Review of Second-Generation Bioethanol Production from Residual Biomass

In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generat...

Full description

Saved in:
Bibliographic Details
Published inFood technology and biotechnology Vol. 56; no. 2; pp. 174 - 187
Main Authors Robak, Katarzyna, Balcerek, Maria
Format Journal Article
LanguageEnglish
Published Croatia Sveuciliste U Zagrebu 01.04.2018
Sveuciliste u Zagrebu, Prehramheno-Biotehnoloski Fakultet
University of Zagreb Faculty of Food Technology and Biotechnology
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller's yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like , ( ) and , metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate.
AbstractList In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller’s yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like Candida shehatae, Pichia (Scheffersomyces) stipitis, and Pachysolen tannophilus, metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate.
In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller’s yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like Candida shehatae , Pichia ( Scheffersomyces ) stipitis, and Pachysolen tannophilus , metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate.
In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller's yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like , ( ) and , metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate.
In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller's yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like Candida shehatae, Pichia (Scheffersomyces) stipitis, and Pachysolen tannophilus, metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate.In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller's yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like Candida shehatae, Pichia (Scheffersomyces) stipitis, and Pachysolen tannophilus, metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate.
In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review provides an overview of the production of second generation bioethanol, which is distinguished from the first generation and subsequent generations of biofuels by its use of lignocellulosic biomass as raw material. The structural components of the lignocellulosic biomass such as cellulose, hemicellulose and lignin, are presented along with technological unit steps including pretreatment, enzymatic hydrolysis, fermentation, distillation and dehydration. The purpose of the pretreatment step is to increase the surface area of carbohydrate available for enzymatic saccharification, while minimizing the content of inhibitors. Performing the enzymatic hydrolysis releases fermentable sugars, which are converted by microbial catalysts into ethanol. The hydrolysates obtained after the pretreatment and enzymatic hydrolysis contain a wide spectrum of sugars, predominantly glucose and xylose. Genetically engineered microorganisms are therefore needed to carry out co-fermentation. The excess of harmful inhibitors in the hydrolysate, such as weak organic acids, furan derivatives and phenol components, can be removed by detoxification before fermentation. Effective saccharification further requires using exogenous hemicellulases and cellulolytic enzymes. Conventional species of distiller's yeast are unable to ferment pentoses into ethanol, and only a very few natural microorganisms, including yeast species like Candida shehatae, Pichia (Scheffersomyces) stipitis, and Pachysolen tannophilus, metabolize xylose to ethanol. Enzymatic hydrolysis and fermentation can be performed in a number of ways: by separate saccharification and fermentation, simultaneous saccharification and fermentation or consolidated bioprocessing. Pentose-fermenting microorganisms can be obtained through genetic engineering, by introducing xylose-encoding genes into metabolism of a selected microorganism to optimize its use of xylose accumulated in the hydrolysate. Key words: second generation bioethanol, biofuel, lignocellulosic biomass, biomass pretreatment, enzymatic hydrolysis, co-fermentation
Audience Academic
Author Balcerek, Maria
Robak, Katarzyna
Author_xml – sequence: 1
  givenname: Katarzyna
  orcidid: 0000-0002-8765-0035
  surname: Robak
  fullname: Robak, Katarzyna
– sequence: 2
  givenname: Maria
  orcidid: 0000-0003-3731-8680
  surname: Balcerek
  fullname: Balcerek, Maria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30228792$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhi1URNuFP8ABrcSFS4K_41yQ2gqWSpVABc6W44y3XiV2sZMi_j3ebItoD9iSPRo_89rjmVN0FGIAhF4TXJOGEPbeTV0tZI1pTVQtOFXP0AlhjFdUYnm02LhqlaTH6DTnHcZMNS15gY4ZprSY9ARtruHOw691dOtvYGPoqw0ESGbyMazPfYTpxoQ4rL-m2M928boUx_U1ZN_PZtgzo8n5JXruzJDh1f2-Qj8-ffx-8bm6-rK5vDi7qqzEZKoUlsz1rmsI7zFhAivaSNYqJhm22JmGm45g1rhOdQysk22Hqd2vtumBOrZClwfdPpqdvk1-NOm3jsbrxRHTVps0eTuAps6wkqUCwSWXplVdIzoHXDjopGmgaH04aN3O3Qi9hTAlMzwSfXwS_I3exjstCWlapYrAu3uBFH_OkCc9-mxhGEyAOGdNSRmCC8EK-vYJuotzCuWr9hQVEtOWF6o-UFtTEvDBxXKvLbOH0ZfqgPPFfyYEYRzzsq7Qm39T-Pv2hwIXQB0Am2LOCZy2flqqW5T9oAnWSy_p0ktaSI2pJkrve6mE0iehD-r_CfoDjGLL_g
CitedBy_id crossref_primary_10_1007_s11356_021_15471_4
crossref_primary_10_1016_j_heliyon_2023_e20435
crossref_primary_10_1002_adma_202406472
crossref_primary_10_1007_s13399_021_01948_2
crossref_primary_10_1021_acssuschemeng_0c07266
crossref_primary_10_1021_acssuschemeng_2c06913
crossref_primary_10_1016_j_ijbiomac_2021_10_062
crossref_primary_10_1016_j_indcrop_2024_118461
crossref_primary_10_1021_acsomega_4c04374
crossref_primary_10_1016_j_biortech_2020_123704
crossref_primary_10_1016_j_biteb_2023_101747
crossref_primary_10_1016_j_fuel_2021_122840
crossref_primary_10_1016_j_renene_2020_05_099
crossref_primary_10_3390_fermentation9050449
crossref_primary_10_1039_D0CP04415F
crossref_primary_10_1016_j_joei_2023_101199
crossref_primary_10_1007_s12010_019_03162_3
crossref_primary_10_1007_s13399_022_02777_7
crossref_primary_10_48022_mbl_2201_01001
crossref_primary_10_1016_j_biortech_2022_128034
crossref_primary_10_1007_s13399_019_00445_x
crossref_primary_10_1016_j_fbp_2024_06_001
crossref_primary_10_1016_j_biortech_2022_126899
crossref_primary_10_1016_j_indcrop_2024_120312
crossref_primary_10_1186_s13213_024_01757_8
crossref_primary_10_3390_en16197003
crossref_primary_10_1016_j_biortech_2019_122613
crossref_primary_10_1016_j_eti_2021_101389
crossref_primary_10_14233_ajchem_2019_21751
crossref_primary_10_1016_j_jece_2023_111535
crossref_primary_10_48130_fia_0024_0016
crossref_primary_10_1002_marc_202200724
crossref_primary_10_3390_polym15091991
crossref_primary_10_1021_acs_biomac_2c01385
crossref_primary_10_1016_j_cbpa_2020_01_015
crossref_primary_10_1016_j_indcrop_2022_115527
crossref_primary_10_3390_en17205191
crossref_primary_10_1007_s13399_023_03836_3
crossref_primary_10_1111_jam_15288
crossref_primary_10_1007_s13399_024_05974_8
crossref_primary_10_15407_scine20_06_030
crossref_primary_10_1007_s13205_021_02847_z
crossref_primary_10_1016_j_fuel_2024_132140
crossref_primary_10_3390_recycling8040061
crossref_primary_10_1007_s10098_023_02710_0
crossref_primary_10_1051_bioconf_202414701028
crossref_primary_10_1186_s13068_022_02127_9
crossref_primary_10_1016_j_enzmictec_2023_110290
crossref_primary_10_1007_s11244_024_01941_9
crossref_primary_10_1007_s12155_021_10379_w
crossref_primary_10_1039_D0CY01793K
crossref_primary_10_1016_j_biombioe_2020_105811
crossref_primary_10_1007_s11274_019_2678_x
crossref_primary_10_1590_1519_6984_253009
crossref_primary_10_1007_s13399_020_00756_4
crossref_primary_10_1039_D2SU00014H
crossref_primary_10_3390_en13051241
crossref_primary_10_1016_j_rser_2023_113738
crossref_primary_10_1016_j_fuel_2021_121290
crossref_primary_10_3390_fermentation7020083
crossref_primary_10_1039_D1MA00538C
crossref_primary_10_3390_fermentation7020081
crossref_primary_10_1016_j_jclepro_2022_133488
crossref_primary_10_1155_2023_1648449
crossref_primary_10_1016_j_fuel_2020_117630
crossref_primary_10_3390_fermentation8110648
crossref_primary_10_3390_microorganisms10050906
crossref_primary_10_1016_j_jenvman_2024_120611
crossref_primary_10_1016_j_bej_2024_109471
crossref_primary_10_1089_ind_2021_0029
crossref_primary_10_1080_21655979_2022_2095702
crossref_primary_10_1007_s13399_022_02923_1
crossref_primary_10_3390_app10082946
crossref_primary_10_2139_ssrn_3919669
crossref_primary_10_1002_yea_3519
crossref_primary_10_3390_en11123366
crossref_primary_10_1016_j_bcab_2020_101835
crossref_primary_10_1007_s40726_024_00317_7
crossref_primary_10_1039_D3SU00080J
crossref_primary_10_1007_s42452_021_04369_y
crossref_primary_10_1016_j_recm_2021_12_002
crossref_primary_10_1016_j_biombioe_2021_106140
crossref_primary_10_1016_j_envres_2022_114369
crossref_primary_10_1016_j_procbio_2020_11_025
crossref_primary_10_1007_s40725_020_00112_9
crossref_primary_10_1186_s13068_024_02519_z
crossref_primary_10_3390_su141811401
crossref_primary_10_1042_BST20190293
crossref_primary_10_32604_jrm_2023_043915
crossref_primary_10_5327_Z2176_94781978
crossref_primary_10_1016_j_psep_2024_01_055
crossref_primary_10_1016_j_biombioe_2024_107220
crossref_primary_10_1016_j_sciaf_2022_e01412
crossref_primary_10_1016_j_biortech_2023_130164
crossref_primary_10_1111_lam_13703
crossref_primary_10_1016_j_biteb_2023_101543
crossref_primary_10_3390_fermentation9030241
crossref_primary_10_1002_bbb_2191
crossref_primary_10_1016_j_fuel_2022_125362
crossref_primary_10_3389_fchem_2019_00874
crossref_primary_10_1007_s11101_020_09670_z
crossref_primary_10_1007_s13399_024_06388_2
crossref_primary_10_1007_s13399_020_00691_4
crossref_primary_10_1016_j_envres_2022_113708
crossref_primary_10_1016_j_indcrop_2021_113494
crossref_primary_10_3390_su17010173
crossref_primary_10_1016_j_geoderma_2020_114818
crossref_primary_10_1016_j_indcrop_2020_112607
crossref_primary_10_1007_s11356_023_30288_z
crossref_primary_10_1016_j_biortech_2020_122929
crossref_primary_10_1007_s10311_021_01213_y
crossref_primary_10_1007_s12155_023_10617_3
crossref_primary_10_1039_D3CY01107K
crossref_primary_10_1007_s44187_025_00287_9
crossref_primary_10_1016_j_carbpol_2018_12_004
crossref_primary_10_1186_s12896_023_00821_6
crossref_primary_10_1007_s11356_020_09804_y
crossref_primary_10_1016_j_micres_2023_127443
crossref_primary_10_1099_mgen_0_001086
crossref_primary_10_1007_s42770_023_00937_z
crossref_primary_10_3390_en15114105
crossref_primary_10_1016_j_heliyon_2024_e34256
crossref_primary_10_1007_s12155_020_10228_2
crossref_primary_10_1007_s12155_022_10491_5
crossref_primary_10_1002_cctc_201902192
crossref_primary_10_1016_j_susmat_2022_e00549
crossref_primary_10_1007_s13399_019_00433_1
crossref_primary_10_3390_en17020382
crossref_primary_10_1007_s13399_022_02974_4
crossref_primary_10_1088_1755_1315_614_1_012007
crossref_primary_10_1016_j_sajb_2022_06_045
crossref_primary_10_1016_j_biteb_2022_100956
crossref_primary_10_3390_en15155542
crossref_primary_10_1016_j_ijhydene_2021_10_122
crossref_primary_10_1016_j_corsci_2020_109137
crossref_primary_10_1016_j_biortech_2024_130470
crossref_primary_10_1016_j_enconman_2020_113181
crossref_primary_10_1093_femsyr_foab049
crossref_primary_10_3390_agriculture12101621
crossref_primary_10_1038_s41598_021_97993_y
crossref_primary_10_1007_s13213_019_01468_5
crossref_primary_10_1088_1757_899X_1011_1_012030
crossref_primary_10_1016_j_renene_2021_08_057
crossref_primary_10_1016_j_energy_2021_120900
crossref_primary_10_1039_D0CY01176B
crossref_primary_10_1016_j_biortech_2023_128793
crossref_primary_10_1016_j_biortech_2024_131204
crossref_primary_10_1080_21655979_2022_2085541
crossref_primary_10_1016_j_rser_2019_109288
crossref_primary_10_1007_s12155_019_10023_8
crossref_primary_10_1007_s42535_024_00974_5
crossref_primary_10_1016_j_rser_2020_110691
crossref_primary_10_1021_acs_energyfuels_0c02990
crossref_primary_10_35812_CelluloseChemTechnol_2021_55_71
crossref_primary_10_1016_j_chemosphere_2019_124975
crossref_primary_10_1155_2024_9185870
crossref_primary_10_1007_s10668_024_04792_2
crossref_primary_10_1016_j_bej_2021_108258
crossref_primary_10_1089_ind_2023_0025
crossref_primary_10_52080_rvg93_07
crossref_primary_10_1088_1755_1315_1356_1_012117
crossref_primary_10_1155_2021_2509443
crossref_primary_10_1016_j_ijbiomac_2022_09_194
crossref_primary_10_3390_bioengineering7020061
crossref_primary_10_3390_reactions5040059
crossref_primary_10_1016_j_scitotenv_2022_154428
crossref_primary_10_1007_s42535_020_00185_8
crossref_primary_10_1016_j_biotechadv_2025_108531
crossref_primary_10_1016_j_biombioe_2024_107389
crossref_primary_10_1016_j_seta_2024_104065
crossref_primary_10_1016_j_micres_2020_126534
crossref_primary_10_3390_su15097578
crossref_primary_10_1021_acssuschemeng_3c05084
crossref_primary_10_3390_molecules27123717
crossref_primary_10_1016_j_algal_2022_102895
crossref_primary_10_1093_femsyr_foae012
crossref_primary_10_1080_00275514_2021_1922249
crossref_primary_10_1016_j_biortech_2022_127907
crossref_primary_10_1016_j_biteb_2020_100532
crossref_primary_10_1088_1755_1315_443_1_012081
crossref_primary_10_1016_j_ecolind_2023_110911
crossref_primary_10_1007_s12649_024_02580_7
crossref_primary_10_1080_15583724_2024_2374929
crossref_primary_10_1016_j_indcrop_2024_119036
crossref_primary_10_1016_j_renene_2022_06_069
crossref_primary_10_1515_tjb_2019_0130
crossref_primary_10_3389_fmicb_2023_1120224
crossref_primary_10_1016_j_jtice_2024_105644
crossref_primary_10_1007_s13399_021_01497_8
crossref_primary_10_1016_j_cep_2021_108373
crossref_primary_10_3389_fmicb_2021_768562
crossref_primary_10_1016_j_biortech_2022_127105
crossref_primary_10_3390_en12203948
crossref_primary_10_1080_10826068_2019_1709979
crossref_primary_10_1038_s41598_022_27258_9
crossref_primary_10_1016_j_bej_2022_108777
crossref_primary_10_1007_s11356_022_20669_1
crossref_primary_10_1007_s13399_022_02861_y
crossref_primary_10_1016_j_chemosphere_2023_139856
crossref_primary_10_1016_j_biotechadv_2021_107786
crossref_primary_10_1016_j_ces_2023_119375
crossref_primary_10_1016_j_energy_2021_120593
crossref_primary_10_1016_j_eti_2023_103296
crossref_primary_10_3390_catal11040498
crossref_primary_10_1038_s41598_020_60850_5
crossref_primary_10_1016_j_indcrop_2022_115245
crossref_primary_10_3390_agronomy11010155
crossref_primary_10_1016_j_renene_2020_02_021
crossref_primary_10_1093_femsec_fiz186
crossref_primary_10_1002_tpg2_20174
crossref_primary_10_1016_j_chemosphere_2021_132528
crossref_primary_10_1007_s10668_020_00664_7
crossref_primary_10_1021_acssuschemeng_1c05353
crossref_primary_10_1177_1934578X251320151
crossref_primary_10_1093_jimb_kuae037
crossref_primary_10_1016_j_cogsc_2020_04_005
crossref_primary_10_1186_s12934_021_01594_3
crossref_primary_10_18596_jotcsa_1336106
crossref_primary_10_1080_15435075_2021_1880910
crossref_primary_10_1007_s00289_023_04698_5
crossref_primary_10_1080_15440478_2021_1951421
crossref_primary_10_1016_j_indcrop_2022_114803
crossref_primary_10_3390_fermentation9060559
crossref_primary_10_1016_j_fbio_2021_101521
crossref_primary_10_1007_s13399_023_04621_y
crossref_primary_10_1016_j_applthermaleng_2022_119414
crossref_primary_10_1016_j_hazadv_2022_100145
crossref_primary_10_1080_00986445_2024_2417901
crossref_primary_10_1007_s13399_023_04102_2
crossref_primary_10_3934_energy_2024046
crossref_primary_10_1590_0001_3765202420230633
crossref_primary_10_1007_s11356_024_35322_2
crossref_primary_10_1049_enb2_12017
crossref_primary_10_1002_clen_201900047
crossref_primary_10_1016_j_jechem_2023_02_020
crossref_primary_10_3390_polym14122400
crossref_primary_10_3390_fermentation5040090
crossref_primary_10_3390_fermentation8080386
crossref_primary_10_1080_10643389_2021_1880259
crossref_primary_10_1002_bbb_2691
crossref_primary_10_1007_s13399_021_01800_7
crossref_primary_10_1039_D4SE00038B
crossref_primary_10_1016_j_biortech_2020_124298
crossref_primary_10_1080_21655979_2023_2269328
crossref_primary_10_1016_j_fuel_2022_124107
crossref_primary_10_1016_j_psep_2024_08_009
crossref_primary_10_1007_s10123_021_00202_z
crossref_primary_10_1093_ce_zkab020
crossref_primary_10_1080_17597269_2024_2306008
crossref_primary_10_3389_fmicb_2023_1291904
crossref_primary_10_1186_s12866_023_03044_z
crossref_primary_10_3389_fenrg_2023_1212719
crossref_primary_10_1002_ep_13233
crossref_primary_10_3390_en15144954
crossref_primary_10_1016_j_eja_2021_126452
crossref_primary_10_1016_j_psep_2019_05_051
crossref_primary_10_3390_fermentation10120640
crossref_primary_10_1016_j_jechem_2020_08_060
crossref_primary_10_1016_j_lwt_2020_109883
crossref_primary_10_1039_D2CY02017C
crossref_primary_10_1051_e3sconf_202344803003
crossref_primary_10_1186_s13213_020_01590_9
crossref_primary_10_1007_s42535_022_00486_0
crossref_primary_10_1007_s00203_024_04172_4
crossref_primary_10_1016_j_biortech_2020_123630
crossref_primary_10_3389_frsus_2022_1057491
crossref_primary_10_1016_j_chemosphere_2019_125079
crossref_primary_10_1002_bbb_2460
crossref_primary_10_1021_acs_jafc_1c07267
crossref_primary_10_1186_s12934_022_01938_7
crossref_primary_10_1186_s13068_021_01940_y
crossref_primary_10_1016_j_nbt_2024_12_004
crossref_primary_10_1016_j_chemosphere_2020_129326
crossref_primary_10_1021_acs_energyfuels_3c04622
crossref_primary_10_3390_microorganisms8010080
crossref_primary_10_1007_s13399_021_01705_5
crossref_primary_10_1016_j_ymben_2020_11_010
crossref_primary_10_1016_j_renene_2019_08_087
crossref_primary_10_3390_app9204419
crossref_primary_10_1016_j_wasman_2020_04_003
crossref_primary_10_33070_etars_3_2023_07
crossref_primary_10_1007_s11356_024_35265_8
crossref_primary_10_1007_s13399_020_00880_1
crossref_primary_10_1016_j_indcrop_2022_115569
crossref_primary_10_3390_en12091703
crossref_primary_10_2116_analsci_19N032
crossref_primary_10_2174_1874285802115010177
crossref_primary_10_9767_bcrec_16_3_10635_661_672
crossref_primary_10_1016_j_molstruc_2019_127547
crossref_primary_10_15407_biotech12_01_075
crossref_primary_10_3390_catal13040687
crossref_primary_10_1186_s13068_021_01959_1
crossref_primary_10_1080_15435075_2023_2253871
crossref_primary_10_1016_j_ijbiomac_2024_132149
crossref_primary_10_1088_1757_899X_863_1_012064
crossref_primary_10_1007_s11157_019_09511_2
crossref_primary_10_1007_s13205_024_04128_x
crossref_primary_10_1016_j_biortech_2021_125511
crossref_primary_10_1016_j_scp_2022_100836
crossref_primary_10_18321_cpc22_4_343_362
crossref_primary_10_1021_acscatal_4c04162
crossref_primary_10_1007_s11696_021_01732_6
crossref_primary_10_3389_fmicb_2019_02972
crossref_primary_10_1007_s10529_021_03182_2
crossref_primary_10_1016_j_catcom_2024_106904
crossref_primary_10_1007_s12010_020_03452_1
crossref_primary_10_3390_su141711089
crossref_primary_10_1016_j_envpol_2022_120507
crossref_primary_10_4271_04_17_01_0003
crossref_primary_10_1016_j_rser_2021_110907
crossref_primary_10_1016_j_scitotenv_2020_137116
crossref_primary_10_3390_ijerph192315881
crossref_primary_10_1016_j_chemosphere_2021_132574
crossref_primary_10_1007_s10563_021_09348_2
crossref_primary_10_1007_s42770_019_00149_4
crossref_primary_10_3390_fermentation7030116
crossref_primary_10_1016_j_ibiod_2019_104795
crossref_primary_10_1016_j_renene_2024_122093
crossref_primary_10_1007_s13399_023_03746_4
crossref_primary_10_1016_j_biortech_2021_126057
crossref_primary_10_1186_s13068_019_1474_z
crossref_primary_10_1016_j_ijbiomac_2021_11_063
crossref_primary_10_1016_j_ijhydene_2023_01_250
crossref_primary_10_1016_j_ecmx_2020_100063
crossref_primary_10_1089_ind_2020_0023
crossref_primary_10_1002_bbb_2136
crossref_primary_10_3389_fpls_2023_1081108
crossref_primary_10_1016_j_ijbiomac_2024_131290
crossref_primary_10_1007_s12010_020_03343_5
crossref_primary_10_1016_j_btre_2020_e00487
crossref_primary_10_1128_mBio_01871_21
crossref_primary_10_23939_jtbp2019_02_037
crossref_primary_10_3390_app11136061
crossref_primary_10_1016_j_indcrop_2021_113622
crossref_primary_10_1042_ETLS20210129
crossref_primary_10_1016_j_scitotenv_2022_160260
crossref_primary_10_1007_s00203_020_01898_9
crossref_primary_10_3390_pr8111459
ContentType Journal Article
Copyright COPYRIGHT 2018 Sveuciliste U Zagrebu
2018. This work is published under https://creativecommons.org/licenses/by-nc/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 University of Zagreb Faculty of Food Technology and Biotechnology
Copyright_xml – notice: COPYRIGHT 2018 Sveuciliste U Zagrebu
– notice: 2018. This work is published under https://creativecommons.org/licenses/by-nc/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 University of Zagreb Faculty of Food Technology and Biotechnology
CorporateAuthor Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Department of Spirit and Yeast Technology Wolczanska 171/173, PL-90‐924 Lodz, Poland
CorporateAuthor_xml – name: Lodz University of Technology, Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Department of Spirit and Yeast Technology Wolczanska 171/173, PL-90‐924 Lodz, Poland
DBID AAYXX
CITATION
NPM
3V.
7QO
7RQ
7T7
7X2
7XB
8FD
8FE
8FG
8FH
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BYOGL
C1K
CCPQU
DWQXO
FR3
GNUQQ
GUQSH
HCIFZ
L6V
LK8
M0K
M2O
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
5PM
DOA
DOI 10.17113/ftb.56.02.18.5428
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Career & Technical Education Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection (ProQuest)
ProQuest Central
Technology collection
Natural Science Collection (ProQuest)
East Europe, Central Europe Database
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection (ProQuest)
ProQuest Engineering Collection
ProQuest Biological Science Collection
Agricultural Science Database
Research Library
Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Research Library
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
East Europe, Central Europe Database
Agricultural Science Collection
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
ProQuest Career and Technical Education
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Agricultural Science Database

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1334-2606
EndPage 187
ExternalDocumentID oai_doaj_org_article_2fa32878e54646a98b75bfe45feb6a7e
PMC6117988
A551340451
30228792
10_17113_ftb_56_02_18_5428
Genre Journal Article
Review
GeographicLocations Brazil
United States--US
Germany
GeographicLocations_xml – name: United States--US
– name: Germany
– name: Brazil
GroupedDBID 29H
2WC
4P2
5GY
5VS
7RQ
7X2
8FE
8FG
8FH
8G5
8VB
A8Z
AAFWJ
AAKDD
AAYXX
ABJCF
ABUWG
ACGFO
ACIWK
ACPRK
ADBBV
ADDVE
AENEX
AEUYN
AFKRA
AFRAH
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ATCPS
AZQEC
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BYOGL
C1A
CCPQU
CITATION
DWQXO
DYU
E3Z
EBD
EBS
EBU
ECGQY
EDH
EJD
EN8
EOJEC
ESTFP
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
HCIFZ
HYE
I-F
IAG
IAO
ICU
IPNFZ
ITC
ITG
ITH
K1G
KQ8
L6V
LK8
M0K
M2O
M7P
M7S
ML0
OBODZ
OK1
OVT
OZF
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
PV9
QWB
RIG
RNS
RPM
RZL
TH9
TR2
VP8
XSB
ZL0
~8M
3V.
M~E
NPM
PMFND
7QO
7T7
7XB
8FD
8FK
C1K
FR3
MBDVC
P64
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c601t-8063fdfb714d0135082763983630c0fa74ab1037fb8b3ecf69b02c69b0c7de2f3
IEDL.DBID BENPR
ISSN 1330-9862
IngestDate Wed Aug 27 01:19:15 EDT 2025
Thu Aug 21 14:23:34 EDT 2025
Fri Jul 11 03:02:05 EDT 2025
Fri Jul 25 12:20:27 EDT 2025
Tue Jun 10 20:28:04 EDT 2025
Wed Feb 19 02:42:09 EST 2025
Thu Apr 24 22:51:13 EDT 2025
Tue Jul 01 03:54:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords lignocellulosic biomass
biomass pretreatment
biofuel
second generation bioethanol
enzymatic hydrolysis
co-fermentation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c601t-8063fdfb714d0135082763983630c0fa74ab1037fb8b3ecf69b02c69b0c7de2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-3731-8680
0000-0002-8765-0035
0000-0003-3731-868
OpenAccessLink https://www.proquest.com/docview/2112560294?pq-origsite=%requestingapplication%
PMID 30228792
PQID 2112560294
PQPubID 946363
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_2fa32878e54646a98b75bfe45feb6a7e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6117988
proquest_miscellaneous_2111154553
proquest_journals_2112560294
gale_infotracacademiconefile_A551340451
pubmed_primary_30228792
crossref_citationtrail_10_17113_ftb_56_02_18_5428
crossref_primary_10_17113_ftb_56_02_18_5428
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Croatia
PublicationPlace_xml – name: Croatia
– name: Zagreb
PublicationTitle Food technology and biotechnology
PublicationTitleAlternate Food Technol Biotechnol
PublicationYear 2018
Publisher Sveuciliste U Zagrebu
Sveuciliste u Zagrebu, Prehramheno-Biotehnoloski Fakultet
University of Zagreb Faculty of Food Technology and Biotechnology
Publisher_xml – name: Sveuciliste U Zagrebu
– name: Sveuciliste u Zagrebu, Prehramheno-Biotehnoloski Fakultet
– name: University of Zagreb Faculty of Food Technology and Biotechnology
SSID ssj0038791
Score 2.6111054
SecondaryResourceType review_article
Snippet In the context of climate change and the depletion of fossil fuels, there is a great need for alternatives to petroleum in the transport sector. This review...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 174
SubjectTerms Alternative fuels
Biodiesel fuels
biofuel
Biofuels
Biomass
biomass pretreatment
Bioprocessing
Carbohydrates
Catalysts
Cellulolytic enzymes
Cellulose
Chemical properties
Climate change
co-fermentation
Dehydration
Detoxification
Distillation
Energy
enzymatic hydrolysis
Enzymes
Ethanol
Fermentation
Food
Fossil fuels
Genetic engineering
Genetically altered foods
Genetically engineered microorganisms
Hemicellulases
Hemicellulose
Hydrolysates
Hydrolysis
Inhibitors
Lignin
Lignocellulose
lignocellulosic biomass
Metabolism
Metabolites
Microorganisms
Organic acids
Pachysolen tannophilus
Pentose
Phenols
Pretreatment
Raw materials
Reviews
Saccharification
second generation bioethanol
Sugar
Sugarcane
Vegetable oils
Xylose
Yeast
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEB-kp3oQv41WSUHwIGmz35tjW2yLoIha6G3Z3exioU3Evv7_zmTzHnkIevGSw-4mbGZnZ36T7PwG4C26dNtz5RsuMgYoiuvGmy43IQbNkxC5nyiFPn3W5xfy46W6XJT6ojNhhR64CO6QZy8Q1dukpJbadzYYFXKSKqegvUlkfdHnrYOpYoOFNV0JtUTbdAja53QZw5g4zKtwoDQxdTJ7oCTVYV-4pIm5_0_7vHBQ24cnF97o9CE8mGFkfVSm_wjupeEx3F-QCz6Bs_LZvx5z_Y2i3r4uFNO0EvXx1Zjoo_l4XX8pnK_USrkm9dd0OyVo0ZgbhNZP4eL0w_eT82Yum9BEjK5W6HM0ijgHw2SPAA8RGEcj0lmhRRvb7I30gbIDc7BBpJh1F1oe6RpNn3gWz2BnGIf0AurMPBpEK1nMQQpNT-pN6KVRUvigRQVsLTkXZ05xKm1x7Si2IGk7lLZT2rXcMetI2hW839zzszBq_HX0MS3IZiSxYU8NqCNu1hH3Lx2p4B0tp6M9i9OLfk49wJck9it3RFVuJDHtVLC3XnE3b-ZbhzEyAUPeyQr2N924Denfih_SeDeNIWIjpVAmz4uCbOYsiGPIdLwCs6U6Wy-13TNc_ZiovjWbCOVe_g8pvIJdRHu2HDvag53Vr7v0GhHVKryZNs9v6sIbcg
  priority: 102
  providerName: Directory of Open Access Journals
Title Review of Second-Generation Bioethanol Production from Residual Biomass
URI https://www.ncbi.nlm.nih.gov/pubmed/30228792
https://www.proquest.com/docview/2112560294
https://www.proquest.com/docview/2111154553
https://pubmed.ncbi.nlm.nih.gov/PMC6117988
https://doaj.org/article/2fa32878e54646a98b75bfe45feb6a7e
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R7QUOiDeBsgoSEgeUduN3TqiLuq2QqKrCSuVk2YldKpWkdLf_n5nEu-wKqZccEieyZzzPeL4B-IAm3TRMuoLxiAGKZKpwuoqFr71igfPY9JBC307VyVx8vZAXKeG2SMcqVzqxV9RNV1OO_AADFbLOrBKfb_4U1DWK_q6mFho7sIsq2JgR7E6PTs_OV7qYG10NIRefFBU676lsRpclP4hLvy8VIXaWZl8K6se-YZp6BP__9fSGodo-RLlhlWZP4HFyJ_PDgf9P4UFon8GjDZDB53A8pP_zLubfKfpt8gFqmjiST6-6QMnz7jo_G7Bf6S7VnOTnYdEXatGY3-hiv4D57OjHl5MitU8oaoyylmh7FJI6el2KBh099MQYKpPKcMUn9SQ6LZynKsHojeehjqryE1bTtdZNYJG_hFHbteE15LF0qBiNKOvoBVf0pUb7RmgpuPOKZ1CuKGfrhC1OLS6uLcUYRG2L1LZS2QmzpbFE7Qw-rd-5GZA17h09JYasRxIqdn-ju720Scgsi45jBGiCFEooVxmvpY9ByBi8cjpk8JHYaUl2cXq1SyUIuEhCwbKH1O1GEOJOBnsrjtsk1Av7bwtm8H79GMWR_rG4NnR3_RgCOJISafJq2CDrOXPCGtIVy0BvbZ2tRW0_aa9-9ZDfquyB5d7cP6238BD9OTMcLNqD0fL2LrxDn2npx7BjZsfjJB7jPvNA15_zvx0ZFow
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAkECcUBpEz-TA0ItsN3ShxC0Um_GTuy2UklKdyvEn-I3MpPHsiuk3nrJIXEiZ95je74BeIUuPa-YtAnjARMUyVRidRESVzrFPOehaiGFdvfU-EB8PpSHS_BnqIWhY5WDTWwNddWUtEa-hokKeWdWiPdnPxPqGkW7q0MLjU4stv3vX5iyTd5tfUT-vmZs9Gn_wzjpuwokJSYfUzTJCmcQnM5EhfEPBigMdazIueJpmQarhXVUPBdc7rgvgypcykq6lrryLHD87jW4Ljh6cqpMH20Olp_nuugSPJ4mBaYKfZGOzjK-FqZuVSrCB83yVSmo-_ucI2z7BfzvFebc4uKRzTkfOLoDt_vgNV7vpO0uLPn6HtyagzS8D5vdZkPchPgb5dpV3AFbE__jjZPG01J9cxp_6ZBm6S5VuMRf_aQtC6MxPzCgfwAHV0LWh7BcN7V_DHHILJrhXGRlcIIr-lKlXSW0FNw6xSPIBsqZskcyp4Yap4YyGqK2QWobqUzKTJYbonYEb2fvnHU4HpeO3iCGzEYSBnd7ozk_Mr1KGxYsx3wz91IooWyROy1d8EIG75TVPoI3xE5DlgKnV9q-4AF_kjC3zDr11hGE7xPBysBx05uQifkn8BG8nD1G5acdHVv75qIdQ3BKUiJNHnUCMpszJ2QjXbAI9ILoLPzU4pP65LgFGFdZC2P35PJpvYAb4_3dHbOztbf9FG5iJJl3R5pWYHl6fuGfYbQ2dc9bFYnh-1Xr5F8my05m
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFDASiANyE-_TPiDU0IaWQhQVKvW23bV3oVKJS5MK8df4dcz4ERIh9dZLDvbGWs_O6_PufAPwEkN6VjJpE8YDAhTJVGJ1HhJXOMU856GsKYU-j9Xuofh4JI_W4E9XC0PHKjufWDvqsiroG3kfgQpFZ5aLfmiPRUy2R-_OfibUQYp2Wrt2Go2K7PvfvxC-zd7ubeNav2JstPP1_W7SdhhICgQic3TPCmcTnE5FibkQJisM7S3PuOKDYhCsFtZRIV1wmeO-CCp3A1bQb6FLzwLH516DdU2oqAfrw53x5KCLAzzTeQP3-CDJETi0JTs6TXk_zN2mVMQWmmabUlAv-KWwWHcP-D9GLAXJ1QOcSxFxdBtutalsvNXo3h1Y89O7cHOJ4PAefGi2HuIqxF8IeZdxQ3NN2hAPTypPH-6r03jS8M7SVap3iQ_8rC4SozE_ML2_D4dXItgH0JtWU_8I4pBadMqZSIvgBFf0pFK7UmgpuHWKR5B2kjNFy2tO7TVODeEbkrZBaRupzICZNDMk7QjeLP5z1rB6XDp6SAuyGEmM3PWF6vybaQ3csGA5os_MS6GEsnnmtHTBCxm8U1b7CF7TchryGzi9wrblD_iSxMBltqjTjiC2nwg2uhU3rUOZmX_qH8GLxW10BbS_Y6e-uqjHELmSlCiTh42CLObMiedI5ywCvaI6Ky-1emd68r2mG1dpTWr3-PJpPYfraI_m0954_wncwLQya843bUBvfn7hn2LqNnfPWhuJ4fiqzfIve5FT-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+Second+Generation+Bioethanol+Production+from+Residual+Biomass&rft.jtitle=Food+technology+and+biotechnology&rft.au=Robak%2C+Katarzyna&rft.au=Balcerek%2C+Maria&rft.date=2018-04-01&rft.issn=1330-9862&rft.volume=56&rft.issue=2&rft.spage=174&rft_id=info:doi/10.17113%2Fftb.56.02.18.5428&rft_id=info%3Apmid%2F30228792&rft.externalDocID=30228792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1330-9862&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1330-9862&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1330-9862&client=summon