Multi-transcriptomic analysis points to early organelle dysfunction in human astrocytes in Alzheimer's disease
The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low num...
Saved in:
Published in | Neurobiology of disease Vol. 166; p. 105655 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.05.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional Categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer's disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD.
[Display omitted]
•Detection of two molecular profiles in both control subjects and AD patients•Use of astrocyte-specific annotations and pre-clustered gene sets•Downregulation of endolysosome-related genes in early Braak/CERAD stages•Progressive downregulation of mitochondrion genes along Braak/CERAD stages•Astrocytic endolysosomes and mitochondria as therapeutic targets in AD |
---|---|
AbstractList | The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional Categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer's disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD. The phenotypic transformation of astrocytes in Alzheimer’s disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer’s disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer’s disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD. The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional Categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer's disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD. [Display omitted] •Detection of two molecular profiles in both control subjects and AD patients•Use of astrocyte-specific annotations and pre-clustered gene sets•Downregulation of endolysosome-related genes in early Braak/CERAD stages•Progressive downregulation of mitochondrion genes along Braak/CERAD stages•Astrocytic endolysosomes and mitochondria as therapeutic targets in AD The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional Categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer's disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD.The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of postmortem Alzheimer's disease (AD) samples are limited by the low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genes detected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes. Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects (Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples came from three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious Order Study/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated from human brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genes from each cluster were manually annotated according to cell-type specific functional Categories. Gene Set Variation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in these functional categories among clinical cohorts. We highlight three novel findings of the study. First, individuals with the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAP cohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD, whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles. Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with up-regulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inversely correlated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes as maladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer's disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD. The phenotypic transformation of astrocytes in Alzheimer’s disease (AD) is still not well understood. Recentanalyses based on single-nucleus RNA sequencing of postmortem Alzheimer’s disease (AD) samples are limited bythe low number of sequenced astrocytes, small cohort sizes, and low number of differentially expressed genesdetected. To optimize the detection of astrocytic genes, we employed a novel strategy consisting of the localization of pre-determined astrocyte and neuronal gene clusters in publicly available whole-brain transcriptomes.Specifically, we used cortical transcriptomes from 766 individuals, including cognitively normal subjects(Controls), and people diagnosed with mild cognitive impairment (MCI) or dementia due to AD. Samples camefrom three independent cohorts organized by the Mount Sinai Hospital, the Mayo Clinic, and the Religious OrderStudy/Memory and Aging Project (ROSMAP). Astrocyte- and neuron-specific gene clusters were generated fromhuman brain cell-type specific RNAseq data using hierarchical clustering and cell-type enrichment scoring. Genesfrom each cluster were manually annotated according to cell-type specific functional Categories. Gene SetVariation Analysis (GSVA) and Principal Component Analysis (PCA) were used to establish changes in thesefunctional categories among clinical cohorts. We highlight three novel findings of the study. First, individualswith the same clinical diagnosis were molecularly heterogeneous. Particularly in the Mayo Clinic and ROSMAPcohorts, over 50% of Controls presented down-regulation of genes encoding synaptic proteins typical of AD,whereas 30% of patients diagnosed with dementia due to AD presented Control-like transcriptomic profiles.Second, down-regulation of neuronal genes related to synaptic proteins coincided, in astrocytes, with upregulation of genes related to perisynaptic astrocytic processes (PAP) and down-regulation of genes encoding endolysosomal and mitochondrial proteins. Third, down-regulation of astrocytic mitochondrial genes inverselycorrelated with the disease stages defined by Braak and CERAD scoring. Finally, we interpreted these changes asmaladaptive or adaptive from the point of view of astrocyte biology in a model of the phenotypical transformation of astrocytes in AD. The main prediction is that early malfunction of the astrocytic endolysosomal system, associated with progressive mitochondrial dysfunction, contribute to Alzheimer’s disease. If this prediction is correct, therapies preventing organelle dysfunction in astrocytes may be beneficial in preclinical and clinical AD. |
ArticleNumber | 105655 |
Author | Escartin, Carole Weinstock, Laura D. Pybus, Alyssa F. Galea, Elena Larramona-Arcas, Raquel Wood, Levi B. Giménez-Llort, Lydia |
AuthorAffiliation | e. Departament de Psiquiatria i Medicina Forense, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain b. Departament de Bioquímica, Unitat de Bioquímica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain f. Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France a. Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain d. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30332 USA g. George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332 USA c. ICREA, 08010 Barcelona, Spain |
AuthorAffiliation_xml | – name: b. Departament de Bioquímica, Unitat de Bioquímica, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain – name: c. ICREA, 08010 Barcelona, Spain – name: a. Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain – name: d. Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30332 USA – name: e. Departament de Psiquiatria i Medicina Forense, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain – name: f. Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France – name: g. George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, 30332 USA |
Author_xml | – sequence: 1 givenname: Elena surname: Galea fullname: Galea, Elena email: Elena.Galea@uab.es organization: Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain – sequence: 2 givenname: Laura D. surname: Weinstock fullname: Weinstock, Laura D. organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, USA – sequence: 3 givenname: Raquel surname: Larramona-Arcas fullname: Larramona-Arcas, Raquel organization: Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain – sequence: 4 givenname: Alyssa F. surname: Pybus fullname: Pybus, Alyssa F. organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, USA – sequence: 5 givenname: Lydia surname: Giménez-Llort fullname: Giménez-Llort, Lydia organization: Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain – sequence: 6 givenname: Carole surname: Escartin fullname: Escartin, Carole organization: Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265 Fontenay-aux-Roses, France – sequence: 7 givenname: Levi B. surname: Wood fullname: Wood, Levi B. email: levi.wood@me.gatech.edu organization: Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30332, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35143967$$D View this record in MEDLINE/PubMed https://cea.hal.science/cea-03872733$$DView record in HAL |
BookMark | eNqFkk9vEzEQxVeoiP6BD8AF7Q04bLDX6_VaSJWiCmilIC4gcbO8s7ONg2MH24kUPj0O2yKaQzlZtt_7eTzzzosT5x0WxUtKZpTQ9t1q5vphVpO6znvecv6kOKNE8kpy9v2kOCOylZWULT0tzmNcEUIpl-JZcco4bZhsxVnhPm9tMlUK2kUIZpP82kCpnbb7aGK58calWCZfog52X_pwqx1ai-Wwj-PWQTLelcaVy-1au1LHFDzsE8bD2dz-WqJZY3gdy8FE1BGfF09HbSO-uFsvim8fP3y9uq4WXz7dXM0XFbSEpkr0dTdKwdumGQXvRjG2HQIDyaAXIzTAoZOM1oxKPfSkIRx4oxE4jl1WtuyiuJm4g9crtQlmrcNeeW3Un4P8DaVDMmBRNYxkBm3FWHeNgKbrqaSia4aBi75hB9blxNps-zUOgC53yz6APrxxZqlu_U5JTpq6FhnwdgIsj2zX84UC1IqwTmQd29GsfXP3WPA_txiTWpsIueO57X4bVd3WHSOUswP21b91_SXfDzcLxCSA4GMMOCowSR8mlss0VlGiDjFSK5VjpA4xUlOMspMeOe_hj3neTx7Mc90ZDCqCQQc4mICQcuPNo2555AZrnAFtf-D-P97fWUzz4A |
CitedBy_id | crossref_primary_10_1080_10255842_2023_2268236 crossref_primary_10_31083_j_jin2104112 crossref_primary_10_1016_j_brainres_2024_149283 crossref_primary_10_3390_life14010099 crossref_primary_10_1016_j_bbi_2023_03_001 crossref_primary_10_1016_j_semcdb_2022_05_007 crossref_primary_10_3233_JAD_240787 crossref_primary_10_3390_ijms24087258 crossref_primary_10_3390_ijms252211958 crossref_primary_10_1016_j_brainres_2024_148820 crossref_primary_10_1111_ejn_16081 crossref_primary_10_3389_fnmol_2024_1516119 crossref_primary_10_1038_s41593_024_01791_4 crossref_primary_10_1186_s12974_024_03128_1 crossref_primary_10_1111_jnc_15875 crossref_primary_10_1038_s41467_024_47028_7 crossref_primary_10_1042_EBC20220079 crossref_primary_10_3390_biom14030289 crossref_primary_10_1038_s41467_024_52297_3 crossref_primary_10_1186_s12974_024_03204_6 crossref_primary_10_4103_NRR_NRR_D_24_00190 crossref_primary_10_1042_EBC20220077 crossref_primary_10_1002_glia_24317 crossref_primary_10_1111_bpa_13316 crossref_primary_10_3390_genes13050838 crossref_primary_10_14283_jpad_2023_54 crossref_primary_10_3389_fddsv_2024_1459962 crossref_primary_10_1177_17590914231197523 crossref_primary_10_1016_j_addr_2023_114977 crossref_primary_10_1038_s41583_022_00641_1 crossref_primary_10_1038_s41598_024_57027_9 crossref_primary_10_1016_j_biopha_2022_114206 crossref_primary_10_1007_s12264_023_01160_4 crossref_primary_10_3390_biom13020313 crossref_primary_10_1007_s12035_023_03908_5 crossref_primary_10_3389_fendo_2024_1393253 crossref_primary_10_1038_s41582_022_00713_x crossref_primary_10_1016_j_xcrm_2023_101005 crossref_primary_10_3390_ijms24098117 crossref_primary_10_1186_s40478_023_01699_3 |
Cites_doi | 10.3389/fnagi.2018.00114 10.1002/glia.23270 10.1038/s41593-018-0216-z 10.1146/annurev-genet-120417-031621 10.1038/s41598-018-29450-2 10.1084/jem.20172158 10.1038/s41586-019-1329-6 10.1159/000072805 10.1038/s41467-018-03424-4 10.1097/WAD.0b013e31815721c3 10.1038/s41593-019-0539-4 10.1212/WNL.0000000000005303 10.1038/s41593-020-0624-8 10.1038/nm.3639 10.1186/s13024-016-0098-z 10.1186/1471-2105-14-7 10.1016/j.molmed.2017.04.005 10.1093/nar/gkm1075 10.3390/ijms20153776 10.1126/sciadv.abb5398 10.1007/978-1-0716-0301-7_7 10.1038/s41467-018-08023-x 10.1523/JNEUROSCI.4042-03.2004 10.1002/glia.23687 10.4103/1673-5374.230276 10.1016/j.neuron.2015.11.013 10.1038/nm838 10.1523/JNEUROSCI.2229-19.2020 10.1016/j.neurobiolaging.2014.06.004 10.1016/j.celrep.2016.07.075 10.1016/j.neuron.2011.02.003 10.3233/JAD-160292 10.1093/brain/awv404 10.1016/j.it.2020.07.006 10.1002/ana.410410106 10.1038/sdata.2016.89 10.3233/JAD-179939 10.1016/j.nbd.2016.08.001 10.1038/s41591-020-0938-9 10.1155/2014/693851 10.1038/s41593-020-00783-4 10.1016/j.cell.2013.03.030 10.1073/pnas.1617782114 10.1016/j.neurobiolaging.2014.09.027 10.1016/S0140-6736(00)03589-3 10.1186/s13195-018-0455-y 10.3233/JAD-170585 10.1016/j.neurobiolaging.2011.04.013 10.1038/s41593-019-0556-3 |
ContentType | Journal Article |
Copyright | 2021 Copyright © 2021. Published by Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 – notice: Copyright © 2021. Published by Elsevier Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC VOOES 5PM DOA |
DOI | 10.1016/j.nbd.2022.105655 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1095-953X |
EndPage | 105655 |
ExternalDocumentID | oai_doaj_org_article_430adb167f2847c48b191784dd57b436 PMC9504227 oai_HAL_cea_03872733v1 35143967 10_1016_j_nbd_2022_105655 S0969996122000468 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: U24 NS072026 – fundername: NIA NIH HHS grantid: U01 AG006786 – fundername: NIA NIH HHS grantid: RC2 AG036547 – fundername: NIA NIH HHS grantid: P50 AG025711 – fundername: NIA NIH HHS grantid: R01 AG015819 – fundername: NIA NIH HHS grantid: R01 AG032990 – fundername: NIA NIH HHS grantid: U01 AG046161 – fundername: NIA NIH HHS grantid: R01 AG036042 – fundername: NIA NIH HHS grantid: R01 AG030146 – fundername: NIA NIH HHS grantid: R01 AG039495 |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 123 1B1 1P~ 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABJNI ABMAC ABMZM ABTEW ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADVLN ADXHL AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGWIK AGYEJ AIEXJ AIGII AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W K-O KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SCC SDF SDG SDP SES SEW SSH SSN SSZ T5K X7M XPP Z5R ZGI ZMT ZU3 ~G- 0SF 6I. AACTN AADPK AAFTH AAIAV ABLVK ABYKQ AFCTW AFKWA AHPSJ AJBFU AJOXV AMFUW EFLBG LCYCR NCXOZ RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 1XC UMC VOOES 5PM |
ID | FETCH-LOGICAL-c601t-7b28f975644f758f7f68ec3c93cb7fc4c5c89312319adb0405c54aec5ef868e63 |
IEDL.DBID | .~1 |
ISSN | 0969-9961 1095-953X |
IngestDate | Wed Aug 27 01:32:14 EDT 2025 Thu Aug 21 18:08:13 EDT 2025 Wed May 07 08:52:08 EDT 2025 Fri Jul 11 08:10:37 EDT 2025 Wed Feb 19 02:24:27 EST 2025 Tue Jul 01 03:07:36 EDT 2025 Thu Apr 24 22:57:47 EDT 2025 Fri Feb 23 02:41:25 EST 2024 Tue Aug 26 16:34:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MCI Mitochondria Astrocytes Perisynaptic astrocyte processes RNA seq Hierarchical clustering Alzheimer's disease |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021. Published by Elsevier Inc. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c601t-7b28f975644f758f7f68ec3c93cb7fc4c5c89312319adb0405c54aec5ef868e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current address R. Larramona: Celltec-UB, Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat de Barcelona, 08028; Institut de Neurociències, Universitat de Barcelona, 08035, Barcelona, Spain. |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0969996122000468 |
PMID | 35143967 |
PQID | 2628301537 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_430adb167f2847c48b191784dd57b436 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9504227 hal_primary_oai_HAL_cea_03872733v1 proquest_miscellaneous_2628301537 pubmed_primary_35143967 crossref_citationtrail_10_1016_j_nbd_2022_105655 crossref_primary_10_1016_j_nbd_2022_105655 elsevier_sciencedirect_doi_10_1016_j_nbd_2022_105655 elsevier_clinicalkey_doi_10_1016_j_nbd_2022_105655 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of disease |
PublicationTitleAlternate | Neurobiol Dis |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Steen, Liu, Alizadeh, Newman (bb0245) 2020; 2117 Gomez-Isla, Hollister, West, Mui, Growdon, Petersen (bb0070) 1997; 41 Viejo, Noori, Merrill, Das, Hyman, Serrano-Pozo (bb0260) 2021 Liddelow, Marsh, Stevens (bb0130) 2020; 41 Xie, Shen, Xu, Liu, Li, Lu (bb0280) 2020; 40 Abdullah, Takase, Nunome, Enomoto, Ito, Gong, Michikawa (bb0005) 2016; 53 Hoffman, Welsh-Bohmer, Hanson, Crain, Hulette, Earl, Coleman (bb0100) 2000; 41 Wang, Park, Susztak, Zhang, Li (bb0265) 2019; 10 Kelley, Nakao-Inoue, Molofsky, Oldham (bb0115) 2018; 21 Shi, Gibson (bb0230) 2007; 21 Allen, Carrasquillo, Funk, Heavner, Zou, Younkin (bb0015) 2016; 3 Simpson, Ince, Shaw, Heath, Raman, Garwood (bb0235) 2011; 32 Escartin, Guillemaud, Carrillo-de Sauvage (bb0050) 2019; 67 Saelens, Cannoodt, Saeys (bb0205) 2018; 9 Arenaza-Urquijo, Vemuri (bb0020) 2018; 90 Lin, Du, Huber, Kibbe (bb0135) 2008; 36 Perez-Nievas, Serrano-Pozo (bb0190) 2018; 10 Marlatt, Bauer, Aronica, van Haastert, Hoozemans, Joels, Lucassen (bb0140) 2014; 2014 Mathys, Davila-Velderrain, Peng, Gao, Mohammadi, Young (bb0160) 2019; 571 Jo, Yarishkin, Hwang, Chun, Park, Woo (bb0110) 2014; 20 Sekar, McDonald, Cuyugan, Aldrich, Kurdoglu, Adkins (bb0225) 2015; 36 Lee, Gerashchenko, Timofeev, Bacskai, Kastanenka (bb0125) 2020; 14 Abramov, Canevari, Duchen (bb0010) 2004; 24 Zhang, Sloan, Clarke, Caneda, Plaza, Blumenthal (bb0290) 2016; 89 Neuropathology Group. Medical Research Council Cognitive, F., & Aging, S (bb0175) 2001; 357 Swerdlow (bb0250) 2018; 62 Misra, Irvine (bb0165) 2018; 52 Iram, Trudler, Kain, Kanner, Galron, Vassar (bb0105) 2016; 96 Sakers, Lake, Khazanchi, Ouwenga, Vasek, Dani, Dougherty (bb0210) 2017; 114 Gomez-Arboledas, Davila, Sanchez-Mejias, Navarro, Nunez-Diaz, Sanchez-Varo (bb0065) 2018; 66 Grubman, Chew, Ouyang, Sun, Choo, McLean (bb0080) 2019; 22 Sanchez-Mico, Jimenez, Gomez-Arboledas, Munoz-Castro, Romero-Molina, Navarro (bb0215) 2020 Saddawi-Konefka, Seelige, Gross, Levy, Searles, Washington (bb0200) 2016; 16 Zhang, Gaiteri, Bodea, Wang, McElwee, Podtelezhnikov (bb0285) 2013; 153 Han, Qu, Zhao, Zou (bb0090) 2018; 8 Pelvig, Pakkenberg, Regeur, Oster, Pakkenberg (bb0185) 2003; 16 Neff (bb0170) 2021; 7 Hanzelmann, Castelo, Guinney (bb0095) 2013; 14 Martini-Stoica, Cole, Swartzlander, Chen, Wan, Bajaj (bb0150) 2018; 215 Habib, McCabe, Medina, Varshavsky, Kitsberg, Dvir-Szternfeld (bb0085) 2020; 23 Sollvander, Nikitidou, Brolin, Soderberg, Sehlin, Lannfelt, Erlandsson (bb0240) 2016; 11 Marsh, Alifragis (bb0145) 2018; 13 Masgrau, Guaza, Ransohoff, Galea (bb0155) 2017; 23 Devi, Scheltens (bb0040) 2018; 10 Weirauch (bb0270) 2011; vol. 1 Santello, Bezzi, Volterra (bb0220) 2011; 69 Funato, Yoshimura, Yamazaki, Saido, Ito, Yokofujita (bb0060) 1998; 152 Dujardin, Commins, Lathuiliere, Beerepoot, Fernandes, Kamath (bb0045) 2020; 26 Escartin, Galea, Lakatos, O’Callaghan, Petzold, Serrano-Pozo (bb0055) 2021 Birks, Flicker (bb0030) 2003; (1) Orre, Kamphuis, Osborn, Jansen, Kooijman, Bossers, Hol (bb0180) 2014; 35 Bennett, Buchman, Boyle, Barnes, Wilson, Schneider (bb0025) 2018; 64 Kryuchkova-Mostacci, Robinson-Rechavi (bb0120) 2017; 18 Derouiche, Geiger (bb0035) 2019; 20 Torper, Gotz (bb0255) 2017; 230 Rodriguez-Vieitez, Saint-Aubert, Carter, Almkvist, Farid, Schöll (bb0195) 2016; 139 Wyss-Coray, Loike, Brionne, Lu, Anankov, Yan (bb0275) 2003; 9 Graves, Xie, Stout, Zampese, Burbulla, Shih (bb0075) 2020; 23 Zhang (10.1016/j.nbd.2022.105655_bb0285) 2013; 153 Abramov (10.1016/j.nbd.2022.105655_bb0010) 2004; 24 Devi (10.1016/j.nbd.2022.105655_bb0040) 2018; 10 Lin (10.1016/j.nbd.2022.105655_bb0135) 2008; 36 Orre (10.1016/j.nbd.2022.105655_bb0180) 2014; 35 Wang (10.1016/j.nbd.2022.105655_bb0265) 2019; 10 Funato (10.1016/j.nbd.2022.105655_bb0060) 1998; 152 Hanzelmann (10.1016/j.nbd.2022.105655_bb0095) 2013; 14 Gomez-Isla (10.1016/j.nbd.2022.105655_bb0070) 1997; 41 Saelens (10.1016/j.nbd.2022.105655_bb0205) 2018; 9 Steen (10.1016/j.nbd.2022.105655_bb0245) 2020; 2117 Arenaza-Urquijo (10.1016/j.nbd.2022.105655_bb0020) 2018; 90 Sekar (10.1016/j.nbd.2022.105655_bb0225) 2015; 36 Shi (10.1016/j.nbd.2022.105655_bb0230) 2007; 21 Escartin (10.1016/j.nbd.2022.105655_bb0050) 2019; 67 Iram (10.1016/j.nbd.2022.105655_bb0105) 2016; 96 Neff (10.1016/j.nbd.2022.105655_bb0170) 2021; 7 Torper (10.1016/j.nbd.2022.105655_bb0255) 2017; 230 Allen (10.1016/j.nbd.2022.105655_bb0015) 2016; 3 Swerdlow (10.1016/j.nbd.2022.105655_bb0250) 2018; 62 Zhang (10.1016/j.nbd.2022.105655_bb0290) 2016; 89 Mathys (10.1016/j.nbd.2022.105655_bb0160) 2019; 571 Abdullah (10.1016/j.nbd.2022.105655_bb0005) 2016; 53 Habib (10.1016/j.nbd.2022.105655_bb0085) 2020; 23 Masgrau (10.1016/j.nbd.2022.105655_bb0155) 2017; 23 Kelley (10.1016/j.nbd.2022.105655_bb0115) 2018; 21 Santello (10.1016/j.nbd.2022.105655_bb0220) 2011; 69 Martini-Stoica (10.1016/j.nbd.2022.105655_bb0150) 2018; 215 Simpson (10.1016/j.nbd.2022.105655_bb0235) 2011; 32 Wyss-Coray (10.1016/j.nbd.2022.105655_bb0275) 2003; 9 Misra (10.1016/j.nbd.2022.105655_bb0165) 2018; 52 Kryuchkova-Mostacci (10.1016/j.nbd.2022.105655_bb0120) 2017; 18 Bennett (10.1016/j.nbd.2022.105655_bb0025) 2018; 64 Marsh (10.1016/j.nbd.2022.105655_bb0145) 2018; 13 Sollvander (10.1016/j.nbd.2022.105655_bb0240) 2016; 11 Liddelow (10.1016/j.nbd.2022.105655_bb0130) 2020; 41 Marlatt (10.1016/j.nbd.2022.105655_bb0140) 2014; 2014 Saddawi-Konefka (10.1016/j.nbd.2022.105655_bb0200) 2016; 16 Grubman (10.1016/j.nbd.2022.105655_bb0080) 2019; 22 Neuropathology Group. Medical Research Council Cognitive, F., & Aging, S (10.1016/j.nbd.2022.105655_bb0175) 2001; 357 Escartin (10.1016/j.nbd.2022.105655_bb0055) 2021 Pelvig (10.1016/j.nbd.2022.105655_bb0185) 2003; 16 Birks (10.1016/j.nbd.2022.105655_bb0030) 2003; Rev(1) Han (10.1016/j.nbd.2022.105655_bb0090) 2018; 8 Jo (10.1016/j.nbd.2022.105655_bb0110) 2014; 20 Graves (10.1016/j.nbd.2022.105655_bb0075) 2020; 23 Xie (10.1016/j.nbd.2022.105655_bb0280) 2020; 40 Viejo (10.1016/j.nbd.2022.105655_bb0260) 2021 Perez-Nievas (10.1016/j.nbd.2022.105655_bb0190) 2018; 10 Lee (10.1016/j.nbd.2022.105655_bb0125) 2020; 14 Gomez-Arboledas (10.1016/j.nbd.2022.105655_bb0065) 2018; 66 Derouiche (10.1016/j.nbd.2022.105655_bb0035) 2019; 20 Hoffman (10.1016/j.nbd.2022.105655_bb0100) 2000; 41 Sanchez-Mico (10.1016/j.nbd.2022.105655_bb0215) 2020 Dujardin (10.1016/j.nbd.2022.105655_bb0045) 2020; 26 Sakers (10.1016/j.nbd.2022.105655_bb0210) 2017; 114 Weirauch (10.1016/j.nbd.2022.105655_bb0270) 2011; vol. 1 Rodriguez-Vieitez (10.1016/j.nbd.2022.105655_bb0195) 2016; 139 |
References_xml | – volume: 40 start-page: 2644 year: 2020 end-page: 2662 ident: bb0280 article-title: Astrocytic YAP promotes the formation of glia scars and neural regeneration after spinal cord injury publication-title: J. Neurosci. – volume: 139 start-page: 922 year: 2016 end-page: 936 ident: bb0195 article-title: Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease publication-title: Brain – volume: 13 start-page: 616 year: 2018 end-page: 623 ident: bb0145 article-title: Synaptic dysfunction in Alzheimer’s disease: the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention publication-title: Neural Regen. Res. – volume: 9 start-page: 453 year: 2003 end-page: 457 ident: bb0275 article-title: Adult mouse astrocytes degrade amyloid-β in vitro and in situ publication-title: Nat. Med. – volume: 23 start-page: 486 year: 2017 end-page: 500 ident: bb0155 article-title: Should we stop saying ‘Glia’ and ‘Neuroinflammation’? publication-title: Trends Mol. Med. – volume: 3 year: 2016 ident: bb0015 article-title: Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases publication-title: Sci Data – volume: 357 start-page: 169 year: 2001 end-page: 175 ident: bb0175 article-title: Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS) publication-title: Lancet – volume: 20 start-page: 886 year: 2014 end-page: 896 ident: bb0110 article-title: GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease publication-title: Nat. Med. – volume: 152 start-page: 983 year: 1998 end-page: 992 ident: bb0060 article-title: Astrocytes containing amyloid beta-protein (Abeta)-positive granules are associated with Abeta40-positive diffuse plaques in the aged human brain publication-title: Am. J. Pathol. – volume: 571 start-page: E1 year: 2019 ident: bb0160 article-title: Single-cell transcriptomic analysis of Alzheimer’s disease (vol 570, pg 332, 2019) publication-title: Nature – volume: 2014 year: 2014 ident: bb0140 article-title: Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition publication-title: Neural Plast – volume: 11 start-page: 38 year: 2016 ident: bb0240 article-title: Accumulation of amyloid-beta by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons publication-title: Mol. Neurodegener. – volume: 32 start-page: 1795 year: 2011 end-page: 1807 ident: bb0235 article-title: Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer’s pathology and APOE genotype publication-title: Neurobiol. Aging – volume: 10 start-page: 114 year: 2018 ident: bb0190 article-title: Deciphering the astrocyte reaction in Alzheimer’s disease publication-title: Front. Aging Neurosci. – volume: 16 start-page: 2348 year: 2016 end-page: 2358 ident: bb0200 article-title: Nrf2 induces IL-17D to mediate tumor and virus surveillance publication-title: Cell Rep. – volume: 41 start-page: 1920 year: 2000 end-page: 1928 ident: bb0100 article-title: FDG PET imaging in patients with pathologically verified dementia publication-title: J. Nucl. Med. – volume: 26 start-page: 1256 year: 2020 end-page: 1263 ident: bb0045 article-title: Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease publication-title: Nat. Med. – volume: 153 start-page: 707 year: 2013 end-page: 720 ident: bb0285 article-title: Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease publication-title: Cell – volume: 36 start-page: e11 year: 2008 ident: bb0135 article-title: Model-based variance-stabilizing transformation for Illumina microarray data publication-title: Nucleic Acids Res. – volume: vol. 1 year: 2011 ident: bb0270 article-title: (P. D. M. D. P. D. F. E. S. A. G. A. Salvador Ed. Vol. 1). Applied Statistics for Network Biology: Methods in Systems Biology – volume: 10 start-page: 122 year: 2018 ident: bb0040 article-title: Heterogeneity of Alzheimer’s disease: consequence for drug trials? publication-title: Alzheimers Res. Ther. – volume: 23 start-page: 701 year: 2020 end-page: 706 ident: bb0085 article-title: Disease-associated astrocytes in Alzheimer’s disease and aging publication-title: Nat. Neurosci. – volume: 10 start-page: 380 year: 2019 ident: bb0265 article-title: Bulk tissue cell type deconvolution with multi-subject single-cell expression reference publication-title: Nat. Commun. – volume: 53 start-page: 1433 year: 2016 end-page: 1441 ident: bb0005 article-title: Amyloid-beta reduces exosome release from astrocytes by enhancing JNK phosphorylation publication-title: J. Alzheimers Dis. – volume: 14 year: 2020 ident: bb0125 article-title: Slow wave sleep is a promising intervention target for Alzheimer’s disease publication-title: Front. Neurosci. – volume: 64 start-page: S161 year: 2018 end-page: S189 ident: bb0025 article-title: Religious orders study and rush memory and aging project publication-title: J. Alzheimers Dis. – volume: 8 start-page: 11062 year: 2018 ident: bb0090 article-title: Analyzing 74,248 samples confirms the association between CLU rs11136000 polymorphism and Alzheimer’s disease in Caucasian but not Chinese population publication-title: Sci. Rep. – volume: 21 start-page: 1171 year: 2018 end-page: 1184 ident: bb0115 article-title: Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classes publication-title: Nat. Neurosci. – volume: 35 start-page: 2746 year: 2014 end-page: 2760 ident: bb0180 article-title: Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction publication-title: Neurobiol. Aging – volume: 215 start-page: 2355 year: 2018 end-page: 2377 ident: bb0150 article-title: TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading publication-title: J. Exp. Med. – volume: 36 start-page: 583 year: 2015 end-page: 591 ident: bb0225 article-title: Alzheimer’s disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes publication-title: Neurobiol. Aging – year: 2021 ident: bb0055 article-title: Reactive astrocyte nomenclature, definitions, and future directions publication-title: Nat. Neurosci. – volume: 96 start-page: 84 year: 2016 end-page: 94 ident: bb0105 article-title: Astrocytes from old Alzheimer’s disease mice are impaired in Abeta uptake and in neuroprotection publication-title: Neurobiol. Dis. – volume: 2117 start-page: 135 year: 2020 end-page: 157 ident: bb0245 article-title: Profiling cell type abundance and expression in bulk tissues with CIBERSORTx publication-title: Methods Mol. Biol. – volume: 14 start-page: 7 year: 2013 ident: bb0095 article-title: GSVA: gene set variation analysis for microarray and RNA-seq data publication-title: BMC Bioinformatics – volume: 90 start-page: 695 year: 2018 end-page: 703 ident: bb0020 article-title: Resistance vs resilience to Alzheimer disease: clarifying terminology for preclinical studies publication-title: Neurology – volume: 9 start-page: 1090 year: 2018 ident: bb0205 article-title: A comprehensive evaluation of module detection methods for gene expression data publication-title: Nat. Commun. – volume: 114 start-page: E3830 year: 2017 end-page: E3838 ident: bb0210 article-title: Astrocytes locally translate transcripts in their peripheral processes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 7 year: 2021 ident: bb0170 article-title: Molecular subtyping of Alzheimer’s disease using RNA sequencing data reveals novel mechanisms and targets publication-title: Sci. Adv. – year: 2021 ident: bb0260 article-title: Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer’s disease publication-title: Neuropathol. Appl. Neurobiol. – volume: 67 start-page: 2221 year: 2019 end-page: 2247 ident: bb0050 article-title: Questions and (some) answers on reactive astrocytes publication-title: Glia – volume: 18 start-page: 205 year: 2017 end-page: 214 ident: bb0120 article-title: A benchmark of gene expression tissue-specificity metrics publication-title: Brief. Bioinform. – year: 2020 ident: bb0215 article-title: Amyloid-beta impairs the phagocytosis of dystrophic synapses by astrocytes in Alzheimer’s disease publication-title: Glia. – volume: 69 start-page: 988 year: 2011 end-page: 1001 ident: bb0220 article-title: TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus publication-title: Neuron – volume: 230 start-page: 69 year: 2017 end-page: 97 ident: bb0255 article-title: Brain repair from intrinsic cell sources: turning reactive glia into neurons publication-title: Functional Neural Transplantation Iv: Translation to Clinical Application, Pt A – volume: 22 start-page: 2087 year: 2019 end-page: + ident: bb0080 article-title: A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation publication-title: Nat. Neurosci. – volume: 16 start-page: 212 year: 2003 end-page: 219 ident: bb0185 article-title: Neocortical glial cell numbers in Alzheimer’s disease. A stereological study publication-title: Dement. Geriatr. Cogn. Disord. – volume: 41 start-page: 820 year: 2020 end-page: 835 ident: bb0130 article-title: Microglia and astrocytes in disease: dynamic duo or Partners in Crime? publication-title: Trends Immunol. – volume: 89 start-page: 37 year: 2016 end-page: 53 ident: bb0290 article-title: Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse publication-title: Neuron – volume: 20 year: 2019 ident: bb0035 article-title: Perspectives for Ezrin and radixin in astrocytes: kinases, functions and pathology publication-title: Int. J. Mol. Sci. – volume: (1) start-page: CD000442 year: 2003 ident: bb0030 article-title: Selegiline for Alzheimer's disease publication-title: Cochrane Database Syst – volume: 66 start-page: 637 year: 2018 end-page: 653 ident: bb0065 article-title: Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer’s disease publication-title: Glia – volume: 52 start-page: 65 year: 2018 end-page: 87 ident: bb0165 article-title: The hippo signaling network and its biological functions publication-title: Annu. Rev. Genet. – volume: 21 start-page: 276 year: 2007 end-page: 291 ident: bb0230 article-title: Oxidative stress and transcriptional regulation in Alzheimer disease publication-title: Alzheimer Dis. Assoc. Disord. – volume: 62 start-page: 1403 year: 2018 end-page: 1416 ident: bb0250 article-title: Mitochondria and mitochondrial cascades in Alzheimer’s disease publication-title: Journal of Alzheimers Disease – volume: 24 start-page: 565 year: 2004 end-page: 575 ident: bb0010 article-title: β-Amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase publication-title: J. Neurosci. – volume: 23 start-page: 15 year: 2020 end-page: 20 ident: bb0075 article-title: Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain publication-title: Nat. Neurosci. – volume: 41 start-page: 17 year: 1997 end-page: 24 ident: bb0070 article-title: Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease publication-title: Ann. Neurol. – volume: 10 start-page: 114 year: 2018 ident: 10.1016/j.nbd.2022.105655_bb0190 article-title: Deciphering the astrocyte reaction in Alzheimer’s disease publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2018.00114 – volume: 66 start-page: 637 issue: 3 year: 2018 ident: 10.1016/j.nbd.2022.105655_bb0065 article-title: Phagocytic clearance of presynaptic dystrophies by reactive astrocytes in Alzheimer’s disease publication-title: Glia doi: 10.1002/glia.23270 – volume: 21 start-page: 1171 issue: 9 year: 2018 ident: 10.1016/j.nbd.2022.105655_bb0115 article-title: Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classes publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0216-z – volume: 52 start-page: 65 year: 2018 ident: 10.1016/j.nbd.2022.105655_bb0165 article-title: The hippo signaling network and its biological functions publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-120417-031621 – volume: 8 start-page: 11062 issue: 1 year: 2018 ident: 10.1016/j.nbd.2022.105655_bb0090 article-title: Analyzing 74,248 samples confirms the association between CLU rs11136000 polymorphism and Alzheimer’s disease in Caucasian but not Chinese population publication-title: Sci. Rep. doi: 10.1038/s41598-018-29450-2 – volume: 215 start-page: 2355 issue: 9 year: 2018 ident: 10.1016/j.nbd.2022.105655_bb0150 article-title: TFEB enhances astroglial uptake of extracellular tau species and reduces tau spreading publication-title: J. Exp. Med. doi: 10.1084/jem.20172158 – volume: Rev(1) start-page: CD000442 year: 2003 ident: 10.1016/j.nbd.2022.105655_bb0030 article-title: Selegiline for Alzheimer's disease publication-title: Cochrane Database Syst – volume: 571 start-page: E1 issue: 7763 year: 2019 ident: 10.1016/j.nbd.2022.105655_bb0160 article-title: Single-cell transcriptomic analysis of Alzheimer’s disease (vol 570, pg 332, 2019) publication-title: Nature doi: 10.1038/s41586-019-1329-6 – volume: 16 start-page: 212 issue: 4 year: 2003 ident: 10.1016/j.nbd.2022.105655_bb0185 article-title: Neocortical glial cell numbers in Alzheimer’s disease. A stereological study publication-title: Dement. Geriatr. Cogn. Disord. doi: 10.1159/000072805 – volume: 9 start-page: 1090 issue: 1 year: 2018 ident: 10.1016/j.nbd.2022.105655_bb0205 article-title: A comprehensive evaluation of module detection methods for gene expression data publication-title: Nat. Commun. doi: 10.1038/s41467-018-03424-4 – volume: 152 start-page: 983 issue: 4 year: 1998 ident: 10.1016/j.nbd.2022.105655_bb0060 article-title: Astrocytes containing amyloid beta-protein (Abeta)-positive granules are associated with Abeta40-positive diffuse plaques in the aged human brain publication-title: Am. J. Pathol. – volume: 230 start-page: 69 year: 2017 ident: 10.1016/j.nbd.2022.105655_bb0255 article-title: Brain repair from intrinsic cell sources: turning reactive glia into neurons publication-title: Functional Neural Transplantation Iv: Translation to Clinical Application, Pt A – volume: 21 start-page: 276 issue: 4 year: 2007 ident: 10.1016/j.nbd.2022.105655_bb0230 article-title: Oxidative stress and transcriptional regulation in Alzheimer disease publication-title: Alzheimer Dis. Assoc. Disord. doi: 10.1097/WAD.0b013e31815721c3 – volume: 22 start-page: 2087 issue: 12 year: 2019 ident: 10.1016/j.nbd.2022.105655_bb0080 article-title: A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0539-4 – volume: 90 start-page: 695 issue: 15 year: 2018 ident: 10.1016/j.nbd.2022.105655_bb0020 article-title: Resistance vs resilience to Alzheimer disease: clarifying terminology for preclinical studies publication-title: Neurology doi: 10.1212/WNL.0000000000005303 – volume: 23 start-page: 701 issue: 6 year: 2020 ident: 10.1016/j.nbd.2022.105655_bb0085 article-title: Disease-associated astrocytes in Alzheimer’s disease and aging publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-0624-8 – year: 2020 ident: 10.1016/j.nbd.2022.105655_bb0215 article-title: Amyloid-beta impairs the phagocytosis of dystrophic synapses by astrocytes in Alzheimer’s disease publication-title: Glia. – volume: 20 start-page: 886 issue: 8 year: 2014 ident: 10.1016/j.nbd.2022.105655_bb0110 article-title: GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease publication-title: Nat. Med. doi: 10.1038/nm.3639 – volume: 11 start-page: 38 issue: 1 year: 2016 ident: 10.1016/j.nbd.2022.105655_bb0240 article-title: Accumulation of amyloid-beta by astrocytes result in enlarged endosomes and microvesicle-induced apoptosis of neurons publication-title: Mol. Neurodegener. doi: 10.1186/s13024-016-0098-z – volume: 14 start-page: 7 year: 2013 ident: 10.1016/j.nbd.2022.105655_bb0095 article-title: GSVA: gene set variation analysis for microarray and RNA-seq data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-7 – volume: 23 start-page: 486 issue: 6 year: 2017 ident: 10.1016/j.nbd.2022.105655_bb0155 article-title: Should we stop saying ‘Glia’ and ‘Neuroinflammation’? publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2017.04.005 – volume: 36 start-page: e11 issue: 2 year: 2008 ident: 10.1016/j.nbd.2022.105655_bb0135 article-title: Model-based variance-stabilizing transformation for Illumina microarray data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm1075 – volume: 20 issue: 15 year: 2019 ident: 10.1016/j.nbd.2022.105655_bb0035 article-title: Perspectives for Ezrin and radixin in astrocytes: kinases, functions and pathology publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20153776 – volume: 7 year: 2021 ident: 10.1016/j.nbd.2022.105655_bb0170 article-title: Molecular subtyping of Alzheimer’s disease using RNA sequencing data reveals novel mechanisms and targets publication-title: Sci. Adv. doi: 10.1126/sciadv.abb5398 – volume: 2117 start-page: 135 year: 2020 ident: 10.1016/j.nbd.2022.105655_bb0245 article-title: Profiling cell type abundance and expression in bulk tissues with CIBERSORTx publication-title: Methods Mol. Biol. doi: 10.1007/978-1-0716-0301-7_7 – volume: 10 start-page: 380 issue: 1 year: 2019 ident: 10.1016/j.nbd.2022.105655_bb0265 article-title: Bulk tissue cell type deconvolution with multi-subject single-cell expression reference publication-title: Nat. Commun. doi: 10.1038/s41467-018-08023-x – volume: 24 start-page: 565 issue: 2 year: 2004 ident: 10.1016/j.nbd.2022.105655_bb0010 article-title: β-Amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4042-03.2004 – volume: 67 start-page: 2221 issue: 12 year: 2019 ident: 10.1016/j.nbd.2022.105655_bb0050 article-title: Questions and (some) answers on reactive astrocytes publication-title: Glia doi: 10.1002/glia.23687 – volume: 13 start-page: 616 issue: 4 year: 2018 ident: 10.1016/j.nbd.2022.105655_bb0145 article-title: Synaptic dysfunction in Alzheimer’s disease: the effects of amyloid beta on synaptic vesicle dynamics as a novel target for therapeutic intervention publication-title: Neural Regen. Res. doi: 10.4103/1673-5374.230276 – volume: 89 start-page: 37 issue: 1 year: 2016 ident: 10.1016/j.nbd.2022.105655_bb0290 article-title: Purification and characterization of progenitor and mature human astrocytes reveals transcriptional and functional differences with mouse publication-title: Neuron doi: 10.1016/j.neuron.2015.11.013 – volume: 9 start-page: 453 issue: 4 year: 2003 ident: 10.1016/j.nbd.2022.105655_bb0275 article-title: Adult mouse astrocytes degrade amyloid-β in vitro and in situ publication-title: Nat. Med. doi: 10.1038/nm838 – volume: 40 start-page: 2644 issue: 13 year: 2020 ident: 10.1016/j.nbd.2022.105655_bb0280 article-title: Astrocytic YAP promotes the formation of glia scars and neural regeneration after spinal cord injury publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2229-19.2020 – volume: 35 start-page: 2746 issue: 12 year: 2014 ident: 10.1016/j.nbd.2022.105655_bb0180 article-title: Isolation of glia from Alzheimer’s mice reveals inflammation and dysfunction publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.06.004 – volume: 16 start-page: 2348 issue: 9 year: 2016 ident: 10.1016/j.nbd.2022.105655_bb0200 article-title: Nrf2 induces IL-17D to mediate tumor and virus surveillance publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.07.075 – volume: 69 start-page: 988 issue: 5 year: 2011 ident: 10.1016/j.nbd.2022.105655_bb0220 article-title: TNFα controls glutamatergic gliotransmission in the hippocampal dentate gyrus publication-title: Neuron doi: 10.1016/j.neuron.2011.02.003 – year: 2021 ident: 10.1016/j.nbd.2022.105655_bb0260 article-title: Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer’s disease publication-title: Neuropathol. Appl. Neurobiol. – volume: 53 start-page: 1433 issue: 4 year: 2016 ident: 10.1016/j.nbd.2022.105655_bb0005 article-title: Amyloid-beta reduces exosome release from astrocytes by enhancing JNK phosphorylation publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-160292 – volume: 139 start-page: 922 issue: Pt 3 year: 2016 ident: 10.1016/j.nbd.2022.105655_bb0195 article-title: Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awv404 – volume: 41 start-page: 820 issue: 9 year: 2020 ident: 10.1016/j.nbd.2022.105655_bb0130 article-title: Microglia and astrocytes in disease: dynamic duo or Partners in Crime? publication-title: Trends Immunol. doi: 10.1016/j.it.2020.07.006 – volume: 41 start-page: 1920 issue: 11 year: 2000 ident: 10.1016/j.nbd.2022.105655_bb0100 article-title: FDG PET imaging in patients with pathologically verified dementia publication-title: J. Nucl. Med. – volume: 41 start-page: 17 issue: 1 year: 1997 ident: 10.1016/j.nbd.2022.105655_bb0070 article-title: Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease publication-title: Ann. Neurol. doi: 10.1002/ana.410410106 – volume: 3 year: 2016 ident: 10.1016/j.nbd.2022.105655_bb0015 article-title: Human whole genome genotype and transcriptome data for Alzheimer’s and other neurodegenerative diseases publication-title: Sci Data doi: 10.1038/sdata.2016.89 – volume: 64 start-page: S161 issue: s1 year: 2018 ident: 10.1016/j.nbd.2022.105655_bb0025 article-title: Religious orders study and rush memory and aging project publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-179939 – volume: 96 start-page: 84 year: 2016 ident: 10.1016/j.nbd.2022.105655_bb0105 article-title: Astrocytes from old Alzheimer’s disease mice are impaired in Abeta uptake and in neuroprotection publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2016.08.001 – volume: 26 start-page: 1256 issue: 8 year: 2020 ident: 10.1016/j.nbd.2022.105655_bb0045 article-title: Tau molecular diversity contributes to clinical heterogeneity in Alzheimer’s disease publication-title: Nat. Med. doi: 10.1038/s41591-020-0938-9 – volume: 2014 year: 2014 ident: 10.1016/j.nbd.2022.105655_bb0140 article-title: Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition publication-title: Neural Plast doi: 10.1155/2014/693851 – volume: vol. 1 year: 2011 ident: 10.1016/j.nbd.2022.105655_bb0270 – year: 2021 ident: 10.1016/j.nbd.2022.105655_bb0055 article-title: Reactive astrocyte nomenclature, definitions, and future directions publication-title: Nat. Neurosci. doi: 10.1038/s41593-020-00783-4 – volume: 153 start-page: 707 issue: 3 year: 2013 ident: 10.1016/j.nbd.2022.105655_bb0285 article-title: Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease publication-title: Cell doi: 10.1016/j.cell.2013.03.030 – volume: 114 start-page: E3830 issue: 19 year: 2017 ident: 10.1016/j.nbd.2022.105655_bb0210 article-title: Astrocytes locally translate transcripts in their peripheral processes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1617782114 – volume: 36 start-page: 583 issue: 2 year: 2015 ident: 10.1016/j.nbd.2022.105655_bb0225 article-title: Alzheimer’s disease is associated with altered expression of genes involved in immune response and mitochondrial processes in astrocytes publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2014.09.027 – volume: 18 start-page: 205 issue: 2 year: 2017 ident: 10.1016/j.nbd.2022.105655_bb0120 article-title: A benchmark of gene expression tissue-specificity metrics publication-title: Brief. Bioinform. – volume: 357 start-page: 169 issue: 9251 year: 2001 ident: 10.1016/j.nbd.2022.105655_bb0175 article-title: Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS) publication-title: Lancet doi: 10.1016/S0140-6736(00)03589-3 – volume: 10 start-page: 122 issue: 1 year: 2018 ident: 10.1016/j.nbd.2022.105655_bb0040 article-title: Heterogeneity of Alzheimer’s disease: consequence for drug trials? publication-title: Alzheimers Res. Ther. doi: 10.1186/s13195-018-0455-y – volume: 14 issue: 705 year: 2020 ident: 10.1016/j.nbd.2022.105655_bb0125 article-title: Slow wave sleep is a promising intervention target for Alzheimer’s disease publication-title: Front. Neurosci. – volume: 62 start-page: 1403 issue: 3 year: 2018 ident: 10.1016/j.nbd.2022.105655_bb0250 article-title: Mitochondria and mitochondrial cascades in Alzheimer’s disease publication-title: Journal of Alzheimers Disease doi: 10.3233/JAD-170585 – volume: 32 start-page: 1795 issue: 10 year: 2011 ident: 10.1016/j.nbd.2022.105655_bb0235 article-title: Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer’s pathology and APOE genotype publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2011.04.013 – volume: 23 start-page: 15 issue: 1 year: 2020 ident: 10.1016/j.nbd.2022.105655_bb0075 article-title: Dopamine metabolism by a monoamine oxidase mitochondrial shuttle activates the electron transport chain publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0556-3 |
SSID | ssj0011597 |
Score | 2.558032 |
Snippet | The phenotypic transformation of astrocytes in Alzheimer's disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of... The phenotypic transformation of astrocytes in Alzheimer’s disease (AD) is still not well understood. Recentanalyses based on single-nucleus RNA sequencing of... The phenotypic transformation of astrocytes in Alzheimer’s disease (AD) is still not well understood. Recent analyses based on single-nucleus RNA sequencing of... |
SourceID | doaj pubmedcentral hal proquest pubmed crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105655 |
SubjectTerms | Alzheimer Disease - metabolism Alzheimer's disease Astrocytes Astrocytes - metabolism Cognitive Dysfunction - complications Gene Expression Profiling Hierarchical clustering Humans Life Sciences MCI Mitochondria Neurons and Cognition Organelles - metabolism Perisynaptic astrocyte processes RNA seq Transcriptome |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagB8QFQcsjbUEuQiAhRWTjV3JcENWqopyo1JsVO442qPVWTYq0_fWdcZzVBqT2wjWxncQz8TfjGX9DyAfO68xm0qY1q6uUF9ak4AaVKRPc5aJgToSI7ulPuTjjJ-fifKvUF-aEDfTAw8R94SyrajOTqsGF1PLCoIdR8LoWynAWyLYB80ZnKsYPAKTVGMMM2VzeIC1onodK83iubwuFAln_BIweLzEr8l-T8-_MyS0oOn5OnkUbks6Hd39BHjm_S_bmHvznyzX9SENWZ9gu3yVPTmPwfI_4cNg27RGdwlqBB5JpFVlJ6NWq9X1H-xV1SHpMQ70n3Nan9bpD-EMR0tbTUNaPVl0P2LcGSxWvzS9ul669dNefOhpjPi_J2fH3X98WaSy3kFrwyvpUmbxoSiXAQmrAi2hUIwtnmS2ZNaqx3AoLxg0g3awEicDPL6zglbPCNQW0lOwV2fEr794Q2mSystIyI53j0sxgHN6IWkjjYOiySkg2Tr-2kYscS2Jc6DHp7LcGiWmUmB4klpDPmy5XAxHHfY2_okw3DZFDO1yAqdNRs_RDmpWQfNQIPR5ThYUVBmrvezLfdIo2zGCbPNTtPajc5H0X8x_aukpjfgHYmOzPLCFHo0ZqWAQwsgN6sLrpdC6Rxw3ASyXk9aChm7HwqAYrJdxRE92dPGx6x7fLQDReCmSIU_v_YzYPyFP83iFX9JDs9Nc37i3Yc715F37dO5OoSC0 priority: 102 providerName: Directory of Open Access Journals |
Title | Multi-transcriptomic analysis points to early organelle dysfunction in human astrocytes in Alzheimer's disease |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0969996122000468 https://dx.doi.org/10.1016/j.nbd.2022.105655 https://www.ncbi.nlm.nih.gov/pubmed/35143967 https://www.proquest.com/docview/2628301537 https://cea.hal.science/cea-03872733 https://pubmed.ncbi.nlm.nih.gov/PMC9504227 https://doaj.org/article/430adb167f2847c48b191784dd57b436 |
Volume | 166 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3batRAdKgVxBfRVu16WUYRBSFukrklj7FY1kv7ooW-DZnJhI202aVJhfXBb_ecyYVGoYKPmZyZJHNOzmXOjZBXnBehDaUNClbkAU-sCcAMSgMmuItFwpzwHt3jE7k85Z_OxNkOORxyYTCssuf9HU_33LofWfS7udhU1eIrKN-orUdx7FMgMeGXc4VU_u7XGOYBCo9vsILAAUIPnk0f41UbLBYax77_PGb7XZNNvoT_RETdWmGs5N-K6J_xlNcE1NF9cq_XLGnWvfwDsuPqPbKf1WBVX2zpa-pjPf0h-h65c9y71PdJ7VNwgxZllucgmKZM875WCd2sq7ptaLumDkshU98FCg_7abFtUCgiYmlVU9_sj-ZNCxJxC_orjmXnP1euunCXbxrae4IektOjD98Ol0HfhCGwYKu1gTJxUqZKgN5Ugm1RqlImzjKbMmtUabkVFlQekH9RmhcGWIKwgufOClcmACnZI7Jbr2t3QGgZytxKy4x0jksTwTq8FIWQxsHSaT4j4bD92vYVyrFRxrkeQtG-a8CYRozpDmMz8nacsunKc9wE_B5xOgJiZW0_AFune9LSnIXwHZFUJQpuyxODFm3Ci0Iow5mckXigCD0krwK7hYWqm57Mx0kT6v7XtJdAcpP3XWZftHW5xqgD0DzZj2hGXgwUqYE1oL8H6GB91ehYYnU3EGlqRh53FDquhQkcLJVwR01od_Kw6Z26Wvny46nAunHqyf9901NyF6-6mNFnZLe9vHLPQa9rzdz_uHNyO_v4eXky96cjvwGIS01j |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBdtCtu-jK3dI91LG2ODgUliPWx_zMqKuyb5shb6TViyTDxaJzRuIfvrdyfLpt6gg33Vy7bufA_d3U-EfOQ8H5uxNEHO8izgsdEBuEFJwAS3oYiZFS6iO1_I9Jx_vxAXO-SorYXBtEov-xuZ7qS1bxn53Ryty3L0A4xvtNYnYehKIONdsofoVGJA9qYnp-miCyaAxnZV0zA-wAltcNOleVUa8ULD0F1BjwV_d9STQ_HvaandJaZL_m2L_plSeUdHHT8hj71xSafN-z8lO7baJwfTChzrqy39RF26pztH3ycP5j6qfkAqV4Ub1Ki2nBDBSmWaebgSul6VVb2h9YpaREOm7iIoPO-n-XaDehFpS8uKuvv-aLapQSluwYTFtunlr6Utr-z15w31waBn5Pz429lRGvh7GAID7lodRDqMiyQSYDoV4F4UUSFja5hJmNFRYbgRBqweUIGTJMs1SAVhBM-sEbaIYaRkz8mgWlX2JaHFWGZGGqaltVzqCazDC5ELqS0snWRDMm63XxkPUo53ZVyqNhvtpwKKKaSYaig2JF-6KesGoeO-wV-Rpt1ABNd2DbB1ynOX4mwM3zGRUYG62_BYo1Mb8zwXkeZMDknYcoRq61dB4sJC5X1P5t2kHoP_a9oHYLne-6bTmTI2U5h4AMYnu50MyfuWIxVIBwz5AB-sbjYqlAjwBlotGpIXDYd2a2ENB0sk9EQ93u09rN9TlUuHQJ4IhI6LDv_vm96Rh-nZfKZmJ4vTV-QR9jQppK_JoL6-sW_AzKv1W_8b_wb2sU8f |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-transcriptomic+analysis+points+to+early+organelle+dysfunction+in+human+astrocytes+in+Alzheimer%E2%80%99s+disease&rft.jtitle=Neurobiology+of+disease&rft.au=Galea%2C+Elena&rft.au=Weinstock%2C+Laura+D.&rft.au=Larramona-Arcas%2C+Raquel&rft.au=Pybus%2C+Alyssa+F.&rft.date=2022-05-01&rft.issn=0969-9961&rft.eissn=1095-953X&rft.volume=166&rft.spage=105655&rft.epage=105655&rft_id=info:doi/10.1016%2Fj.nbd.2022.105655&rft_id=info%3Apmid%2F35143967&rft.externalDocID=PMC9504227 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-9961&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-9961&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-9961&client=summon |