Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture

[Display omitted] Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were f...

Full description

Saved in:
Bibliographic Details
Published inActa biomaterialia Vol. 27; pp. 294 - 304
Main Authors Wu, Lili, Feyerabend, Frank, Schilling, Arndt F., Willumeit-Römer, Regine, Luthringer, Bérengère J.C.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30×, 10×, 5×, 3×, 2× and 1×). Phenotype characterization documented that while 2× dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1× dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2× and 1× dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment. An attractive human osteoblasts and osteoclasts cocultivation regime was developed as an in vitro cytocompatibility model for magnesium implants. Parameters in terms of cellular proliferation and differentiation behaviors were investigated and we conclude that high concentration of magnesium extract could lead to a promotion in osteoblastogenesis but an inhibition in osteoclastogenesis. It could contribute to the repeated observations of enhanced bone growth adjacent to degradable magnesium alloys. More interestingly, it demonstrates that compared to monoculture, osteoclasts in cocultures with osteoblasts exhibited higher tolerance to the culture environment with high magnesium extract. It might attribute to the neutralization process of the alkaline medium by acid generated by increased amount of osteoblasts in the condition with high concentration of Mg extract. The submitted work could be of significant importance to other researchers working in the related field(s), thus appealing to the readership of Acta Biomaterialia.
AbstractList Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30, 10, 5, 3, 2 and 1). Phenotype characterization documented that while 2 dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1 dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2 and 1 dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment. Statement of Significance An attractive human osteoblasts and osteoclasts cocultivation regime was developed as an in vitro cytocompatibility model for magnesium implants. Parameters in terms of cellular proliferation and differentiation behaviors were investigated and we conclude that high concentration of magnesium extract could lead to a promotion in osteoblastogenesis but an inhibition in osteoclastogenesis. It could contribute to the repeated observations of enhanced bone growth adjacent to degradable magnesium alloys. More interestingly, it demonstrates that compared to monoculture, osteoclasts in cocultures with osteoblasts exhibited higher tolerance to the culture environment with high magnesium extract. It might attribute to the neutralization process of the alkaline medium by acid generated by increased amount of osteoblasts in the condition with high concentration of Mg extract. The submitted work could be of significant importance to other researchers working in the related field(s), thus appealing to the readership of Acta Biomaterialia.
Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30×, 10×, 5×, 3×, 2× and 1×). Phenotype characterization documented that while 2× dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1× dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2× and 1× dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment.Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30×, 10×, 5×, 3×, 2× and 1×). Phenotype characterization documented that while 2× dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1× dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2× and 1× dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment.An attractive human osteoblasts and osteoclasts cocultivation regime was developed as an in vitro cytocompatibility model for magnesium implants. Parameters in terms of cellular proliferation and differentiation behaviors were investigated and we conclude that high concentration of magnesium extract could lead to a promotion in osteoblastogenesis but an inhibition in osteoclastogenesis. It could contribute to the repeated observations of enhanced bone growth adjacent to degradable magnesium alloys. More interestingly, it demonstrates that compared to monoculture, osteoclasts in cocultures with osteoblasts exhibited higher tolerance to the culture environment with high magnesium extract. It might attribute to the neutralization process of the alkaline medium by acid generated by increased amount of osteoblasts in the condition with high concentration of Mg extract. The submitted work could be of significant importance to other researchers working in the related field(s), thus appealing to the readership of Acta Biomaterialia.STATEMENT OF SIGNIFICANCEAn attractive human osteoblasts and osteoclasts cocultivation regime was developed as an in vitro cytocompatibility model for magnesium implants. Parameters in terms of cellular proliferation and differentiation behaviors were investigated and we conclude that high concentration of magnesium extract could lead to a promotion in osteoblastogenesis but an inhibition in osteoclastogenesis. It could contribute to the repeated observations of enhanced bone growth adjacent to degradable magnesium alloys. More interestingly, it demonstrates that compared to monoculture, osteoclasts in cocultures with osteoblasts exhibited higher tolerance to the culture environment with high magnesium extract. It might attribute to the neutralization process of the alkaline medium by acid generated by increased amount of osteoblasts in the condition with high concentration of Mg extract. The submitted work could be of significant importance to other researchers working in the related field(s), thus appealing to the readership of Acta Biomaterialia.
Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30×, 10×, 5×, 3×, 2× and 1×). Phenotype characterization documented that while 2× dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1× dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2× and 1× dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment. An attractive human osteoblasts and osteoclasts cocultivation regime was developed as an in vitro cytocompatibility model for magnesium implants. Parameters in terms of cellular proliferation and differentiation behaviors were investigated and we conclude that high concentration of magnesium extract could lead to a promotion in osteoblastogenesis but an inhibition in osteoclastogenesis. It could contribute to the repeated observations of enhanced bone growth adjacent to degradable magnesium alloys. More interestingly, it demonstrates that compared to monoculture, osteoclasts in cocultures with osteoblasts exhibited higher tolerance to the culture environment with high magnesium extract. It might attribute to the neutralization process of the alkaline medium by acid generated by increased amount of osteoblasts in the condition with high concentration of Mg extract. The submitted work could be of significant importance to other researchers working in the related field(s), thus appealing to the readership of Acta Biomaterialia.
[Display omitted] Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and remodeling upon degradation. Human telomerase reverse transcriptase (hTERT) transduced mesenchymal stem cells (SCP-1) were first differentiated into osteoblasts with osteogenic supplements and then further cocultured with peripheral blood mononucleated cells (PBMC) without the addition of osteoclastogenesis promoting factors. Concomitantly, the cultures were exposed to variable Mg extract dilutions (0, 30×, 10×, 5×, 3×, 2× and 1×). Phenotype characterization documented that while 2× dilution of Mg extract was extremely toxic to osteoclast monoculture, monocytes in coculture with osteoblasts exhibited a greater tolerance to higher Mg extract concentration. The dense growth of osteoblasts in cultures with 1× dilution of Mg extract suggested that high concentration of Mg extract promoted osteoblast proliferation/differentiation behavior. The results of intracellular alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) activities as well as protein and gene expressions of receptor activator of nuclear factor kappa-B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and osteoclast-associated receptor (OSCAR) revealed significantly enhanced formation of osteoblasts whereas decreased osteoclastogenesis in the cultures with high concentrations of Mg extract (2× and 1× dilutions). In conclusion, while an increased osteoinductivity has been demonstrated, the impact of potentially decreased osteoclastogenesis around the Mg-based implants should be also taken into account. Cocultures containing both bone-forming osteoblasts and bone-resorbing osteoclasts should be preferentially performed for in vitro cytocompatibility assessment of Mg-based implants as they more closely mimic the in vivo environment. An attractive human osteoblasts and osteoclasts cocultivation regime was developed as an in vitro cytocompatibility model for magnesium implants. Parameters in terms of cellular proliferation and differentiation behaviors were investigated and we conclude that high concentration of magnesium extract could lead to a promotion in osteoblastogenesis but an inhibition in osteoclastogenesis. It could contribute to the repeated observations of enhanced bone growth adjacent to degradable magnesium alloys. More interestingly, it demonstrates that compared to monoculture, osteoclasts in cocultures with osteoblasts exhibited higher tolerance to the culture environment with high magnesium extract. It might attribute to the neutralization process of the alkaline medium by acid generated by increased amount of osteoblasts in the condition with high concentration of Mg extract. The submitted work could be of significant importance to other researchers working in the related field(s), thus appealing to the readership of Acta Biomaterialia.
Author Schilling, Arndt F.
Luthringer, Bérengère J.C.
Feyerabend, Frank
Wu, Lili
Willumeit-Römer, Regine
Author_xml – sequence: 1
  givenname: Lili
  surname: Wu
  fullname: Wu, Lili
  organization: Institute of Materials Research, Division of Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany
– sequence: 2
  givenname: Frank
  surname: Feyerabend
  fullname: Feyerabend, Frank
  organization: Institute of Materials Research, Division of Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany
– sequence: 3
  givenname: Arndt F.
  surname: Schilling
  fullname: Schilling, Arndt F.
  organization: Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University Munich (TUM), D-81675 Munich, Germany
– sequence: 4
  givenname: Regine
  surname: Willumeit-Römer
  fullname: Willumeit-Römer, Regine
  organization: Institute of Materials Research, Division of Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany
– sequence: 5
  givenname: Bérengère J.C.
  surname: Luthringer
  fullname: Luthringer, Bérengère J.C.
  email: berengere.luthringer@hzg.de
  organization: Institute of Materials Research, Division of Metallic Biomaterials, Helmholtz-Zentrum Geesthacht (HZG), 21502 Geesthacht, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26318802$$D View this record in MEDLINE/PubMed
BookMark eNqNks1uFiEUhompsT96B8bM0s2M_BUYFyamqa1JEze6JgwcLF9moAJj6gV43_J1Pl240K445-R5X3J4OUVHMUVA6CXBA8FEvNkNxtYppIFicj5gNWBOn6AToqTq5blQR62WnPYSC3KMTkvZYcwUoeoZOqaCEaUwPUE_L70HW0uXfAf3NRsL87zOJneL-RqhhHU5zGuXYldvobvLaQ4esqmhTUx0nQvNJEOsYZs1r9t1Ma0oFdI0m9Iu2IMPvd36EDub7DrXNcNz9NSbucCLw3mGvny4_Hxx3d98uvp48f6mtwKT2o-eUAlcMMW9dWoSTIIfuSNCWsNHC5Q7S42arGSGMKzMqMAp7ymzjhrOztDrzbft8G2FUvUSyn5jEyGtRRMpKMGKiPERKJVilKOUj0HpSMVIWENfHdB1WsDpuxwWk3_o34E0gG-AzamUDP4PQrDe5653estd73PXWOmWe5O9_UtmQ30Io0UX5v-J321iaE__PUDWxQaIFlzI7W9ol8K_DX4BGmfN-w
CitedBy_id crossref_primary_10_1016_j_msec_2022_112692
crossref_primary_10_1021_acsami_1c07453
crossref_primary_10_3390_biom13061006
crossref_primary_10_1002_jbm_a_37673
crossref_primary_10_1007_s10856_018_6145_2
crossref_primary_10_1016_j_actbio_2024_08_015
crossref_primary_10_7759_cureus_54597
crossref_primary_10_1016_j_actbio_2022_06_005
crossref_primary_10_1016_j_jot_2022_09_013
crossref_primary_10_34133_bmr_0122
crossref_primary_10_1039_d0mt00028k
crossref_primary_10_1016_j_bone_2019_05_008
crossref_primary_10_3390_ph14121281
crossref_primary_10_1002_advs_201902443
crossref_primary_10_1038_s41598_020_76063_9
crossref_primary_10_1039_C7TB00165G
crossref_primary_10_1016_j_bioadv_2024_213984
crossref_primary_10_1016_j_cca_2019_11_037
crossref_primary_10_1016_j_pnsc_2024_12_017
crossref_primary_10_3389_fnins_2017_00087
crossref_primary_10_3390_biomimetics8080618
crossref_primary_10_3390_nu15061304
crossref_primary_10_1016_j_jma_2024_05_028
crossref_primary_10_1016_j_jma_2024_11_028
crossref_primary_10_1021_acsbiomaterials_0c00983
crossref_primary_10_2147_IJN_S239550
crossref_primary_10_1002_advs_202306428
crossref_primary_10_3390_ijms21197084
crossref_primary_10_1039_D0BM00834F
crossref_primary_10_1016_j_msec_2019_01_053
crossref_primary_10_1016_j_actbio_2017_09_039
crossref_primary_10_1007_s41970_018_0041_6
crossref_primary_10_1016_j_matdes_2021_110242
crossref_primary_10_1016_j_mtbio_2024_101234
crossref_primary_10_1021_acsbiomaterials_6b00056
crossref_primary_10_3389_fendo_2024_1375871
crossref_primary_10_3390_ijms19051410
crossref_primary_10_1016_j_msec_2016_07_016
crossref_primary_10_1039_D4TB01123F
crossref_primary_10_1021_acs_nanolett_6b00636
crossref_primary_10_1016_j_jmrt_2025_03_188
crossref_primary_10_1016_j_actbio_2020_06_013
crossref_primary_10_1016_j_surfin_2025_105936
crossref_primary_10_1039_C6TB01449F
crossref_primary_10_3390_polym13132183
crossref_primary_10_1007_s12011_023_03970_z
crossref_primary_10_1016_j_bioactmat_2023_03_009
crossref_primary_10_3390_molecules21091260
crossref_primary_10_2109_jcersj2_24085
crossref_primary_10_1007_s00204_020_02906_z
crossref_primary_10_1016_j_colsurfb_2019_04_013
crossref_primary_10_1016_j_msec_2017_02_139
crossref_primary_10_1557_jmr_2019_367
crossref_primary_10_1002_jcp_25875
crossref_primary_10_1002_adfm_202206992
crossref_primary_10_1016_j_mtbio_2022_100412
crossref_primary_10_1177_0885328219825568
crossref_primary_10_1002_adtp_202400296
crossref_primary_10_1038_s41598_018_36200_x
crossref_primary_10_1016_j_nutres_2021_03_002
crossref_primary_10_3390_ma14040946
crossref_primary_10_1016_j_surfcoat_2020_126005
crossref_primary_10_1016_j_actbio_2017_11_033
crossref_primary_10_1002_adhm_202100053
crossref_primary_10_1016_j_bioactmat_2021_06_024
crossref_primary_10_3390_bioengineering12020201
crossref_primary_10_1134_S1990793124010202
crossref_primary_10_1021_acsbiomaterials_9b00270
crossref_primary_10_1002_jbm4_10370
crossref_primary_10_1088_1748_605X_ace9a5
crossref_primary_10_1016_j_biomaterials_2019_119727
crossref_primary_10_1016_j_colsurfb_2020_111360
crossref_primary_10_1016_j_surfcoat_2022_128589
crossref_primary_10_1302_2046_3758_98_BJR_2020_0017_R2
crossref_primary_10_1111_ijac_13577
crossref_primary_10_2109_jcersj2_23102
crossref_primary_10_1016_j_actbio_2016_03_041
crossref_primary_10_1080_00084433_2024_2427455
crossref_primary_10_3390_cryst12101468
crossref_primary_10_1016_j_msec_2018_09_032
crossref_primary_10_1016_j_cej_2023_143460
crossref_primary_10_1021_acsbiomaterials_9b00938
crossref_primary_10_1002_pssa_202200348
crossref_primary_10_1016_j_addma_2020_101321
crossref_primary_10_1021_acsomega_9b02976
crossref_primary_10_3390_biomedicines12010074
crossref_primary_10_1093_ndt_gfaa222
crossref_primary_10_3390_ma14174857
crossref_primary_10_1016_j_msec_2019_110026
crossref_primary_10_1016_j_mser_2024_100801
crossref_primary_10_1109_TCBB_2018_2885757
crossref_primary_10_1016_j_jnutbio_2018_02_006
crossref_primary_10_1016_j_jma_2022_07_002
crossref_primary_10_1016_j_jconrel_2022_08_036
crossref_primary_10_1111_os_12973
crossref_primary_10_1016_j_cej_2024_158712
crossref_primary_10_1016_j_jma_2021_03_004
crossref_primary_10_1021_acsnano_2c05110
crossref_primary_10_1016_j_apt_2021_01_038
crossref_primary_10_1016_j_jma_2022_11_014
crossref_primary_10_3389_fbioe_2022_998254
crossref_primary_10_1016_j_jot_2022_03_004
crossref_primary_10_1021_acsami_4c02795
crossref_primary_10_1016_j_bioactmat_2023_05_019
crossref_primary_10_1016_j_biomaterials_2024_122779
crossref_primary_10_1016_j_bj_2024_100750
crossref_primary_10_3390_nu11061387
crossref_primary_10_3389_fbioe_2023_1142095
crossref_primary_10_3389_fnut_2021_738000
crossref_primary_10_1002_jbm_b_34332
crossref_primary_10_1007_s10853_022_07439_7
crossref_primary_10_1177_0885328216664839
crossref_primary_10_1021_acs_biomac_1c00842
crossref_primary_10_1016_j_bioactmat_2023_06_009
crossref_primary_10_1016_j_csbj_2021_07_005
crossref_primary_10_1016_j_mtla_2020_100852
crossref_primary_10_1016_j_actbio_2016_08_039
crossref_primary_10_1039_D1TB00178G
crossref_primary_10_1039_D2MA00768A
crossref_primary_10_1002_jbm_a_37862
crossref_primary_10_1089_ten_tec_2018_0301
crossref_primary_10_1016_j_jmrt_2023_06_237
crossref_primary_10_3390_ijms25116242
crossref_primary_10_3390_ijms20112784
crossref_primary_10_1016_j_ceramint_2021_12_169
crossref_primary_10_1007_s44174_024_00217_w
crossref_primary_10_1038_s41598_017_13169_7
crossref_primary_10_1002_jbm_a_36397
crossref_primary_10_1039_C6TB00449K
crossref_primary_10_1039_D0RA09395E
crossref_primary_10_3390_ma15093142
crossref_primary_10_1039_D1TB01080H
crossref_primary_10_1007_s12666_023_02928_y
crossref_primary_10_1016_j_biomaterials_2018_05_003
crossref_primary_10_1016_j_colsurfb_2019_110684
crossref_primary_10_1016_j_jma_2022_02_013
crossref_primary_10_1016_j_msec_2021_111942
crossref_primary_10_1016_j_ceramint_2022_04_118
crossref_primary_10_1016_j_bonr_2020_100707
crossref_primary_10_1186_s12938_019_0739_x
crossref_primary_10_1371_journal_pcbi_1010482
crossref_primary_10_1016_j_matdes_2021_109834
crossref_primary_10_1016_j_cbi_2019_108748
crossref_primary_10_1016_j_arabjc_2020_03_031
crossref_primary_10_1016_j_bioactmat_2021_02_003
crossref_primary_10_1016_j_jeurceramsoc_2024_116983
crossref_primary_10_1016_j_actbio_2020_12_016
crossref_primary_10_1097_NT_0000000000000691
crossref_primary_10_1016_j_jma_2024_02_002
crossref_primary_10_1016_j_biomaterials_2017_11_032
crossref_primary_10_1155_2024_1325004
crossref_primary_10_1088_1748_605X_aa69c3
crossref_primary_10_3390_ijms20020385
crossref_primary_10_1515_iss_2018_0006
crossref_primary_10_1002_smll_201704252
crossref_primary_10_1016_j_jma_2023_08_016
crossref_primary_10_3390_ijms22020909
crossref_primary_10_3390_bioengineering9060255
crossref_primary_10_1007_s41779_023_00953_0
crossref_primary_10_1016_j_kint_2019_09_034
crossref_primary_10_29039_2070_8092_2020_23_4_46_52
crossref_primary_10_3390_jfb15120368
crossref_primary_10_1016_j_porgcoat_2024_108327
crossref_primary_10_1016_j_surfcoat_2018_04_051
crossref_primary_10_3389_fmed_2020_00381
crossref_primary_10_3390_biology12101297
crossref_primary_10_5435_JAAOSGlobal_D_24_00035
crossref_primary_10_1016_j_actbio_2019_02_018
crossref_primary_10_36740_WLek_197141
crossref_primary_10_1007_s11837_019_03368_0
crossref_primary_10_1016_j_pmatsci_2022_101039
crossref_primary_10_1016_j_surfcoat_2020_125461
crossref_primary_10_1016_j_colsurfb_2021_111851
crossref_primary_10_3390_met8040212
crossref_primary_10_1002_jbm_b_34051
crossref_primary_10_3390_life12070997
crossref_primary_10_1016_j_jmbbm_2021_104618
Cites_doi 10.1016/j.biomaterials.2005.10.003
10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
10.1023/A:1016058229972
10.1007/s394-001-8351-5
10.1016/j.bone.2006.09.023
10.1038/nature01658
10.1359/jbmr.2001.16.6.1015
10.1007/s10856-008-3610-3
10.1074/jbc.R109.041087
10.1016/0014-4827(72)90480-6
10.1002/jbm.a.31170
10.1007/s00068-006-6043-1
10.1002/jlb.56.3.236
10.1083/jcb.112.1.169
10.1016/j.actbio.2009.12.037
10.1002/jbm.a.31273
10.1016/S0301-472X(99)00061-2
10.1016/j.actbio.2009.06.028
10.1111/j.1600-0501.2010.01944.x
10.1186/gb-2007-8-2-r19
10.1016/0168-1656(92)90158-6
10.1002/jbm.10220
10.1016/j.actbio.2014.02.010
10.1016/j.actbio.2009.04.018
10.1088/1748-6041/5/5/054114
10.1002/jbm.10270
10.1016/j.biomaterials.2003.10.079
10.3390/ijms15057639
10.1016/j.biomaterials.2005.07.037
10.1016/S0092-8674(00)80209-3
10.1136/heart.89.6.651
10.1007/s00394-002-0376-0
10.1016/j.tem.2012.05.005
10.1016/j.biomaterials.2004.09.049
10.1002/jbm.a.31293
10.1196/annals.1397.088
10.1016/j.biomaterials.2007.12.021
10.1016/S1359-6446(01)02037-2
10.1242/jcs.063032
10.1359/jbmr.040113
10.22203/eCM.v021a07
10.1111/j.1365-2184.2007.00476.x
ContentType Journal Article
Copyright 2015 Acta Materialia Inc.
Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2015 Acta Materialia Inc.
– notice: Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
7QF
7SR
7TB
7U5
8BQ
F28
JG9
L7M
DOI 10.1016/j.actbio.2015.08.042
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Aluminium Industry Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Aluminium Industry Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList Engineering Research Database
MEDLINE - Academic
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1878-7568
EndPage 304
ExternalDocumentID 26318802
10_1016_j_actbio_2015_08_042
S1742706115300866
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACPRK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSM
SSU
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7QO
8FD
FR3
P64
7QF
7SR
7TB
7U5
8BQ
F28
JG9
L7M
ID FETCH-LOGICAL-c601t-9f127e46384fcd8b637ef94d167ca49ce24dc2a8bc73a1308a98ed8ff23cd2a43
IEDL.DBID .~1
ISSN 1742-7061
1878-7568
IngestDate Mon Jul 21 09:44:37 EDT 2025
Sun Aug 24 03:58:10 EDT 2025
Mon Jul 21 10:28:34 EDT 2025
Wed Feb 19 02:27:03 EST 2025
Tue Jul 01 01:17:06 EDT 2025
Thu Apr 24 22:59:19 EDT 2025
Fri Feb 23 02:35:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biodegradation
Osteoblast
Coculture
Osteoclast
Magnesium
Language English
License Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c601t-9f127e46384fcd8b637ef94d167ca49ce24dc2a8bc73a1308a98ed8ff23cd2a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26318802
PQID 1722926913
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_1762108169
proquest_miscellaneous_1727697977
proquest_miscellaneous_1722926913
pubmed_primary_26318802
crossref_primary_10_1016_j_actbio_2015_08_042
crossref_citationtrail_10_1016_j_actbio_2015_08_042
elsevier_sciencedirect_doi_10_1016_j_actbio_2015_08_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Acta biomaterialia
PublicationTitleAlternate Acta Biomater
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Witte, Fischer, Nellesen, Crostack, Kaese, Pisch (b0030) 2006; 27
Hans, Chaudhary, Bansal (b0185) 2003; 16
Xu, Yu, Zhang, Pan, Yang (b0020) 2007; 83
Wu, Luthringer, Feyerabend, Schilling, Willumeit (b0095) 2014
Bennett, Breit (b0130) 1994; 56
Rupani, Balint, Cartmell (b0100) 2012; 4
Legrand, Bour, Jacob, Capiaumont, Martial, Marc (b0155) 1992; 25
Asagiri, Takayanagi (b0200) 2007; 40
10993-5:2009 I. Biological evaluation of medical devices. Part 5. Tests for in vitro cytotoxicity, 2009.
Fazzalari, Kuliwaba, Atkins, Forwood, Findlay (b0230) 2001; 16
Simonet, Lacey, Dunstan, Kelley, Chang, Lüthy (b0215) 1997; 89
Witte, Kaese, Haferkamp, Switzer, Meyer-Lindenberg, Wirth (b0025) 2005; 26
Roodman (b0110) 1999; 27
Heinemann, Heinemann, Worch, Hanke (b0140) 2011; 21
Maguire, Cowan (b0015) 2002; 15
Raggatt, Partridge (b0085) 2010; 285
Zhang, Zhang, Zhao, Li, Song, Xie (b0045) 2010; 6
Schilling, Filke, Brink, Korbmacher, Amling, Rueger (b0115) 2006; 32
Lorenz, Brunner, Kollmannsberger, Jaafar, Fabry, Virtanen (b0170) 2009; 5
Rucci (b0090) 2008; 5
A. Rosanoff, The 2-to-1 Calcium-to-Magnesium Ratio.
T. Phan, J. Xu, M. Zheng, Interaction between osteoblast and osteoclast: impact in bone disease, 2004.
Crockett, Rogers, Coxon, Hocking, Helfrich (b0210) 2011; 124
Hellemans, Mortier, De Paepe, Speleman, Vandesompele (b0165) 2007; 8
Janning, Willbold, Vogt, Nellesen, Meyer-Lindenberg, Windhagen (b0250) 2010; 6
Bushinsky (b0235) 2001; 40
Zreiqat, Howlett, Zannettino, Evans, Schulze-Tanzil, Knabe (b0060) 2002; 62
Melo, Agostinho, Oliveira (b0160) 2007; 1096
Morabito, Gaudio, Lasco, Atteritano, Pizzoleo, Cincotta (b0225) 2004; 19
Elices, Urry, Hemler (b0240) 1991; 112
Jaiswal, Haynesworth, Caplan, Bruder (b0145) 1997; 64
Boyle, Simonet, Lacey (b0195) 2003; 423
Willumeit, Möhring, Feyerabend (b0175) 2014; 15
Sader, LeGeros, Soares (b0065) 2009; 20
Takeichi, Okada (b0245) 1972; 74
10993-12:2012 I. Biological evaluation of medical devices. Part 12. Sample preparation and reference materials, 2012.
Cai, Zhang, Zhang, Venkatraman, Zeng, Du (b0070) 2010; 5
Gueux, Rock, Mazur, Rayssiguier (b0180) 2002; 41
Witte, Ulrich, Rudert, Willbold (b0035) 2007; 81
G. Jones, M. Marshall, A. El Haj, A. Motta, S. Cartmell. The use of osteoblast/osteoclast co-cultures on PLLA, silk and dentine scaffolds. Tissue Engineering: Mary Ann Liebert Inc 140 Huguenot Street, 3rd fl, New Rochelle, NY 10801, USA, 2007, pp. 1765–1766.
Abed, Moreau (b0080) 2007; 40
Grimaud, Redini, Heymann (b0220) 2001; 6
Nakashima, Hayashi, Takayanagi (b0205) 2012; 23
Staiger, Pietak, Huadmai, Dias (b0005) 2006; 27
Yamasaki, Yoshida, Okazaki, Shimazu, Uchida, Kubo (b0055) 2002; 62
Schilling, Linhart, Filke, Gebauer, Schinke, Rueger (b0135) 2004; 25
Li, Gu, Lou, Zheng (b0050) 2008; 29
Heublein, Rohde, Kaese, Niemeyer, Hartung, Haverich (b0010) 2003; 89
Witte, Ulrich, Palm, Willbold (b0040) 2007; 81
Park, Kim, Jang, Song (b0075) 2010; 21
Sader (10.1016/j.actbio.2015.08.042_b0065) 2009; 20
Rupani (10.1016/j.actbio.2015.08.042_b0100) 2012; 4
Cai (10.1016/j.actbio.2015.08.042_b0070) 2010; 5
10.1016/j.actbio.2015.08.042_b0120
Lorenz (10.1016/j.actbio.2015.08.042_b0170) 2009; 5
Melo (10.1016/j.actbio.2015.08.042_b0160) 2007; 1096
Zhang (10.1016/j.actbio.2015.08.042_b0045) 2010; 6
Xu (10.1016/j.actbio.2015.08.042_b0020) 2007; 83
Park (10.1016/j.actbio.2015.08.042_b0075) 2010; 21
Elices (10.1016/j.actbio.2015.08.042_b0240) 1991; 112
Morabito (10.1016/j.actbio.2015.08.042_b0225) 2004; 19
Hellemans (10.1016/j.actbio.2015.08.042_b0165) 2007; 8
Janning (10.1016/j.actbio.2015.08.042_b0250) 2010; 6
Willumeit (10.1016/j.actbio.2015.08.042_b0175) 2014; 15
Raggatt (10.1016/j.actbio.2015.08.042_b0085) 2010; 285
Roodman (10.1016/j.actbio.2015.08.042_b0110) 1999; 27
Rucci (10.1016/j.actbio.2015.08.042_b0090) 2008; 5
Nakashima (10.1016/j.actbio.2015.08.042_b0205) 2012; 23
Witte (10.1016/j.actbio.2015.08.042_b0030) 2006; 27
Witte (10.1016/j.actbio.2015.08.042_b0035) 2007; 81
Gueux (10.1016/j.actbio.2015.08.042_b0180) 2002; 41
Abed (10.1016/j.actbio.2015.08.042_b0080) 2007; 40
Schilling (10.1016/j.actbio.2015.08.042_b0115) 2006; 32
10.1016/j.actbio.2015.08.042_b0125
Asagiri (10.1016/j.actbio.2015.08.042_b0200) 2007; 40
Witte (10.1016/j.actbio.2015.08.042_b0040) 2007; 81
Hans (10.1016/j.actbio.2015.08.042_b0185) 2003; 16
Bennett (10.1016/j.actbio.2015.08.042_b0130) 1994; 56
Schilling (10.1016/j.actbio.2015.08.042_b0135) 2004; 25
Crockett (10.1016/j.actbio.2015.08.042_b0210) 2011; 124
Staiger (10.1016/j.actbio.2015.08.042_b0005) 2006; 27
Jaiswal (10.1016/j.actbio.2015.08.042_b0145) 1997; 64
10.1016/j.actbio.2015.08.042_b0150
Boyle (10.1016/j.actbio.2015.08.042_b0195) 2003; 423
Zreiqat (10.1016/j.actbio.2015.08.042_b0060) 2002; 62
Grimaud (10.1016/j.actbio.2015.08.042_b0220) 2001; 6
Bushinsky (10.1016/j.actbio.2015.08.042_b0235) 2001; 40
Takeichi (10.1016/j.actbio.2015.08.042_b0245) 1972; 74
Heublein (10.1016/j.actbio.2015.08.042_b0010) 2003; 89
Witte (10.1016/j.actbio.2015.08.042_b0025) 2005; 26
10.1016/j.actbio.2015.08.042_b0190
Heinemann (10.1016/j.actbio.2015.08.042_b0140) 2011; 21
Fazzalari (10.1016/j.actbio.2015.08.042_b0230) 2001; 16
Wu (10.1016/j.actbio.2015.08.042_b0095) 2014
Li (10.1016/j.actbio.2015.08.042_b0050) 2008; 29
Maguire (10.1016/j.actbio.2015.08.042_b0015) 2002; 15
Yamasaki (10.1016/j.actbio.2015.08.042_b0055) 2002; 62
Legrand (10.1016/j.actbio.2015.08.042_b0155) 1992; 25
10.1016/j.actbio.2015.08.042_b0105
Simonet (10.1016/j.actbio.2015.08.042_b0215) 1997; 89
References_xml – volume: 6
  start-page: 1861
  year: 2010
  end-page: 1868
  ident: b0250
  article-title: Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling
  publication-title: Acta Biomater.
– volume: 27
  start-page: 1013
  year: 2006
  end-page: 1018
  ident: b0030
  article-title: In vitro and in vivo corrosion measurements of magnesium alloys
  publication-title: Biomaterials
– volume: 81
  start-page: 757
  year: 2007
  end-page: 765
  ident: b0040
  article-title: Biodegradable magnesium scaffolds: part II: peri-implant bone remodeling
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 5
  start-page: 49
  year: 2008
  ident: b0090
  article-title: Molecular biology of bone remodelling
  publication-title: Clin. Cases Mineral Bone Metab.
– volume: 19
  start-page: 722
  year: 2004
  end-page: 727
  ident: b0225
  article-title: Osteoprotegerin and RANKL in the pathogenesis of thalassemia-induced osteoporosis: new pieces of the puzzle
  publication-title: J. Bone Miner. Res.
– volume: 64
  start-page: 295
  year: 1997
  end-page: 312
  ident: b0145
  article-title: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro
  publication-title: J. Cell. Biochem.
– volume: 89
  start-page: 309
  year: 1997
  end-page: 319
  ident: b0215
  article-title: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density
  publication-title: Cell
– volume: 83
  start-page: 703
  year: 2007
  end-page: 711
  ident: b0020
  article-title: In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 21
  start-page: 80
  year: 2011
  end-page: 93
  ident: b0140
  article-title: Development of an osteoblast/osteoclast co-culture derived by human bone marrow stromal cells and human monocytes for biomaterials testing
  publication-title: Eur. Cell Mater.
– volume: 26
  start-page: 3557
  year: 2005
  end-page: 3563
  ident: b0025
  article-title: In vivo corrosion of four magnesium alloys and the associated bone response
  publication-title: Biomaterials
– volume: 124
  start-page: 991
  year: 2011
  end-page: 998
  ident: b0210
  article-title: Bone remodelling at a glance
  publication-title: J. Cell Sci.
– volume: 4
  start-page: 49
  year: 2012
  end-page: 61
  ident: b0100
  article-title: Osteoblasts and their applications in bone tissue engineering
  publication-title: Cell Health Cytoskeleton
– volume: 27
  start-page: 1728
  year: 2006
  end-page: 1734
  ident: b0005
  article-title: Magnesium and its alloys as orthopedic biomaterials: a review
  publication-title: Biomaterials
– volume: 40
  start-page: 238
  year: 2001
  end-page: 244
  ident: b0235
  article-title: Acid-base imbalance and the skeleton
  publication-title: Eur. J. Nutr.
– volume: 40
  start-page: 251
  year: 2007
  end-page: 264
  ident: b0200
  article-title: The molecular understanding of osteoclast differentiation
  publication-title: Bone
– volume: 23
  start-page: 582
  year: 2012
  end-page: 590
  ident: b0205
  article-title: New insights into osteoclastogenic signaling mechanisms
  publication-title: Trends Endocrinol. Metab.
– volume: 285
  start-page: 25103
  year: 2010
  end-page: 25108
  ident: b0085
  article-title: Cellular and molecular mechanisms of bone remodeling
  publication-title: J. Biol. Chem.
– volume: 423
  start-page: 337
  year: 2003
  end-page: 342
  ident: b0195
  article-title: Osteoclast differentiation and activation
  publication-title: Nature
– reference: 10993-12:2012 I. Biological evaluation of medical devices. Part 12. Sample preparation and reference materials, 2012.
– reference: A. Rosanoff, The 2-to-1 Calcium-to-Magnesium Ratio.
– volume: 16
  start-page: 1015
  year: 2001
  end-page: 1027
  ident: b0230
  article-title: The ratio of messenger RNA levels of receptor activator of nuclear factor κB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis
  publication-title: J. Bone Miner. Res.
– volume: 15
  start-page: 7639
  year: 2014
  end-page: 7650
  ident: b0175
  article-title: Optimization of cell adhesion on Mg based implant materials by pre-incubation under cell culture conditions
  publication-title: Int. J. Mol. Sci.
– volume: 41
  start-page: 197
  year: 2002
  end-page: 202
  ident: b0180
  article-title: Protective effect of calcium deficiency on the inflammatory response in magnesium-deficient rats
  publication-title: Eur. J. Nutr.
– volume: 56
  start-page: 236
  year: 1994
  end-page: 240
  ident: b0130
  article-title: Variables in the isolation and culture of human monocytes that are of particular relevance to studies of HIV
  publication-title: J. Leukoc. Biol.
– volume: 62
  start-page: 99
  year: 2002
  end-page: 105
  ident: b0055
  article-title: Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion
  publication-title: J. Biomed. Mater. Res.
– volume: 112
  start-page: 169
  year: 1991
  end-page: 181
  ident: b0240
  article-title: Receptor functions for the integrin VLA-3: fibronectin, collagen, and laminin binding are differentially influenced by Arg–Gly–Asp peptide and by divalent cations
  publication-title: J. Cell Biol.
– volume: 89
  start-page: 651
  year: 2003
  end-page: 656
  ident: b0010
  article-title: Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?
  publication-title: Heart
– volume: 62
  start-page: 175
  year: 2002
  end-page: 184
  ident: b0060
  article-title: Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants
  publication-title: J. Biomed. Mater. Res.
– volume: 8
  start-page: R19
  year: 2007
  ident: b0165
  article-title: QBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data
  publication-title: Genome Biol.
– volume: 32
  start-page: 107
  year: 2006
  end-page: 113
  ident: b0115
  article-title: Osteoclasts and biomaterials
  publication-title: Eur. J. Trauma
– reference: G. Jones, M. Marshall, A. El Haj, A. Motta, S. Cartmell. The use of osteoblast/osteoclast co-cultures on PLLA, silk and dentine scaffolds. Tissue Engineering: Mary Ann Liebert Inc 140 Huguenot Street, 3rd fl, New Rochelle, NY 10801, USA, 2007, pp. 1765–1766.
– volume: 6
  start-page: 1241
  year: 2001
  end-page: 1242
  ident: b0220
  article-title: Osteoprotegerin: a new therapeutic agent for the treatment of bone disease
  publication-title: Drug Discovery Today
– reference: 10993-5:2009 I. Biological evaluation of medical devices. Part 5. Tests for in vitro cytotoxicity, 2009.
– volume: 29
  start-page: 1329
  year: 2008
  end-page: 1344
  ident: b0050
  article-title: The development of binary Mg–Ca alloys for use as biodegradable materials within bone
  publication-title: Biomaterials
– volume: 21
  start-page: 1278
  year: 2010
  end-page: 1287
  ident: b0075
  article-title: Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces
  publication-title: Clin. Oral Implant Res.
– volume: 5
  start-page: 054114
  year: 2010
  ident: b0070
  article-title: Osteoblastic cell response on fluoridated hydroxyapatite coatings: the effect of magnesium incorporation
  publication-title: Biomed. Mater.
– volume: 6
  start-page: 626
  year: 2010
  end-page: 640
  ident: b0045
  article-title: Research on an Mg–Zn alloy as a degradable biomaterial
  publication-title: Acta Biomater.
– volume: 25
  start-page: 3963
  year: 2004
  end-page: 3972
  ident: b0135
  article-title: Resorbability of bone substitute biomaterials by human osteoclasts
  publication-title: Biomaterials
– volume: 1096
  start-page: 220
  year: 2007
  end-page: 229
  ident: b0160
  article-title: Prion protein aggregation and neurotoxicity in cortical neurons
  publication-title: Ann. N. Y. Acad. Sci.
– reference: T. Phan, J. Xu, M. Zheng, Interaction between osteoblast and osteoclast: impact in bone disease, 2004.
– volume: 81
  start-page: 748
  year: 2007
  end-page: 756
  ident: b0035
  article-title: Biodegradable magnesium scaffolds: part 1: appropriate inflammatory response
  publication-title: J. Biomed. Mater. Res., Part A
– volume: 27
  start-page: 1229
  year: 1999
  end-page: 1241
  ident: b0110
  article-title: Cell biology of the osteoclast
  publication-title: Exp. Hematol.
– volume: 20
  start-page: 521
  year: 2009
  end-page: 527
  ident: b0065
  article-title: Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets
  publication-title: J. Mater. Sci. - Mater. Med.
– volume: 25
  start-page: 231
  year: 1992
  end-page: 243
  ident: b0155
  article-title: Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker
  publication-title: J. Biotechnol.
– volume: 5
  start-page: 2783
  year: 2009
  end-page: 2789
  ident: b0170
  article-title: Effect of surface pre-treatments on biocompatibility of magnesium
  publication-title: Acta Biomater.
– volume: 15
  start-page: 203
  year: 2002
  end-page: 210
  ident: b0015
  article-title: Magnesium chemistry and biochemistry
  publication-title: Biometals
– volume: 16
  start-page: 13
  year: 2003
  end-page: 19
  ident: b0185
  article-title: Effect of magnesium supplementation on oxidative stress in alloxanic diabetic rats
  publication-title: Magnes. Res.
– volume: 74
  start-page: 51
  year: 1972
  end-page: 60
  ident: b0245
  article-title: Roles of magnesium and calcium ions in cell-to-substrate adhesion
  publication-title: Exp. Cell Res.
– volume: 40
  start-page: 849
  year: 2007
  end-page: 865
  ident: b0080
  article-title: Importance of melastatin-like transient receptor potential 7 and cations (magnesium, calcium) in human osteoblast-like cell proliferation
  publication-title: Cell Prolif.
– year: 2014
  ident: b0095
  article-title: Effects of extracellular magnesium on the differentiation and function of human osteoclasts
  publication-title: Acta Biomater.
– volume: 27
  start-page: 1728
  year: 2006
  ident: 10.1016/j.actbio.2015.08.042_b0005
  article-title: Magnesium and its alloys as orthopedic biomaterials: a review
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.10.003
– volume: 64
  start-page: 295
  year: 1997
  ident: 10.1016/j.actbio.2015.08.042_b0145
  article-title: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro
  publication-title: J. Cell. Biochem.
  doi: 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
– volume: 15
  start-page: 203
  year: 2002
  ident: 10.1016/j.actbio.2015.08.042_b0015
  article-title: Magnesium chemistry and biochemistry
  publication-title: Biometals
  doi: 10.1023/A:1016058229972
– volume: 40
  start-page: 238
  year: 2001
  ident: 10.1016/j.actbio.2015.08.042_b0235
  article-title: Acid-base imbalance and the skeleton
  publication-title: Eur. J. Nutr.
  doi: 10.1007/s394-001-8351-5
– volume: 40
  start-page: 251
  year: 2007
  ident: 10.1016/j.actbio.2015.08.042_b0200
  article-title: The molecular understanding of osteoclast differentiation
  publication-title: Bone
  doi: 10.1016/j.bone.2006.09.023
– volume: 423
  start-page: 337
  year: 2003
  ident: 10.1016/j.actbio.2015.08.042_b0195
  article-title: Osteoclast differentiation and activation
  publication-title: Nature
  doi: 10.1038/nature01658
– ident: 10.1016/j.actbio.2015.08.042_b0120
– volume: 16
  start-page: 1015
  year: 2001
  ident: 10.1016/j.actbio.2015.08.042_b0230
  article-title: The ratio of messenger RNA levels of receptor activator of nuclear factor κB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2001.16.6.1015
– ident: 10.1016/j.actbio.2015.08.042_b0190
– volume: 20
  start-page: 521
  year: 2009
  ident: 10.1016/j.actbio.2015.08.042_b0065
  article-title: Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets
  publication-title: J. Mater. Sci. - Mater. Med.
  doi: 10.1007/s10856-008-3610-3
– volume: 285
  start-page: 25103
  year: 2010
  ident: 10.1016/j.actbio.2015.08.042_b0085
  article-title: Cellular and molecular mechanisms of bone remodeling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R109.041087
– volume: 74
  start-page: 51
  year: 1972
  ident: 10.1016/j.actbio.2015.08.042_b0245
  article-title: Roles of magnesium and calcium ions in cell-to-substrate adhesion
  publication-title: Exp. Cell Res.
  doi: 10.1016/0014-4827(72)90480-6
– volume: 81
  start-page: 748
  year: 2007
  ident: 10.1016/j.actbio.2015.08.042_b0035
  article-title: Biodegradable magnesium scaffolds: part 1: appropriate inflammatory response
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.31170
– volume: 32
  start-page: 107
  year: 2006
  ident: 10.1016/j.actbio.2015.08.042_b0115
  article-title: Osteoclasts and biomaterials
  publication-title: Eur. J. Trauma
  doi: 10.1007/s00068-006-6043-1
– volume: 56
  start-page: 236
  year: 1994
  ident: 10.1016/j.actbio.2015.08.042_b0130
  article-title: Variables in the isolation and culture of human monocytes that are of particular relevance to studies of HIV
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/jlb.56.3.236
– volume: 112
  start-page: 169
  year: 1991
  ident: 10.1016/j.actbio.2015.08.042_b0240
  article-title: Receptor functions for the integrin VLA-3: fibronectin, collagen, and laminin binding are differentially influenced by Arg–Gly–Asp peptide and by divalent cations
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.112.1.169
– volume: 6
  start-page: 1861
  year: 2010
  ident: 10.1016/j.actbio.2015.08.042_b0250
  article-title: Magnesium hydroxide temporarily enhancing osteoblast activity and decreasing the osteoclast number in peri-implant bone remodelling
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.12.037
– volume: 83
  start-page: 703
  year: 2007
  ident: 10.1016/j.actbio.2015.08.042_b0020
  article-title: In vivo corrosion behavior of Mg–Mn–Zn alloy for bone implant application
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.31273
– volume: 27
  start-page: 1229
  year: 1999
  ident: 10.1016/j.actbio.2015.08.042_b0110
  article-title: Cell biology of the osteoclast
  publication-title: Exp. Hematol.
  doi: 10.1016/S0301-472X(99)00061-2
– volume: 6
  start-page: 626
  year: 2010
  ident: 10.1016/j.actbio.2015.08.042_b0045
  article-title: Research on an Mg–Zn alloy as a degradable biomaterial
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.06.028
– volume: 21
  start-page: 1278
  year: 2010
  ident: 10.1016/j.actbio.2015.08.042_b0075
  article-title: Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces
  publication-title: Clin. Oral Implant Res.
  doi: 10.1111/j.1600-0501.2010.01944.x
– volume: 8
  start-page: R19
  year: 2007
  ident: 10.1016/j.actbio.2015.08.042_b0165
  article-title: QBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2007-8-2-r19
– volume: 25
  start-page: 231
  year: 1992
  ident: 10.1016/j.actbio.2015.08.042_b0155
  article-title: Lactate dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker
  publication-title: J. Biotechnol.
  doi: 10.1016/0168-1656(92)90158-6
– volume: 62
  start-page: 99
  year: 2002
  ident: 10.1016/j.actbio.2015.08.042_b0055
  article-title: Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.10220
– year: 2014
  ident: 10.1016/j.actbio.2015.08.042_b0095
  article-title: Effects of extracellular magnesium on the differentiation and function of human osteoclasts
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.02.010
– volume: 5
  start-page: 2783
  year: 2009
  ident: 10.1016/j.actbio.2015.08.042_b0170
  article-title: Effect of surface pre-treatments on biocompatibility of magnesium
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2009.04.018
– volume: 5
  start-page: 054114
  year: 2010
  ident: 10.1016/j.actbio.2015.08.042_b0070
  article-title: Osteoblastic cell response on fluoridated hydroxyapatite coatings: the effect of magnesium incorporation
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/5/5/054114
– volume: 62
  start-page: 175
  year: 2002
  ident: 10.1016/j.actbio.2015.08.042_b0060
  article-title: Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants
  publication-title: J. Biomed. Mater. Res.
  doi: 10.1002/jbm.10270
– ident: 10.1016/j.actbio.2015.08.042_b0125
– volume: 25
  start-page: 3963
  year: 2004
  ident: 10.1016/j.actbio.2015.08.042_b0135
  article-title: Resorbability of bone substitute biomaterials by human osteoclasts
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.10.079
– volume: 15
  start-page: 7639
  year: 2014
  ident: 10.1016/j.actbio.2015.08.042_b0175
  article-title: Optimization of cell adhesion on Mg based implant materials by pre-incubation under cell culture conditions
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms15057639
– volume: 27
  start-page: 1013
  year: 2006
  ident: 10.1016/j.actbio.2015.08.042_b0030
  article-title: In vitro and in vivo corrosion measurements of magnesium alloys
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.07.037
– volume: 89
  start-page: 309
  year: 1997
  ident: 10.1016/j.actbio.2015.08.042_b0215
  article-title: Osteoprotegerin: a novel secreted protein involved in the regulation of bone density
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80209-3
– volume: 89
  start-page: 651
  year: 2003
  ident: 10.1016/j.actbio.2015.08.042_b0010
  article-title: Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?
  publication-title: Heart
  doi: 10.1136/heart.89.6.651
– volume: 41
  start-page: 197
  year: 2002
  ident: 10.1016/j.actbio.2015.08.042_b0180
  article-title: Protective effect of calcium deficiency on the inflammatory response in magnesium-deficient rats
  publication-title: Eur. J. Nutr.
  doi: 10.1007/s00394-002-0376-0
– volume: 23
  start-page: 582
  year: 2012
  ident: 10.1016/j.actbio.2015.08.042_b0205
  article-title: New insights into osteoclastogenic signaling mechanisms
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2012.05.005
– ident: 10.1016/j.actbio.2015.08.042_b0150
– volume: 16
  start-page: 13
  year: 2003
  ident: 10.1016/j.actbio.2015.08.042_b0185
  article-title: Effect of magnesium supplementation on oxidative stress in alloxanic diabetic rats
  publication-title: Magnes. Res.
– volume: 26
  start-page: 3557
  year: 2005
  ident: 10.1016/j.actbio.2015.08.042_b0025
  article-title: In vivo corrosion of four magnesium alloys and the associated bone response
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.09.049
– volume: 81
  start-page: 757
  year: 2007
  ident: 10.1016/j.actbio.2015.08.042_b0040
  article-title: Biodegradable magnesium scaffolds: part II: peri-implant bone remodeling
  publication-title: J. Biomed. Mater. Res., Part A
  doi: 10.1002/jbm.a.31293
– volume: 1096
  start-page: 220
  year: 2007
  ident: 10.1016/j.actbio.2015.08.042_b0160
  article-title: Prion protein aggregation and neurotoxicity in cortical neurons
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1397.088
– volume: 29
  start-page: 1329
  year: 2008
  ident: 10.1016/j.actbio.2015.08.042_b0050
  article-title: The development of binary Mg–Ca alloys for use as biodegradable materials within bone
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.12.021
– volume: 6
  start-page: 1241
  year: 2001
  ident: 10.1016/j.actbio.2015.08.042_b0220
  article-title: Osteoprotegerin: a new therapeutic agent for the treatment of bone disease
  publication-title: Drug Discovery Today
  doi: 10.1016/S1359-6446(01)02037-2
– ident: 10.1016/j.actbio.2015.08.042_b0105
– volume: 124
  start-page: 991
  year: 2011
  ident: 10.1016/j.actbio.2015.08.042_b0210
  article-title: Bone remodelling at a glance
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.063032
– volume: 19
  start-page: 722
  year: 2004
  ident: 10.1016/j.actbio.2015.08.042_b0225
  article-title: Osteoprotegerin and RANKL in the pathogenesis of thalassemia-induced osteoporosis: new pieces of the puzzle
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.040113
– volume: 5
  start-page: 49
  year: 2008
  ident: 10.1016/j.actbio.2015.08.042_b0090
  article-title: Molecular biology of bone remodelling
  publication-title: Clin. Cases Mineral Bone Metab.
– volume: 21
  start-page: 80
  year: 2011
  ident: 10.1016/j.actbio.2015.08.042_b0140
  article-title: Development of an osteoblast/osteoclast co-culture derived by human bone marrow stromal cells and human monocytes for biomaterials testing
  publication-title: Eur. Cell Mater.
  doi: 10.22203/eCM.v021a07
– volume: 40
  start-page: 849
  year: 2007
  ident: 10.1016/j.actbio.2015.08.042_b0080
  article-title: Importance of melastatin-like transient receptor potential 7 and cations (magnesium, calcium) in human osteoblast-like cell proliferation
  publication-title: Cell Prolif.
  doi: 10.1111/j.1365-2184.2007.00476.x
– volume: 4
  start-page: 49
  year: 2012
  ident: 10.1016/j.actbio.2015.08.042_b0100
  article-title: Osteoblasts and their applications in bone tissue engineering
  publication-title: Cell Health Cytoskeleton
SSID ssj0038128
Score 2.5510485
Snippet [Display omitted] Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the...
Coculture of osteoblasts and osteoclasts is a subject of interest in the understanding of how magnesium (Mg)-based implants influence the bone metabolism and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 294
SubjectTerms Biocompatibility
Biodegradation
Biomedical materials
Bone Substitutes - administration & dosage
Cell Differentiation - drug effects
Cell Differentiation - physiology
Cell Proliferation - drug effects
Cell Proliferation - physiology
Cells, Cultured
Coculture
Coculture Techniques - methods
Culture
Dilution
Dose-Response Relationship, Drug
Extracellular Fluid - chemistry
Humans
Magnesium
Magnesium - administration & dosage
Materials Testing
Mathematical models
Osteoblast
Osteoblasts
Osteoblasts - cytology
Osteoblasts - drug effects
Osteoblasts - physiology
Osteoclast
Osteoclasts - cytology
Osteoclasts - drug effects
Osteoclasts - physiology
Surgical implants
Title Effects of extracellular magnesium extract on the proliferation and differentiation of human osteoblasts and osteoclasts in coculture
URI https://dx.doi.org/10.1016/j.actbio.2015.08.042
https://www.ncbi.nlm.nih.gov/pubmed/26318802
https://www.proquest.com/docview/1722926913
https://www.proquest.com/docview/1727697977
https://www.proquest.com/docview/1762108169
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQvdBDRUtptxRkpF7NNrYT20eEipZW5UKRuFmOY1epSrKC7LU3_jczdrIqB0Di6GicD8945jmaeUPIFwiiUYUQmdDOM-lqyYzykpUlmE8pAJMkUp-f59XiUn6_Kq82yMlUC4NplaPvzz49eevxynxczfmybecXgKW5gnAEexaBOdJuS6nQyo_-rdM8ICCl_qoozFB6Kp9LOV7OD3WLJYBFmYg8JX8sPD0GP1MYOt0mb0b8SI_zK74lG6F7R17_xyq4Q-4yI_Et7SMF13vj8Oc8ZpvSa_cbPFu7uh6vD7TvKCBAusTePTFka6Cua-jUOGXIqsN7pXZ-FItC-howNzwABdPY53HbUfCvicsjvCeXp99-nSzY2G2BeTiUDczEgqsgYT_K6BtdV0KFaGRTVMo7aXzgsvHc6dor4SDyaWd0aHSMXPiGOyl2yWbXd-EjobHQKsBae1lCkIyh9nDTr3CSqbV2jQszIqZFtn6kIseOGH_tlHP2x2bVWFSNxUaZks8IW89aZiqOZ-TVpD_7wKQsRItnZh5O6raw21BLrgv96tYC3OOGV6YQT8qoyigA1k_JVHDW1kVlZuRDtqf1N_FKIEke__Ti998jWzjKJZOfyeZwswr7gJ2G-iBtjgPy6vjsx-L8HjtSG94
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQAHxJvlaSSuZont-HFEFdUCbS-0Um-W49goFU1WbfbKjf_NjJ2s4NBW4mhn7Dgez8znaB6EvAcjmnSMiQnjA5O-kczqIFldw_GpBWCSnNTn8EitTuTX0_p0h-zNsTDoVjnp_qLTs7aeepbTbi7XXbf8DliaazBHILMIzNUtcluC-GIZgw-_tn4eYJFygVWkZkg-x89lJy8fxqbDGMCqzpk8Jb_KPl2FP7Md2n9A7k8Akn4qa3xIdmL_iNz7K63gY_K7pCS-pEOioHsvPP6dR3dTeu5_gGrrNudT_0iHngIEpGss3pNiOQ7U9y2dK6eMhXc4V67nRzEqZGgAdMMLkDC3Q2l3PQUFm5N5xCfkZP_z8d6KTeUWWIBb2chsqriOEgRSptCaRgkdk5VtpXTw0obIZRu4N03QwoPpM96a2JqUuAgt91I8Jbv90MfnhKbK6Ah7HYAhskqxCTDpR7jKNMb41scFEfMmuzDlIseSGD_d7HR25gprHLLGYaVMyReEbUetSy6OG-j1zD_3z5lyYC5uGPluZrcDcUMu-T4Om0sHeI9brmwlrqXRympA1tfRKLhsm0rZBXlWztP2m7gSmCWPv_jv9b8ld1bHhwfu4MvRt5fkLj4p8ZOvyO54sYmvAUiNzZssKH8Ag1IdbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+extracellular+magnesium+extract+on+the+proliferation+and+differentiation+of+human+osteoblasts+and+osteoclasts+in+coculture&rft.jtitle=Acta+biomaterialia&rft.au=Wu%2C+Lili&rft.au=Feyerabend%2C+Frank&rft.au=Schilling%2C+Arndt+F&rft.au=Willumeit-R%C3%B6mer%2C+Regine&rft.date=2015-11-01&rft.eissn=1878-7568&rft.volume=27&rft.spage=294&rft_id=info:doi/10.1016%2Fj.actbio.2015.08.042&rft_id=info%3Apmid%2F26318802&rft.externalDocID=26318802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-7061&client=summon