Interlayer gap widened α-phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices
Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we de...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 1348 - 9 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.03.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO
3
, in which water molecules take the place of lattice oxygen of α-MoO
3
. Accordingly, the modified α-MoO
3
electrode exhibits theoretical-value-close specific capacity (963 C g
−1
at 0.1 mV s
−1
), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s
−1
) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO
3
anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage.
The power/energy trade-off is a common feature seen in a Ragone plot for an electrochemical storage device. Here the authors approach this issue by showing water-incorporated α-MoO
3
anodes with expanded interlayer gaps, which allow for the assembling of dual-ion energy storage devices. |
---|---|
AbstractList | Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO3, in which water molecules take the place of lattice oxygen of α-MoO3. Accordingly, the modified α-MoO3 electrode exhibits theoretical-value-close specific capacity (963 C g-1 at 0.1 mV s-1), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s-1) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage.Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO3, in which water molecules take the place of lattice oxygen of α-MoO3. Accordingly, the modified α-MoO3 electrode exhibits theoretical-value-close specific capacity (963 C g-1 at 0.1 mV s-1), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s-1) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage. Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO3, in which water molecules take the place of lattice oxygen of α-MoO3. Accordingly, the modified α-MoO3 electrode exhibits theoretical-value-close specific capacity (963 C g−1 at 0.1 mV s−1), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s−1) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage. Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO3, in which water molecules take the place of lattice oxygen of α-MoO3. Accordingly, the modified α-MoO3 electrode exhibits theoretical-value-close specific capacity (963 C g−1 at 0.1 mV s−1), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s−1) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage.The power/energy trade-off is a common feature seen in a Ragone plot for an electrochemical storage device. Here the authors approach this issue by showing water-incorporated α-MoO3 anodes with expanded interlayer gaps, which allow for the assembling of dual-ion energy storage devices. Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO , in which water molecules take the place of lattice oxygen of α-MoO . Accordingly, the modified α-MoO electrode exhibits theoretical-value-close specific capacity (963 C g at 0.1 mV s ), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s ) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage. Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO 3 , in which water molecules take the place of lattice oxygen of α-MoO 3 . Accordingly, the modified α-MoO 3 electrode exhibits theoretical-value-close specific capacity (963 C g −1 at 0.1 mV s −1 ), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s −1 ) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO 3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage. The power/energy trade-off is a common feature seen in a Ragone plot for an electrochemical storage device. Here the authors approach this issue by showing water-incorporated α-MoO 3 anodes with expanded interlayer gaps, which allow for the assembling of dual-ion energy storage devices. The power/energy trade-off is a common feature seen in a Ragone plot for an electrochemical storage device. Here the authors approach this issue by showing water-incorporated α-MoO3 anodes with expanded interlayer gaps, which allow for the assembling of dual-ion energy storage devices. Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO 3 , in which water molecules take the place of lattice oxygen of α-MoO 3 . Accordingly, the modified α-MoO 3 electrode exhibits theoretical-value-close specific capacity (963 C g −1 at 0.1 mV s −1 ), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s −1 ) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO 3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage. Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO3, in which water molecules take the place of lattice oxygen of α-MoO3. Accordingly, the modified α-MoO3 electrode exhibits theoretical-value-close specific capacity (963 C g–1 at 0.1 mV s–1), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s–1) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage. |
ArticleNumber | 1348 |
Author | Liang, Chaolun Yang, Fan Feng, Xinliang Yu, Minghao Simon, Patrice Shao, Hui Wang, Gang Wang, Cai-Zhuang Lu, Xihong Rozier, Patrick |
Author_xml | – sequence: 1 givenname: Minghao orcidid: 0000-0002-0211-0778 surname: Yu fullname: Yu, Minghao organization: Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universität Dresden – sequence: 2 givenname: Hui surname: Shao fullname: Shao, Hui organization: CIRIMAT, Université de Toulouse, CNRS, Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS – sequence: 3 givenname: Gang orcidid: 0000-0002-9297-136X surname: Wang fullname: Wang, Gang organization: Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universität Dresden – sequence: 4 givenname: Fan surname: Yang fullname: Yang, Fan organization: MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University – sequence: 5 givenname: Chaolun surname: Liang fullname: Liang, Chaolun organization: Instrumental Analysis and Research Centre, Sun Yat-sen University – sequence: 6 givenname: Patrick orcidid: 0000-0002-7879-4344 surname: Rozier fullname: Rozier, Patrick organization: CIRIMAT, Université de Toulouse, CNRS, Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS – sequence: 7 givenname: Cai-Zhuang surname: Wang fullname: Wang, Cai-Zhuang organization: Ames Laboratory-U. S. Department of Energy, and Department of Physics and Astronomy, Iowa State University – sequence: 8 givenname: Xihong surname: Lu fullname: Lu, Xihong organization: MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University – sequence: 9 givenname: Patrice surname: Simon fullname: Simon, Patrice email: simon@chimie.ups-tlse.fr organization: CIRIMAT, Université de Toulouse, CNRS, Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS – sequence: 10 givenname: Xinliang orcidid: 0000-0003-3885-2703 surname: Feng fullname: Feng, Xinliang email: xinliang.feng@tu-dresden.de organization: Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universität Dresden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32165638$$D View this record in MEDLINE/PubMed https://hal.science/hal-03103790$$DView record in HAL https://www.osti.gov/servlets/purl/1606537$$D View this record in Osti.gov |
BookMark | eNp9UstuEzEUHaEiWkp_gAUawQYWA36N7dlUqiqgkSKxgbXleO5MHE3sYHsS8ln8CN-Ekyml7aLe2Pf6nHMfOi-LE-cdFMVrjD5iROWnyDDjokIEVbgmmFe7Z8UZQQxXWBB6cu99WlzEuEL50AZLxl4UpzQTak7lWbGfuQRh0HsIZa835c624KAt__yuNksdoVz7Yb_IuXFdpmD9r_xf6lgubb-sgk45cL6FWHY-lO2oh8p6V9mDqNGDTjkqs2Do92VMPugeyha21kB8VTzv9BDh4vY-L358-fz9-qaaf_s6u76aV4YjnCouOhCNJFxg0DVhHSLUAKUIG8GblknJ5AJzyXG34I3oqOSUU0YZ7kzXEErPi9mk23q9Uptg1zrslddWHRM-9EqHZM0ASpi8M264lEAYYKM1anDT1ZovaoZrkbUuJ63NuFhDa8CloIcHog9_nF2q3m-VQFxIzLLA20nAx2RVNDaBWRrvHJikMEe8pocqHybQ8pH2zdVcHXKIZguIBm1xxr6_7Sj4nyPEpNY2GhgG7cCPUREqBGUNR3WGvnsEXfkxuLz7Ayrvl-RhM-rN_RHv6v-zTAaQCWCCjzFAdwfBSB2sqSZrqmxNdbSm2mWSfETKox_dkddkh6epdKLGXMf1EP63_QTrL3RJ95E |
CitedBy_id | crossref_primary_10_1016_j_snb_2024_136017 crossref_primary_10_1021_acsami_4c01108 crossref_primary_10_1002_asia_202200067 crossref_primary_10_1016_j_ensm_2021_07_011 crossref_primary_10_1021_acs_chemrev_3c00389 crossref_primary_10_1016_j_joule_2023_03_011 crossref_primary_10_1016_j_jcis_2021_12_079 crossref_primary_10_1016_j_jallcom_2022_168523 crossref_primary_10_1002_smll_202106273 crossref_primary_10_1021_acs_energyfuels_1c02352 crossref_primary_10_1557_s43578_021_00347_7 crossref_primary_10_1002_adma_202311141 crossref_primary_10_1039_D2CC02358J crossref_primary_10_1016_j_jallcom_2023_171026 crossref_primary_10_1016_j_memsci_2025_123977 crossref_primary_10_1016_j_nanoen_2021_106139 crossref_primary_10_1002_ange_202211866 crossref_primary_10_1016_j_est_2023_106678 crossref_primary_10_1016_j_mtener_2020_100578 crossref_primary_10_1016_j_ensm_2022_05_016 crossref_primary_10_3390_catal10101180 crossref_primary_10_1016_j_apcatb_2020_119818 crossref_primary_10_1016_j_ensm_2021_03_005 crossref_primary_10_1016_j_jmat_2023_02_007 crossref_primary_10_1002_adfm_202422645 crossref_primary_10_1016_j_est_2023_110368 crossref_primary_10_1038_s41467_023_36384_5 crossref_primary_10_1021_acs_jpcc_4c03361 crossref_primary_10_1016_j_ensm_2022_05_012 crossref_primary_10_1002_cnma_202100294 crossref_primary_10_1002_smll_202303286 crossref_primary_10_1016_j_apsusc_2023_157647 crossref_primary_10_1002_smll_202007486 crossref_primary_10_1002_aenm_202302961 crossref_primary_10_1002_ange_202012202 crossref_primary_10_1007_s40820_021_00659_7 crossref_primary_10_1007_s40870_024_00429_7 crossref_primary_10_1016_j_mtener_2020_100509 crossref_primary_10_1088_2053_1591_ac1965 crossref_primary_10_1016_j_esci_2025_100401 crossref_primary_10_1021_acssensors_4c02110 crossref_primary_10_1038_s41467_024_46464_9 crossref_primary_10_1038_s41467_023_42335_x crossref_primary_10_1038_s41570_023_00506_w crossref_primary_10_1016_j_jallcom_2025_178638 crossref_primary_10_1016_j_pcrysgrow_2021_100533 crossref_primary_10_1007_s10904_024_03522_5 crossref_primary_10_1002_admi_202201125 crossref_primary_10_1002_adma_202004998 crossref_primary_10_1002_cphc_202300098 crossref_primary_10_1002_anie_202012202 crossref_primary_10_1039_D0CS00187B crossref_primary_10_1021_jacs_0c05130 crossref_primary_10_3389_fchem_2022_873462 crossref_primary_10_1016_j_cej_2022_138763 crossref_primary_10_1002_adma_202203335 crossref_primary_10_1016_j_carbon_2021_07_053 crossref_primary_10_1016_j_jechem_2022_11_011 crossref_primary_10_3390_nano13152272 crossref_primary_10_1002_adma_202101857 crossref_primary_10_1039_D4CS01072H crossref_primary_10_1021_acs_inorgchem_1c03316 crossref_primary_10_1016_j_ensm_2022_04_037 crossref_primary_10_1016_j_jechem_2022_11_015 crossref_primary_10_1002_adma_202308795 crossref_primary_10_1016_j_electacta_2022_139964 crossref_primary_10_1016_j_jece_2024_114555 crossref_primary_10_1021_acsenergylett_2c00766 crossref_primary_10_1007_s11581_023_05146_0 crossref_primary_10_1002_cey2_69 crossref_primary_10_1021_acs_chemmater_2c00420 crossref_primary_10_1007_s10008_022_05319_3 crossref_primary_10_1039_D0QM01105C crossref_primary_10_1021_acsenergylett_3c02751 crossref_primary_10_1016_j_cej_2022_139908 crossref_primary_10_1002_adfm_202214920 crossref_primary_10_1007_s10853_022_07115_w crossref_primary_10_1038_s41467_021_23369_5 crossref_primary_10_1002_eem2_12090 crossref_primary_10_1002_smll_202409114 crossref_primary_10_1021_acs_nanolett_4c02601 crossref_primary_10_1016_j_ensm_2023_102849 crossref_primary_10_1021_acsnano_2c07399 crossref_primary_10_1002_adfm_202203964 crossref_primary_10_1016_j_scib_2021_04_042 crossref_primary_10_1002_adma_202306157 crossref_primary_10_1039_D0CS01160F crossref_primary_10_1016_j_jpowsour_2021_230941 crossref_primary_10_1038_s41467_024_54999_0 crossref_primary_10_1016_j_cej_2022_136924 crossref_primary_10_1007_s40242_020_0185_0 crossref_primary_10_1021_acsaem_2c00632 crossref_primary_10_1016_j_jechem_2023_12_022 crossref_primary_10_1039_D1DT03580K crossref_primary_10_1002_anie_202010073 crossref_primary_10_3390_nano12162797 crossref_primary_10_1002_adfm_202112223 crossref_primary_10_1039_D1RA08885H crossref_primary_10_1007_s11814_024_00292_1 crossref_primary_10_1002_adhm_202202596 crossref_primary_10_1016_j_carbon_2024_118941 crossref_primary_10_1016_j_actamat_2024_120692 crossref_primary_10_1016_j_mtener_2021_100739 crossref_primary_10_1002_adma_202108682 crossref_primary_10_1002_adhm_202101331 crossref_primary_10_1021_jacs_0c07992 crossref_primary_10_1088_1361_6528_ad1b01 crossref_primary_10_1002_ange_202010073 crossref_primary_10_1007_s12598_024_02817_3 crossref_primary_10_1016_j_cej_2022_135851 crossref_primary_10_1016_j_jcis_2023_06_192 crossref_primary_10_1021_acs_nanolett_0c03092 crossref_primary_10_1007_s40820_021_00724_1 crossref_primary_10_1016_j_compositesb_2023_111174 crossref_primary_10_1016_j_jallcom_2024_175954 crossref_primary_10_1016_j_jmrt_2024_06_200 crossref_primary_10_1016_j_cej_2024_155926 crossref_primary_10_1016_j_electacta_2020_137665 crossref_primary_10_1021_acsmaterialslett_1c00325 crossref_primary_10_1002_anie_202211866 |
Cites_doi | 10.1021/jp108778v 10.1088/2053-1583/4/1/015005 10.1038/ncomms14283 10.1039/tf9686400013 10.1021/nl203649p 10.1038/nmat2297 10.1038/nenergy.2016.119 10.1021/acs.nanolett.8b03227 10.1038/s41560-018-0296-8 10.1002/adfm.201600264 10.1016/j.ensm.2018.12.019 10.1038/s41560-017-0084-x 10.1002/adma.201700519 10.1002/adma.200700883 10.1038/s41467-018-06923-6 10.1126/science.1213003 10.1038/s41560-019-0339-9 10.1038/ncomms7929 10.1002/anie.201701737 10.1016/j.nanoen.2018.04.075 10.1021/ar200306b 10.1126/science.1241488 10.1126/science.1249625 10.1016/0013-4686(90)85068-X 10.1023/A:1012466622001 10.1002/adma.201800533 10.1016/j.electacta.2013.03.072 10.1002/aenm.201601963 10.1038/s41557-018-0045-4 10.1002/anie.201602631 10.1016/j.joule.2018.12.012 10.1002/adma.201705851 10.1038/nmat4777 10.1038/nnano.2010.162 10.1002/aenm.201870088 10.1016/S0167-2738(97)00418-9 10.1038/nmat2612 10.1002/aenm.201200692 10.1002/adma.201802949 10.1038/nmat4810 10.1038/nenergy.2016.70 10.1038/nature14340 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) Ames Laboratory (AMES), Ames, IA (United States) |
CorporateAuthor_xml | – name: Ames Laboratory (AMES), Ames, IA (United States) – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 1XC VOOES OIOZB OTOTI 5PM DOA |
DOI | 10.1038/s41467-020-15216-w |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central - New (Subscription) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Biological Science Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (subscription) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_7c0416c688e24e1caa0919f5a6b54157 PMC7067814 1606537 oai_HAL_hal_03103790v1 32165638 10_1038_s41467_020_15216_w |
Genre | Journal Article |
GrantInformation_xml | – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: 819698 funderid: https://doi.org/10.13039/100010661 – fundername: Agence Nationale de la Recherche (French National Research Agency) grantid: STORE-EX funderid: https://doi.org/10.13039/501100001665 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: MX-OSMOPED funderid: https://doi.org/10.13039/501100001659 – fundername: Agence Nationale de la Recherche (French National Research Agency) grantid: STORE-EX – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: MX-OSMOPED – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) grantid: 819698 – fundername: ; grantid: 819698 – fundername: ; grantid: STORE-EX – fundername: ; grantid: MX-OSMOPED |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 1XC 4.4 ABAWZ BAPOH CAG COF EJD LGEZI LOTEE NADUK NXXTH PUEGO VOOES AAADF AAPBV AAYJO ADQMX AEDAW OIOZB OTOTI ZA5 5PM |
ID | FETCH-LOGICAL-c601t-67fe7982671ea524f023ce3301c769d48848b16861fb697f3863634341fcf9233 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:03:41 EDT 2025 Thu Aug 21 13:50:16 EDT 2025 Mon Jul 10 02:30:35 EDT 2023 Sat Aug 30 06:23:45 EDT 2025 Fri Jul 11 10:45:51 EDT 2025 Wed Aug 13 02:50:53 EDT 2025 Thu Apr 03 06:53:55 EDT 2025 Thu Apr 24 22:50:24 EDT 2025 Tue Jul 01 04:08:52 EDT 2025 Fri Feb 21 02:40:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | High-kinetics charge Storage kinetics of electrodes Promising design strategy |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c601t-67fe7982671ea524f023ce3301c769d48848b16861fb697f3863634341fcf9233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 IS-J-10182 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division Alexander von Humboldt Foundation Agence Nationale de la Recherché (ANR) German Research Foundation (DFG) European Research Council (ERC) 819698; AC02-07CH11358; GrapheneCore2 785219 China Scholarship Council (CSC) |
ORCID | 0000-0002-0211-0778 0000-0002-7879-4344 0000-0002-9297-136X 0000-0003-3885-2703 0000-0002-0461-8268 0000-0003-2791-7217 0000000278794344 0000000338852703 0000000202110778 000000029297136X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-15216-w |
PMID | 32165638 |
PQID | 2376712919 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7c0416c688e24e1caa0919f5a6b54157 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7067814 osti_scitechconnect_1606537 hal_primary_oai_HAL_hal_03103790v1 proquest_miscellaneous_2377349605 proquest_journals_2376712919 pubmed_primary_32165638 crossref_primary_10_1038_s41467_020_15216_w crossref_citationtrail_10_1038_s41467_020_15216_w springer_journals_10_1038_s41467_020_15216_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-12 |
PublicationDateYYYYMMDD | 2020-03-12 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: United States |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Chen (CR4) 2015; 6 Sheng, Zhang, Ji, Tong, Tang (CR12) 2017; 7 Wang (CR14) 2018; 30 Zhou (CR21) 2010; 114 Yu (CR31) 2016; 55 Bellani (CR18) 2018; 18 Meduri (CR20) 2012; 12 Grey, Tarascon (CR5) 2016; 16 Mendoza-Sánchez (CR33) 2016; 4 Lukatskaya (CR41) 2013; 341 Yu, Feng (CR2) 2019; 3 Kim (CR26) 2017; 16 Kravchyk (CR13) 2018; 9 Brezesinski, Wang, Tolbert, Dunn (CR25) 2010; 9 Ji, Zhang, Song, Tang (CR11) 2017; 29 Lin (CR16) 2015; 520 Mai (CR24) 2007; 19 Lee, Shin, Choi (CR34) 2018; 30 Gogotsi, Simon (CR27) 2011; 334 Yu (CR7) 2017; 56 Kundu, Adams, Duffort, Vajargah, Nazar (CR35) 2016; 1 Wang, Tang (CR10) 2018; 8 Wang (CR15) 2018; 30 Dong (CR39) 2016; 26 Simon, Gogotsi (CR40) 2013; 46 Zhang (CR19) 2018; 49 Wang (CR17) 2018; 10 Zhang (CR32) 2019; 21 Wang (CR8) 2017; 8 Chen, Maier (CR9) 2018; 3 Wang, Nesper, Villevieille, Novák (CR23) 2013; 3 Dickens, Neild (CR29) 1968; 64 Pech (CR38) 2010; 5 Salanne (CR6) 2016; 1 Mendoza-Sánchez, Grant (CR22) 2013; 98 Tsumura, Inagaki (CR36) 1997; 104 Simon, Gogotsi, Dunn (CR1) 2014; 343 Dinh (CR30) 2018; 4 Wang (CR3) 2019; 4 Simon, Gogotsi (CR42) 2008; 7 Xiong (CR28) 2001; 36 Ardizzone, Fregonara, Trasatti (CR37) 1990; 35 Y Gogotsi (15216_CR27) 2011; 334 B Mendoza-Sánchez (15216_CR22) 2013; 98 M Wang (15216_CR10) 2018; 8 CP Grey (15216_CR5) 2016; 16 B Ji (15216_CR11) 2017; 29 HJ Lee (15216_CR34) 2018; 30 MH Sheng (15216_CR12) 2017; 7 P Meduri (15216_CR20) 2012; 12 C Chen (15216_CR4) 2015; 6 T Brezesinski (15216_CR25) 2010; 9 H Zhang (15216_CR32) 2019; 21 G Wang (15216_CR14) 2018; 30 C-C Chen (15216_CR9) 2018; 3 M Salanne (15216_CR6) 2016; 1 P Simon (15216_CR42) 2008; 7 P Simon (15216_CR40) 2013; 46 M Wang (15216_CR17) 2018; 10 X Wang (15216_CR3) 2019; 4 L Zhou (15216_CR21) 2010; 114 D Kundu (15216_CR35) 2016; 1 G Zhang (15216_CR19) 2018; 49 C-T Dinh (15216_CR30) 2018; 4 MH Yu (15216_CR2) 2019; 3 MC Lin (15216_CR16) 2015; 520 HS Kim (15216_CR26) 2017; 16 P Simon (15216_CR1) 2014; 343 M Yu (15216_CR31) 2016; 55 S Bellani (15216_CR18) 2018; 18 M Yu (15216_CR7) 2017; 56 DY Wang (15216_CR8) 2017; 8 T Tsumura (15216_CR36) 1997; 104 R Xiong (15216_CR28) 2001; 36 D Pech (15216_CR38) 2010; 5 KV Kravchyk (15216_CR13) 2018; 9 G Wang (15216_CR15) 2018; 30 PG Dickens (15216_CR29) 1968; 64 B Mendoza-Sánchez (15216_CR33) 2016; 4 LQ Mai (15216_CR24) 2007; 19 MR Lukatskaya (15216_CR41) 2013; 341 X-J Wang (15216_CR23) 2013; 3 S Dong (15216_CR39) 2016; 26 S Ardizzone (15216_CR37) 1990; 35 |
References_xml | – volume: 114 start-page: 21868 year: 2010 end-page: 21872 ident: CR21 article-title: α-MoO nanobelts: a high performance cathode material for lithium ion batteries publication-title: J. Phys. Chem. C doi: 10.1021/jp108778v – volume: 4 start-page: 015005 year: 2016 ident: CR33 article-title: An investigation of the energy storage properties of a 2D α-MoO -SWCNTs composite films publication-title: 2D Mater. doi: 10.1088/2053-1583/4/1/015005 – volume: 8 year: 2017 ident: CR8 article-title: Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode publication-title: Nat. Commun. doi: 10.1038/ncomms14283 – volume: 64 start-page: 13 year: 1968 end-page: 18 ident: CR29 article-title: Some electronic properties of the molybdenum bronzes publication-title: Trans. Faraday Soc. doi: 10.1039/tf9686400013 – volume: 12 start-page: 1784 year: 2012 end-page: 1788 ident: CR20 article-title: MoO nanowire arrays as stable and high-capacity anodes for lithium ion batteries publication-title: Nano Lett. doi: 10.1021/nl203649p – volume: 7 start-page: 845 year: 2008 end-page: 854 ident: CR42 article-title: Materials for electrochemical capacitors publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 1 start-page: 16119 year: 2016 ident: CR35 article-title: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode publication-title: Nat. Energy doi: 10.1038/nenergy.2016.119 – volume: 18 start-page: 7155 year: 2018 end-page: 7164 ident: CR18 article-title: WS –graphite dual-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03227 – volume: 4 start-page: 107 year: 2018 end-page: 114 ident: CR30 article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules publication-title: Nat. Energy doi: 10.1038/s41560-018-0296-8 – volume: 26 start-page: 3703 year: 2016 end-page: 3710 ident: CR39 article-title: Flexible sodium-ion pseudocapacitors based on 3D Na Ti O nanosheet arrays/carbon textiles anodes publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600264 – volume: 21 start-page: 154 year: 2019 end-page: 161 ident: CR32 article-title: Extracting oxygen anions from ZnMn O : robust cathode for flexible all-solid-state Zn-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.12.019 – volume: 3 start-page: 102 year: 2018 end-page: 108 ident: CR9 article-title: Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes publication-title: Nat. Energy doi: 10.1038/s41560-017-0084-x – volume: 29 start-page: 1700519 year: 2017 ident: CR11 article-title: A novel potassium-ion-based dual-ion battery publication-title: Adv. Mater. doi: 10.1002/adma.201700519 – volume: 19 start-page: 3712 year: 2007 end-page: 3716 ident: CR24 article-title: Lithiated MoO nanobelts with greatly improved performance for lithium batteries publication-title: Adv. Mater. doi: 10.1002/adma.200700883 – volume: 9 year: 2018 ident: CR13 article-title: High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide publication-title: Nat. Commun. doi: 10.1038/s41467-018-06923-6 – volume: 334 start-page: 917 year: 2011 end-page: 918 ident: CR27 article-title: True performance metrics in electrochemical energy storage publication-title: Science doi: 10.1126/science.1213003 – volume: 4 start-page: 241 year: 2019 end-page: 248 ident: CR3 article-title: Influences from solvents on charge storage in titanium carbide MXenes publication-title: Nat. Energy doi: 10.1038/s41560-019-0339-9 – volume: 6 year: 2015 ident: CR4 article-title: Na intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling publication-title: Nat. Commun. doi: 10.1038/ncomms7929 – volume: 56 start-page: 5454 year: 2017 end-page: 5459 ident: CR7 article-title: Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701737 – volume: 49 start-page: 555 year: 2018 end-page: 563 ident: CR19 article-title: α-MoO by plasma etching with improved capacity and stabilized structure for lithium storage publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.075 – volume: 46 start-page: 1094 year: 2013 end-page: 1103 ident: CR40 article-title: Capacitive energy storage in nanostructured carbon-electrolyte systems publication-title: Acc. Chem. Res. doi: 10.1021/ar200306b – volume: 341 start-page: 1502 year: 2013 end-page: 1505 ident: CR41 article-title: Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide publication-title: Science doi: 10.1126/science.1241488 – volume: 343 start-page: 1210 year: 2014 end-page: 1211 ident: CR1 article-title: Where do batteries end and supercapacitors begin? publication-title: Science doi: 10.1126/science.1249625 – volume: 35 start-page: 263 year: 1990 end-page: 267 ident: CR37 article-title: “Inner” and “outer” active surface of RuO electrodes publication-title: Electrochim. Acta doi: 10.1016/0013-4686(90)85068-X – volume: 36 start-page: 5511 year: 2001 end-page: 5514 ident: CR28 article-title: Infrared and EPR studies of the red potassium molybdenum bronze K MoO publication-title: J. Mater. Sci. doi: 10.1023/A:1012466622001 – volume: 30 start-page: e1800533 year: 2018 ident: CR14 article-title: Self-activating, capacitive anion intercalation enables high-power graphite cathodes publication-title: Adv. Mater. doi: 10.1002/adma.201800533 – volume: 98 start-page: 294 year: 2013 end-page: 302 ident: CR22 article-title: Charge storage properties of a α-MoO /carboxyl-functionalized single-walled carbon nanotube composite electrode in a Li ion electrolyte publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.03.072 – volume: 7 start-page: 1601963 year: 2017 ident: CR12 article-title: A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601963 – volume: 10 start-page: 667 year: 2018 end-page: 672 ident: CR17 article-title: Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage publication-title: Nat. Chem. doi: 10.1038/s41557-018-0045-4 – volume: 55 start-page: 6762 year: 2016 end-page: 6766 ident: CR31 article-title: Dual-doped molybdenum trioxide nanowires: a bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602631 – volume: 3 start-page: 338 year: 2019 end-page: 360 ident: CR2 article-title: Thin-film electrode-based supercapacitors publication-title: Joule doi: 10.1016/j.joule.2018.12.012 – volume: 30 start-page: e1705851 year: 2018 ident: CR34 article-title: Intercalated water and organic molecules for electrode materials of rechargeable batteries publication-title: Adv. Mater. doi: 10.1002/adma.201705851 – volume: 16 start-page: 45 year: 2016 end-page: 56 ident: CR5 article-title: Sustainability and in situ monitoring in battery development publication-title: Nat. Mater. doi: 10.1038/nmat4777 – volume: 5 start-page: 651 year: 2010 end-page: 654 ident: CR38 article-title: Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.162 – volume: 8 start-page: 1870088 year: 2018 ident: CR10 article-title: A review on the features and progress of dual-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201870088 – volume: 104 start-page: 183 year: 1997 end-page: 189 ident: CR36 article-title: Lithium insertion/extraction reaction on crystalline MoO publication-title: Solid State Ion doi: 10.1016/S0167-2738(97)00418-9 – volume: 9 start-page: 146 year: 2010 end-page: 151 ident: CR25 article-title: Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors publication-title: Nat. Mater. doi: 10.1038/nmat2612 – volume: 3 start-page: 606 year: 2013 end-page: 614 ident: CR23 article-title: Ammonolyzed MoO nanobelts as novel cathode material of rechargeable Li-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200692 – volume: 30 start-page: e1802949 year: 2018 ident: CR15 article-title: Polarity-switchable symmetric graphite batteries with high energy and high power densities publication-title: Adv. Mater. doi: 10.1002/adma.201802949 – volume: 16 start-page: 454 year: 2017 end-page: 460 ident: CR26 article-title: Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO publication-title: Nat. Mater. doi: 10.1038/nmat4810 – volume: 1 start-page: 16070 year: 2016 ident: CR6 article-title: Efficient storage mechanisms for building better supercapacitors publication-title: Nat. Energy doi: 10.1038/nenergy.2016.70 – volume: 520 start-page: 325 year: 2015 end-page: 328 ident: CR16 article-title: An ultrafast rechargeable aluminium-ion battery publication-title: Nature doi: 10.1038/nature14340 – volume: 1 start-page: 16070 year: 2016 ident: 15216_CR6 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.70 – volume: 7 start-page: 1601963 year: 2017 ident: 15216_CR12 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601963 – volume: 64 start-page: 13 year: 1968 ident: 15216_CR29 publication-title: Trans. Faraday Soc. doi: 10.1039/tf9686400013 – volume: 3 start-page: 338 year: 2019 ident: 15216_CR2 publication-title: Joule doi: 10.1016/j.joule.2018.12.012 – volume: 26 start-page: 3703 year: 2016 ident: 15216_CR39 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600264 – volume: 4 start-page: 107 year: 2018 ident: 15216_CR30 publication-title: Nat. Energy doi: 10.1038/s41560-018-0296-8 – volume: 12 start-page: 1784 year: 2012 ident: 15216_CR20 publication-title: Nano Lett. doi: 10.1021/nl203649p – volume: 10 start-page: 667 year: 2018 ident: 15216_CR17 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0045-4 – volume: 8 year: 2017 ident: 15216_CR8 publication-title: Nat. Commun. doi: 10.1038/ncomms14283 – volume: 114 start-page: 21868 year: 2010 ident: 15216_CR21 publication-title: J. Phys. Chem. C doi: 10.1021/jp108778v – volume: 29 start-page: 1700519 year: 2017 ident: 15216_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.201700519 – volume: 19 start-page: 3712 year: 2007 ident: 15216_CR24 publication-title: Adv. Mater. doi: 10.1002/adma.200700883 – volume: 4 start-page: 015005 year: 2016 ident: 15216_CR33 publication-title: 2D Mater. doi: 10.1088/2053-1583/4/1/015005 – volume: 35 start-page: 263 year: 1990 ident: 15216_CR37 publication-title: Electrochim. Acta doi: 10.1016/0013-4686(90)85068-X – volume: 98 start-page: 294 year: 2013 ident: 15216_CR22 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.03.072 – volume: 104 start-page: 183 year: 1997 ident: 15216_CR36 publication-title: Solid State Ion doi: 10.1016/S0167-2738(97)00418-9 – volume: 334 start-page: 917 year: 2011 ident: 15216_CR27 publication-title: Science doi: 10.1126/science.1213003 – volume: 21 start-page: 154 year: 2019 ident: 15216_CR32 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.12.019 – volume: 341 start-page: 1502 year: 2013 ident: 15216_CR41 publication-title: Science doi: 10.1126/science.1241488 – volume: 1 start-page: 16119 year: 2016 ident: 15216_CR35 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.119 – volume: 9 year: 2018 ident: 15216_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06923-6 – volume: 3 start-page: 606 year: 2013 ident: 15216_CR23 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200692 – volume: 16 start-page: 454 year: 2017 ident: 15216_CR26 publication-title: Nat. Mater. doi: 10.1038/nmat4810 – volume: 520 start-page: 325 year: 2015 ident: 15216_CR16 publication-title: Nature doi: 10.1038/nature14340 – volume: 36 start-page: 5511 year: 2001 ident: 15216_CR28 publication-title: J. Mater. Sci. doi: 10.1023/A:1012466622001 – volume: 4 start-page: 241 year: 2019 ident: 15216_CR3 publication-title: Nat. Energy doi: 10.1038/s41560-019-0339-9 – volume: 8 start-page: 1870088 year: 2018 ident: 15216_CR10 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201870088 – volume: 49 start-page: 555 year: 2018 ident: 15216_CR19 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.075 – volume: 9 start-page: 146 year: 2010 ident: 15216_CR25 publication-title: Nat. Mater. doi: 10.1038/nmat2612 – volume: 5 start-page: 651 year: 2010 ident: 15216_CR38 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.162 – volume: 3 start-page: 102 year: 2018 ident: 15216_CR9 publication-title: Nat. Energy doi: 10.1038/s41560-017-0084-x – volume: 30 start-page: e1800533 year: 2018 ident: 15216_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.201800533 – volume: 16 start-page: 45 year: 2016 ident: 15216_CR5 publication-title: Nat. Mater. doi: 10.1038/nmat4777 – volume: 55 start-page: 6762 year: 2016 ident: 15216_CR31 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602631 – volume: 6 year: 2015 ident: 15216_CR4 publication-title: Nat. Commun. doi: 10.1038/ncomms7929 – volume: 18 start-page: 7155 year: 2018 ident: 15216_CR18 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b03227 – volume: 30 start-page: e1705851 year: 2018 ident: 15216_CR34 publication-title: Adv. Mater. doi: 10.1002/adma.201705851 – volume: 46 start-page: 1094 year: 2013 ident: 15216_CR40 publication-title: Acc. Chem. Res. doi: 10.1021/ar200306b – volume: 30 start-page: e1802949 year: 2018 ident: 15216_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.201802949 – volume: 343 start-page: 1210 year: 2014 ident: 15216_CR1 publication-title: Science doi: 10.1126/science.1249625 – volume: 56 start-page: 5454 year: 2017 ident: 15216_CR7 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701737 – volume: 7 start-page: 845 year: 2008 ident: 15216_CR42 publication-title: Nat. Mater. doi: 10.1038/nmat2297 |
SSID | ssj0000391844 |
Score | 2.614745 |
Snippet | Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for... The power/energy trade-off is a common feature seen in a Ragone plot for an electrochemical storage device. Here the authors approach this issue by showing... |
SourceID | doaj pubmedcentral osti hal proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1348 |
SubjectTerms | 639/301 639/301/299/161/891 639/301/299/891 639/638/161/891 Anodes Batteries Charge materials Chemical Sciences Electrochemistry Electrodes Energy Energy charge ENERGY STORAGE Flux density Humanities and Social Sciences Intercalation Interlayers Kinetics Layered materials Material chemistry Materials science Molybdenum Molybdenum oxides Molybdenum trioxide multidisciplinary Product design Science Science (multidisciplinary) Specific capacity Tradeoffs Water chemistry |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQJSQuiDfZXZBB3MDaJHb8OC6IVYWAEyvtzXJim65UkqrNUvqz-CP8JmactGx5XrjaTup6ZjzfxDOfCXmm89K46DjzxngmHFfM-egRyOmSOy_qgAXO797L6Zl4c16dX7nqC3PCBnrgYeGOVZMDZmik1qEUoWicAw9nYuVkXYHzSXXk0HIlmEp7MDcQuoixSibn-ngl0p6A0RK6LMnWe54oEfaDf5lhOuSkA_P6HeT8NXPyp-PT5JVOb5GbI5ykJ8PfuE2uhfYOuT5cMLm5Szbpg9_cAa6mH92CrvEK0eDpt69sMQP_RT91803tMR2e9suL7gv0U7eiSGLMkESCurbzYUUB2lKs2mIgRoYUE0uQbRIqDal6kGKWJexN1Ie099wjZ6evP7yasvGyBdZATNYzqWJQBoINVQRXlSKCM28CB_tvlDQe7FzoupBaFrGWRkWuJZdcgBOMTQSUyO-TSdu14SGhJYY9sYwyB7Qmcu5yD0-WRtfwC8qHjBTbhbfNyESOF2LMbToR59oOwrIgLJuEZdcZeb57ZjHwcPx19EuU524kcminBtAsO2qW_ZdmZeQpaMPeO6Ynby22IZ8qVyb_XGTkEJXFAl5B0t0Gs5Oa3hYSOX_hFUdbHbLj3rCymIekAGYVJiNPdt1g1XhU49rQXaYxCqn88yojDwaV202El8iYxHVG1J4y7s10v6e9mCXmcIXYpBAZebFV2x_T-vNqHvyP1TwkN0o0PkyFLI_IpF9ehkeA5_r6cTLd70K6REE priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLagCIkXxJ2wgQziDawlsWs7T2ggSoWAJybtzXJ8WSd1SWmzdf1Z_BF-E-e4aady2WvsJE7O7bN9_B1CXuu8rGy0nPmq8kxYrpj10SOQ0yW3XtQBDzh__SbHR-Lz8fC4X3Bb9GmVG5-YHLVvHa6RH2D2hoLgVFTvZj8YVo3C3dW-hMZNcquASIMpXXr0abvGguznWoj-rEzO9cFCJM-AcyYMXJItd-JRou2HKDPBpMhBC0b2L-D5d_7kH5uoKTaN7pG7Paikh2stuE9uhOYBub0uM7l6SFZp2W9qAV3TEzujSywkGjz99ZPNJhDF6Fk7XdUek-JpNz9tL6Gd2gVFKmOGVBLUNq0PCwoAl-LZLQbCZEg0MQcJJ9HSkM4QUsy1BA9FfUge6BE5Gn38_mHM-pILzMHMrGNSxaAqmHKoIthhKSKEdBc4eAGnZOXB2oWuC6llEWtZqci15JILCIXRRcCK_DEZNG0TnhJa4uQnllHmgNlEzm3u4c6y0jW8QfmQkWLz443r-cixLMbUpH1xrs1aWAaEZZKwzDIjb7b3zNZsHNf2fo_y3PZEJu10oZ2fmN4wjXI5YFIntQ6lCIWzFhBUFYdW1kMANyojr0Abdp4xPvxi8BqyqnJV5RdFRvZQWQygFqTedZij5DpTSGT-hUfsb3TI9B5iYa70OSMvt81g27hhY5vQnqc-Cgn982FGnqxVbjsQXiJvEtcZUTvKuDPS3ZbmdJL4wxUilEJk5O1Gba-G9f-_-ez6r9gjd0o0K0x1LPfJoJufh-eA17r6RTLK3wpXPHU priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELaWrpC4IP4JuyCDuIFFYju2cyyIVVUBF1hpb5YT29uVuknVdil9LF6EZ2LGTYsKCxLX-CeWZ8bz2Z75TMhLk_PKRSeYryrPpBOaOR89AjnDhfOyDpjg_PGTGp3K8Vl5dkD4NhcmBe0nSsu0TG-jw94sZDJp3Oygx1FsdYMcIlU76PbhcDj-PN6drCDnuZGyz5DJhbmm8Z4XSmT94FsmGAo56MC0roObf0ZN_nZ1mjzSyR1yu4eSdLgZ_F1yENp75Obmccn1fbJOh31TB5ianrsZXeHzocHTH9_ZbAK-i15203XtMRSeLucX3Tcop25BkcCYIYEEdW3nw4ICrKWYscVAhAzpJeYg1yRQGlLmIMUIS1iXqA9p3XlATk_ef3k3Yv1DC6yB_diSKR2DrmCjoYvgSi4jOPImCLD9RqvKg41LUxfKqCLWqtJRGCWUkOAAYxMBIYqHZNB2bXhMKMctT-RR5YDUZC5c7qElr0wNf9A-ZKTYTrxtehZyfAxjatNtuDB2IywLwrJJWHaVkVe7NrMNB8c_a79Fee5qIn92-tDNz22vT1Y3OSDRRhkTuAxF4xzgpiqWTtUlQBqdkRegDXt9jIYfLH5DLlWhq_xrkZEjVBYLWAUJdxuMTGqWtlDI9wtdHG91yPbrwsJiDJIGiFVUGXm-KwaLxmsa14buKtXRSOOflxl5tFG53UAER7YkYTKi95Rxb6T7Je3FJLGGa8QlhczI663a_hrW32fzyf9VPyK3OJoZBjzyYzJYzq_CU0Bty_pZb6Y_AcepPAY priority: 102 providerName: Springer Nature |
Title | Interlayer gap widened α-phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices |
URI | https://link.springer.com/article/10.1038/s41467-020-15216-w https://www.ncbi.nlm.nih.gov/pubmed/32165638 https://www.proquest.com/docview/2376712919 https://www.proquest.com/docview/2377349605 https://hal.science/hal-03103790 https://www.osti.gov/servlets/purl/1606537 https://pubmed.ncbi.nlm.nih.gov/PMC7067814 https://doaj.org/article/7c0416c688e24e1caa0919f5a6b54157 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELe2Tki8IP4TNiqDeANDEqe284BQV61UE5sQUKlvlhM766SSlLaj68fii_CZuHPSokJBvLSS7TiW7873c3z-HSHPVRinpjCc2TS1LDFcMmMLi0BOxdzYJHN4wfnsXAyGyemoM9oj63RHzQTOd27tMJ_UcDZ5df119RYM_k19ZVy9nife3HEjhN5IsOU-OQDPJDGjwVkD9_3KzFPY0OBBcxwmEYMGvLlHs7ubLV_lKf3BA40xYLJVgQHuAqV_xlb-dsDq_Vb_NrnVAE7arTXkDtlz5V1yo05BubpHVv6T4MQA8qYXZkqXmGTUWfrjO5uOwcPRL9VklVkMmKeL2WV1DfXUzCnSHDOkmaCmrKybUwC_FO91MRA0QxKKGUjfi506f7-QYhwmrF7UOr863SfD_snn3oA16RhYDru2BROycDKF7YiMnOnESQHuPnccVohcitTCSpCoLBJKREUmUllwJbjgCbjJIi8AR_IHpFVWpXtEaIwboyIuRAh4Lgm5CS08GacqgzdI6wISrSde5w1XOabMmGh_Zs6VroWlQVjaC0svA_Ji88y0Zur4Z-tjlOemJbJs-4JqdqEbo9UyBzURuVDKxYmLcmMAXaVFx4isA8BHBuQZaMNWH4Pue41lyLjKZRp-iwJyiMqiAdEgLW-O8Uv5QkcCWYGhi6O1Dum18muMVJIAxKI0IE831WD3eJhjSldd-TYSyf7DTkAe1iq3GQiPkVOJq4DILWXcGul2TXk59tziEtFLlATk5Vptfw3r77P5-H8m4pDcjNG4MBgyPiKtxezKPQFEt8jaZF-OJPyq_rs2Oeh2Tz-dwv_xyfmHj1DaE722_1bS9ub8E0W-Sko |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUMAxcGN6YFhAMnEBTW1Ik-8Aw5VFSmvbUzvSmypbcdCbYIUkJ-VPM8Ef4TezKcTrh0Vuvlqwo3tXuJ2n3W0JepDHPbGkFc1nmmLRCM-tKh0Au5cI6mXtMcN7bV71D-fmoe7RGfrS5MBhW2drEYKhdXeAZ-SZGb2hwTkn2dvSVYdUovF1tS2g0arHr5zPYsk3e7HwA-b7kfPvjwfseW1QVYAVsPqZM6dLrDFC1TrztclmC1yo8bOuTQqvMgULLNE9UqpIyV5kuRaqEEhKsfVmUAIcEjHuFXJUCPDlmpm9_Wp7pINt6KuUiNycW6eZEBkuEezR0lIrNVvxfKBMAXm2AQZidGhb1v4Du3_Gaf1zaBl-4fYvcXIBYutVo3W2y5qs75FpT1nJ-l8zDMePQApqnJ3ZEZ1i41Dv66ycbDcBr0i_1cJ47DMKn0_Fp_R3aqZ1QpE5mSF1BbVU7P6EAqCnmijFQHobEFmPQqKBK1IecRYqxnWARqfPB4t0jh5cijPukU9WVf0gox81WyUsVA0aUsbCxgzd5lubwC9r5iCTthzfFgv8cy3AMTbiHF6lphGVAWCYIy8wi8mr5zqhh_7iw9zuU57InMneHB_X4xCwMgdFFDBi4UGnqufRJYS0gtqzsWpV3AUzpiDwHbVgZo7fVN_gMWVyFzuJvSUTWUVkMoCSk-i0wJqqYmkQh0zAMsdHqkFlYpIk5Xz8RebZsBluCF0S28vVZ6KOxgEDcjciDRuWWExEceZpEGhG9oowrM11tqU4Hga9cIyJKZERet2p7Pq3_f81HF_-Lp-R672Cvb_o7-7vr5AbHJYZhlnyDdKbjM_8YsOI0fxIWKCXHl20RfgO4s3Zh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJxAviP-EDTAIniBqEru284DQxlZ1bFQTYtLePCd21kklKW1H6cfilQ_BZ-LOTTqVP3vba-y4bu589zv7_DtCXqooSU1hWGjT1IbcMBkaW1gEciphxvLM4QXnj33RO-IfjjvHa-RncxcG0yobm-gNta1y3CNvY_aGBOcUp-2iTos43Om-G30NsYIUnrQ25TQWKrLv5jMI3yZv93ZA1q-SpLv7-X0vrCsMhDkEItNQyMLJFBC2jJ3pJLwAD5Y7CPHjXIrUgnJzlcVCibjIRCoLpgQTjIPlL_ICoBGDca-RdYlRUYusb-_2Dz8td3iQe11xXt_UiZhqT7i3SxixodsU4WzFG_qiAeDjBpiS2apgif8L9v6dvfnHEa73jN3b5FYNaenWQgfvkDVX3iXXF0Uu5_fI3G86Dg1ge3pqRnSGZUydpb9-hKMB-FD6pRrOM4sp-XQ6Pqu-Qzs1E4pEyiESWVBTVtZNKMBrijfHQlClEGkuxqBfXrGo8zcYKWZ6gn2k1nn7d58cXYk4HpBWWZXuEaEJhl5FUogIECOPmIksvJmkKoNfkNYFJG4-vM5rNnQsyjHU_lSeKb0QlgZhaS8sPQvI6-U7owUXyKW9t1Gey57I4-0fVONTXZsFLfMIEHEulHIJd3FuDOC3tOgYkXUAWsmAvABtWBmjt3Wg8RlyujKZRt_igGygsmjATEj8m2OGVD7VsUDeYRhis9EhXdunib5YTQF5vmwGy4LHRaZ01bnvI7GcQNQJyMOFyi0nwhJkbWIqIHJFGVdmutpSng08e7lEfBTzgLxp1PZiWv__mo8v_xfPyA2wBvpgr7-_QW4muMIw5zLZJK3p-Nw9AeA4zZ7WK5SSk6s2Cr8B0pB78w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interlayer+gap+widened+%CE%B1-phase+molybdenum+trioxide+as+high-rate+anodes+for+dual-ion-intercalation+energy+storage+devices&rft.jtitle=Nature+communications&rft.au=Yu%2C+Minghao&rft.au=Shao%2C+Hui&rft.au=Wang%2C+Gang&rft.au=Yang%2C+Fan&rft.date=2020-03-12&rft.pub=Nature+Publishing+Group&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-15216-w&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03103790v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |