Interlayer gap widened α-phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices

Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we de...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 1348 - 9
Main Authors Yu, Minghao, Shao, Hui, Wang, Gang, Yang, Fan, Liang, Chaolun, Rozier, Patrick, Wang, Cai-Zhuang, Lu, Xihong, Simon, Patrice, Feng, Xinliang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.03.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO 3 , in which water molecules take the place of lattice oxygen of α-MoO 3 . Accordingly, the modified α-MoO 3 electrode exhibits theoretical-value-close specific capacity (963 C g −1 at 0.1 mV s −1 ), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s −1 ) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO 3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage. The power/energy trade-off is a common feature seen in a Ragone plot for an electrochemical storage device. Here the authors approach this issue by showing water-incorporated α-MoO 3 anodes with expanded interlayer gaps, which allow for the assembling of dual-ion energy storage devices.
AbstractList Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO3, in which water molecules take the place of lattice oxygen of α-MoO3. Accordingly, the modified α-MoO3 electrode exhibits theoretical-value-close specific capacity (963 C g-1 at 0.1 mV s-1), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s-1) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage.Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO3, in which water molecules take the place of lattice oxygen of α-MoO3. Accordingly, the modified α-MoO3 electrode exhibits theoretical-value-close specific capacity (963 C g-1 at 0.1 mV s-1), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s-1) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage.
Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO3, in which water molecules take the place of lattice oxygen of α-MoO3. Accordingly, the modified α-MoO3 electrode exhibits theoretical-value-close specific capacity (963 C g−1 at 0.1 mV s−1), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s−1) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage.
Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO3, in which water molecules take the place of lattice oxygen of α-MoO3. Accordingly, the modified α-MoO3 electrode exhibits theoretical-value-close specific capacity (963 C g−1 at 0.1 mV s−1), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s−1) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage.The power/energy trade-off is a common feature seen in a Ragone plot for an electrochemical storage device. Here the authors approach this issue by showing water-incorporated α-MoO3 anodes with expanded interlayer gaps, which allow for the assembling of dual-ion energy storage devices.
Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO , in which water molecules take the place of lattice oxygen of α-MoO . Accordingly, the modified α-MoO electrode exhibits theoretical-value-close specific capacity (963 C g at 0.1 mV s ), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s ) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage.
Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO 3 , in which water molecules take the place of lattice oxygen of α-MoO 3 . Accordingly, the modified α-MoO 3 electrode exhibits theoretical-value-close specific capacity (963 C g −1 at 0.1 mV s −1 ), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s −1 ) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO 3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage. The power/energy trade-off is a common feature seen in a Ragone plot for an electrochemical storage device. Here the authors approach this issue by showing water-incorporated α-MoO 3 anodes with expanded interlayer gaps, which allow for the assembling of dual-ion energy storage devices.
The power/energy trade-off is a common feature seen in a Ragone plot for an electrochemical storage device. Here the authors approach this issue by showing water-incorporated α-MoO3 anodes with expanded interlayer gaps, which allow for the assembling of dual-ion energy storage devices.
Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO 3 , in which water molecules take the place of lattice oxygen of α-MoO 3 . Accordingly, the modified α-MoO 3 electrode exhibits theoretical-value-close specific capacity (963 C g −1 at 0.1 mV s −1 ), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s −1 ) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO 3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage.
Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for electrochemical energy storage devices, but efficient approaches to boost the charge-storage kinetics of electrodes are still needed. Here, we demonstrate a water-incorporation strategy to expand the interlayer gap of α-MoO3, in which water molecules take the place of lattice oxygen of α-MoO3. Accordingly, the modified α-MoO3 electrode exhibits theoretical-value-close specific capacity (963 C g–1 at 0.1 mV s–1), greatly improved rate capability (from 4.4% to 40.2% at 100 mV s–1) and boosted cycling stability (from 21 to 71% over 600 cycles). A fast-kinetics dual-ion-intercalation energy storage device is further assembled by combining the modified α-MoO3 anode with an anion-intercalation graphite cathode, operating well over a wide discharge rate range. Our study sheds light on a promising design strategy of layered materials for high-kinetics charge storage.
ArticleNumber 1348
Author Liang, Chaolun
Yang, Fan
Feng, Xinliang
Yu, Minghao
Simon, Patrice
Shao, Hui
Wang, Gang
Wang, Cai-Zhuang
Lu, Xihong
Rozier, Patrick
Author_xml – sequence: 1
  givenname: Minghao
  orcidid: 0000-0002-0211-0778
  surname: Yu
  fullname: Yu, Minghao
  organization: Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universität Dresden
– sequence: 2
  givenname: Hui
  surname: Shao
  fullname: Shao, Hui
  organization: CIRIMAT, Université de Toulouse, CNRS, Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS
– sequence: 3
  givenname: Gang
  orcidid: 0000-0002-9297-136X
  surname: Wang
  fullname: Wang, Gang
  organization: Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universität Dresden
– sequence: 4
  givenname: Fan
  surname: Yang
  fullname: Yang, Fan
  organization: MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University
– sequence: 5
  givenname: Chaolun
  surname: Liang
  fullname: Liang, Chaolun
  organization: Instrumental Analysis and Research Centre, Sun Yat-sen University
– sequence: 6
  givenname: Patrick
  orcidid: 0000-0002-7879-4344
  surname: Rozier
  fullname: Rozier, Patrick
  organization: CIRIMAT, Université de Toulouse, CNRS, Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS
– sequence: 7
  givenname: Cai-Zhuang
  surname: Wang
  fullname: Wang, Cai-Zhuang
  organization: Ames Laboratory-U. S. Department of Energy, and Department of Physics and Astronomy, Iowa State University
– sequence: 8
  givenname: Xihong
  surname: Lu
  fullname: Lu, Xihong
  organization: MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University
– sequence: 9
  givenname: Patrice
  surname: Simon
  fullname: Simon, Patrice
  email: simon@chimie.ups-tlse.fr
  organization: CIRIMAT, Université de Toulouse, CNRS, Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS
– sequence: 10
  givenname: Xinliang
  orcidid: 0000-0003-3885-2703
  surname: Feng
  fullname: Feng, Xinliang
  email: xinliang.feng@tu-dresden.de
  organization: Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universität Dresden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32165638$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03103790$$DView record in HAL
https://www.osti.gov/servlets/purl/1606537$$D View this record in Osti.gov
BookMark eNp9UstuEzEUHaEiWkp_gAUawQYWA36N7dlUqiqgkSKxgbXleO5MHE3sYHsS8ln8CN-Ekyml7aLe2Pf6nHMfOi-LE-cdFMVrjD5iROWnyDDjokIEVbgmmFe7Z8UZQQxXWBB6cu99WlzEuEL50AZLxl4UpzQTak7lWbGfuQRh0HsIZa835c624KAt__yuNksdoVz7Yb_IuXFdpmD9r_xf6lgubb-sgk45cL6FWHY-lO2oh8p6V9mDqNGDTjkqs2Do92VMPugeyha21kB8VTzv9BDh4vY-L358-fz9-qaaf_s6u76aV4YjnCouOhCNJFxg0DVhHSLUAKUIG8GblknJ5AJzyXG34I3oqOSUU0YZ7kzXEErPi9mk23q9Uptg1zrslddWHRM-9EqHZM0ASpi8M264lEAYYKM1anDT1ZovaoZrkbUuJ63NuFhDa8CloIcHog9_nF2q3m-VQFxIzLLA20nAx2RVNDaBWRrvHJikMEe8pocqHybQ8pH2zdVcHXKIZguIBm1xxr6_7Sj4nyPEpNY2GhgG7cCPUREqBGUNR3WGvnsEXfkxuLz7Ayrvl-RhM-rN_RHv6v-zTAaQCWCCjzFAdwfBSB2sqSZrqmxNdbSm2mWSfETKox_dkddkh6epdKLGXMf1EP63_QTrL3RJ95E
CitedBy_id crossref_primary_10_1016_j_snb_2024_136017
crossref_primary_10_1021_acsami_4c01108
crossref_primary_10_1002_asia_202200067
crossref_primary_10_1016_j_ensm_2021_07_011
crossref_primary_10_1021_acs_chemrev_3c00389
crossref_primary_10_1016_j_joule_2023_03_011
crossref_primary_10_1016_j_jcis_2021_12_079
crossref_primary_10_1016_j_jallcom_2022_168523
crossref_primary_10_1002_smll_202106273
crossref_primary_10_1021_acs_energyfuels_1c02352
crossref_primary_10_1557_s43578_021_00347_7
crossref_primary_10_1002_adma_202311141
crossref_primary_10_1039_D2CC02358J
crossref_primary_10_1016_j_jallcom_2023_171026
crossref_primary_10_1016_j_memsci_2025_123977
crossref_primary_10_1016_j_nanoen_2021_106139
crossref_primary_10_1002_ange_202211866
crossref_primary_10_1016_j_est_2023_106678
crossref_primary_10_1016_j_mtener_2020_100578
crossref_primary_10_1016_j_ensm_2022_05_016
crossref_primary_10_3390_catal10101180
crossref_primary_10_1016_j_apcatb_2020_119818
crossref_primary_10_1016_j_ensm_2021_03_005
crossref_primary_10_1016_j_jmat_2023_02_007
crossref_primary_10_1002_adfm_202422645
crossref_primary_10_1016_j_est_2023_110368
crossref_primary_10_1038_s41467_023_36384_5
crossref_primary_10_1021_acs_jpcc_4c03361
crossref_primary_10_1016_j_ensm_2022_05_012
crossref_primary_10_1002_cnma_202100294
crossref_primary_10_1002_smll_202303286
crossref_primary_10_1016_j_apsusc_2023_157647
crossref_primary_10_1002_smll_202007486
crossref_primary_10_1002_aenm_202302961
crossref_primary_10_1002_ange_202012202
crossref_primary_10_1007_s40820_021_00659_7
crossref_primary_10_1007_s40870_024_00429_7
crossref_primary_10_1016_j_mtener_2020_100509
crossref_primary_10_1088_2053_1591_ac1965
crossref_primary_10_1016_j_esci_2025_100401
crossref_primary_10_1021_acssensors_4c02110
crossref_primary_10_1038_s41467_024_46464_9
crossref_primary_10_1038_s41467_023_42335_x
crossref_primary_10_1038_s41570_023_00506_w
crossref_primary_10_1016_j_jallcom_2025_178638
crossref_primary_10_1016_j_pcrysgrow_2021_100533
crossref_primary_10_1007_s10904_024_03522_5
crossref_primary_10_1002_admi_202201125
crossref_primary_10_1002_adma_202004998
crossref_primary_10_1002_cphc_202300098
crossref_primary_10_1002_anie_202012202
crossref_primary_10_1039_D0CS00187B
crossref_primary_10_1021_jacs_0c05130
crossref_primary_10_3389_fchem_2022_873462
crossref_primary_10_1016_j_cej_2022_138763
crossref_primary_10_1002_adma_202203335
crossref_primary_10_1016_j_carbon_2021_07_053
crossref_primary_10_1016_j_jechem_2022_11_011
crossref_primary_10_3390_nano13152272
crossref_primary_10_1002_adma_202101857
crossref_primary_10_1039_D4CS01072H
crossref_primary_10_1021_acs_inorgchem_1c03316
crossref_primary_10_1016_j_ensm_2022_04_037
crossref_primary_10_1016_j_jechem_2022_11_015
crossref_primary_10_1002_adma_202308795
crossref_primary_10_1016_j_electacta_2022_139964
crossref_primary_10_1016_j_jece_2024_114555
crossref_primary_10_1021_acsenergylett_2c00766
crossref_primary_10_1007_s11581_023_05146_0
crossref_primary_10_1002_cey2_69
crossref_primary_10_1021_acs_chemmater_2c00420
crossref_primary_10_1007_s10008_022_05319_3
crossref_primary_10_1039_D0QM01105C
crossref_primary_10_1021_acsenergylett_3c02751
crossref_primary_10_1016_j_cej_2022_139908
crossref_primary_10_1002_adfm_202214920
crossref_primary_10_1007_s10853_022_07115_w
crossref_primary_10_1038_s41467_021_23369_5
crossref_primary_10_1002_eem2_12090
crossref_primary_10_1002_smll_202409114
crossref_primary_10_1021_acs_nanolett_4c02601
crossref_primary_10_1016_j_ensm_2023_102849
crossref_primary_10_1021_acsnano_2c07399
crossref_primary_10_1002_adfm_202203964
crossref_primary_10_1016_j_scib_2021_04_042
crossref_primary_10_1002_adma_202306157
crossref_primary_10_1039_D0CS01160F
crossref_primary_10_1016_j_jpowsour_2021_230941
crossref_primary_10_1038_s41467_024_54999_0
crossref_primary_10_1016_j_cej_2022_136924
crossref_primary_10_1007_s40242_020_0185_0
crossref_primary_10_1021_acsaem_2c00632
crossref_primary_10_1016_j_jechem_2023_12_022
crossref_primary_10_1039_D1DT03580K
crossref_primary_10_1002_anie_202010073
crossref_primary_10_3390_nano12162797
crossref_primary_10_1002_adfm_202112223
crossref_primary_10_1039_D1RA08885H
crossref_primary_10_1007_s11814_024_00292_1
crossref_primary_10_1002_adhm_202202596
crossref_primary_10_1016_j_carbon_2024_118941
crossref_primary_10_1016_j_actamat_2024_120692
crossref_primary_10_1016_j_mtener_2021_100739
crossref_primary_10_1002_adma_202108682
crossref_primary_10_1002_adhm_202101331
crossref_primary_10_1021_jacs_0c07992
crossref_primary_10_1088_1361_6528_ad1b01
crossref_primary_10_1002_ange_202010073
crossref_primary_10_1007_s12598_024_02817_3
crossref_primary_10_1016_j_cej_2022_135851
crossref_primary_10_1016_j_jcis_2023_06_192
crossref_primary_10_1021_acs_nanolett_0c03092
crossref_primary_10_1007_s40820_021_00724_1
crossref_primary_10_1016_j_compositesb_2023_111174
crossref_primary_10_1016_j_jallcom_2024_175954
crossref_primary_10_1016_j_jmrt_2024_06_200
crossref_primary_10_1016_j_cej_2024_155926
crossref_primary_10_1016_j_electacta_2020_137665
crossref_primary_10_1021_acsmaterialslett_1c00325
crossref_primary_10_1002_anie_202211866
Cites_doi 10.1021/jp108778v
10.1088/2053-1583/4/1/015005
10.1038/ncomms14283
10.1039/tf9686400013
10.1021/nl203649p
10.1038/nmat2297
10.1038/nenergy.2016.119
10.1021/acs.nanolett.8b03227
10.1038/s41560-018-0296-8
10.1002/adfm.201600264
10.1016/j.ensm.2018.12.019
10.1038/s41560-017-0084-x
10.1002/adma.201700519
10.1002/adma.200700883
10.1038/s41467-018-06923-6
10.1126/science.1213003
10.1038/s41560-019-0339-9
10.1038/ncomms7929
10.1002/anie.201701737
10.1016/j.nanoen.2018.04.075
10.1021/ar200306b
10.1126/science.1241488
10.1126/science.1249625
10.1016/0013-4686(90)85068-X
10.1023/A:1012466622001
10.1002/adma.201800533
10.1016/j.electacta.2013.03.072
10.1002/aenm.201601963
10.1038/s41557-018-0045-4
10.1002/anie.201602631
10.1016/j.joule.2018.12.012
10.1002/adma.201705851
10.1038/nmat4777
10.1038/nnano.2010.162
10.1002/aenm.201870088
10.1016/S0167-2738(97)00418-9
10.1038/nmat2612
10.1002/aenm.201200692
10.1002/adma.201802949
10.1038/nmat4810
10.1038/nenergy.2016.70
10.1038/nature14340
ContentType Journal Article
Copyright The Author(s) 2020
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s) 2020
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Ames Laboratory (AMES), Ames, IA (United States)
CorporateAuthor_xml – name: Ames Laboratory (AMES), Ames, IA (United States)
– name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
1XC
VOOES
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-020-15216-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central - New (Subscription)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Biological Science Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Publicly Available Content Database
PubMed



CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_7c0416c688e24e1caa0919f5a6b54157
PMC7067814
1606537
oai_HAL_hal_03103790v1
32165638
10_1038_s41467_020_15216_w
Genre Journal Article
GrantInformation_xml – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
  grantid: 819698
  funderid: https://doi.org/10.13039/100010661
– fundername: Agence Nationale de la Recherche (French National Research Agency)
  grantid: STORE-EX
  funderid: https://doi.org/10.13039/501100001665
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: MX-OSMOPED
  funderid: https://doi.org/10.13039/501100001659
– fundername: Agence Nationale de la Recherche (French National Research Agency)
  grantid: STORE-EX
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: MX-OSMOPED
– fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
  grantid: 819698
– fundername: ;
  grantid: 819698
– fundername: ;
  grantid: STORE-EX
– fundername: ;
  grantid: MX-OSMOPED
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
1XC
4.4
ABAWZ
BAPOH
CAG
COF
EJD
LGEZI
LOTEE
NADUK
NXXTH
PUEGO
VOOES
AAADF
AAPBV
AAYJO
ADQMX
AEDAW
OIOZB
OTOTI
ZA5
5PM
ID FETCH-LOGICAL-c601t-67fe7982671ea524f023ce3301c769d48848b16861fb697f3863634341fcf9233
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:03:41 EDT 2025
Thu Aug 21 13:50:16 EDT 2025
Mon Jul 10 02:30:35 EDT 2023
Sat Aug 30 06:23:45 EDT 2025
Fri Jul 11 10:45:51 EDT 2025
Wed Aug 13 02:50:53 EDT 2025
Thu Apr 03 06:53:55 EDT 2025
Thu Apr 24 22:50:24 EDT 2025
Tue Jul 01 04:08:52 EDT 2025
Fri Feb 21 02:40:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords High-kinetics charge
Storage kinetics of electrodes
Promising design strategy
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c601t-67fe7982671ea524f023ce3301c769d48848b16861fb697f3863634341fcf9233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
IS-J-10182
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
Alexander von Humboldt Foundation
Agence Nationale de la Recherché (ANR)
German Research Foundation (DFG)
European Research Council (ERC)
819698; AC02-07CH11358; GrapheneCore2 785219
China Scholarship Council (CSC)
ORCID 0000-0002-0211-0778
0000-0002-7879-4344
0000-0002-9297-136X
0000-0003-3885-2703
0000-0002-0461-8268
0000-0003-2791-7217
0000000278794344
0000000338852703
0000000202110778
000000029297136X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-15216-w
PMID 32165638
PQID 2376712919
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_7c0416c688e24e1caa0919f5a6b54157
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7067814
osti_scitechconnect_1606537
hal_primary_oai_HAL_hal_03103790v1
proquest_miscellaneous_2377349605
proquest_journals_2376712919
pubmed_primary_32165638
crossref_primary_10_1038_s41467_020_15216_w
crossref_citationtrail_10_1038_s41467_020_15216_w
springer_journals_10_1038_s41467_020_15216_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-12
PublicationDateYYYYMMDD 2020-03-12
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Chen (CR4) 2015; 6
Sheng, Zhang, Ji, Tong, Tang (CR12) 2017; 7
Wang (CR14) 2018; 30
Zhou (CR21) 2010; 114
Yu (CR31) 2016; 55
Bellani (CR18) 2018; 18
Meduri (CR20) 2012; 12
Grey, Tarascon (CR5) 2016; 16
Mendoza-Sánchez (CR33) 2016; 4
Lukatskaya (CR41) 2013; 341
Yu, Feng (CR2) 2019; 3
Kim (CR26) 2017; 16
Kravchyk (CR13) 2018; 9
Brezesinski, Wang, Tolbert, Dunn (CR25) 2010; 9
Ji, Zhang, Song, Tang (CR11) 2017; 29
Lin (CR16) 2015; 520
Mai (CR24) 2007; 19
Lee, Shin, Choi (CR34) 2018; 30
Gogotsi, Simon (CR27) 2011; 334
Yu (CR7) 2017; 56
Kundu, Adams, Duffort, Vajargah, Nazar (CR35) 2016; 1
Wang, Tang (CR10) 2018; 8
Wang (CR15) 2018; 30
Dong (CR39) 2016; 26
Simon, Gogotsi (CR40) 2013; 46
Zhang (CR19) 2018; 49
Wang (CR17) 2018; 10
Zhang (CR32) 2019; 21
Wang (CR8) 2017; 8
Chen, Maier (CR9) 2018; 3
Wang, Nesper, Villevieille, Novák (CR23) 2013; 3
Dickens, Neild (CR29) 1968; 64
Pech (CR38) 2010; 5
Salanne (CR6) 2016; 1
Mendoza-Sánchez, Grant (CR22) 2013; 98
Tsumura, Inagaki (CR36) 1997; 104
Simon, Gogotsi, Dunn (CR1) 2014; 343
Dinh (CR30) 2018; 4
Wang (CR3) 2019; 4
Simon, Gogotsi (CR42) 2008; 7
Xiong (CR28) 2001; 36
Ardizzone, Fregonara, Trasatti (CR37) 1990; 35
Y Gogotsi (15216_CR27) 2011; 334
B Mendoza-Sánchez (15216_CR22) 2013; 98
M Wang (15216_CR10) 2018; 8
CP Grey (15216_CR5) 2016; 16
B Ji (15216_CR11) 2017; 29
HJ Lee (15216_CR34) 2018; 30
MH Sheng (15216_CR12) 2017; 7
P Meduri (15216_CR20) 2012; 12
C Chen (15216_CR4) 2015; 6
T Brezesinski (15216_CR25) 2010; 9
H Zhang (15216_CR32) 2019; 21
G Wang (15216_CR14) 2018; 30
C-C Chen (15216_CR9) 2018; 3
M Salanne (15216_CR6) 2016; 1
P Simon (15216_CR42) 2008; 7
P Simon (15216_CR40) 2013; 46
M Wang (15216_CR17) 2018; 10
X Wang (15216_CR3) 2019; 4
L Zhou (15216_CR21) 2010; 114
D Kundu (15216_CR35) 2016; 1
G Zhang (15216_CR19) 2018; 49
C-T Dinh (15216_CR30) 2018; 4
MH Yu (15216_CR2) 2019; 3
MC Lin (15216_CR16) 2015; 520
HS Kim (15216_CR26) 2017; 16
P Simon (15216_CR1) 2014; 343
M Yu (15216_CR31) 2016; 55
S Bellani (15216_CR18) 2018; 18
M Yu (15216_CR7) 2017; 56
DY Wang (15216_CR8) 2017; 8
T Tsumura (15216_CR36) 1997; 104
R Xiong (15216_CR28) 2001; 36
D Pech (15216_CR38) 2010; 5
KV Kravchyk (15216_CR13) 2018; 9
G Wang (15216_CR15) 2018; 30
PG Dickens (15216_CR29) 1968; 64
B Mendoza-Sánchez (15216_CR33) 2016; 4
LQ Mai (15216_CR24) 2007; 19
MR Lukatskaya (15216_CR41) 2013; 341
X-J Wang (15216_CR23) 2013; 3
S Dong (15216_CR39) 2016; 26
S Ardizzone (15216_CR37) 1990; 35
References_xml – volume: 114
  start-page: 21868
  year: 2010
  end-page: 21872
  ident: CR21
  article-title: α-MoO nanobelts: a high performance cathode material for lithium ion batteries
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp108778v
– volume: 4
  start-page: 015005
  year: 2016
  ident: CR33
  article-title: An investigation of the energy storage properties of a 2D α-MoO -SWCNTs composite films
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/4/1/015005
– volume: 8
  year: 2017
  ident: CR8
  article-title: Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14283
– volume: 64
  start-page: 13
  year: 1968
  end-page: 18
  ident: CR29
  article-title: Some electronic properties of the molybdenum bronzes
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9686400013
– volume: 12
  start-page: 1784
  year: 2012
  end-page: 1788
  ident: CR20
  article-title: MoO nanowire arrays as stable and high-capacity anodes for lithium ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/nl203649p
– volume: 7
  start-page: 845
  year: 2008
  end-page: 854
  ident: CR42
  article-title: Materials for electrochemical capacitors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 1
  start-page: 16119
  year: 2016
  ident: CR35
  article-title: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.119
– volume: 18
  start-page: 7155
  year: 2018
  end-page: 7164
  ident: CR18
  article-title: WS –graphite dual-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03227
– volume: 4
  start-page: 107
  year: 2018
  end-page: 114
  ident: CR30
  article-title: Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0296-8
– volume: 26
  start-page: 3703
  year: 2016
  end-page: 3710
  ident: CR39
  article-title: Flexible sodium-ion pseudocapacitors based on 3D Na Ti O nanosheet arrays/carbon textiles anodes
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600264
– volume: 21
  start-page: 154
  year: 2019
  end-page: 161
  ident: CR32
  article-title: Extracting oxygen anions from ZnMn O : robust cathode for flexible all-solid-state Zn-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.12.019
– volume: 3
  start-page: 102
  year: 2018
  end-page: 108
  ident: CR9
  article-title: Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0084-x
– volume: 29
  start-page: 1700519
  year: 2017
  ident: CR11
  article-title: A novel potassium-ion-based dual-ion battery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700519
– volume: 19
  start-page: 3712
  year: 2007
  end-page: 3716
  ident: CR24
  article-title: Lithiated MoO nanobelts with greatly improved performance for lithium batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700883
– volume: 9
  year: 2018
  ident: CR13
  article-title: High-energy-density dual-ion battery for stationary storage of electricity using concentrated potassium fluorosulfonylimide
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06923-6
– volume: 334
  start-page: 917
  year: 2011
  end-page: 918
  ident: CR27
  article-title: True performance metrics in electrochemical energy storage
  publication-title: Science
  doi: 10.1126/science.1213003
– volume: 4
  start-page: 241
  year: 2019
  end-page: 248
  ident: CR3
  article-title: Influences from solvents on charge storage in titanium carbide MXenes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0339-9
– volume: 6
  year: 2015
  ident: CR4
  article-title: Na intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7929
– volume: 56
  start-page: 5454
  year: 2017
  end-page: 5459
  ident: CR7
  article-title: Boosting the energy density of carbon-based aqueous supercapacitors by optimizing the surface charge
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701737
– volume: 49
  start-page: 555
  year: 2018
  end-page: 563
  ident: CR19
  article-title: α-MoO by plasma etching with improved capacity and stabilized structure for lithium storage
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.075
– volume: 46
  start-page: 1094
  year: 2013
  end-page: 1103
  ident: CR40
  article-title: Capacitive energy storage in nanostructured carbon-electrolyte systems
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200306b
– volume: 341
  start-page: 1502
  year: 2013
  end-page: 1505
  ident: CR41
  article-title: Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide
  publication-title: Science
  doi: 10.1126/science.1241488
– volume: 343
  start-page: 1210
  year: 2014
  end-page: 1211
  ident: CR1
  article-title: Where do batteries end and supercapacitors begin?
  publication-title: Science
  doi: 10.1126/science.1249625
– volume: 35
  start-page: 263
  year: 1990
  end-page: 267
  ident: CR37
  article-title: “Inner” and “outer” active surface of RuO electrodes
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(90)85068-X
– volume: 36
  start-page: 5511
  year: 2001
  end-page: 5514
  ident: CR28
  article-title: Infrared and EPR studies of the red potassium molybdenum bronze K MoO
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1012466622001
– volume: 30
  start-page: e1800533
  year: 2018
  ident: CR14
  article-title: Self-activating, capacitive anion intercalation enables high-power graphite cathodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800533
– volume: 98
  start-page: 294
  year: 2013
  end-page: 302
  ident: CR22
  article-title: Charge storage properties of a α-MoO /carboxyl-functionalized single-walled carbon nanotube composite electrode in a Li ion electrolyte
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.03.072
– volume: 7
  start-page: 1601963
  year: 2017
  ident: CR12
  article-title: A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601963
– volume: 10
  start-page: 667
  year: 2018
  end-page: 672
  ident: CR17
  article-title: Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0045-4
– volume: 55
  start-page: 6762
  year: 2016
  end-page: 6766
  ident: CR31
  article-title: Dual-doped molybdenum trioxide nanowires: a bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201602631
– volume: 3
  start-page: 338
  year: 2019
  end-page: 360
  ident: CR2
  article-title: Thin-film electrode-based supercapacitors
  publication-title: Joule
  doi: 10.1016/j.joule.2018.12.012
– volume: 30
  start-page: e1705851
  year: 2018
  ident: CR34
  article-title: Intercalated water and organic molecules for electrode materials of rechargeable batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705851
– volume: 16
  start-page: 45
  year: 2016
  end-page: 56
  ident: CR5
  article-title: Sustainability and in situ monitoring in battery development
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4777
– volume: 5
  start-page: 651
  year: 2010
  end-page: 654
  ident: CR38
  article-title: Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.162
– volume: 8
  start-page: 1870088
  year: 2018
  ident: CR10
  article-title: A review on the features and progress of dual-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201870088
– volume: 104
  start-page: 183
  year: 1997
  end-page: 189
  ident: CR36
  article-title: Lithium insertion/extraction reaction on crystalline MoO
  publication-title: Solid State Ion
  doi: 10.1016/S0167-2738(97)00418-9
– volume: 9
  start-page: 146
  year: 2010
  end-page: 151
  ident: CR25
  article-title: Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2612
– volume: 3
  start-page: 606
  year: 2013
  end-page: 614
  ident: CR23
  article-title: Ammonolyzed MoO nanobelts as novel cathode material of rechargeable Li-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200692
– volume: 30
  start-page: e1802949
  year: 2018
  ident: CR15
  article-title: Polarity-switchable symmetric graphite batteries with high energy and high power densities
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802949
– volume: 16
  start-page: 454
  year: 2017
  end-page: 460
  ident: CR26
  article-title: Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4810
– volume: 1
  start-page: 16070
  year: 2016
  ident: CR6
  article-title: Efficient storage mechanisms for building better supercapacitors
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.70
– volume: 520
  start-page: 325
  year: 2015
  end-page: 328
  ident: CR16
  article-title: An ultrafast rechargeable aluminium-ion battery
  publication-title: Nature
  doi: 10.1038/nature14340
– volume: 1
  start-page: 16070
  year: 2016
  ident: 15216_CR6
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.70
– volume: 7
  start-page: 1601963
  year: 2017
  ident: 15216_CR12
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601963
– volume: 64
  start-page: 13
  year: 1968
  ident: 15216_CR29
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9686400013
– volume: 3
  start-page: 338
  year: 2019
  ident: 15216_CR2
  publication-title: Joule
  doi: 10.1016/j.joule.2018.12.012
– volume: 26
  start-page: 3703
  year: 2016
  ident: 15216_CR39
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600264
– volume: 4
  start-page: 107
  year: 2018
  ident: 15216_CR30
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0296-8
– volume: 12
  start-page: 1784
  year: 2012
  ident: 15216_CR20
  publication-title: Nano Lett.
  doi: 10.1021/nl203649p
– volume: 10
  start-page: 667
  year: 2018
  ident: 15216_CR17
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0045-4
– volume: 8
  year: 2017
  ident: 15216_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14283
– volume: 114
  start-page: 21868
  year: 2010
  ident: 15216_CR21
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp108778v
– volume: 29
  start-page: 1700519
  year: 2017
  ident: 15216_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700519
– volume: 19
  start-page: 3712
  year: 2007
  ident: 15216_CR24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700883
– volume: 4
  start-page: 015005
  year: 2016
  ident: 15216_CR33
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/4/1/015005
– volume: 35
  start-page: 263
  year: 1990
  ident: 15216_CR37
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(90)85068-X
– volume: 98
  start-page: 294
  year: 2013
  ident: 15216_CR22
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.03.072
– volume: 104
  start-page: 183
  year: 1997
  ident: 15216_CR36
  publication-title: Solid State Ion
  doi: 10.1016/S0167-2738(97)00418-9
– volume: 334
  start-page: 917
  year: 2011
  ident: 15216_CR27
  publication-title: Science
  doi: 10.1126/science.1213003
– volume: 21
  start-page: 154
  year: 2019
  ident: 15216_CR32
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.12.019
– volume: 341
  start-page: 1502
  year: 2013
  ident: 15216_CR41
  publication-title: Science
  doi: 10.1126/science.1241488
– volume: 1
  start-page: 16119
  year: 2016
  ident: 15216_CR35
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.119
– volume: 9
  year: 2018
  ident: 15216_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06923-6
– volume: 3
  start-page: 606
  year: 2013
  ident: 15216_CR23
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200692
– volume: 16
  start-page: 454
  year: 2017
  ident: 15216_CR26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4810
– volume: 520
  start-page: 325
  year: 2015
  ident: 15216_CR16
  publication-title: Nature
  doi: 10.1038/nature14340
– volume: 36
  start-page: 5511
  year: 2001
  ident: 15216_CR28
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1012466622001
– volume: 4
  start-page: 241
  year: 2019
  ident: 15216_CR3
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0339-9
– volume: 8
  start-page: 1870088
  year: 2018
  ident: 15216_CR10
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201870088
– volume: 49
  start-page: 555
  year: 2018
  ident: 15216_CR19
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.075
– volume: 9
  start-page: 146
  year: 2010
  ident: 15216_CR25
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2612
– volume: 5
  start-page: 651
  year: 2010
  ident: 15216_CR38
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.162
– volume: 3
  start-page: 102
  year: 2018
  ident: 15216_CR9
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0084-x
– volume: 30
  start-page: e1800533
  year: 2018
  ident: 15216_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800533
– volume: 16
  start-page: 45
  year: 2016
  ident: 15216_CR5
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4777
– volume: 55
  start-page: 6762
  year: 2016
  ident: 15216_CR31
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201602631
– volume: 6
  year: 2015
  ident: 15216_CR4
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7929
– volume: 18
  start-page: 7155
  year: 2018
  ident: 15216_CR18
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b03227
– volume: 30
  start-page: e1705851
  year: 2018
  ident: 15216_CR34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705851
– volume: 46
  start-page: 1094
  year: 2013
  ident: 15216_CR40
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200306b
– volume: 30
  start-page: e1802949
  year: 2018
  ident: 15216_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802949
– volume: 343
  start-page: 1210
  year: 2014
  ident: 15216_CR1
  publication-title: Science
  doi: 10.1126/science.1249625
– volume: 56
  start-page: 5454
  year: 2017
  ident: 15216_CR7
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701737
– volume: 7
  start-page: 845
  year: 2008
  ident: 15216_CR42
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
SSID ssj0000391844
Score 2.614745
Snippet Employing high-rate ion-intercalation electrodes represents a feasible way to mitigate the inherent trade-off between energy density and power density for...
The power/energy trade-off is a common feature seen in a Ragone plot for an electrochemical storage device. Here the authors approach this issue by showing...
SourceID doaj
pubmedcentral
osti
hal
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1348
SubjectTerms 639/301
639/301/299/161/891
639/301/299/891
639/638/161/891
Anodes
Batteries
Charge materials
Chemical Sciences
Electrochemistry
Electrodes
Energy
Energy charge
ENERGY STORAGE
Flux density
Humanities and Social Sciences
Intercalation
Interlayers
Kinetics
Layered materials
Material chemistry
Materials science
Molybdenum
Molybdenum oxides
Molybdenum trioxide
multidisciplinary
Product design
Science
Science (multidisciplinary)
Specific capacity
Tradeoffs
Water chemistry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQJSQuiDfZXZBB3MDaJHb8OC6IVYWAEyvtzXJim65UkqrNUvqz-CP8JmactGx5XrjaTup6ZjzfxDOfCXmm89K46DjzxngmHFfM-egRyOmSOy_qgAXO797L6Zl4c16dX7nqC3PCBnrgYeGOVZMDZmik1qEUoWicAw9nYuVkXYHzSXXk0HIlmEp7MDcQuoixSibn-ngl0p6A0RK6LMnWe54oEfaDf5lhOuSkA_P6HeT8NXPyp-PT5JVOb5GbI5ykJ8PfuE2uhfYOuT5cMLm5Szbpg9_cAa6mH92CrvEK0eDpt69sMQP_RT91803tMR2e9suL7gv0U7eiSGLMkESCurbzYUUB2lKs2mIgRoYUE0uQbRIqDal6kGKWJexN1Ie099wjZ6evP7yasvGyBdZATNYzqWJQBoINVQRXlSKCM28CB_tvlDQe7FzoupBaFrGWRkWuJZdcgBOMTQSUyO-TSdu14SGhJYY9sYwyB7Qmcu5yD0-WRtfwC8qHjBTbhbfNyESOF2LMbToR59oOwrIgLJuEZdcZeb57ZjHwcPx19EuU524kcminBtAsO2qW_ZdmZeQpaMPeO6Ynby22IZ8qVyb_XGTkEJXFAl5B0t0Gs5Oa3hYSOX_hFUdbHbLj3rCymIekAGYVJiNPdt1g1XhU49rQXaYxCqn88yojDwaV202El8iYxHVG1J4y7s10v6e9mCXmcIXYpBAZebFV2x_T-vNqHvyP1TwkN0o0PkyFLI_IpF9ehkeA5_r6cTLd70K6REE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLagCIkXxJ2wgQziDawlsWs7T2ggSoWAJybtzXJ8WSd1SWmzdf1Z_BF-E-e4aady2WvsJE7O7bN9_B1CXuu8rGy0nPmq8kxYrpj10SOQ0yW3XtQBDzh__SbHR-Lz8fC4X3Bb9GmVG5-YHLVvHa6RH2D2hoLgVFTvZj8YVo3C3dW-hMZNcquASIMpXXr0abvGguznWoj-rEzO9cFCJM-AcyYMXJItd-JRou2HKDPBpMhBC0b2L-D5d_7kH5uoKTaN7pG7Paikh2stuE9uhOYBub0uM7l6SFZp2W9qAV3TEzujSywkGjz99ZPNJhDF6Fk7XdUek-JpNz9tL6Gd2gVFKmOGVBLUNq0PCwoAl-LZLQbCZEg0MQcJJ9HSkM4QUsy1BA9FfUge6BE5Gn38_mHM-pILzMHMrGNSxaAqmHKoIthhKSKEdBc4eAGnZOXB2oWuC6llEWtZqci15JILCIXRRcCK_DEZNG0TnhJa4uQnllHmgNlEzm3u4c6y0jW8QfmQkWLz443r-cixLMbUpH1xrs1aWAaEZZKwzDIjb7b3zNZsHNf2fo_y3PZEJu10oZ2fmN4wjXI5YFIntQ6lCIWzFhBUFYdW1kMANyojr0Abdp4xPvxi8BqyqnJV5RdFRvZQWQygFqTedZij5DpTSGT-hUfsb3TI9B5iYa70OSMvt81g27hhY5vQnqc-Cgn982FGnqxVbjsQXiJvEtcZUTvKuDPS3ZbmdJL4wxUilEJk5O1Gba-G9f-_-ez6r9gjd0o0K0x1LPfJoJufh-eA17r6RTLK3wpXPHU
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NjtMwELaWrpC4IP4JuyCDuIFFYju2cyyIVVUBF1hpb5YT29uVuknVdil9LF6EZ2LGTYsKCxLX-CeWZ8bz2Z75TMhLk_PKRSeYryrPpBOaOR89AjnDhfOyDpjg_PGTGp3K8Vl5dkD4NhcmBe0nSsu0TG-jw94sZDJp3Oygx1FsdYMcIlU76PbhcDj-PN6drCDnuZGyz5DJhbmm8Z4XSmT94FsmGAo56MC0roObf0ZN_nZ1mjzSyR1yu4eSdLgZ_F1yENp75Obmccn1fbJOh31TB5ianrsZXeHzocHTH9_ZbAK-i15203XtMRSeLucX3Tcop25BkcCYIYEEdW3nw4ICrKWYscVAhAzpJeYg1yRQGlLmIMUIS1iXqA9p3XlATk_ef3k3Yv1DC6yB_diSKR2DrmCjoYvgSi4jOPImCLD9RqvKg41LUxfKqCLWqtJRGCWUkOAAYxMBIYqHZNB2bXhMKMctT-RR5YDUZC5c7qElr0wNf9A-ZKTYTrxtehZyfAxjatNtuDB2IywLwrJJWHaVkVe7NrMNB8c_a79Fee5qIn92-tDNz22vT1Y3OSDRRhkTuAxF4xzgpiqWTtUlQBqdkRegDXt9jIYfLH5DLlWhq_xrkZEjVBYLWAUJdxuMTGqWtlDI9wtdHG91yPbrwsJiDJIGiFVUGXm-KwaLxmsa14buKtXRSOOflxl5tFG53UAER7YkYTKi95Rxb6T7Je3FJLGGa8QlhczI663a_hrW32fzyf9VPyK3OJoZBjzyYzJYzq_CU0Bty_pZb6Y_AcepPAY
  priority: 102
  providerName: Springer Nature
Title Interlayer gap widened α-phase molybdenum trioxide as high-rate anodes for dual-ion-intercalation energy storage devices
URI https://link.springer.com/article/10.1038/s41467-020-15216-w
https://www.ncbi.nlm.nih.gov/pubmed/32165638
https://www.proquest.com/docview/2376712919
https://www.proquest.com/docview/2377349605
https://hal.science/hal-03103790
https://www.osti.gov/servlets/purl/1606537
https://pubmed.ncbi.nlm.nih.gov/PMC7067814
https://doaj.org/article/7c0416c688e24e1caa0919f5a6b54157
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwELe2Tki8IP4TNiqDeANDEqe284BQV61UE5sQUKlvlhM766SSlLaj68fii_CZuHPSokJBvLSS7TiW7873c3z-HSHPVRinpjCc2TS1LDFcMmMLi0BOxdzYJHN4wfnsXAyGyemoM9oj63RHzQTOd27tMJ_UcDZ5df119RYM_k19ZVy9nife3HEjhN5IsOU-OQDPJDGjwVkD9_3KzFPY0OBBcxwmEYMGvLlHs7ubLV_lKf3BA40xYLJVgQHuAqV_xlb-dsDq_Vb_NrnVAE7arTXkDtlz5V1yo05BubpHVv6T4MQA8qYXZkqXmGTUWfrjO5uOwcPRL9VklVkMmKeL2WV1DfXUzCnSHDOkmaCmrKybUwC_FO91MRA0QxKKGUjfi506f7-QYhwmrF7UOr863SfD_snn3oA16RhYDru2BROycDKF7YiMnOnESQHuPnccVohcitTCSpCoLBJKREUmUllwJbjgCbjJIi8AR_IHpFVWpXtEaIwboyIuRAh4Lgm5CS08GacqgzdI6wISrSde5w1XOabMmGh_Zs6VroWlQVjaC0svA_Ji88y0Zur4Z-tjlOemJbJs-4JqdqEbo9UyBzURuVDKxYmLcmMAXaVFx4isA8BHBuQZaMNWH4Pue41lyLjKZRp-iwJyiMqiAdEgLW-O8Uv5QkcCWYGhi6O1Dum18muMVJIAxKI0IE831WD3eJhjSldd-TYSyf7DTkAe1iq3GQiPkVOJq4DILWXcGul2TXk59tziEtFLlATk5Vptfw3r77P5-H8m4pDcjNG4MBgyPiKtxezKPQFEt8jaZF-OJPyq_rs2Oeh2Tz-dwv_xyfmHj1DaE722_1bS9ub8E0W-Sko
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lc9MwENaUMAxcGN6YFhAMnEBTW1Ik-8Aw5VFSmvbUzvSmypbcdCbYIUkJ-VPM8Ef4TezKcTrh0Vuvlqwo3tXuJ2n3W0JepDHPbGkFc1nmmLRCM-tKh0Au5cI6mXtMcN7bV71D-fmoe7RGfrS5MBhW2drEYKhdXeAZ-SZGb2hwTkn2dvSVYdUovF1tS2g0arHr5zPYsk3e7HwA-b7kfPvjwfseW1QVYAVsPqZM6dLrDFC1TrztclmC1yo8bOuTQqvMgULLNE9UqpIyV5kuRaqEEhKsfVmUAIcEjHuFXJUCPDlmpm9_Wp7pINt6KuUiNycW6eZEBkuEezR0lIrNVvxfKBMAXm2AQZidGhb1v4Du3_Gaf1zaBl-4fYvcXIBYutVo3W2y5qs75FpT1nJ-l8zDMePQApqnJ3ZEZ1i41Dv66ycbDcBr0i_1cJ47DMKn0_Fp_R3aqZ1QpE5mSF1BbVU7P6EAqCnmijFQHobEFmPQqKBK1IecRYqxnWARqfPB4t0jh5cijPukU9WVf0gox81WyUsVA0aUsbCxgzd5lubwC9r5iCTthzfFgv8cy3AMTbiHF6lphGVAWCYIy8wi8mr5zqhh_7iw9zuU57InMneHB_X4xCwMgdFFDBi4UGnqufRJYS0gtqzsWpV3AUzpiDwHbVgZo7fVN_gMWVyFzuJvSUTWUVkMoCSk-i0wJqqYmkQh0zAMsdHqkFlYpIk5Xz8RebZsBluCF0S28vVZ6KOxgEDcjciDRuWWExEceZpEGhG9oowrM11tqU4Hga9cIyJKZERet2p7Pq3_f81HF_-Lp-R672Cvb_o7-7vr5AbHJYZhlnyDdKbjM_8YsOI0fxIWKCXHl20RfgO4s3Zh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELdGJxAviP-EDTAIniBqEru284DQxlZ1bFQTYtLePCd21kklKW1H6cfilQ_BZ-LOTTqVP3vba-y4bu589zv7_DtCXqooSU1hWGjT1IbcMBkaW1gEciphxvLM4QXnj33RO-IfjjvHa-RncxcG0yobm-gNta1y3CNvY_aGBOcUp-2iTos43Om-G30NsYIUnrQ25TQWKrLv5jMI3yZv93ZA1q-SpLv7-X0vrCsMhDkEItNQyMLJFBC2jJ3pJLwAD5Y7CPHjXIrUgnJzlcVCibjIRCoLpgQTjIPlL_ICoBGDca-RdYlRUYusb-_2Dz8td3iQe11xXt_UiZhqT7i3SxixodsU4WzFG_qiAeDjBpiS2apgif8L9v6dvfnHEa73jN3b5FYNaenWQgfvkDVX3iXXF0Uu5_fI3G86Dg1ge3pqRnSGZUydpb9-hKMB-FD6pRrOM4sp-XQ6Pqu-Qzs1E4pEyiESWVBTVtZNKMBrijfHQlClEGkuxqBfXrGo8zcYKWZ6gn2k1nn7d58cXYk4HpBWWZXuEaEJhl5FUogIECOPmIksvJmkKoNfkNYFJG4-vM5rNnQsyjHU_lSeKb0QlgZhaS8sPQvI6-U7owUXyKW9t1Gey57I4-0fVONTXZsFLfMIEHEulHIJd3FuDOC3tOgYkXUAWsmAvABtWBmjt3Wg8RlyujKZRt_igGygsmjATEj8m2OGVD7VsUDeYRhis9EhXdunib5YTQF5vmwGy4LHRaZ01bnvI7GcQNQJyMOFyi0nwhJkbWIqIHJFGVdmutpSng08e7lEfBTzgLxp1PZiWv__mo8v_xfPyA2wBvpgr7-_QW4muMIw5zLZJK3p-Nw9AeA4zZ7WK5SSk6s2Cr8B0pB78w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interlayer+gap+widened+%CE%B1-phase+molybdenum+trioxide+as+high-rate+anodes+for+dual-ion-intercalation+energy+storage+devices&rft.jtitle=Nature+communications&rft.au=Yu%2C+Minghao&rft.au=Shao%2C+Hui&rft.au=Wang%2C+Gang&rft.au=Yang%2C+Fan&rft.date=2020-03-12&rft.pub=Nature+Publishing+Group&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-15216-w&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03103790v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon