Review of Second-Generation Bioethanol Production from Residual Biomass
In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generat...
Saved in:
Published in | Food technology and biotechnology Vol. 56; no. 2; pp. 174 - 187 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Croatia
Sveuciliste U Zagrebu
01.04.2018
Sveuciliste u Zagrebu, Prehramheno-Biotehnoloski Fakultet University of Zagreb Faculty of Food Technology and Biotechnology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller's yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like
,
(
)
and
, metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate. |
---|---|
AbstractList | In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller’s yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like Candida shehatae, Pichia (Scheffersomyces) stipitis, and Pachysolen tannophilus, metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate. In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller’s yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like Candida shehatae , Pichia ( Scheffersomyces ) stipitis, and Pachysolen tannophilus , metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate. In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller's yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like , ( ) and , metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate. In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller's yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like Candida shehatae, Pichia (Scheffersomyces) stipitis, and Pachysolen tannophilus, metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate.In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller's yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like Candida shehatae, Pichia (Scheffersomyces) stipitis, and Pachysolen tannophilus, metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate. In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller's yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like Candida shehatae, Pichia (Scheffersomyces) stipitis, and Pachysolen tannophilus, metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate. Key words: second generation bioethanol, biofuel, lignocellulosic biomass, biomass pretreatment, enzymatic hydrolysis, co-fermentation |
Audience | Academic |
Author | Balcerek, Maria Robak, Katarzyna |
Author_xml | – sequence: 1 givenname: Katarzyna orcidid: 0000-0002-8765-0035 surname: Robak fullname: Robak, Katarzyna – sequence: 2 givenname: Maria orcidid: 0000-0003-3731-8680 surname: Balcerek fullname: Balcerek, Maria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30228792$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhi1URNuFP8ABrcSFS4K_41yQ2gqWSpVABc6W44y3XiV2sZMi_j3ebItoD9iSPRo_89rjmVN0FGIAhF4TXJOGEPbeTV0tZI1pTVQtOFXP0AlhjFdUYnm02LhqlaTH6DTnHcZMNS15gY4ZprSY9ARtruHOw691dOtvYGPoqw0ESGbyMazPfYTpxoQ4rL-m2M928boUx_U1ZN_PZtgzo8n5JXruzJDh1f2-Qj8-ffx-8bm6-rK5vDi7qqzEZKoUlsz1rmsI7zFhAivaSNYqJhm22JmGm45g1rhOdQysk22Hqd2vtumBOrZClwfdPpqdvk1-NOm3jsbrxRHTVps0eTuAps6wkqUCwSWXplVdIzoHXDjopGmgaH04aN3O3Qi9hTAlMzwSfXwS_I3exjstCWlapYrAu3uBFH_OkCc9-mxhGEyAOGdNSRmCC8EK-vYJuotzCuWr9hQVEtOWF6o-UFtTEvDBxXKvLbOH0ZfqgPPFfyYEYRzzsq7Qm39T-Pv2hwIXQB0Am2LOCZy2flqqW5T9oAnWSy_p0ktaSI2pJkrve6mE0iehD-r_CfoDjGLL_g |
CitedBy_id | crossref_primary_10_1007_s11356_021_15471_4 crossref_primary_10_1016_j_heliyon_2023_e20435 crossref_primary_10_1002_adma_202406472 crossref_primary_10_1007_s13399_021_01948_2 crossref_primary_10_1021_acssuschemeng_0c07266 crossref_primary_10_1021_acssuschemeng_2c06913 crossref_primary_10_1016_j_ijbiomac_2021_10_062 crossref_primary_10_1016_j_indcrop_2024_118461 crossref_primary_10_1021_acsomega_4c04374 crossref_primary_10_1016_j_biortech_2020_123704 crossref_primary_10_1016_j_biteb_2023_101747 crossref_primary_10_1016_j_fuel_2021_122840 crossref_primary_10_1016_j_renene_2020_05_099 crossref_primary_10_3390_fermentation9050449 crossref_primary_10_1039_D0CP04415F crossref_primary_10_1016_j_joei_2023_101199 crossref_primary_10_1007_s12010_019_03162_3 crossref_primary_10_1007_s13399_022_02777_7 crossref_primary_10_48022_mbl_2201_01001 crossref_primary_10_1016_j_biortech_2022_128034 crossref_primary_10_1007_s13399_019_00445_x crossref_primary_10_1016_j_fbp_2024_06_001 crossref_primary_10_1016_j_biortech_2022_126899 crossref_primary_10_1016_j_indcrop_2024_120312 crossref_primary_10_1186_s13213_024_01757_8 crossref_primary_10_3390_en16197003 crossref_primary_10_1016_j_biortech_2019_122613 crossref_primary_10_1016_j_eti_2021_101389 crossref_primary_10_14233_ajchem_2019_21751 crossref_primary_10_1016_j_jece_2023_111535 crossref_primary_10_48130_fia_0024_0016 crossref_primary_10_1002_marc_202200724 crossref_primary_10_3390_polym15091991 crossref_primary_10_1021_acs_biomac_2c01385 crossref_primary_10_1016_j_cbpa_2020_01_015 crossref_primary_10_1016_j_indcrop_2022_115527 crossref_primary_10_3390_en17205191 crossref_primary_10_1007_s13399_023_03836_3 crossref_primary_10_1111_jam_15288 crossref_primary_10_1007_s13399_024_05974_8 crossref_primary_10_15407_scine20_06_030 crossref_primary_10_1007_s13205_021_02847_z crossref_primary_10_1016_j_fuel_2024_132140 crossref_primary_10_3390_recycling8040061 crossref_primary_10_1007_s10098_023_02710_0 crossref_primary_10_1051_bioconf_202414701028 crossref_primary_10_1186_s13068_022_02127_9 crossref_primary_10_1016_j_enzmictec_2023_110290 crossref_primary_10_1007_s11244_024_01941_9 crossref_primary_10_1007_s12155_021_10379_w crossref_primary_10_1039_D0CY01793K crossref_primary_10_1016_j_biombioe_2020_105811 crossref_primary_10_1007_s11274_019_2678_x crossref_primary_10_1590_1519_6984_253009 crossref_primary_10_1007_s13399_020_00756_4 crossref_primary_10_1039_D2SU00014H crossref_primary_10_3390_en13051241 crossref_primary_10_1016_j_rser_2023_113738 crossref_primary_10_1016_j_fuel_2021_121290 crossref_primary_10_3390_fermentation7020083 crossref_primary_10_1039_D1MA00538C crossref_primary_10_3390_fermentation7020081 crossref_primary_10_1016_j_jclepro_2022_133488 crossref_primary_10_1155_2023_1648449 crossref_primary_10_1016_j_fuel_2020_117630 crossref_primary_10_3390_fermentation8110648 crossref_primary_10_3390_microorganisms10050906 crossref_primary_10_1016_j_jenvman_2024_120611 crossref_primary_10_1016_j_bej_2024_109471 crossref_primary_10_1089_ind_2021_0029 crossref_primary_10_1080_21655979_2022_2095702 crossref_primary_10_1007_s13399_022_02923_1 crossref_primary_10_3390_app10082946 crossref_primary_10_2139_ssrn_3919669 crossref_primary_10_1002_yea_3519 crossref_primary_10_3390_en11123366 crossref_primary_10_1016_j_bcab_2020_101835 crossref_primary_10_1007_s40726_024_00317_7 crossref_primary_10_1039_D3SU00080J crossref_primary_10_1007_s42452_021_04369_y crossref_primary_10_1016_j_recm_2021_12_002 crossref_primary_10_1016_j_biombioe_2021_106140 crossref_primary_10_1016_j_envres_2022_114369 crossref_primary_10_1016_j_procbio_2020_11_025 crossref_primary_10_1007_s40725_020_00112_9 crossref_primary_10_1186_s13068_024_02519_z crossref_primary_10_3390_su141811401 crossref_primary_10_1042_BST20190293 crossref_primary_10_32604_jrm_2023_043915 crossref_primary_10_5327_Z2176_94781978 crossref_primary_10_1016_j_psep_2024_01_055 crossref_primary_10_1016_j_biombioe_2024_107220 crossref_primary_10_1016_j_sciaf_2022_e01412 crossref_primary_10_1016_j_biortech_2023_130164 crossref_primary_10_1111_lam_13703 crossref_primary_10_1016_j_biteb_2023_101543 crossref_primary_10_3390_fermentation9030241 crossref_primary_10_1002_bbb_2191 crossref_primary_10_1016_j_fuel_2022_125362 crossref_primary_10_3389_fchem_2019_00874 crossref_primary_10_1007_s11101_020_09670_z crossref_primary_10_1007_s13399_024_06388_2 crossref_primary_10_1007_s13399_020_00691_4 crossref_primary_10_1016_j_envres_2022_113708 crossref_primary_10_1016_j_indcrop_2021_113494 crossref_primary_10_3390_su17010173 crossref_primary_10_1016_j_geoderma_2020_114818 crossref_primary_10_1016_j_indcrop_2020_112607 crossref_primary_10_1007_s11356_023_30288_z crossref_primary_10_1016_j_biortech_2020_122929 crossref_primary_10_1007_s10311_021_01213_y crossref_primary_10_1007_s12155_023_10617_3 crossref_primary_10_1039_D3CY01107K crossref_primary_10_1007_s44187_025_00287_9 crossref_primary_10_1016_j_carbpol_2018_12_004 crossref_primary_10_1186_s12896_023_00821_6 crossref_primary_10_1007_s11356_020_09804_y crossref_primary_10_1016_j_micres_2023_127443 crossref_primary_10_1099_mgen_0_001086 crossref_primary_10_1007_s42770_023_00937_z crossref_primary_10_3390_en15114105 crossref_primary_10_1016_j_heliyon_2024_e34256 crossref_primary_10_1007_s12155_020_10228_2 crossref_primary_10_1007_s12155_022_10491_5 crossref_primary_10_1002_cctc_201902192 crossref_primary_10_1016_j_susmat_2022_e00549 crossref_primary_10_1007_s13399_019_00433_1 crossref_primary_10_3390_en17020382 crossref_primary_10_1007_s13399_022_02974_4 crossref_primary_10_1088_1755_1315_614_1_012007 crossref_primary_10_1016_j_sajb_2022_06_045 crossref_primary_10_1016_j_biteb_2022_100956 crossref_primary_10_3390_en15155542 crossref_primary_10_1016_j_ijhydene_2021_10_122 crossref_primary_10_1016_j_corsci_2020_109137 crossref_primary_10_1016_j_biortech_2024_130470 crossref_primary_10_1016_j_enconman_2020_113181 crossref_primary_10_1093_femsyr_foab049 crossref_primary_10_3390_agriculture12101621 crossref_primary_10_1038_s41598_021_97993_y crossref_primary_10_1007_s13213_019_01468_5 crossref_primary_10_1088_1757_899X_1011_1_012030 crossref_primary_10_1016_j_renene_2021_08_057 crossref_primary_10_1016_j_energy_2021_120900 crossref_primary_10_1039_D0CY01176B crossref_primary_10_1016_j_biortech_2023_128793 crossref_primary_10_1016_j_biortech_2024_131204 crossref_primary_10_1080_21655979_2022_2085541 crossref_primary_10_1016_j_rser_2019_109288 crossref_primary_10_1007_s12155_019_10023_8 crossref_primary_10_1007_s42535_024_00974_5 crossref_primary_10_1016_j_rser_2020_110691 crossref_primary_10_1021_acs_energyfuels_0c02990 crossref_primary_10_35812_CelluloseChemTechnol_2021_55_71 crossref_primary_10_1016_j_chemosphere_2019_124975 crossref_primary_10_1155_2024_9185870 crossref_primary_10_1007_s10668_024_04792_2 crossref_primary_10_1016_j_bej_2021_108258 crossref_primary_10_1089_ind_2023_0025 crossref_primary_10_52080_rvg93_07 crossref_primary_10_1088_1755_1315_1356_1_012117 crossref_primary_10_1155_2021_2509443 crossref_primary_10_1016_j_ijbiomac_2022_09_194 crossref_primary_10_3390_bioengineering7020061 crossref_primary_10_3390_reactions5040059 crossref_primary_10_1016_j_scitotenv_2022_154428 crossref_primary_10_1007_s42535_020_00185_8 crossref_primary_10_1016_j_biotechadv_2025_108531 crossref_primary_10_1016_j_biombioe_2024_107389 crossref_primary_10_1016_j_seta_2024_104065 crossref_primary_10_1016_j_micres_2020_126534 crossref_primary_10_3390_su15097578 crossref_primary_10_1021_acssuschemeng_3c05084 crossref_primary_10_3390_molecules27123717 crossref_primary_10_1016_j_algal_2022_102895 crossref_primary_10_1093_femsyr_foae012 crossref_primary_10_1080_00275514_2021_1922249 crossref_primary_10_1016_j_biortech_2022_127907 crossref_primary_10_1016_j_biteb_2020_100532 crossref_primary_10_1088_1755_1315_443_1_012081 crossref_primary_10_1016_j_ecolind_2023_110911 crossref_primary_10_1007_s12649_024_02580_7 crossref_primary_10_1080_15583724_2024_2374929 crossref_primary_10_1016_j_indcrop_2024_119036 crossref_primary_10_1016_j_renene_2022_06_069 crossref_primary_10_1515_tjb_2019_0130 crossref_primary_10_3389_fmicb_2023_1120224 crossref_primary_10_1016_j_jtice_2024_105644 crossref_primary_10_1007_s13399_021_01497_8 crossref_primary_10_1016_j_cep_2021_108373 crossref_primary_10_3389_fmicb_2021_768562 crossref_primary_10_1016_j_biortech_2022_127105 crossref_primary_10_3390_en12203948 crossref_primary_10_1080_10826068_2019_1709979 crossref_primary_10_1038_s41598_022_27258_9 crossref_primary_10_1016_j_bej_2022_108777 crossref_primary_10_1007_s11356_022_20669_1 crossref_primary_10_1007_s13399_022_02861_y crossref_primary_10_1016_j_chemosphere_2023_139856 crossref_primary_10_1016_j_biotechadv_2021_107786 crossref_primary_10_1016_j_ces_2023_119375 crossref_primary_10_1016_j_energy_2021_120593 crossref_primary_10_1016_j_eti_2023_103296 crossref_primary_10_3390_catal11040498 crossref_primary_10_1038_s41598_020_60850_5 crossref_primary_10_1016_j_indcrop_2022_115245 crossref_primary_10_3390_agronomy11010155 crossref_primary_10_1016_j_renene_2020_02_021 crossref_primary_10_1093_femsec_fiz186 crossref_primary_10_1002_tpg2_20174 crossref_primary_10_1016_j_chemosphere_2021_132528 crossref_primary_10_1007_s10668_020_00664_7 crossref_primary_10_1021_acssuschemeng_1c05353 crossref_primary_10_1177_1934578X251320151 crossref_primary_10_1093_jimb_kuae037 crossref_primary_10_1016_j_cogsc_2020_04_005 crossref_primary_10_1186_s12934_021_01594_3 crossref_primary_10_18596_jotcsa_1336106 crossref_primary_10_1080_15435075_2021_1880910 crossref_primary_10_1007_s00289_023_04698_5 crossref_primary_10_1080_15440478_2021_1951421 crossref_primary_10_1016_j_indcrop_2022_114803 crossref_primary_10_3390_fermentation9060559 crossref_primary_10_1016_j_fbio_2021_101521 crossref_primary_10_1007_s13399_023_04621_y crossref_primary_10_1016_j_applthermaleng_2022_119414 crossref_primary_10_1016_j_hazadv_2022_100145 crossref_primary_10_1080_00986445_2024_2417901 crossref_primary_10_1007_s13399_023_04102_2 crossref_primary_10_3934_energy_2024046 crossref_primary_10_1590_0001_3765202420230633 crossref_primary_10_1007_s11356_024_35322_2 crossref_primary_10_1049_enb2_12017 crossref_primary_10_1002_clen_201900047 crossref_primary_10_1016_j_jechem_2023_02_020 crossref_primary_10_3390_polym14122400 crossref_primary_10_3390_fermentation5040090 crossref_primary_10_3390_fermentation8080386 crossref_primary_10_1080_10643389_2021_1880259 crossref_primary_10_1002_bbb_2691 crossref_primary_10_1007_s13399_021_01800_7 crossref_primary_10_1039_D4SE00038B crossref_primary_10_1016_j_biortech_2020_124298 crossref_primary_10_1080_21655979_2023_2269328 crossref_primary_10_1016_j_fuel_2022_124107 crossref_primary_10_1016_j_psep_2024_08_009 crossref_primary_10_1007_s10123_021_00202_z crossref_primary_10_1093_ce_zkab020 crossref_primary_10_1080_17597269_2024_2306008 crossref_primary_10_3389_fmicb_2023_1291904 crossref_primary_10_1186_s12866_023_03044_z crossref_primary_10_3389_fenrg_2023_1212719 crossref_primary_10_1002_ep_13233 crossref_primary_10_3390_en15144954 crossref_primary_10_1016_j_eja_2021_126452 crossref_primary_10_1016_j_psep_2019_05_051 crossref_primary_10_3390_fermentation10120640 crossref_primary_10_1016_j_jechem_2020_08_060 crossref_primary_10_1016_j_lwt_2020_109883 crossref_primary_10_1039_D2CY02017C crossref_primary_10_1051_e3sconf_202344803003 crossref_primary_10_1186_s13213_020_01590_9 crossref_primary_10_1007_s42535_022_00486_0 crossref_primary_10_1007_s00203_024_04172_4 crossref_primary_10_1016_j_biortech_2020_123630 crossref_primary_10_3389_frsus_2022_1057491 crossref_primary_10_1016_j_chemosphere_2019_125079 crossref_primary_10_1002_bbb_2460 crossref_primary_10_1021_acs_jafc_1c07267 crossref_primary_10_1186_s12934_022_01938_7 crossref_primary_10_1186_s13068_021_01940_y crossref_primary_10_1016_j_nbt_2024_12_004 crossref_primary_10_1016_j_chemosphere_2020_129326 crossref_primary_10_1021_acs_energyfuels_3c04622 crossref_primary_10_3390_microorganisms8010080 crossref_primary_10_1007_s13399_021_01705_5 crossref_primary_10_1016_j_ymben_2020_11_010 crossref_primary_10_1016_j_renene_2019_08_087 crossref_primary_10_3390_app9204419 crossref_primary_10_1016_j_wasman_2020_04_003 crossref_primary_10_33070_etars_3_2023_07 crossref_primary_10_1007_s11356_024_35265_8 crossref_primary_10_1007_s13399_020_00880_1 crossref_primary_10_1016_j_indcrop_2022_115569 crossref_primary_10_3390_en12091703 crossref_primary_10_2116_analsci_19N032 crossref_primary_10_2174_1874285802115010177 crossref_primary_10_9767_bcrec_16_3_10635_661_672 crossref_primary_10_1016_j_molstruc_2019_127547 crossref_primary_10_15407_biotech12_01_075 crossref_primary_10_3390_catal13040687 crossref_primary_10_1186_s13068_021_01959_1 crossref_primary_10_1080_15435075_2023_2253871 crossref_primary_10_1016_j_ijbiomac_2024_132149 crossref_primary_10_1088_1757_899X_863_1_012064 crossref_primary_10_1007_s11157_019_09511_2 crossref_primary_10_1007_s13205_024_04128_x crossref_primary_10_1016_j_biortech_2021_125511 crossref_primary_10_1016_j_scp_2022_100836 crossref_primary_10_18321_cpc22_4_343_362 crossref_primary_10_1021_acscatal_4c04162 crossref_primary_10_1007_s11696_021_01732_6 crossref_primary_10_3389_fmicb_2019_02972 crossref_primary_10_1007_s10529_021_03182_2 crossref_primary_10_1016_j_catcom_2024_106904 crossref_primary_10_1007_s12010_020_03452_1 crossref_primary_10_3390_su141711089 crossref_primary_10_1016_j_envpol_2022_120507 crossref_primary_10_4271_04_17_01_0003 crossref_primary_10_1016_j_rser_2021_110907 crossref_primary_10_1016_j_scitotenv_2020_137116 crossref_primary_10_3390_ijerph192315881 crossref_primary_10_1016_j_chemosphere_2021_132574 crossref_primary_10_1007_s10563_021_09348_2 crossref_primary_10_1007_s42770_019_00149_4 crossref_primary_10_3390_fermentation7030116 crossref_primary_10_1016_j_ibiod_2019_104795 crossref_primary_10_1016_j_renene_2024_122093 crossref_primary_10_1007_s13399_023_03746_4 crossref_primary_10_1016_j_biortech_2021_126057 crossref_primary_10_1186_s13068_019_1474_z crossref_primary_10_1016_j_ijbiomac_2021_11_063 crossref_primary_10_1016_j_ijhydene_2023_01_250 crossref_primary_10_1016_j_ecmx_2020_100063 crossref_primary_10_1089_ind_2020_0023 crossref_primary_10_1002_bbb_2136 crossref_primary_10_3389_fpls_2023_1081108 crossref_primary_10_1016_j_ijbiomac_2024_131290 crossref_primary_10_1007_s12010_020_03343_5 crossref_primary_10_1016_j_btre_2020_e00487 crossref_primary_10_1128_mBio_01871_21 crossref_primary_10_23939_jtbp2019_02_037 crossref_primary_10_3390_app11136061 crossref_primary_10_1016_j_indcrop_2021_113622 crossref_primary_10_1042_ETLS20210129 crossref_primary_10_1016_j_scitotenv_2022_160260 crossref_primary_10_1007_s00203_020_01898_9 crossref_primary_10_3390_pr8111459 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2018 Sveuciliste U Zagrebu 2018. This work is published under https://creativecommons.org/licenses/by-nc/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 University of Zagreb Faculty of Food Technology and Biotechnology |
Copyright_xml | – notice: COPYRIGHT 2018 Sveuciliste U Zagrebu – notice: 2018. This work is published under https://creativecommons.org/licenses/by-nc/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 University of Zagreb Faculty of Food Technology and Biotechnology |
CorporateAuthor | Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Department of Spirit and Yeast Technology Wolczanska 171/173, PL-90‐924 Lodz, Poland |
CorporateAuthor_xml | – name: Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Department of Spirit and Yeast Technology Wolczanska 171/173, PL-90‐924 Lodz, Poland |
DBID | AAYXX CITATION NPM 3V. 7QO 7RQ 7T7 7X2 7XB 8FD 8FE 8FG 8FH 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BYOGL C1K CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ L6V LK8 M0K M2O M7P M7S MBDVC P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 5PM DOA |
DOI | 10.17113/ftb.56.02.18.5428 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Career & Technical Education Database Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection (ProQuest) ProQuest Central Technology collection Natural Science Collection (ProQuest) East Europe, Central Europe Database Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student ProQuest Research Library SciTech Premium Collection (ProQuest) ProQuest Engineering Collection ProQuest Biological Science Collection Agricultural Science Database Research Library Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Biotechnology Research Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Research Library Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition East Europe, Central Europe Database Agricultural Science Collection ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest Career and Technical Education ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1334-2606 |
EndPage | 187 |
ExternalDocumentID | oai_doaj_org_article_2fa32878e54646a98b75bfe45feb6a7e PMC6117988 A551340451 30228792 10_17113_ftb_56_02_18_5428 |
Genre | Journal Article Review |
GeographicLocations | Brazil United States--US Germany |
GeographicLocations_xml | – name: United States--US – name: Germany – name: Brazil |
GroupedDBID | 29H 2WC 4P2 5GY 5VS 7RQ 7X2 8FE 8FG 8FH 8G5 8VB A8Z AAFWJ AAKDD AAYXX ABJCF ABUWG ACGFO ACIWK ACPRK ADBBV ADDVE AENEX AEUYN AFKRA AFRAH AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ATCPS AZQEC BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BYOGL C1A CCPQU CITATION DWQXO DYU E3Z EBD EBS EBU ECGQY EDH EJD EN8 EOJEC ESTFP GNUQQ GROUPED_DOAJ GUQSH GX1 HCIFZ HYE I-F IAG IAO ICU IPNFZ ITC ITG ITH K1G KQ8 L6V LK8 M0K M2O M7P M7S ML0 OBODZ OK1 OVT OZF PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS PV9 QWB RIG RNS RPM RZL TH9 TR2 VP8 XSB ZL0 ~8M 3V. M~E NPM PMFND 7QO 7T7 7XB 8FD 8FK C1K FR3 MBDVC P64 PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c601t-8063fdfb714d0135082763983630c0fa74ab1037fb8b3ecf69b02c69b0c7de2f3 |
IEDL.DBID | BENPR |
ISSN | 1330-9862 |
IngestDate | Wed Aug 27 01:19:15 EDT 2025 Thu Aug 21 14:23:34 EDT 2025 Fri Jul 11 03:02:05 EDT 2025 Fri Jul 25 12:20:27 EDT 2025 Tue Jun 10 20:28:04 EDT 2025 Wed Feb 19 02:42:09 EST 2025 Thu Apr 24 22:51:13 EDT 2025 Tue Jul 01 03:54:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | lignocellulosic biomass biomass pretreatment biofuel second generation bioethanol enzymatic hydrolysis co-fermentation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c601t-8063fdfb714d0135082763983630c0fa74ab1037fb8b3ecf69b02c69b0c7de2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-3731-8680 0000-0002-8765-0035 0000-0003-3731-868 |
OpenAccessLink | https://www.proquest.com/docview/2112560294?pq-origsite=%requestingapplication% |
PMID | 30228792 |
PQID | 2112560294 |
PQPubID | 946363 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2fa32878e54646a98b75bfe45feb6a7e pubmedcentral_primary_oai_pubmedcentral_nih_gov_6117988 proquest_miscellaneous_2111154553 proquest_journals_2112560294 gale_infotracacademiconefile_A551340451 pubmed_primary_30228792 crossref_citationtrail_10_17113_ftb_56_02_18_5428 crossref_primary_10_17113_ftb_56_02_18_5428 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Croatia |
PublicationPlace_xml | – name: Croatia – name: Zagreb |
PublicationTitle | Food technology and biotechnology |
PublicationTitleAlternate | Food Technol Biotechnol |
PublicationYear | 2018 |
Publisher | Sveuciliste U Zagrebu Sveuciliste u Zagrebu, Prehramheno-Biotehnoloski Fakultet University of Zagreb Faculty of Food Technology and Biotechnology |
Publisher_xml | – name: Sveuciliste U Zagrebu – name: Sveuciliste u Zagrebu, Prehramheno-Biotehnoloski Fakultet – name: University of Zagreb Faculty of Food Technology and Biotechnology |
SSID | ssj0038791 |
Score | 2.6111054 |
SecondaryResourceType | review_article |
Snippet | In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 174 |
SubjectTerms | Alternative fuels Biodiesel fuels biofuel Biofuels Biomass biomass pretreatment Bioprocessing Carbohydrates Catalysts Cellulolytic enzymes Cellulose Chemical properties Climate change co-fermentation Dehydration Detoxification Distillation Energy enzymatic hydrolysis Enzymes Ethanol Fermentation Food Fossil fuels Genetic engineering Genetically altered foods Genetically engineered microorganisms Hemicellulases Hemicellulose Hydrolysates Hydrolysis Inhibitors Lignin Lignocellulose lignocellulosic biomass Metabolism Metabolites Microorganisms Organic acids Pachysolen tannophilus Pentose Phenols Pretreatment Raw materials Reviews Saccharification second generation bioethanol Sugar Sugarcane Vegetable oils Xylose Yeast |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEB-kp3oQv41WSUHwIGmz35tjW2yLoIha6G3Z3exioU3Evv7_zmTzHnkIevGSw-4mbGZnZ36T7PwG4C26dNtz5RsuMgYoiuvGmy43IQbNkxC5nyiFPn3W5xfy46W6XJT6ojNhhR64CO6QZy8Q1dukpJbadzYYFXKSKqegvUlkfdHnrYOpYoOFNV0JtUTbdAja53QZw5g4zKtwoDQxdTJ7oCTVYV-4pIm5_0_7vHBQ24cnF97o9CE8mGFkfVSm_wjupeEx3F-QCz6Bs_LZvx5z_Y2i3r4uFNO0EvXx1Zjoo_l4XX8pnK_USrkm9dd0OyVo0ZgbhNZP4eL0w_eT82Yum9BEjK5W6HM0ijgHw2SPAA8RGEcj0lmhRRvb7I30gbIDc7BBpJh1F1oe6RpNn3gWz2BnGIf0AurMPBpEK1nMQQpNT-pN6KVRUvigRQVsLTkXZ05xKm1x7Si2IGk7lLZT2rXcMetI2hW839zzszBq_HX0MS3IZiSxYU8NqCNu1hH3Lx2p4B0tp6M9i9OLfk49wJck9it3RFVuJDHtVLC3XnE3b-ZbhzEyAUPeyQr2N924Denfih_SeDeNIWIjpVAmz4uCbOYsiGPIdLwCs6U6Wy-13TNc_ZiovjWbCOVe_g8pvIJdRHu2HDvag53Vr7v0GhHVKryZNs9v6sIbcg priority: 102 providerName: Directory of Open Access Journals |
Title | Review of Second-Generation Bioethanol Production from Residual Biomass |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30228792 https://www.proquest.com/docview/2112560294 https://www.proquest.com/docview/2111154553 https://pubmed.ncbi.nlm.nih.gov/PMC6117988 https://doaj.org/article/2fa32878e54646a98b75bfe45feb6a7e |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7QUOiDeBsgoSEgeUduN3TqiLuq2QqKrCSuVk2YldKpWkdLf_n5nEu-wKqZccEieyZzzPeL4B-IAm3TRMuoLxiAGKZKpwuoqFr71igfPY9JBC307VyVx8vZAXKeG2SMcqVzqxV9RNV1OO_AADFbLOrBKfb_4U1DWK_q6mFho7sIsq2JgR7E6PTs_OV7qYG10NIRefFBU676lsRpclP4hLvy8VIXaWZl8K6se-YZp6BP__9fSGodo-RLlhlWZP4HFyJ_PDgf9P4UFon8GjDZDB53A8pP_zLubfKfpt8gFqmjiST6-6QMnz7jo_G7Bf6S7VnOTnYdEXatGY3-hiv4D57OjHl5MitU8oaoyylmh7FJI6el2KBh099MQYKpPKcMUn9SQ6LZynKsHojeehjqryE1bTtdZNYJG_hFHbteE15LF0qBiNKOvoBVf0pUb7RmgpuPOKZ1CuKGfrhC1OLS6uLcUYRG2L1LZS2QmzpbFE7Qw-rd-5GZA17h09JYasRxIqdn-ju720Scgsi45jBGiCFEooVxmvpY9ByBi8cjpk8JHYaUl2cXq1SyUIuEhCwbKH1O1GEOJOBnsrjtsk1Av7bwtm8H79GMWR_rG4NnR3_RgCOJISafJq2CDrOXPCGtIVy0BvbZ2tRW0_aa9-9ZDfquyB5d7cP6238BD9OTMcLNqD0fL2LrxDn2npx7BjZsfjJB7jPvNA15_zvx0ZFow |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkECcUBpEz-TA0ItsN3ShxC0Um_GTuy2UklKdyvEn-I3MpPHsiuk3nrJIXEiZ95je74BeIUuPa-YtAnjARMUyVRidRESVzrFPOehaiGFdvfU-EB8PpSHS_BnqIWhY5WDTWwNddWUtEa-hokKeWdWiPdnPxPqGkW7q0MLjU4stv3vX5iyTd5tfUT-vmZs9Gn_wzjpuwokJSYfUzTJCmcQnM5EhfEPBigMdazIueJpmQarhXVUPBdc7rgvgypcykq6lrryLHD87jW4Ljh6cqpMH20Olp_nuugSPJ4mBaYKfZGOzjK-FqZuVSrCB83yVSmo-_ucI2z7BfzvFebc4uKRzTkfOLoDt_vgNV7vpO0uLPn6HtyagzS8D5vdZkPchPgb5dpV3AFbE__jjZPG01J9cxp_6ZBm6S5VuMRf_aQtC6MxPzCgfwAHV0LWh7BcN7V_DHHILJrhXGRlcIIr-lKlXSW0FNw6xSPIBsqZskcyp4Yap4YyGqK2QWobqUzKTJYbonYEb2fvnHU4HpeO3iCGzEYSBnd7ozk_Mr1KGxYsx3wz91IooWyROy1d8EIG75TVPoI3xE5DlgKnV9q-4AF_kjC3zDr11hGE7xPBysBx05uQifkn8BG8nD1G5acdHVv75qIdQ3BKUiJNHnUCMpszJ2QjXbAI9ILoLPzU4pP65LgFGFdZC2P35PJpvYAb4_3dHbOztbf9FG5iJJl3R5pWYHl6fuGfYbQ2dc9bFYnh-1Xr5F8my05m |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFDASiANyE-_TPiDU0IaWQhQVKvW23bV3oVKJS5MK8df4dcz4ERIh9dZLDvbGWs_O6_PufAPwEkN6VjJpE8YDAhTJVGJ1HhJXOMU856GsKYU-j9Xuofh4JI_W4E9XC0PHKjufWDvqsiroG3kfgQpFZ5aLfmiPRUy2R-_OfibUQYp2Wrt2Go2K7PvfvxC-zd7ubeNav2JstPP1_W7SdhhICgQic3TPCmcTnE5FibkQJisM7S3PuOKDYhCsFtZRIV1wmeO-CCp3A1bQb6FLzwLH516DdU2oqAfrw53x5KCLAzzTeQP3-CDJETi0JTs6TXk_zN2mVMQWmmabUlAv-KWwWHcP-D9GLAXJ1QOcSxFxdBtutalsvNXo3h1Y89O7cHOJ4PAefGi2HuIqxF8IeZdxQ3NN2hAPTypPH-6r03jS8M7SVap3iQ_8rC4SozE_ML2_D4dXItgH0JtWU_8I4pBadMqZSIvgBFf0pFK7UmgpuHWKR5B2kjNFy2tO7TVODeEbkrZBaRupzICZNDMk7QjeLP5z1rB6XDp6SAuyGEmM3PWF6vybaQ3csGA5os_MS6GEsnnmtHTBCxm8U1b7CF7TchryGzi9wrblD_iSxMBltqjTjiC2nwg2uhU3rUOZmX_qH8GLxW10BbS_Y6e-uqjHELmSlCiTh42CLObMiedI5ywCvaI6Ky-1emd68r2mG1dpTWr3-PJpPYfraI_m0954_wncwLQya843bUBvfn7hn2LqNnfPWhuJ4fiqzfIve5FT-A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+Second+Generation+Bioethanol+Production+from+Residual+Biomass&rft.jtitle=Food+technology+and+biotechnology&rft.au=Robak%2C+Katarzyna&rft.au=Balcerek%2C+Maria&rft.date=2018-04-01&rft.issn=1330-9862&rft.volume=56&rft.issue=2&rft.spage=174&rft_id=info:doi/10.17113%2Fftb.56.02.18.5428&rft_id=info%3Apmid%2F30228792&rft.externalDocID=30228792 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1330-9862&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1330-9862&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1330-9862&client=summon |