10_3390_ijms22020909 crossref_primary_10_3390_bioengineering9060255 crossref_primary_10_1007_s41779_023_00953_0 crossref_primary_10_1016_j_kint_2019_09_034 crossref_primary_10_29039_2070_8092_2020_23_4_46_52 crossref_primary_10_3390_jfb15120368 crossref_primary_10_1016_j_porgcoat_2024_108327 crossref_primary_10_1016_j_surfcoat_2018_04_051 crossref_primary_10_3389_fmed_2020_00381 crossref_primary_10_3390_biology12101297 crossref_primary_10_5435_JAAOSGlobal_D_24_00035 crossref_primary_10_1016_j_actbio_2019_02_018 crossref_primary_10_36740_WLek_197141 crossref_primary_10_1007_s11837_019_03368_0 crossref_primary_10_1016_j_pmatsci_2022_101039 crossref_primary_10_1016_j_surfcoat_2020_125461 crossref_primary_10_1016_j_colsurfb_2021_111851 crossref_primary_10_3390_met8040212 crossref_primary_10_1002_jbm_b_34051 crossref_primary_10_3390_life12070997 crossref_primary_10_1016_j_jmbbm_2021_104618 |
Cites_doi | 10.1016/j.biomaterials.2005.10.003 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I 10.1023/A:1016058229972 10.1007/s394-001-8351-5 10.1016/j.bone.2006.09.023 10.1038/nature01658 10.1359/jbmr.2001.16.6.1015 10.1007/s10856-008-3610-3 10.1074/jbc.R109.041087 10.1016/0014-4827(72)90480-6 10.1002/jbm.a.31170 10.1007/s00068-006-6043-1 10.1002/jlb.56.3.236 10.1083/jcb.112.1.169 10.1016/j.actbio.2009.12.037 10.1002/jbm.a.31273 10.1016/S0301-472X(99)00061-2 10.1016/j.actbio.2009.06.028 10.1111/j.1600-0501.2010.01944.x 10.1186/gb-2007-8-2-r19 10.1016/0168-1656(92)90158-6 10.1002/jbm.10220 10.1016/j.actbio.2014.02.010 10.1016/j.actbio.2009.04.018 10.1088/1748-6041/5/5/054114 10.1002/jbm.10270 10.1016/j.biomaterials.2003.10.079 10.3390/ijms15057639 10.1016/j.biomaterials.2005.07.037 10.1016/S0092-8674(00)80209-3 10.1136/heart.89.6.651 10.1007/s00394-002-0376-0 10.1016/j.tem.2012.05.005 10.1016/j.biomaterials.2004.09.049 10.1002/jbm.a.31293 10.1196/annals.1397.088 10.1016/j.biomaterials.2007.12.021 10.1016/S1359-6446(01)02037-2 10.1242/jcs.063032 10.1359/jbmr.040113 10.22203/eCM.v021a07 10.1111/j.1365-2184.2007.00476.x |
ContentType | Journal Article |
Copyright | 2015 Acta Materialia Inc. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2015 Acta Materialia Inc. – notice: Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 8FD FR3 P64 7QF 7SR 7TB 7U5 8BQ F28 JG9 L7M |
DOI | 10.1016/j.actbio.2015.08.042 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Aluminium Industry Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX ANTE: Abstracts in New Technology & Engineering Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts Materials Research Database Engineered Materials Abstracts Aluminium Industry Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1878-7568 |
EndPage | 304 |
ExternalDocumentID | 26318802 10_1016_j_actbio_2015_08_042 S1742706115300866 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABGSF ABJNI ABMAC ABNUV ABUDA ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACPRK ACRLP ADBBV ADEWK ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSM SSU SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7QO 8FD FR3 P64 7QF 7SR 7TB 7U5 8BQ F28 JG9 L7M |
ID | FETCH-LOGICAL-c601t-9f127e46384fcd8b637ef94d167ca49ce24dc2a8bc73a1308a98ed8ff23cd2a43 |
IEDL.DBID | .~1 |
ISSN | 1742-7061 1878-7568 |
IngestDate | Mon Jul 21 09:44:37 EDT 2025 Sun Aug 24 03:58:10 EDT 2025 Mon Jul 21 10:28:34 EDT 2025 Wed Feb 19 02:27:03 EST 2025 Tue Jul 01 01:17:06 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Fri Feb 23 02:35:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biodegradation Osteoblast Coculture Osteoclast Magnesium |
Language | English |
License | Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c601t-9f127e46384fcd8b637ef94d167ca49ce24dc2a8bc73a1308a98ed8ff23cd2a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26318802 |
PQID | 1722926913 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1762108169 proquest_miscellaneous_1727697977 proquest_miscellaneous_1722926913 pubmed_primary_26318802 crossref_primary_10_1016_j_actbio_2015_08_042 crossref_citationtrail_10_1016_j_actbio_2015_08_042 elsevier_sciencedirect_doi_10_1016_j_actbio_2015_08_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Acta biomaterialia |
PublicationTitleAlternate | Acta Biomater |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Witte, Fischer, Nellesen, Crostack, Kaese, Pisch (b0030) 2006; 27 Hans, Chaudhary, Bansal (b0185) 2003; 16 Xu, Yu, Zhang, Pan, Yang (b0020) 2007; 83 Wu, Luthringer, Feyerabend, Schilling, Willumeit (b0095) 2014 Bennett, Breit (b0130) 1994; 56 Rupani, Balint, Cartmell (b0100) 2012; 4 Legrand, Bour, Jacob, Capiaumont, Martial, Marc (b0155) 1992; 25 Asagiri, Takayanagi (b0200) 2007; 40 10993-5:2009 I. Biological evaluation of medical devices. Part 5. Tests for in vitro cytotoxicity, 2009. Fazzalari, Kuliwaba, Atkins, Forwood, Findlay (b0230) 2001; 16 Simonet, Lacey, Dunstan, Kelley, Chang, Lüthy (b0215) 1997; 89 Witte, Kaese, Haferkamp, Switzer, Meyer-Lindenberg, Wirth (b0025) 2005; 26 Roodman (b0110) 1999; 27 Heinemann, Heinemann, Worch, Hanke (b0140) 2011; 21 Maguire, Cowan (b0015) 2002; 15 Raggatt, Partridge (b0085) 2010; 285 Zhang, Zhang, Zhao, Li, Song, Xie (b0045) 2010; 6 Schilling, Filke, Brink, Korbmacher, Amling, Rueger (b0115) 2006; 32 Lorenz, Brunner, Kollmannsberger, Jaafar, Fabry, Virtanen (b0170) 2009; 5 Rucci (b0090) 2008; 5 A. Rosanoff, The 2-to-1 Calcium-to-Magnesium Ratio. T. Phan, J. Xu, M. Zheng, Interaction between osteoblast and osteoclast: impact in bone disease, 2004. Crockett, Rogers, Coxon, Hocking, Helfrich (b0210) 2011; 124 Hellemans, Mortier, De Paepe, Speleman, Vandesompele (b0165) 2007; 8 Janning, Willbold, Vogt, Nellesen, Meyer-Lindenberg, Windhagen (b0250) 2010; 6 Bushinsky (b0235) 2001; 40 Zreiqat, Howlett, Zannettino, Evans, Schulze-Tanzil, Knabe (b0060) 2002; 62 Melo, Agostinho, Oliveira (b0160) 2007; 1096 Morabito, Gaudio, Lasco, Atteritano, Pizzoleo, Cincotta (b0225) 2004; 19 Elices, Urry, Hemler (b0240) 1991; 112 Jaiswal, Haynesworth, Caplan, Bruder (b0145) 1997; 64 Boyle, Simonet, Lacey (b0195) 2003; 423 Willumeit, Möhring, Feyerabend (b0175) 2014; 15 Sader, LeGeros, Soares (b0065) 2009; 20 Takeichi, Okada (b0245) 1972; 74 10993-12:2012 I. Biological evaluation of medical devices. Part 12. Sample preparation and reference materials, 2012. Cai, Zhang, Zhang, Venkatraman, Zeng, Du (b0070) 2010; 5 Gueux, Rock, Mazur, Rayssiguier (b0180) 2002; 41 Witte, Ulrich, Rudert, Willbold (b0035) 2007; 81 G. Jones, M. Marshall, A. El Haj, A. Motta, S. Cartmell. The use of osteoblast/osteoclast co-cultures on PLLA, silk and dentine scaffolds. Tissue Engineering: Mary Ann Liebert Inc 140 Huguenot Street, 3rd fl, New Rochelle, NY 10801, USA, 2007, pp. 1765–1766. Abed, Moreau (b0080) 2007; 40 Grimaud, Redini, Heymann (b0220) 2001; 6 Nakashima, Hayashi, Takayanagi (b0205) 2012; 23 Staiger, Pietak, Huadmai, Dias (b0005) 2006; 27 Yamasaki, Yoshida, Okazaki, Shimazu, Uchida, Kubo (b0055) 2002; 62 Schilling, Linhart, Filke, Gebauer, Schinke, Rueger (b0135) 2004; 25 Li, Gu, Lou, Zheng (b0050) 2008; 29 Heublein, Rohde, Kaese, Niemeyer, Hartung, Haverich (b0010) 2003; 89 Witte, Ulrich, Palm, Willbold (b0040) 2007; 81 Park, Kim, Jang, Song (b0075) 2010; 21 Sader (10.1016/j.actbio.2015.08.042_b0065) 2009; 20 Rupani (10.1016/j.actbio.2015.08.042_b0100) 2012; 4 Cai (10.1016/j.actbio.2015.08.042_b0070) 2010; 5 10.1016/j.actbio.2015.08.042_b0120 Lorenz (10.1016/j.actbio.2015.08.042_b0170) 2009; 5 Melo (10.1016/j.actbio.2015.08.042_b0160) 2007; 1096 Zhang (10.1016/j.actbio.2015.08.042_b0045) 2010; 6 Xu (10.1016/j.actbio.2015.08.042_b0020) 2007; 83 Park (10.1016/j.actbio.2015.08.042_b0075) 2010; 21 Elices (10.1016/j.actbio.2015.08.042_b0240) 1991; 112 Morabito (10.1016/j.actbio.2015.08.042_b0225) 2004; 19 Hellemans (10.1016/j.actbio.2015.08.042_b0165) 2007; 8 Janning (10.1016/j.actbio.2015.08.042_b0250) 2010; 6 Willumeit (10.1016/j.actbio.2015.08.042_b0175) 2014; 15 Raggatt (10.1016/j.actbio.2015.08.042_b0085) 2010; 285 Roodman (10.1016/j.actbio.2015.08.042_b0110) 1999; 27 Rucci (10.1016/j.actbio.2015.08.042_b0090) 2008; 5 Nakashima (10.1016/j.actbio.2015.08.042_b0205) 2012; 23 Witte (10.1016/j.actbio.2015.08.042_b0030) 2006; 27 Witte (10.1016/j.actbio.2015.08.042_b0035) 2007; 81 Gueux (10.1016/j.actbio.2015.08.042_b0180) 2002; 41 Abed (10.1016/j.actbio.2015.08.042_b0080) 2007; 40 Schilling (10.1016/j.actbio.2015.08.042_b0115) 2006; 32 10.1016/j.actbio.2015.08.042_b0125 Asagiri (10.1016/j.actbio.2015.08.042_b0200) 2007; 40 Witte (10.1016/j.actbio.2015.08.042_b0040) 2007; 81 Hans (10.1016/j.actbio.2015.08.042_b0185) 2003; 16 Bennett (10.1016/j.actbio.2015.08.042_b0130) 1994; 56 Schilling (10.1016/j.actbio.2015.08.042_b0135) 2004; 25 Crockett (10.1016/j.actbio.2015.08.042_b0210) 2011; 124 Staiger (10.1016/j.actbio.2015.08.042_b0005) 2006; 27 Jaiswal (10.1016/j.actbio.2015.08.042_b0145) 1997; 64 10.1016/j.actbio.2015.08.042_b0150 Boyle (10.1016/j.actbio.2015.08.042_b0195) 2003; 423 Zreiqat (10.1016/j.actbio.2015.08.042_b0060) 2002; 62 Grimaud (10.1016/j.actbio.2015.08.042_b0220) 2001; 6 Bushinsky (10.1016/j.actbio.2015.08.042_b0235) 2001; 40 Takeichi (10.1016/j.actbio.2015.08.042_b0245) 1972; 74 Heublein (10.1016/j.actbio.2015.08.042_b0010) 2003; 89 Witte (10.1016/j.actbio.2015.08.042_b0025) 2005; 26 10.1016/j.actbio.2015.08.042_b0190 Heinemann (10.1016/j.actbio.2015.08.042_b0140) 2011; 21 Fazzalari (10.1016/j.actbio.2015.08.042_b0230) 2001; 16 Wu (10.1016/j.actbio.2015.08.042_b0095) 2014 Li (10.1016/j.actbio.2015.08.042_b0050) 2008; 29 Maguire (10.1016/j.actbio.2015.08.042_b0015) 2002; 15 Yamasaki (10.1016/j.actbio.2015.08.042_b0055) 2002; 62 Legrand (10.1016/j.actbio.2015.08.042_b0155) 1992; 25 10.1016/j.actbio.2015.08.042_b0105 Simonet (10.1016/j.actbio.2015.08.042_b0215) 1997; 89 |
References_xml | – volume: 6 start-page: 1861 year: 2010 end-page: 1868 ident: b0250 article-title: Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling publication-title: Acta Biomater. – volume: 27 start-page: 1013 year: 2006 end-page: 1018 ident: b0030 article-title: In vitro and in vivo corrosion measurements of magnesium alloys publication-title: Biomaterials – volume: 81 start-page: 757 year: 2007 end-page: 765 ident: b0040 article-title: Biodegradable magnesium scaffolds: part II: peri-implant bone remodeling publication-title: J. Biomed. Mater. Res., Part A – volume: 5 start-page: 49 year: 2008 ident: b0090 article-title: Molecular biology of bone remodelling publication-title: Clin. Cases Mineral Bone Metab. – volume: 19 start-page: 722 year: 2004 end-page: 727 ident: b0225 article-title: Osteoprotegerin and RANKL in the pathogenesis of thalassemia-induced osteoporosis: new pieces of the puzzle publication-title: J. Bone Miner. Res. – volume: 64 start-page: 295 year: 1997 end-page: 312 ident: b0145 article-title: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro publication-title: J. Cell. Biochem. – volume: 89 start-page: 309 year: 1997 end-page: 319 ident: b0215 article-title: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density publication-title: Cell – volume: 83 start-page: 703 year: 2007 end-page: 711 ident: b0020 article-title: In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application publication-title: J. Biomed. Mater. Res., Part A – volume: 21 start-page: 80 year: 2011 end-page: 93 ident: b0140 article-title: Development of an osteoblast/osteoclast co-culture derived by human bone marrow stromal cells and human monocytes for biomaterials testing publication-title: Eur. Cell Mater. – volume: 26 start-page: 3557 year: 2005 end-page: 3563 ident: b0025 article-title: In vivo corrosion of four magnesium alloys and the associated bone response publication-title: Biomaterials – volume: 124 start-page: 991 year: 2011 end-page: 998 ident: b0210 article-title: Bone remodelling at a glance publication-title: J. Cell Sci. – volume: 4 start-page: 49 year: 2012 end-page: 61 ident: b0100 article-title: Osteoblasts and their applications in bone tissue engineering publication-title: Cell Health Cytoskeleton – volume: 27 start-page: 1728 year: 2006 end-page: 1734 ident: b0005 article-title: Magnesium and its alloys as orthopedic biomaterials: a review publication-title: Biomaterials – volume: 40 start-page: 238 year: 2001 end-page: 244 ident: b0235 article-title: Acid-base imbalance and the skeleton publication-title: Eur. J. Nutr. – volume: 40 start-page: 251 year: 2007 end-page: 264 ident: b0200 article-title: The molecular understanding of osteoclast differentiation publication-title: Bone – volume: 23 start-page: 582 year: 2012 end-page: 590 ident: b0205 article-title: New insights into osteoclastogenic signaling mechanisms publication-title: Trends Endocrinol. Metab. – volume: 285 start-page: 25103 year: 2010 end-page: 25108 ident: b0085 article-title: Cellular and molecular mechanisms of bone remodeling publication-title: J. Biol. Chem. – volume: 423 start-page: 337 year: 2003 end-page: 342 ident: b0195 article-title: Osteoclast differentiation and activation publication-title: Nature – reference: 10993-12:2012 I. Biological evaluation of medical devices. Part 12. Sample preparation and reference materials, 2012. – reference: A. Rosanoff, The 2-to-1 Calcium-to-Magnesium Ratio. – volume: 16 start-page: 1015 year: 2001 end-page: 1027 ident: b0230 article-title: The ratio of messenger RNA levels of receptor activator of nuclear factor κB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis publication-title: J. Bone Miner. Res. – volume: 15 start-page: 7639 year: 2014 end-page: 7650 ident: b0175 article-title: Optimization of cell adhesion on Mg based implant materials by pre-incubation under cell culture conditions publication-title: Int. J. Mol. Sci. – volume: 41 start-page: 197 year: 2002 end-page: 202 ident: b0180 article-title: Protective effect of calcium deficiency on the inflammatory response in magnesium-deficient rats publication-title: Eur. J. Nutr. – volume: 56 start-page: 236 year: 1994 end-page: 240 ident: b0130 article-title: Variables in the isolation and culture of human monocytes that are of particular relevance to studies of HIV publication-title: J. Leukoc. Biol. – volume: 62 start-page: 99 year: 2002 end-page: 105 ident: b0055 article-title: Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion publication-title: J. Biomed. Mater. Res. – volume: 112 start-page: 169 year: 1991 end-page: 181 ident: b0240 article-title: Receptor functions for the integrin VLA-3: fibronectin, collagen, and laminin binding are differentially influenced by Arg–Gly–Asp peptide and by divalent cations publication-title: J. Cell Biol. – volume: 89 start-page: 651 year: 2003 end-page: 656 ident: b0010 article-title: Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? publication-title: Heart – volume: 62 start-page: 175 year: 2002 end-page: 184 ident: b0060 article-title: Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants publication-title: J. Biomed. Mater. Res. – volume: 8 start-page: R19 year: 2007 ident: b0165 article-title: QBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data publication-title: Genome Biol. – volume: 32 start-page: 107 year: 2006 end-page: 113 ident: b0115 article-title: Osteoclasts and biomaterials publication-title: Eur. J. Trauma – reference: G. Jones, M. Marshall, A. El Haj, A. Motta, S. Cartmell. The use of osteoblast/osteoclast co-cultures on PLLA, silk and dentine scaffolds. Tissue Engineering: Mary Ann Liebert Inc 140 Huguenot Street, 3rd fl, New Rochelle, NY 10801, USA, 2007, pp. 1765–1766. – volume: 6 start-page: 1241 year: 2001 end-page: 1242 ident: b0220 article-title: Osteoprotegerin: a new therapeutic agent for the treatment of bone disease publication-title: Drug Discovery Today – reference: 10993-5:2009 I. Biological evaluation of medical devices. Part 5. Tests for in vitro cytotoxicity, 2009. – volume: 29 start-page: 1329 year: 2008 end-page: 1344 ident: b0050 article-title: The development of binary Mg–Ca alloys for use as biodegradable materials within bone publication-title: Biomaterials – volume: 21 start-page: 1278 year: 2010 end-page: 1287 ident: b0075 article-title: Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces publication-title: Clin. Oral Implant Res. – volume: 5 start-page: 054114 year: 2010 ident: b0070 article-title: Osteoblastic cell response on fluoridated hydroxyapatite coatings: the effect of magnesium incorporation publication-title: Biomed. Mater. – volume: 6 start-page: 626 year: 2010 end-page: 640 ident: b0045 article-title: Research on an Mg–Zn alloy as a degradable biomaterial publication-title: Acta Biomater. – volume: 25 start-page: 3963 year: 2004 end-page: 3972 ident: b0135 article-title: Resorbability of bone substitute biomaterials by human osteoclasts publication-title: Biomaterials – volume: 1096 start-page: 220 year: 2007 end-page: 229 ident: b0160 article-title: Prion protein aggregation and neurotoxicity in cortical neurons publication-title: Ann. N. Y. Acad. Sci. – reference: T. Phan, J. Xu, M. Zheng, Interaction between osteoblast and osteoclast: impact in bone disease, 2004. – volume: 81 start-page: 748 year: 2007 end-page: 756 ident: b0035 article-title: Biodegradable magnesium scaffolds: part 1: appropriate inflammatory response publication-title: J. Biomed. Mater. Res., Part A – volume: 27 start-page: 1229 year: 1999 end-page: 1241 ident: b0110 article-title: Cell biology of the osteoclast publication-title: Exp. Hematol. – volume: 20 start-page: 521 year: 2009 end-page: 527 ident: b0065 article-title: Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets publication-title: J. Mater. Sci. - Mater. Med. – volume: 25 start-page: 231 year: 1992 end-page: 243 ident: b0155 article-title: Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker publication-title: J. Biotechnol. – volume: 5 start-page: 2783 year: 2009 end-page: 2789 ident: b0170 article-title: Effect of surface pre-treatments on biocompatibility of magnesium publication-title: Acta Biomater. – volume: 15 start-page: 203 year: 2002 end-page: 210 ident: b0015 article-title: Magnesium chemistry and biochemistry publication-title: Biometals – volume: 16 start-page: 13 year: 2003 end-page: 19 ident: b0185 article-title: Effect of magnesium supplementation on oxidative stress in alloxanic diabetic rats publication-title: Magnes. Res. – volume: 74 start-page: 51 year: 1972 end-page: 60 ident: b0245 article-title: Roles of magnesium and calcium ions in cell-to-substrate adhesion publication-title: Exp. Cell Res. – volume: 40 start-page: 849 year: 2007 end-page: 865 ident: b0080 article-title: Importance of melastatin-like transient receptor potential 7 and cations (magnesium, calcium) in human osteoblast-like cell proliferation publication-title: Cell Prolif. – year: 2014 ident: b0095 article-title: Effects of extracellular magnesium on the differentiation and function of human osteoclasts publication-title: Acta Biomater. – volume: 27 start-page: 1728 year: 2006 ident: 10.1016/j.actbio.2015.08.042_b0005 article-title: Magnesium and its alloys as orthopedic biomaterials: a review publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.10.003 – volume: 64 start-page: 295 year: 1997 ident: 10.1016/j.actbio.2015.08.042_b0145 article-title: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro publication-title: J. Cell. Biochem. doi: 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I – volume: 15 start-page: 203 year: 2002 ident: 10.1016/j.actbio.2015.08.042_b0015 article-title: Magnesium chemistry and biochemistry publication-title: Biometals doi: 10.1023/A:1016058229972 – volume: 40 start-page: 238 year: 2001 ident: 10.1016/j.actbio.2015.08.042_b0235 article-title: Acid-base imbalance and the skeleton publication-title: Eur. J. Nutr. doi: 10.1007/s394-001-8351-5 – volume: 40 start-page: 251 year: 2007 ident: 10.1016/j.actbio.2015.08.042_b0200 article-title: The molecular understanding of osteoclast differentiation publication-title: Bone doi: 10.1016/j.bone.2006.09.023 – volume: 423 start-page: 337 year: 2003 ident: 10.1016/j.actbio.2015.08.042_b0195 article-title: Osteoclast differentiation and activation publication-title: Nature doi: 10.1038/nature01658 – ident: 10.1016/j.actbio.2015.08.042_b0120 – volume: 16 start-page: 1015 year: 2001 ident: 10.1016/j.actbio.2015.08.042_b0230 article-title: The ratio of messenger RNA levels of receptor activator of nuclear factor κB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2001.16.6.1015 – ident: 10.1016/j.actbio.2015.08.042_b0190 – volume: 20 start-page: 521 year: 2009 ident: 10.1016/j.actbio.2015.08.042_b0065 article-title: Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets publication-title: J. Mater. Sci. - Mater. Med. doi: 10.1007/s10856-008-3610-3 – volume: 285 start-page: 25103 year: 2010 ident: 10.1016/j.actbio.2015.08.042_b0085 article-title: Cellular and molecular mechanisms of bone remodeling publication-title: J. Biol. Chem. doi: 10.1074/jbc.R109.041087 – volume: 74 start-page: 51 year: 1972 ident: 10.1016/j.actbio.2015.08.042_b0245 article-title: Roles of magnesium and calcium ions in cell-to-substrate adhesion publication-title: Exp. Cell Res. doi: 10.1016/0014-4827(72)90480-6 – volume: 81 start-page: 748 year: 2007 ident: 10.1016/j.actbio.2015.08.042_b0035 article-title: Biodegradable magnesium scaffolds: part 1: appropriate inflammatory response publication-title: J. Biomed. Mater. Res., Part A doi: 10.1002/jbm.a.31170 – volume: 32 start-page: 107 year: 2006 ident: 10.1016/j.actbio.2015.08.042_b0115 article-title: Osteoclasts and biomaterials publication-title: Eur. J. Trauma doi: 10.1007/s00068-006-6043-1 – volume: 56 start-page: 236 year: 1994 ident: 10.1016/j.actbio.2015.08.042_b0130 article-title: Variables in the isolation and culture of human monocytes that are of particular relevance to studies of HIV publication-title: J. Leukoc. Biol. doi: 10.1002/jlb.56.3.236 – volume: 112 start-page: 169 year: 1991 ident: 10.1016/j.actbio.2015.08.042_b0240 article-title: Receptor functions for the integrin VLA-3: fibronectin, collagen, and laminin binding are differentially influenced by Arg–Gly–Asp peptide and by divalent cations publication-title: J. Cell Biol. doi: 10.1083/jcb.112.1.169 – volume: 6 start-page: 1861 year: 2010 ident: 10.1016/j.actbio.2015.08.042_b0250 article-title: Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.12.037 – volume: 83 start-page: 703 year: 2007 ident: 10.1016/j.actbio.2015.08.042_b0020 article-title: In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application publication-title: J. Biomed. Mater. Res., Part A doi: 10.1002/jbm.a.31273 – volume: 27 start-page: 1229 year: 1999 ident: 10.1016/j.actbio.2015.08.042_b0110 article-title: Cell biology of the osteoclast publication-title: Exp. Hematol. doi: 10.1016/S0301-472X(99)00061-2 – volume: 6 start-page: 626 year: 2010 ident: 10.1016/j.actbio.2015.08.042_b0045 article-title: Research on an Mg–Zn alloy as a degradable biomaterial publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.06.028 – volume: 21 start-page: 1278 year: 2010 ident: 10.1016/j.actbio.2015.08.042_b0075 article-title: Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces publication-title: Clin. Oral Implant Res. doi: 10.1111/j.1600-0501.2010.01944.x – volume: 8 start-page: R19 year: 2007 ident: 10.1016/j.actbio.2015.08.042_b0165 article-title: QBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data publication-title: Genome Biol. doi: 10.1186/gb-2007-8-2-r19 – volume: 25 start-page: 231 year: 1992 ident: 10.1016/j.actbio.2015.08.042_b0155 article-title: Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker publication-title: J. Biotechnol. doi: 10.1016/0168-1656(92)90158-6 – volume: 62 start-page: 99 year: 2002 ident: 10.1016/j.actbio.2015.08.042_b0055 article-title: Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.10220 – year: 2014 ident: 10.1016/j.actbio.2015.08.042_b0095 article-title: Effects of extracellular magnesium on the differentiation and function of human osteoclasts publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.02.010 – volume: 5 start-page: 2783 year: 2009 ident: 10.1016/j.actbio.2015.08.042_b0170 article-title: Effect of surface pre-treatments on biocompatibility of magnesium publication-title: Acta Biomater. doi: 10.1016/j.actbio.2009.04.018 – volume: 5 start-page: 054114 year: 2010 ident: 10.1016/j.actbio.2015.08.042_b0070 article-title: Osteoblastic cell response on fluoridated hydroxyapatite coatings: the effect of magnesium incorporation publication-title: Biomed. Mater. doi: 10.1088/1748-6041/5/5/054114 – volume: 62 start-page: 175 year: 2002 ident: 10.1016/j.actbio.2015.08.042_b0060 article-title: Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants publication-title: J. Biomed. Mater. Res. doi: 10.1002/jbm.10270 – ident: 10.1016/j.actbio.2015.08.042_b0125 – volume: 25 start-page: 3963 year: 2004 ident: 10.1016/j.actbio.2015.08.042_b0135 article-title: Resorbability of bone substitute biomaterials by human osteoclasts publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.10.079 – volume: 15 start-page: 7639 year: 2014 ident: 10.1016/j.actbio.2015.08.042_b0175 article-title: Optimization of cell adhesion on Mg based implant materials by pre-incubation under cell culture conditions publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms15057639 – volume: 27 start-page: 1013 year: 2006 ident: 10.1016/j.actbio.2015.08.042_b0030 article-title: In vitro and in vivo corrosion measurements of magnesium alloys publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.07.037 – volume: 89 start-page: 309 year: 1997 ident: 10.1016/j.actbio.2015.08.042_b0215 article-title: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density publication-title: Cell doi: 10.1016/S0092-8674(00)80209-3 – volume: 89 start-page: 651 year: 2003 ident: 10.1016/j.actbio.2015.08.042_b0010 article-title: Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? publication-title: Heart doi: 10.1136/heart.89.6.651 – volume: 41 start-page: 197 year: 2002 ident: 10.1016/j.actbio.2015.08.042_b0180 article-title: Protective effect of calcium deficiency on the inflammatory response in magnesium-deficient rats publication-title: Eur. J. Nutr. doi: 10.1007/s00394-002-0376-0 – volume: 23 start-page: 582 year: 2012 ident: 10.1016/j.actbio.2015.08.042_b0205 article-title: New insights into osteoclastogenic signaling mechanisms publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2012.05.005 – ident: 10.1016/j.actbio.2015.08.042_b0150 – volume: 16 start-page: 13 year: 2003 ident: 10.1016/j.actbio.2015.08.042_b0185 article-title: Effect of magnesium supplementation on oxidative stress in alloxanic diabetic rats publication-title: Magnes. Res. – volume: 26 start-page: 3557 year: 2005 ident: 10.1016/j.actbio.2015.08.042_b0025 article-title: In vivo corrosion of four magnesium alloys and the associated bone response publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.09.049 – volume: 81 start-page: 757 year: 2007 ident: 10.1016/j.actbio.2015.08.042_b0040 article-title: Biodegradable magnesium scaffolds: part II: peri-implant bone remodeling publication-title: J. Biomed. Mater. Res., Part A doi: 10.1002/jbm.a.31293 – volume: 1096 start-page: 220 year: 2007 ident: 10.1016/j.actbio.2015.08.042_b0160 article-title: Prion protein aggregation and neurotoxicity in cortical neurons publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1397.088 – volume: 29 start-page: 1329 year: 2008 ident: 10.1016/j.actbio.2015.08.042_b0050 article-title: The development of binary Mg–Ca alloys for use as biodegradable materials within bone publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.12.021 – volume: 6 start-page: 1241 year: 2001 ident: 10.1016/j.actbio.2015.08.042_b0220 article-title: Osteoprotegerin: a new therapeutic agent for the treatment of bone disease publication-title: Drug Discovery Today doi: 10.1016/S1359-6446(01)02037-2 – ident: 10.1016/j.actbio.2015.08.042_b0105 – volume: 124 start-page: 991 year: 2011 ident: 10.1016/j.actbio.2015.08.042_b0210 article-title: Bone remodelling at a glance publication-title: J. Cell Sci. doi: 10.1242/jcs.063032 – volume: 19 start-page: 722 year: 2004 ident: 10.1016/j.actbio.2015.08.042_b0225 article-title: Osteoprotegerin and RANKL in the pathogenesis of thalassemia-induced osteoporosis: new pieces of the puzzle publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.040113 – volume: 5 start-page: 49 year: 2008 ident: 10.1016/j.actbio.2015.08.042_b0090 article-title: Molecular biology of bone remodelling publication-title: Clin. Cases Mineral Bone Metab. – volume: 21 start-page: 80 year: 2011 ident: 10.1016/j.actbio.2015.08.042_b0140 article-title: Development of an osteoblast/osteoclast co-culture derived by human bone marrow stromal cells and human monocytes for biomaterials testing publication-title: Eur. Cell Mater. doi: 10.22203/eCM.v021a07 – volume: 40 start-page: 849 year: 2007 ident: 10.1016/j.actbio.2015.08.042_b0080 article-title: Importance of melastatin-like transient receptor potential 7 and cations (magnesium, calcium) in human osteoblast-like cell proliferation publication-title: Cell Prolif. doi: 10.1111/j.1365-2184.2007.00476.x – volume: 4 start-page: 49 year: 2012 ident: 10.1016/j.actbio.2015.08.042_b0100 article-title: Osteoblasts and their applications in bone tissue engineering publication-title: Cell Health Cytoskeleton |
SSID | ssj0038128 |
Score | 2.5510485 |
Snippet | [Display omitted]
Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the... Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 294 |
SubjectTerms | Biocompatibility Biodegradation Biomedical materials Bone Substitutes - administration & dosage Cell Differentiation - drug effects Cell Differentiation - physiology Cell Proliferation - drug effects Cell Proliferation - physiology Cells, Cultured Coculture Coculture Techniques - methods Culture Dilution Dose-Response Relationship, Drug Extracellular Fluid - chemistry Humans Magnesium Magnesium - administration & dosage Materials Testing Mathematical models Osteoblast Osteoblasts Osteoblasts - cytology Osteoblasts - drug effects Osteoblasts - physiology Osteoclast Osteoclasts - cytology Osteoclasts - drug effects Osteoclasts - physiology Surgical implants |
Title | Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture |
URI | https://dx.doi.org/10.1016/j.actbio.2015.08.042 https://www.ncbi.nlm.nih.gov/pubmed/26318802 https://www.proquest.com/docview/1722926913 https://www.proquest.com/docview/1727697977 https://www.proquest.com/docview/1762108169 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQvdBDRUtptxRkpF7NNrYT20eEipZW5UKRuFmOY1epSrKC7LU3_jczdrIqB0Di6GicD8945jmaeUPIFwiiUYUQmdDOM-lqyYzykpUlmE8pAJMkUp-f59XiUn6_Kq82yMlUC4NplaPvzz49eevxynxczfmybecXgKW5gnAEexaBOdJuS6nQyo_-rdM8ICCl_qoozFB6Kp9LOV7OD3WLJYBFmYg8JX8sPD0GP1MYOt0mb0b8SI_zK74lG6F7R17_xyq4Q-4yI_Et7SMF13vj8Oc8ZpvSa_cbPFu7uh6vD7TvKCBAusTePTFka6Cua-jUOGXIqsN7pXZ-FItC-howNzwABdPY53HbUfCvicsjvCeXp99-nSzY2G2BeTiUDczEgqsgYT_K6BtdV0KFaGRTVMo7aXzgsvHc6dor4SDyaWd0aHSMXPiGOyl2yWbXd-EjobHQKsBae1lCkIyh9nDTr3CSqbV2jQszIqZFtn6kIseOGH_tlHP2x2bVWFSNxUaZks8IW89aZiqOZ-TVpD_7wKQsRItnZh5O6raw21BLrgv96tYC3OOGV6YQT8qoyigA1k_JVHDW1kVlZuRDtqf1N_FKIEke__Ti998jWzjKJZOfyeZwswr7gJ2G-iBtjgPy6vjsx-L8HjtSG94 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHxJvlaSSuZont-HFEFdUCbS-0Um-W49goFU1WbfbKjf_NjJ2s4NBW4mhn7Dgez8znaB6EvAcjmnSMiQnjA5O-kczqIFldw_GpBWCSnNTn8EitTuTX0_p0h-zNsTDoVjnp_qLTs7aeepbTbi7XXbf8DliaazBHILMIzNUtcluC-GIZgw-_tn4eYJFygVWkZkg-x89lJy8fxqbDGMCqzpk8Jb_KPl2FP7Md2n9A7k8Akn4qa3xIdmL_iNz7K63gY_K7pCS-pEOioHsvPP6dR3dTeu5_gGrrNudT_0iHngIEpGss3pNiOQ7U9y2dK6eMhXc4V67nRzEqZGgAdMMLkDC3Q2l3PQUFm5N5xCfkZP_z8d6KTeUWWIBb2chsqriOEgRSptCaRgkdk5VtpXTw0obIZRu4N03QwoPpM96a2JqUuAgt91I8Jbv90MfnhKbK6Ah7HYAhskqxCTDpR7jKNMb41scFEfMmuzDlIseSGD_d7HR25gprHLLGYaVMyReEbUetSy6OG-j1zD_3z5lyYC5uGPluZrcDcUMu-T4Om0sHeI9brmwlrqXRympA1tfRKLhsm0rZBXlWztP2m7gSmCWPv_jv9b8ld1bHhwfu4MvRt5fkLj4p8ZOvyO54sYmvAUiNzZssKH8Ag1IdbA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+extracellular+magnesium+extract+on+the+proliferation+and+differentiation+of+human+osteoblasts+and+osteoclasts+in+coculture&rft.jtitle=Acta+biomaterialia&rft.au=Wu%2C+Lili&rft.au=Feyerabend%2C+Frank&rft.au=Schilling%2C+Arndt+F&rft.au=Willumeit-R%C3%B6mer%2C+Regine&rft.date=2015-11-01&rft.eissn=1878-7568&rft.volume=27&rft.spage=294&rft_id=info:doi/10.1016%2Fj.actbio.2015.08.042&rft_id=info%3Apmid%2F26318802&rft.externalDocID=26318802 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon |