Multi-transcriptomic analysis points to early organelle dysfunction in human astrocytes in Alzheimer's disease

The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low num...

Full description

Saved in:
Bibliographic Details
Published inNeurobiology of disease Vol. 166; p. 105655
Main Authors Galea, Elena, Weinstock, Laura D., Larramona-Arcas, Raquel, Pybus, Alyssa F., Giménez-Llort, Lydia, Escartin, Carole, Wood, Levi B.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional Categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer's disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD. [Display omitted] •Detection of two molecular profiles in both control subjects and AD patients•Use of astrocyte-specific annotations and pre-clustered gene sets•Downregulation of endolysosome-related genes in early Braak/CERAD stages•Progressive downregulation of mitochondrion genes along Braak/CERAD stages•Astrocytic endolysosomes and mitochondria as therapeutic targets in AD
AbstractList The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional Categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer's disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD.
The phenotypic transformation of astrocytes in Alzheimer’s disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer’s disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer’s disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD.
The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional Categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer's disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD. [Display omitted] •Detection of two molecular profiles in both control subjects and AD patients•Use of astrocyte-specific annotations and pre-clustered gene sets•Downregulation of endolysosome-related genes in early Braak/CERAD stages•Progressive downregulation of mitochondrion genes along Braak/CERAD stages•Astrocytic endolysosomes and mitochondria as therapeutic targets in AD
The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional Categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer's disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD.The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional Categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer's disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD.
The phenotypic transformation of astrocytes in Alzheimer’s disease (AD) is still not well understood. Recentanalyses based on single-nucleus RNA sequencing of postmortem Alzheimer’s disease (AD) samples are limited bythe low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genesdetected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes.Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects(Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples camefrom three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious OrderStudy/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated fromhuman brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genesfrom each cluster were manually annotated according to cell-type specific functional Categories. Gene SetVariation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in thesefunctional categories among clinical cohorts. We highlight three novel findings of the study. First, individualswith the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAPcohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD,whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles.Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with upregulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inverselycorrelated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes asmaladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer’s disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD.
ArticleNumber 105655
Author Escartin, Carole
Weinstock, Laura D.
Pybus, Alyssa F.
Galea, Elena
Larramona-Arcas, Raquel
Wood, Levi B.
Giménez-Llort, Lydia
AuthorAffiliation e. Departament de Psiquiatria i Medicina Forense, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
b. Departament de Bioquímica, Unitat de Bioquímica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
f. Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
a. Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
d. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30332 USA
g. George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332 USA
c. ICREA, 08010 Barcelona, Spain
AuthorAffiliation_xml – name: b. Departament de Bioquímica, Unitat de Bioquímica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
– name: c. ICREA, 08010 Barcelona, Spain
– name: a. Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
– name: d. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30332 USA
– name: e. Departament de Psiquiatria i Medicina Forense, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
– name: f. Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
– name: g. George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332 USA
Author_xml – sequence: 1
  givenname: Elena
  surname: Galea
  fullname: Galea, Elena
  email: Elena.Galea@uab.es
  organization: Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
– sequence: 2
  givenname: Laura D.
  surname: Weinstock
  fullname: Weinstock, Laura D.
  organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, USA
– sequence: 3
  givenname: Raquel
  surname: Larramona-Arcas
  fullname: Larramona-Arcas, Raquel
  organization: Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
– sequence: 4
  givenname: Alyssa F.
  surname: Pybus
  fullname: Pybus, Alyssa F.
  organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, USA
– sequence: 5
  givenname: Lydia
  surname: Giménez-Llort
  fullname: Giménez-Llort, Lydia
  organization: Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
– sequence: 6
  givenname: Carole
  surname: Escartin
  fullname: Escartin, Carole
  organization: Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France
– sequence: 7
  givenname: Levi B.
  surname: Wood
  fullname: Wood, Levi B.
  email: levi.wood@me.gatech.edu
  organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35143967$$D View this record in MEDLINE/PubMed
https://cea.hal.science/cea-03872733$$DView record in HAL
BookMark eNqFkk9vEzEQxVeoiP6BD8AF7Q04bLDX6_VaSJWiCmilIC4gcbO8s7ONg2MH24kUPj0O2yKaQzlZtt_7eTzzzosT5x0WxUtKZpTQ9t1q5vphVpO6znvecv6kOKNE8kpy9v2kOCOylZWULT0tzmNcEUIpl-JZcco4bZhsxVnhPm9tMlUK2kUIZpP82kCpnbb7aGK58calWCZfog52X_pwqx1ai-Wwj-PWQTLelcaVy-1au1LHFDzsE8bD2dz-WqJZY3gdy8FE1BGfF09HbSO-uFsvim8fP3y9uq4WXz7dXM0XFbSEpkr0dTdKwdumGQXvRjG2HQIDyaAXIzTAoZOM1oxKPfSkIRx4oxE4jl1WtuyiuJm4g9crtQlmrcNeeW3Un4P8DaVDMmBRNYxkBm3FWHeNgKbrqaSia4aBi75hB9blxNps-zUOgC53yz6APrxxZqlu_U5JTpq6FhnwdgIsj2zX84UC1IqwTmQd29GsfXP3WPA_txiTWpsIueO57X4bVd3WHSOUswP21b91_SXfDzcLxCSA4GMMOCowSR8mlss0VlGiDjFSK5VjpA4xUlOMspMeOe_hj3neTx7Mc90ZDCqCQQc4mICQcuPNo2555AZrnAFtf-D-P97fWUzz4A
CitedBy_id crossref_primary_10_1080_10255842_2023_2268236
crossref_primary_10_31083_j_jin2104112
crossref_primary_10_1016_j_brainres_2024_149283
crossref_primary_10_3390_life14010099
crossref_primary_10_1016_j_bbi_2023_03_001
crossref_primary_10_1016_j_semcdb_2022_05_007
crossref_primary_10_3233_JAD_240787
crossref_primary_10_3390_ijms24087258
crossref_primary_10_3390_ijms252211958
crossref_primary_10_1016_j_brainres_2024_148820
crossref_primary_10_1111_ejn_16081
crossref_primary_10_3389_fnmol_2024_1516119
crossref_primary_10_1038_s41593_024_01791_4
crossref_primary_10_1186_s12974_024_03128_1
crossref_primary_10_1111_jnc_15875
crossref_primary_10_1038_s41467_024_47028_7
crossref_primary_10_1042_EBC20220079
crossref_primary_10_3390_biom14030289
crossref_primary_10_1038_s41467_024_52297_3
crossref_primary_10_1186_s12974_024_03204_6
crossref_primary_10_4103_NRR_NRR_D_24_00190
crossref_primary_10_1042_EBC20220077
crossref_primary_10_1002_glia_24317
crossref_primary_10_1111_bpa_13316
crossref_primary_10_3390_genes13050838
crossref_primary_10_14283_jpad_2023_54
crossref_primary_10_3389_fddsv_2024_1459962
crossref_primary_10_1177_17590914231197523
crossref_primary_10_1016_j_addr_2023_114977
crossref_primary_10_1038_s41583_022_00641_1
crossref_primary_10_1038_s41598_024_57027_9
crossref_primary_10_1016_j_biopha_2022_114206
crossref_primary_10_1007_s12264_023_01160_4
crossref_primary_10_3390_biom13020313
crossref_primary_10_1007_s12035_023_03908_5
crossref_primary_10_3389_fendo_2024_1393253
crossref_primary_10_1038_s41582_022_00713_x
crossref_primary_10_1016_j_xcrm_2023_101005
crossref_primary_10_3390_ijms24098117
crossref_primary_10_1186_s40478_023_01699_3
Cites_doi 10.3389/fnagi.2018.00114
10.1002/glia.23270
10.1038/s41593-018-0216-z
10.1146/annurev-genet-120417-031621
10.1038/s41598-018-29450-2
10.1084/jem.20172158
10.1038/s41586-019-1329-6
10.1159/000072805
10.1038/s41467-018-03424-4
10.1097/WAD.0b013e31815721c3
10.1038/s41593-019-0539-4
10.1212/WNL.0000000000005303
10.1038/s41593-020-0624-8
10.1038/nm.3639
10.1186/s13024-016-0098-z
10.1186/1471-2105-14-7
10.1016/j.molmed.2017.04.005
10.1093/nar/gkm1075
10.3390/ijms20153776
10.1126/sciadv.abb5398
10.1007/978-1-0716-0301-7_7
10.1038/s41467-018-08023-x
10.1523/JNEUROSCI.4042-03.2004
10.1002/glia.23687
10.4103/1673-5374.230276
10.1016/j.neuron.2015.11.013
10.1038/nm838
10.1523/JNEUROSCI.2229-19.2020
10.1016/j.neurobiolaging.2014.06.004
10.1016/j.celrep.2016.07.075
10.1016/j.neuron.2011.02.003
10.3233/JAD-160292
10.1093/brain/awv404
10.1016/j.it.2020.07.006
10.1002/ana.410410106
10.1038/sdata.2016.89
10.3233/JAD-179939
10.1016/j.nbd.2016.08.001
10.1038/s41591-020-0938-9
10.1155/2014/693851
10.1038/s41593-020-00783-4
10.1016/j.cell.2013.03.030
10.1073/pnas.1617782114
10.1016/j.neurobiolaging.2014.09.027
10.1016/S0140-6736(00)03589-3
10.1186/s13195-018-0455-y
10.3233/JAD-170585
10.1016/j.neurobiolaging.2011.04.013
10.1038/s41593-019-0556-3
ContentType Journal Article
Copyright 2021
Copyright © 2021. Published by Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021
– notice: Copyright © 2021. Published by Elsevier Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
VOOES
5PM
DOA
DOI 10.1016/j.nbd.2022.105655
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1095-953X
EndPage 105655
ExternalDocumentID oai_doaj_org_article_430adb167f2847c48b191784dd57b436
PMC9504227
oai_HAL_cea_03872733v1
35143967
10_1016_j_nbd_2022_105655
S0969996122000468
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: U24 NS072026
– fundername: NIA NIH HHS
  grantid: U01 AG006786
– fundername: NIA NIH HHS
  grantid: RC2 AG036547
– fundername: NIA NIH HHS
  grantid: P50 AG025711
– fundername: NIA NIH HHS
  grantid: R01 AG015819
– fundername: NIA NIH HHS
  grantid: R01 AG032990
– fundername: NIA NIH HHS
  grantid: U01 AG046161
– fundername: NIA NIH HHS
  grantid: R01 AG036042
– fundername: NIA NIH HHS
  grantid: R01 AG030146
– fundername: NIA NIH HHS
  grantid: R01 AG039495
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABTEW
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
K-O
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OK1
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SSH
SSN
SSZ
T5K
X7M
XPP
Z5R
ZGI
ZMT
ZU3
~G-
0SF
6I.
AACTN
AADPK
AAFTH
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
EFLBG
LCYCR
NCXOZ
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
1XC
UMC
VOOES
5PM
ID FETCH-LOGICAL-c601t-7b28f975644f758f7f68ec3c93cb7fc4c5c89312319adb0405c54aec5ef868e63
IEDL.DBID .~1
ISSN 0969-9961
1095-953X
IngestDate Wed Aug 27 01:32:14 EDT 2025
Thu Aug 21 18:08:13 EDT 2025
Wed May 07 08:52:08 EDT 2025
Fri Jul 11 08:10:37 EDT 2025
Wed Feb 19 02:24:27 EST 2025
Tue Jul 01 03:07:36 EDT 2025
Thu Apr 24 22:57:47 EDT 2025
Fri Feb 23 02:41:25 EST 2024
Tue Aug 26 16:34:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MCI
Mitochondria
Astrocytes
Perisynaptic astrocyte processes
RNA seq
Hierarchical clustering
Alzheimer's disease
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021. Published by Elsevier Inc.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c601t-7b28f975644f758f7f68ec3c93cb7fc4c5c89312319adb0405c54aec5ef868e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current address R. Larramona: Celltec-UB, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat de Barcelona, 08028; Institut de Neurociències, Universitat de Barcelona, 08035, Barcelona, Spain.
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0969996122000468
PMID 35143967
PQID 2628301537
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_430adb167f2847c48b191784dd57b436
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9504227
hal_primary_oai_HAL_cea_03872733v1
proquest_miscellaneous_2628301537
pubmed_primary_35143967
crossref_citationtrail_10_1016_j_nbd_2022_105655
crossref_primary_10_1016_j_nbd_2022_105655
elsevier_sciencedirect_doi_10_1016_j_nbd_2022_105655
elsevier_clinicalkey_doi_10_1016_j_nbd_2022_105655
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neurobiology of disease
PublicationTitleAlternate Neurobiol Dis
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Steen, Liu, Alizadeh, Newman (bb0245) 2020; 2117
Gomez-Isla, Hollister, West, Mui, Growdon, Petersen (bb0070) 1997; 41
Viejo, Noori, Merrill, Das, Hyman, Serrano-Pozo (bb0260) 2021
Liddelow, Marsh, Stevens (bb0130) 2020; 41
Xie, Shen, Xu, Liu, Li, Lu (bb0280) 2020; 40
Abdullah, Takase, Nunome, Enomoto, Ito, Gong, Michikawa (bb0005) 2016; 53
Hoffman, Welsh-Bohmer, Hanson, Crain, Hulette, Earl, Coleman (bb0100) 2000; 41
Wang, Park, Susztak, Zhang, Li (bb0265) 2019; 10
Kelley, Nakao-Inoue, Molofsky, Oldham (bb0115) 2018; 21
Shi, Gibson (bb0230) 2007; 21
Allen, Carrasquillo, Funk, Heavner, Zou, Younkin (bb0015) 2016; 3
Simpson, Ince, Shaw, Heath, Raman, Garwood (bb0235) 2011; 32
Escartin, Guillemaud, Carrillo-de Sauvage (bb0050) 2019; 67
Saelens, Cannoodt, Saeys (bb0205) 2018; 9
Arenaza-Urquijo, Vemuri (bb0020) 2018; 90
Lin, Du, Huber, Kibbe (bb0135) 2008; 36
Perez-Nievas, Serrano-Pozo (bb0190) 2018; 10
Marlatt, Bauer, Aronica, van Haastert, Hoozemans, Joels, Lucassen (bb0140) 2014; 2014
Mathys, Davila-Velderrain, Peng, Gao, Mohammadi, Young (bb0160) 2019; 571
Jo, Yarishkin, Hwang, Chun, Park, Woo (bb0110) 2014; 20
Sekar, McDonald, Cuyugan, Aldrich, Kurdoglu, Adkins (bb0225) 2015; 36
Lee, Gerashchenko, Timofeev, Bacskai, Kastanenka (bb0125) 2020; 14
Abramov, Canevari, Duchen (bb0010) 2004; 24
Zhang, Sloan, Clarke, Caneda, Plaza, Blumenthal (bb0290) 2016; 89
Neuropathology Group. Medical Research Council Cognitive, F., & Aging, S (bb0175) 2001; 357
Swerdlow (bb0250) 2018; 62
Misra, Irvine (bb0165) 2018; 52
Iram, Trudler, Kain, Kanner, Galron, Vassar (bb0105) 2016; 96
Sakers, Lake, Khazanchi, Ouwenga, Vasek, Dani, Dougherty (bb0210) 2017; 114
Gomez-Arboledas, Davila, Sanchez-Mejias, Navarro, Nunez-Diaz, Sanchez-Varo (bb0065) 2018; 66
Grubman, Chew, Ouyang, Sun, Choo, McLean (bb0080) 2019; 22
Sanchez-Mico, Jimenez, Gomez-Arboledas, Munoz-Castro, Romero-Molina, Navarro (bb0215) 2020
Saddawi-Konefka, Seelige, Gross, Levy, Searles, Washington (bb0200) 2016; 16
Zhang, Gaiteri, Bodea, Wang, McElwee, Podtelezhnikov (bb0285) 2013; 153
Han, Qu, Zhao, Zou (bb0090) 2018; 8
Pelvig, Pakkenberg, Regeur, Oster, Pakkenberg (bb0185) 2003; 16
Neff (bb0170) 2021; 7
Hanzelmann, Castelo, Guinney (bb0095) 2013; 14
Martini-Stoica, Cole, Swartzlander, Chen, Wan, Bajaj (bb0150) 2018; 215
Habib, McCabe, Medina, Varshavsky, Kitsberg, Dvir-Szternfeld (bb0085) 2020; 23
Sollvander, Nikitidou, Brolin, Soderberg, Sehlin, Lannfelt, Erlandsson (bb0240) 2016; 11
Marsh, Alifragis (bb0145) 2018; 13
Masgrau, Guaza, Ransohoff, Galea (bb0155) 2017; 23
Devi, Scheltens (bb0040) 2018; 10
Weirauch (bb0270) 2011; vol. 1
Santello, Bezzi, Volterra (bb0220) 2011; 69
Funato, Yoshimura, Yamazaki, Saido, Ito, Yokofujita (bb0060) 1998; 152
Dujardin, Commins, Lathuiliere, Beerepoot, Fernandes, Kamath (bb0045) 2020; 26
Escartin, Galea, Lakatos, O’Callaghan, Petzold, Serrano-Pozo (bb0055) 2021
Birks, Flicker (bb0030) 2003; (1)
Orre, Kamphuis, Osborn, Jansen, Kooijman, Bossers, Hol (bb0180) 2014; 35
Bennett, Buchman, Boyle, Barnes, Wilson, Schneider (bb0025) 2018; 64
Kryuchkova-Mostacci, Robinson-Rechavi (bb0120) 2017; 18
Derouiche, Geiger (bb0035) 2019; 20
Torper, Gotz (bb0255) 2017; 230
Rodriguez-Vieitez, Saint-Aubert, Carter, Almkvist, Farid, Schöll (bb0195) 2016; 139
Wyss-Coray, Loike, Brionne, Lu, Anankov, Yan (bb0275) 2003; 9
Graves, Xie, Stout, Zampese, Burbulla, Shih (bb0075) 2020; 23
Zhang (10.1016/j.nbd.2022.105655_bb0285) 2013; 153
Abramov (10.1016/j.nbd.2022.105655_bb0010) 2004; 24
Devi (10.1016/j.nbd.2022.105655_bb0040) 2018; 10
Lin (10.1016/j.nbd.2022.105655_bb0135) 2008; 36
Orre (10.1016/j.nbd.2022.105655_bb0180) 2014; 35
Wang (10.1016/j.nbd.2022.105655_bb0265) 2019; 10
Funato (10.1016/j.nbd.2022.105655_bb0060) 1998; 152
Hanzelmann (10.1016/j.nbd.2022.105655_bb0095) 2013; 14
Gomez-Isla (10.1016/j.nbd.2022.105655_bb0070) 1997; 41
Saelens (10.1016/j.nbd.2022.105655_bb0205) 2018; 9
Steen (10.1016/j.nbd.2022.105655_bb0245) 2020; 2117
Arenaza-Urquijo (10.1016/j.nbd.2022.105655_bb0020) 2018; 90
Sekar (10.1016/j.nbd.2022.105655_bb0225) 2015; 36
Shi (10.1016/j.nbd.2022.105655_bb0230) 2007; 21
Escartin (10.1016/j.nbd.2022.105655_bb0050) 2019; 67
Iram (10.1016/j.nbd.2022.105655_bb0105) 2016; 96
Neff (10.1016/j.nbd.2022.105655_bb0170) 2021; 7
Torper (10.1016/j.nbd.2022.105655_bb0255) 2017; 230
Allen (10.1016/j.nbd.2022.105655_bb0015) 2016; 3
Swerdlow (10.1016/j.nbd.2022.105655_bb0250) 2018; 62
Zhang (10.1016/j.nbd.2022.105655_bb0290) 2016; 89
Mathys (10.1016/j.nbd.2022.105655_bb0160) 2019; 571
Abdullah (10.1016/j.nbd.2022.105655_bb0005) 2016; 53
Habib (10.1016/j.nbd.2022.105655_bb0085) 2020; 23
Masgrau (10.1016/j.nbd.2022.105655_bb0155) 2017; 23
Kelley (10.1016/j.nbd.2022.105655_bb0115) 2018; 21
Santello (10.1016/j.nbd.2022.105655_bb0220) 2011; 69
Martini-Stoica (10.1016/j.nbd.2022.105655_bb0150) 2018; 215
Simpson (10.1016/j.nbd.2022.105655_bb0235) 2011; 32
Wyss-Coray (10.1016/j.nbd.2022.105655_bb0275) 2003; 9
Misra (10.1016/j.nbd.2022.105655_bb0165) 2018; 52
Kryuchkova-Mostacci (10.1016/j.nbd.2022.105655_bb0120) 2017; 18
Bennett (10.1016/j.nbd.2022.105655_bb0025) 2018; 64
Marsh (10.1016/j.nbd.2022.105655_bb0145) 2018; 13
Sollvander (10.1016/j.nbd.2022.105655_bb0240) 2016; 11
Liddelow (10.1016/j.nbd.2022.105655_bb0130) 2020; 41
Marlatt (10.1016/j.nbd.2022.105655_bb0140) 2014; 2014
Saddawi-Konefka (10.1016/j.nbd.2022.105655_bb0200) 2016; 16
Grubman (10.1016/j.nbd.2022.105655_bb0080) 2019; 22
Neuropathology Group. Medical Research Council Cognitive, F., & Aging, S (10.1016/j.nbd.2022.105655_bb0175) 2001; 357
Escartin (10.1016/j.nbd.2022.105655_bb0055) 2021
Pelvig (10.1016/j.nbd.2022.105655_bb0185) 2003; 16
Birks (10.1016/j.nbd.2022.105655_bb0030) 2003; Rev(1)
Han (10.1016/j.nbd.2022.105655_bb0090) 2018; 8
Jo (10.1016/j.nbd.2022.105655_bb0110) 2014; 20
Graves (10.1016/j.nbd.2022.105655_bb0075) 2020; 23
Xie (10.1016/j.nbd.2022.105655_bb0280) 2020; 40
Viejo (10.1016/j.nbd.2022.105655_bb0260) 2021
Perez-Nievas (10.1016/j.nbd.2022.105655_bb0190) 2018; 10
Lee (10.1016/j.nbd.2022.105655_bb0125) 2020; 14
Gomez-Arboledas (10.1016/j.nbd.2022.105655_bb0065) 2018; 66
Derouiche (10.1016/j.nbd.2022.105655_bb0035) 2019; 20
Hoffman (10.1016/j.nbd.2022.105655_bb0100) 2000; 41
Sanchez-Mico (10.1016/j.nbd.2022.105655_bb0215) 2020
Dujardin (10.1016/j.nbd.2022.105655_bb0045) 2020; 26
Sakers (10.1016/j.nbd.2022.105655_bb0210) 2017; 114
Weirauch (10.1016/j.nbd.2022.105655_bb0270) 2011; vol. 1
Rodriguez-Vieitez (10.1016/j.nbd.2022.105655_bb0195) 2016; 139
References_xml – volume: 40
  start-page: 2644
  year: 2020
  end-page: 2662
  ident: bb0280
  article-title: Astrocytic YAP promotes the formation of glia scars and neural regeneration after spinal cord injury
  publication-title: J. Neurosci.
– volume: 139
  start-page: 922
  year: 2016
  end-page: 936
  ident: bb0195
  article-title: Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease
  publication-title: Brain
– volume: 13
  start-page: 616
  year: 2018
  end-page: 623
  ident: bb0145
  article-title: Synaptic dysfunction in Alzheimer’s disease: the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention
  publication-title: Neural Regen. Res.
– volume: 9
  start-page: 453
  year: 2003
  end-page: 457
  ident: bb0275
  article-title: Adult mouse astrocytes degrade amyloid-β in vitro and in situ
  publication-title: Nat. Med.
– volume: 23
  start-page: 486
  year: 2017
  end-page: 500
  ident: bb0155
  article-title: Should we stop saying ‘Glia’ and ‘Neuroinflammation’?
  publication-title: Trends Mol. Med.
– volume: 3
  year: 2016
  ident: bb0015
  article-title: Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases
  publication-title: Sci Data
– volume: 357
  start-page: 169
  year: 2001
  end-page: 175
  ident: bb0175
  article-title: Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS)
  publication-title: Lancet
– volume: 20
  start-page: 886
  year: 2014
  end-page: 896
  ident: bb0110
  article-title: GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease
  publication-title: Nat. Med.
– volume: 152
  start-page: 983
  year: 1998
  end-page: 992
  ident: bb0060
  article-title: Astrocytes containing amyloid beta-protein (Abeta)-positive granules are associated with Abeta40-positive diffuse plaques in the aged human brain
  publication-title: Am. J. Pathol.
– volume: 571
  start-page: E1
  year: 2019
  ident: bb0160
  article-title: Single-cell transcriptomic analysis of Alzheimer’s disease (vol 570, pg 332, 2019)
  publication-title: Nature
– volume: 2014
  year: 2014
  ident: bb0140
  article-title: Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition
  publication-title: Neural Plast
– volume: 11
  start-page: 38
  year: 2016
  ident: bb0240
  article-title: Accumulation of amyloid-beta by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons
  publication-title: Mol. Neurodegener.
– volume: 32
  start-page: 1795
  year: 2011
  end-page: 1807
  ident: bb0235
  article-title: Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer’s pathology and APOE genotype
  publication-title: Neurobiol. Aging
– volume: 10
  start-page: 114
  year: 2018
  ident: bb0190
  article-title: Deciphering the astrocyte reaction in Alzheimer’s disease
  publication-title: Front. Aging Neurosci.
– volume: 16
  start-page: 2348
  year: 2016
  end-page: 2358
  ident: bb0200
  article-title: Nrf2 induces IL-17D to mediate tumor and virus surveillance
  publication-title: Cell Rep.
– volume: 41
  start-page: 1920
  year: 2000
  end-page: 1928
  ident: bb0100
  article-title: FDG PET imaging in patients with pathologically verified dementia
  publication-title: J. Nucl. Med.
– volume: 26
  start-page: 1256
  year: 2020
  end-page: 1263
  ident: bb0045
  article-title: Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease
  publication-title: Nat. Med.
– volume: 153
  start-page: 707
  year: 2013
  end-page: 720
  ident: bb0285
  article-title: Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease
  publication-title: Cell
– volume: 36
  start-page: e11
  year: 2008
  ident: bb0135
  article-title: Model-based variance-stabilizing transformation for Illumina microarray data
  publication-title: Nucleic Acids Res.
– volume: vol. 1
  year: 2011
  ident: bb0270
  article-title: (P. D. M. D. P. D. F. E. S. A. G. A. Salvador Ed. Vol. 1). Applied Statistics for Network Biology: Methods in Systems Biology
– volume: 10
  start-page: 122
  year: 2018
  ident: bb0040
  article-title: Heterogeneity of Alzheimer’s disease: consequence for drug trials?
  publication-title: Alzheimers Res. Ther.
– volume: 23
  start-page: 701
  year: 2020
  end-page: 706
  ident: bb0085
  article-title: Disease-associated astrocytes in Alzheimer’s disease and aging
  publication-title: Nat. Neurosci.
– volume: 10
  start-page: 380
  year: 2019
  ident: bb0265
  article-title: Bulk tissue cell type deconvolution with multi-subject single-cell expression reference
  publication-title: Nat. Commun.
– volume: 53
  start-page: 1433
  year: 2016
  end-page: 1441
  ident: bb0005
  article-title: Amyloid-beta reduces exosome release from astrocytes by enhancing JNK phosphorylation
  publication-title: J. Alzheimers Dis.
– volume: 14
  year: 2020
  ident: bb0125
  article-title: Slow wave sleep is a promising intervention target for Alzheimer’s disease
  publication-title: Front. Neurosci.
– volume: 64
  start-page: S161
  year: 2018
  end-page: S189
  ident: bb0025
  article-title: Religious orders study and rush memory and aging project
  publication-title: J. Alzheimers Dis.
– volume: 8
  start-page: 11062
  year: 2018
  ident: bb0090
  article-title: Analyzing 74,248 samples confirms the association between CLU rs11136000 polymorphism and Alzheimer’s disease in Caucasian but not Chinese population
  publication-title: Sci. Rep.
– volume: 21
  start-page: 1171
  year: 2018
  end-page: 1184
  ident: bb0115
  article-title: Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classes
  publication-title: Nat. Neurosci.
– volume: 35
  start-page: 2746
  year: 2014
  end-page: 2760
  ident: bb0180
  article-title: Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction
  publication-title: Neurobiol. Aging
– volume: 215
  start-page: 2355
  year: 2018
  end-page: 2377
  ident: bb0150
  article-title: TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading
  publication-title: J. Exp. Med.
– volume: 36
  start-page: 583
  year: 2015
  end-page: 591
  ident: bb0225
  article-title: Alzheimer’s disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes
  publication-title: Neurobiol. Aging
– year: 2021
  ident: bb0055
  article-title: Reactive astrocyte nomenclature, definitions, and future directions
  publication-title: Nat. Neurosci.
– volume: 96
  start-page: 84
  year: 2016
  end-page: 94
  ident: bb0105
  article-title: Astrocytes from old Alzheimer’s disease mice are impaired in Abeta uptake and in neuroprotection
  publication-title: Neurobiol. Dis.
– volume: 2117
  start-page: 135
  year: 2020
  end-page: 157
  ident: bb0245
  article-title: Profiling cell type abundance and expression in bulk tissues with CIBERSORTx
  publication-title: Methods Mol. Biol.
– volume: 14
  start-page: 7
  year: 2013
  ident: bb0095
  article-title: GSVA: gene set variation analysis for microarray and RNA-seq data
  publication-title: BMC Bioinformatics
– volume: 90
  start-page: 695
  year: 2018
  end-page: 703
  ident: bb0020
  article-title: Resistance vs resilience to Alzheimer disease: clarifying terminology for preclinical studies
  publication-title: Neurology
– volume: 9
  start-page: 1090
  year: 2018
  ident: bb0205
  article-title: A comprehensive evaluation of module detection methods for gene expression data
  publication-title: Nat. Commun.
– volume: 114
  start-page: E3830
  year: 2017
  end-page: E3838
  ident: bb0210
  article-title: Astrocytes locally translate transcripts in their peripheral processes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 7
  year: 2021
  ident: bb0170
  article-title: Molecular subtyping of Alzheimer’s disease using RNA sequencing data reveals novel mechanisms and targets
  publication-title: Sci. Adv.
– year: 2021
  ident: bb0260
  article-title: Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer’s disease
  publication-title: Neuropathol. Appl. Neurobiol.
– volume: 67
  start-page: 2221
  year: 2019
  end-page: 2247
  ident: bb0050
  article-title: Questions and (some) answers on reactive astrocytes
  publication-title: Glia
– volume: 18
  start-page: 205
  year: 2017
  end-page: 214
  ident: bb0120
  article-title: A benchmark of gene expression tissue-specificity metrics
  publication-title: Brief. Bioinform.
– year: 2020
  ident: bb0215
  article-title: Amyloid-beta impairs the phagocytosis of dystrophic synapses by astrocytes in Alzheimer’s disease
  publication-title: Glia.
– volume: 69
  start-page: 988
  year: 2011
  end-page: 1001
  ident: bb0220
  article-title: TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus
  publication-title: Neuron
– volume: 230
  start-page: 69
  year: 2017
  end-page: 97
  ident: bb0255
  article-title: Brain repair from intrinsic cell sources: turning reactive glia into neurons
  publication-title: Functional Neural Transplantation Iv: Translation to Clinical Application, Pt A
– volume: 22
  start-page: 2087
  year: 2019
  end-page: +
  ident: bb0080
  article-title: A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation
  publication-title: Nat. Neurosci.
– volume: 16
  start-page: 212
  year: 2003
  end-page: 219
  ident: bb0185
  article-title: Neocortical glial cell numbers in Alzheimer’s disease. A stereological study
  publication-title: Dement. Geriatr. Cogn. Disord.
– volume: 41
  start-page: 820
  year: 2020
  end-page: 835
  ident: bb0130
  article-title: Microglia and astrocytes in disease: dynamic duo or Partners in Crime?
  publication-title: Trends Immunol.
– volume: 89
  start-page: 37
  year: 2016
  end-page: 53
  ident: bb0290
  article-title: Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse
  publication-title: Neuron
– volume: 20
  year: 2019
  ident: bb0035
  article-title: Perspectives for Ezrin and radixin in astrocytes: kinases, functions and pathology
  publication-title: Int. J. Mol. Sci.
– volume: (1)
  start-page: CD000442
  year: 2003
  ident: bb0030
  article-title: Selegiline for Alzheimer's disease
  publication-title: Cochrane Database Syst
– volume: 66
  start-page: 637
  year: 2018
  end-page: 653
  ident: bb0065
  article-title: Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer’s disease
  publication-title: Glia
– volume: 52
  start-page: 65
  year: 2018
  end-page: 87
  ident: bb0165
  article-title: The hippo signaling network and its biological functions
  publication-title: Annu. Rev. Genet.
– volume: 21
  start-page: 276
  year: 2007
  end-page: 291
  ident: bb0230
  article-title: Oxidative stress and transcriptional regulation in Alzheimer disease
  publication-title: Alzheimer Dis. Assoc. Disord.
– volume: 62
  start-page: 1403
  year: 2018
  end-page: 1416
  ident: bb0250
  article-title: Mitochondria and mitochondrial cascades in Alzheimer’s disease
  publication-title: Journal of Alzheimers Disease
– volume: 24
  start-page: 565
  year: 2004
  end-page: 575
  ident: bb0010
  article-title: β-Amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase
  publication-title: J. Neurosci.
– volume: 23
  start-page: 15
  year: 2020
  end-page: 20
  ident: bb0075
  article-title: Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain
  publication-title: Nat. Neurosci.
– volume: 41
  start-page: 17
  year: 1997
  end-page: 24
  ident: bb0070
  article-title: Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease
  publication-title: Ann. Neurol.
– volume: 10
  start-page: 114
  year: 2018
  ident: 10.1016/j.nbd.2022.105655_bb0190
  article-title: Deciphering the astrocyte reaction in Alzheimer’s disease
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00114
– volume: 66
  start-page: 637
  issue: 3
  year: 2018
  ident: 10.1016/j.nbd.2022.105655_bb0065
  article-title: Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer’s disease
  publication-title: Glia
  doi: 10.1002/glia.23270
– volume: 21
  start-page: 1171
  issue: 9
  year: 2018
  ident: 10.1016/j.nbd.2022.105655_bb0115
  article-title: Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classes
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0216-z
– volume: 52
  start-page: 65
  year: 2018
  ident: 10.1016/j.nbd.2022.105655_bb0165
  article-title: The hippo signaling network and its biological functions
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-120417-031621
– volume: 8
  start-page: 11062
  issue: 1
  year: 2018
  ident: 10.1016/j.nbd.2022.105655_bb0090
  article-title: Analyzing 74,248 samples confirms the association between CLU rs11136000 polymorphism and Alzheimer’s disease in Caucasian but not Chinese population
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29450-2
– volume: 215
  start-page: 2355
  issue: 9
  year: 2018
  ident: 10.1016/j.nbd.2022.105655_bb0150
  article-title: TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20172158
– volume: Rev(1)
  start-page: CD000442
  year: 2003
  ident: 10.1016/j.nbd.2022.105655_bb0030
  article-title: Selegiline for Alzheimer's disease
  publication-title: Cochrane Database Syst
– volume: 571
  start-page: E1
  issue: 7763
  year: 2019
  ident: 10.1016/j.nbd.2022.105655_bb0160
  article-title: Single-cell transcriptomic analysis of Alzheimer’s disease (vol 570, pg 332, 2019)
  publication-title: Nature
  doi: 10.1038/s41586-019-1329-6
– volume: 16
  start-page: 212
  issue: 4
  year: 2003
  ident: 10.1016/j.nbd.2022.105655_bb0185
  article-title: Neocortical glial cell numbers in Alzheimer’s disease. A stereological study
  publication-title: Dement. Geriatr. Cogn. Disord.
  doi: 10.1159/000072805
– volume: 9
  start-page: 1090
  issue: 1
  year: 2018
  ident: 10.1016/j.nbd.2022.105655_bb0205
  article-title: A comprehensive evaluation of module detection methods for gene expression data
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03424-4
– volume: 152
  start-page: 983
  issue: 4
  year: 1998
  ident: 10.1016/j.nbd.2022.105655_bb0060
  article-title: Astrocytes containing amyloid beta-protein (Abeta)-positive granules are associated with Abeta40-positive diffuse plaques in the aged human brain
  publication-title: Am. J. Pathol.
– volume: 230
  start-page: 69
  year: 2017
  ident: 10.1016/j.nbd.2022.105655_bb0255
  article-title: Brain repair from intrinsic cell sources: turning reactive glia into neurons
  publication-title: Functional Neural Transplantation Iv: Translation to Clinical Application, Pt A
– volume: 21
  start-page: 276
  issue: 4
  year: 2007
  ident: 10.1016/j.nbd.2022.105655_bb0230
  article-title: Oxidative stress and transcriptional regulation in Alzheimer disease
  publication-title: Alzheimer Dis. Assoc. Disord.
  doi: 10.1097/WAD.0b013e31815721c3
– volume: 22
  start-page: 2087
  issue: 12
  year: 2019
  ident: 10.1016/j.nbd.2022.105655_bb0080
  article-title: A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0539-4
– volume: 90
  start-page: 695
  issue: 15
  year: 2018
  ident: 10.1016/j.nbd.2022.105655_bb0020
  article-title: Resistance vs resilience to Alzheimer disease: clarifying terminology for preclinical studies
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000005303
– volume: 23
  start-page: 701
  issue: 6
  year: 2020
  ident: 10.1016/j.nbd.2022.105655_bb0085
  article-title: Disease-associated astrocytes in Alzheimer’s disease and aging
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-0624-8
– year: 2020
  ident: 10.1016/j.nbd.2022.105655_bb0215
  article-title: Amyloid-beta impairs the phagocytosis of dystrophic synapses by astrocytes in Alzheimer’s disease
  publication-title: Glia.
– volume: 20
  start-page: 886
  issue: 8
  year: 2014
  ident: 10.1016/j.nbd.2022.105655_bb0110
  article-title: GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease
  publication-title: Nat. Med.
  doi: 10.1038/nm.3639
– volume: 11
  start-page: 38
  issue: 1
  year: 2016
  ident: 10.1016/j.nbd.2022.105655_bb0240
  article-title: Accumulation of amyloid-beta by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons
  publication-title: Mol. Neurodegener.
  doi: 10.1186/s13024-016-0098-z
– volume: 14
  start-page: 7
  year: 2013
  ident: 10.1016/j.nbd.2022.105655_bb0095
  article-title: GSVA: gene set variation analysis for microarray and RNA-seq data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-7
– volume: 23
  start-page: 486
  issue: 6
  year: 2017
  ident: 10.1016/j.nbd.2022.105655_bb0155
  article-title: Should we stop saying ‘Glia’ and ‘Neuroinflammation’?
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2017.04.005
– volume: 36
  start-page: e11
  issue: 2
  year: 2008
  ident: 10.1016/j.nbd.2022.105655_bb0135
  article-title: Model-based variance-stabilizing transformation for Illumina microarray data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm1075
– volume: 20
  issue: 15
  year: 2019
  ident: 10.1016/j.nbd.2022.105655_bb0035
  article-title: Perspectives for Ezrin and radixin in astrocytes: kinases, functions and pathology
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20153776
– volume: 7
  year: 2021
  ident: 10.1016/j.nbd.2022.105655_bb0170
  article-title: Molecular subtyping of Alzheimer’s disease using RNA sequencing data reveals novel mechanisms and targets
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb5398
– volume: 2117
  start-page: 135
  year: 2020
  ident: 10.1016/j.nbd.2022.105655_bb0245
  article-title: Profiling cell type abundance and expression in bulk tissues with CIBERSORTx
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-0716-0301-7_7
– volume: 10
  start-page: 380
  issue: 1
  year: 2019
  ident: 10.1016/j.nbd.2022.105655_bb0265
  article-title: Bulk tissue cell type deconvolution with multi-subject single-cell expression reference
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08023-x
– volume: 24
  start-page: 565
  issue: 2
  year: 2004
  ident: 10.1016/j.nbd.2022.105655_bb0010
  article-title: β-Amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4042-03.2004
– volume: 67
  start-page: 2221
  issue: 12
  year: 2019
  ident: 10.1016/j.nbd.2022.105655_bb0050
  article-title: Questions and (some) answers on reactive astrocytes
  publication-title: Glia
  doi: 10.1002/glia.23687
– volume: 13
  start-page: 616
  issue: 4
  year: 2018
  ident: 10.1016/j.nbd.2022.105655_bb0145
  article-title: Synaptic dysfunction in Alzheimer’s disease: the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention
  publication-title: Neural Regen. Res.
  doi: 10.4103/1673-5374.230276
– volume: 89
  start-page: 37
  issue: 1
  year: 2016
  ident: 10.1016/j.nbd.2022.105655_bb0290
  article-title: Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.11.013
– volume: 9
  start-page: 453
  issue: 4
  year: 2003
  ident: 10.1016/j.nbd.2022.105655_bb0275
  article-title: Adult mouse astrocytes degrade amyloid-β in vitro and in situ
  publication-title: Nat. Med.
  doi: 10.1038/nm838
– volume: 40
  start-page: 2644
  issue: 13
  year: 2020
  ident: 10.1016/j.nbd.2022.105655_bb0280
  article-title: Astrocytic YAP promotes the formation of glia scars and neural regeneration after spinal cord injury
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2229-19.2020
– volume: 35
  start-page: 2746
  issue: 12
  year: 2014
  ident: 10.1016/j.nbd.2022.105655_bb0180
  article-title: Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.06.004
– volume: 16
  start-page: 2348
  issue: 9
  year: 2016
  ident: 10.1016/j.nbd.2022.105655_bb0200
  article-title: Nrf2 induces IL-17D to mediate tumor and virus surveillance
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.07.075
– volume: 69
  start-page: 988
  issue: 5
  year: 2011
  ident: 10.1016/j.nbd.2022.105655_bb0220
  article-title: TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.02.003
– year: 2021
  ident: 10.1016/j.nbd.2022.105655_bb0260
  article-title: Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer’s disease
  publication-title: Neuropathol. Appl. Neurobiol.
– volume: 53
  start-page: 1433
  issue: 4
  year: 2016
  ident: 10.1016/j.nbd.2022.105655_bb0005
  article-title: Amyloid-beta reduces exosome release from astrocytes by enhancing JNK phosphorylation
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-160292
– volume: 139
  start-page: 922
  issue: Pt 3
  year: 2016
  ident: 10.1016/j.nbd.2022.105655_bb0195
  article-title: Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awv404
– volume: 41
  start-page: 820
  issue: 9
  year: 2020
  ident: 10.1016/j.nbd.2022.105655_bb0130
  article-title: Microglia and astrocytes in disease: dynamic duo or Partners in Crime?
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2020.07.006
– volume: 41
  start-page: 1920
  issue: 11
  year: 2000
  ident: 10.1016/j.nbd.2022.105655_bb0100
  article-title: FDG PET imaging in patients with pathologically verified dementia
  publication-title: J. Nucl. Med.
– volume: 41
  start-page: 17
  issue: 1
  year: 1997
  ident: 10.1016/j.nbd.2022.105655_bb0070
  article-title: Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410410106
– volume: 3
  year: 2016
  ident: 10.1016/j.nbd.2022.105655_bb0015
  article-title: Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.89
– volume: 64
  start-page: S161
  issue: s1
  year: 2018
  ident: 10.1016/j.nbd.2022.105655_bb0025
  article-title: Religious orders study and rush memory and aging project
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-179939
– volume: 96
  start-page: 84
  year: 2016
  ident: 10.1016/j.nbd.2022.105655_bb0105
  article-title: Astrocytes from old Alzheimer’s disease mice are impaired in Abeta uptake and in neuroprotection
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2016.08.001
– volume: 26
  start-page: 1256
  issue: 8
  year: 2020
  ident: 10.1016/j.nbd.2022.105655_bb0045
  article-title: Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0938-9
– volume: 2014
  year: 2014
  ident: 10.1016/j.nbd.2022.105655_bb0140
  article-title: Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition
  publication-title: Neural Plast
  doi: 10.1155/2014/693851
– volume: vol. 1
  year: 2011
  ident: 10.1016/j.nbd.2022.105655_bb0270
– year: 2021
  ident: 10.1016/j.nbd.2022.105655_bb0055
  article-title: Reactive astrocyte nomenclature, definitions, and future directions
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-020-00783-4
– volume: 153
  start-page: 707
  issue: 3
  year: 2013
  ident: 10.1016/j.nbd.2022.105655_bb0285
  article-title: Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.030
– volume: 114
  start-page: E3830
  issue: 19
  year: 2017
  ident: 10.1016/j.nbd.2022.105655_bb0210
  article-title: Astrocytes locally translate transcripts in their peripheral processes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1617782114
– volume: 36
  start-page: 583
  issue: 2
  year: 2015
  ident: 10.1016/j.nbd.2022.105655_bb0225
  article-title: Alzheimer’s disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2014.09.027
– volume: 18
  start-page: 205
  issue: 2
  year: 2017
  ident: 10.1016/j.nbd.2022.105655_bb0120
  article-title: A benchmark of gene expression tissue-specificity metrics
  publication-title: Brief. Bioinform.
– volume: 357
  start-page: 169
  issue: 9251
  year: 2001
  ident: 10.1016/j.nbd.2022.105655_bb0175
  article-title: Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS)
  publication-title: Lancet
  doi: 10.1016/S0140-6736(00)03589-3
– volume: 10
  start-page: 122
  issue: 1
  year: 2018
  ident: 10.1016/j.nbd.2022.105655_bb0040
  article-title: Heterogeneity of Alzheimer’s disease: consequence for drug trials?
  publication-title: Alzheimers Res. Ther.
  doi: 10.1186/s13195-018-0455-y
– volume: 14
  issue: 705
  year: 2020
  ident: 10.1016/j.nbd.2022.105655_bb0125
  article-title: Slow wave sleep is a promising intervention target for Alzheimer’s disease
  publication-title: Front. Neurosci.
– volume: 62
  start-page: 1403
  issue: 3
  year: 2018
  ident: 10.1016/j.nbd.2022.105655_bb0250
  article-title: Mitochondria and mitochondrial cascades in Alzheimer’s disease
  publication-title: Journal of Alzheimers Disease
  doi: 10.3233/JAD-170585
– volume: 32
  start-page: 1795
  issue: 10
  year: 2011
  ident: 10.1016/j.nbd.2022.105655_bb0235
  article-title: Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer’s pathology and APOE genotype
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2011.04.013
– volume: 23
  start-page: 15
  issue: 1
  year: 2020
  ident: 10.1016/j.nbd.2022.105655_bb0075
  article-title: Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-019-0556-3
SSID ssj0011597
Score 2.558032
Snippet The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of...
The phenotypic transformation of astrocytes in Alzheimer’s disease (AD) is still not well understood. Recentanalyses based on single-nucleus RNA sequencing of...
The phenotypic transformation of astrocytes in Alzheimer’s disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of...
SourceID doaj
pubmedcentral
hal
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105655
SubjectTerms Alzheimer Disease - metabolism
Alzheimer's disease
Astrocytes
Astrocytes - metabolism
Cognitive Dysfunction - complications
Gene Expression Profiling
Hierarchical clustering
Humans
Life Sciences
MCI
Mitochondria
Neurons and Cognition
Organelles - metabolism
Perisynaptic astrocyte processes
RNA seq
Transcriptome
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagB8QFQcsjbUEuQiAhRWTjV3JcENWqopyo1JsVO442qPVWTYq0_fWdcZzVBqT2wjWxncQz8TfjGX9DyAfO68xm0qY1q6uUF9ak4AaVKRPc5aJgToSI7ulPuTjjJ-fifKvUF-aEDfTAw8R94SyrajOTqsGF1PLCoIdR8LoWynAWyLYB80ZnKsYPAKTVGMMM2VzeIC1onodK83iubwuFAln_BIweLzEr8l-T8-_MyS0oOn5OnkUbks6Hd39BHjm_S_bmHvznyzX9SENWZ9gu3yVPTmPwfI_4cNg27RGdwlqBB5JpFVlJ6NWq9X1H-xV1SHpMQ70n3Nan9bpD-EMR0tbTUNaPVl0P2LcGSxWvzS9ul669dNefOhpjPi_J2fH3X98WaSy3kFrwyvpUmbxoSiXAQmrAi2hUIwtnmS2ZNaqx3AoLxg0g3awEicDPL6zglbPCNQW0lOwV2fEr794Q2mSystIyI53j0sxgHN6IWkjjYOiySkg2Tr-2kYscS2Jc6DHp7LcGiWmUmB4klpDPmy5XAxHHfY2_okw3DZFDO1yAqdNRs_RDmpWQfNQIPR5ThYUVBmrvezLfdIo2zGCbPNTtPajc5H0X8x_aukpjfgHYmOzPLCFHo0ZqWAQwsgN6sLrpdC6Rxw3ASyXk9aChm7HwqAYrJdxRE92dPGx6x7fLQDReCmSIU_v_YzYPyFP83iFX9JDs9Nc37i3Yc715F37dO5OoSC0
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-transcriptomic analysis points to early organelle dysfunction in human astrocytes in Alzheimer's disease
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0969996122000468
https://dx.doi.org/10.1016/j.nbd.2022.105655
https://www.ncbi.nlm.nih.gov/pubmed/35143967
https://www.proquest.com/docview/2628301537
https://cea.hal.science/cea-03872733
https://pubmed.ncbi.nlm.nih.gov/PMC9504227
https://doaj.org/article/430adb167f2847c48b191784dd57b436
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3batRAdKgVxBfRVu16WUYRBSFukrklj7FY1kv7ooW-DZnJhI202aVJhfXBb_ecyYVGoYKPmZyZJHNOzmXOjZBXnBehDaUNClbkAU-sCcAMSgMmuItFwpzwHt3jE7k85Z_OxNkOORxyYTCssuf9HU_33LofWfS7udhU1eIrKN-orUdx7FMgMeGXc4VU_u7XGOYBCo9vsILAAUIPnk0f41UbLBYax77_PGb7XZNNvoT_RETdWmGs5N-K6J_xlNcE1NF9cq_XLGnWvfwDsuPqPbKf1WBVX2zpa-pjPf0h-h65c9y71PdJ7VNwgxZllucgmKZM875WCd2sq7ptaLumDkshU98FCg_7abFtUCgiYmlVU9_sj-ZNCxJxC_orjmXnP1euunCXbxrae4IektOjD98Ol0HfhCGwYKu1gTJxUqZKgN5Ugm1RqlImzjKbMmtUabkVFlQekH9RmhcGWIKwgufOClcmACnZI7Jbr2t3QGgZytxKy4x0jksTwTq8FIWQxsHSaT4j4bD92vYVyrFRxrkeQtG-a8CYRozpDmMz8nacsunKc9wE_B5xOgJiZW0_AFune9LSnIXwHZFUJQpuyxODFm3Ci0Iow5mckXigCD0krwK7hYWqm57Mx0kT6v7XtJdAcpP3XWZftHW5xqgD0DzZj2hGXgwUqYE1oL8H6GB91ehYYnU3EGlqRh53FDquhQkcLJVwR01od_Kw6Z26Wvny46nAunHqyf9901NyF6-6mNFnZLe9vHLPQa9rzdz_uHNyO_v4eXky96cjvwGIS01j
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBdtCtu-jK3dI91LG2ODgUliPWx_zMqKuyb5shb6TViyTDxaJzRuIfvrdyfLpt6gg33Vy7bufA_d3U-EfOQ8H5uxNEHO8izgsdEBuEFJwAS3oYiZFS6iO1_I9Jx_vxAXO-SorYXBtEov-xuZ7qS1bxn53Ryty3L0A4xvtNYnYehKIONdsofoVGJA9qYnp-miCyaAxnZV0zA-wAltcNOleVUa8ULD0F1BjwV_d9STQ_HvaandJaZL_m2L_plSeUdHHT8hj71xSafN-z8lO7baJwfTChzrqy39RF26pztH3ycP5j6qfkAqV4Ub1Ki2nBDBSmWaebgSul6VVb2h9YpaREOm7iIoPO-n-XaDehFpS8uKuvv-aLapQSluwYTFtunlr6Utr-z15w31waBn5Pz429lRGvh7GAID7lodRDqMiyQSYDoV4F4UUSFja5hJmNFRYbgRBqweUIGTJMs1SAVhBM-sEbaIYaRkz8mgWlX2JaHFWGZGGqaltVzqCazDC5ELqS0snWRDMm63XxkPUo53ZVyqNhvtpwKKKaSYaig2JF-6KesGoeO-wV-Rpt1ABNd2DbB1ynOX4mwM3zGRUYG62_BYo1Mb8zwXkeZMDknYcoRq61dB4sJC5X1P5t2kHoP_a9oHYLne-6bTmTI2U5h4AMYnu50MyfuWIxVIBwz5AB-sbjYqlAjwBlotGpIXDYd2a2ENB0sk9EQ93u09rN9TlUuHQJ4IhI6LDv_vm96Rh-nZfKZmJ4vTV-QR9jQppK_JoL6-sW_AzKv1W_8b_wb2sU8f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-transcriptomic+analysis+points+to+early+organelle+dysfunction+in+human+astrocytes+in+Alzheimer%E2%80%99s+disease&rft.jtitle=Neurobiology+of+disease&rft.au=Galea%2C+Elena&rft.au=Weinstock%2C+Laura+D.&rft.au=Larramona-Arcas%2C+Raquel&rft.au=Pybus%2C+Alyssa+F.&rft.date=2022-05-01&rft.issn=0969-9961&rft.eissn=1095-953X&rft.volume=166&rft.spage=105655&rft.epage=105655&rft_id=info:doi/10.1016%2Fj.nbd.2022.105655&rft_id=info%3Apmid%2F35143967&rft.externalDocID=PMC9504227
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-9961&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-9961&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-9961&client=summon