On the use of retrograde tracers for identification of axon collaterals with multiple fluorescent retrograde tracers

Abstract A common method for identifying collateral projections is to inject different retrograde tracers into two targets and examine labeled cells for the presence of both tracers. Double-labeled cells are considered to have collateral projections to the two injection sites. This method is widely...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 146; no. 2; pp. 773 - 783
Main Authors Schofield, B.R, Schofield, R.M, Sorensen, K.A, Motts, S.D
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 11.05.2007
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract A common method for identifying collateral projections is to inject different retrograde tracers into two targets and examine labeled cells for the presence of both tracers. Double-labeled cells are considered to have collateral projections to the two injection sites. This method is widely considered to underestimate the extent of collaterals. To test the efficiency of double-labeling, we mixed equal volumes of two tracers, injected them into one site in a guinea-pig brain, and counted the resulting labeled cells. Ideally, the tracers would have precisely overlapping injection sites and all labeled cells would contain both tracers. We tested several combinations of tracers: 1) Fast Blue and fluorescein dextran; 2) fluorescein dextran and FluoroGold; 3) fluorescein dextran and FluoroRuby; 4) FluoroGold and green beads; 5) FluoroGold and red beads; 6) FluoroRuby and green beads; and, 7) green beads and red beads. For each combination, a mixture was injected into the left inferior colliculus. After 1 week to allow for transport, labeled cells were counted in the right inferior colliculus and the left temporal cortex. For each mixture, the results were similar for the two areas. The percentage of cells that were double-labeled varied from 0% to 100%, depending on tracer combination. The highest efficiencies (>96%) were observed with red beads and green beads or with FluoroRuby and fluorescein dextran. The limited efficiency of other mixtures could be accounted for only in part by incomplete overlap of the two tracers at the injection site. The results indicate that the specific combination of tracers used to search for collateral projections can greatly affect the findings.
AbstractList A common method for identifying collateral projections is to inject different retrograde tracers into two targets and examine labeled cells for the presence of both tracers. Double-labeled cells are considered to have collateral projections to the two injection sites. This method is widely considered to underestimate the extent of collaterals. To test the efficiency of double-labeling, we mixed equal volumes of two tracers, injected them into one site in a guinea-pig brain, and counted the resulting labeled cells. Ideally, the tracers would have precisely overlapping injection sites and all labeled cells would contain both tracers. We tested several combinations of tracers: 1) Fast Blue and fluorescein dextran; 2) fluorescein dextran and FluoroGold; 3) fluorescein dextran and FluoroRuby; 4) FluoroGold and green beads; 5) FluoroGold and red beads; 6) FluoroRuby and green beads; and, 7) green beads and red beads. For each combination, a mixture was injected into the left inferior colliculus. After 1 week to allow for transport, labeled cells were counted in the right inferior colliculus and the left temporal cortex. For each mixture, the results were similar for the two areas. The percentage of cells that were double-labeled varied from 0% to 100%, depending on tracer combination. The highest efficiencies (>96%) were observed with red beads and green beads or with FluoroRuby and fluorescein dextran. The limited efficiency of other mixtures could be accounted for only in part by incomplete overlap of the two tracers at the injection site. The results indicate that the specific combination of tracers used to search for collateral projections can greatly affect the findings.
A common method for identifying collateral projections is to inject different retrograde tracers into two targets and examine labeled cells for the presence of both tracers. Double-labeled cells are considered to have collateral projections to the two injection sites. This method is widely considered to underestimate the extent of collaterals. To test the efficiency of double-labeling, we mixed equal volumes of two tracers, injected them into one site in a guinea pig brain, and counted the resulting labeled cells. Ideally, the tracers would have precisely overlapping injection sites and all labeled cells would contain both tracers. We tested several combinations of tracers: 1) Fast Blue and fluorescein dextran; 2) fluorescein dextran and FluoroGold; 3) fluorescein dextran and FluoroRuby; 4) FluoroGold and green beads; 5) FluoroGold and red beads; 6) FluoroRuby and green beads; and, 7) green beads and red beads. For each combination, a mixture was injected into the left inferior colliculus. After one week to allow for transport, labeled cells were counted in the right inferior colliculus and the left temporal cortex. For each mixture, the results were similar for the two areas. The percentage of cells that were double-labeled varied from 0% to 100%, depending on tracer combination. The highest efficiencies (>96%) were observed with red beads and green beads or with FluoroRuby and fluorescein dextran. The limited efficiency of other mixtures could be accounted for only in part by incomplete overlap of the two tracers at the injection site. The results indicate that the specific combination of tracers used to search for collateral projections can greatly affect the findings.
Abstract A common method for identifying collateral projections is to inject different retrograde tracers into two targets and examine labeled cells for the presence of both tracers. Double-labeled cells are considered to have collateral projections to the two injection sites. This method is widely considered to underestimate the extent of collaterals. To test the efficiency of double-labeling, we mixed equal volumes of two tracers, injected them into one site in a guinea-pig brain, and counted the resulting labeled cells. Ideally, the tracers would have precisely overlapping injection sites and all labeled cells would contain both tracers. We tested several combinations of tracers: 1) Fast Blue and fluorescein dextran; 2) fluorescein dextran and FluoroGold; 3) fluorescein dextran and FluoroRuby; 4) FluoroGold and green beads; 5) FluoroGold and red beads; 6) FluoroRuby and green beads; and, 7) green beads and red beads. For each combination, a mixture was injected into the left inferior colliculus. After 1 week to allow for transport, labeled cells were counted in the right inferior colliculus and the left temporal cortex. For each mixture, the results were similar for the two areas. The percentage of cells that were double-labeled varied from 0% to 100%, depending on tracer combination. The highest efficiencies (>96%) were observed with red beads and green beads or with FluoroRuby and fluorescein dextran. The limited efficiency of other mixtures could be accounted for only in part by incomplete overlap of the two tracers at the injection site. The results indicate that the specific combination of tracers used to search for collateral projections can greatly affect the findings.
A common method for identifying collateral projections is to inject different retrograde tracers into two targets and examine labeled cells for the presence of both tracers. Double-labeled cells are considered to have collateral projections to the two injection sites. This method is widely considered to underestimate the extent of collaterals. To test the efficiency of double-labeling, we mixed equal volumes of two tracers, injected them into one site in a guinea-pig brain, and counted the resulting labeled cells. Ideally, the tracers would have precisely overlapping injection sites and all labeled cells would contain both tracers. We tested several combinations of tracers: 1) Fast Blue and fluorescein dextran; 2) fluorescein dextran and FluoroGold; 3) fluorescein dextran and FluoroRuby; 4) FluoroGold and green beads; 5) FluoroGold and red beads; 6) FluoroRuby and green beads; and, 7) green beads and red beads. For each combination, a mixture was injected into the left inferior colliculus. After 1 week to allow for transport, labeled cells were counted in the right inferior colliculus and the left temporal cortex. For each mixture, the results were similar for the two areas. The percentage of cells that were double-labeled varied from 0% to 100%, depending on tracer combination. The highest efficiencies (>96%) were observed with red beads and green beads or with FluoroRuby and fluorescein dextran. The limited efficiency of other mixtures could be accounted for only in part by incomplete overlap of the two tracers at the injection site. The results indicate that the specific combination of tracers used to search for collateral projections can greatly affect the findings.
A common method for identifying collateral projections is to inject different retrograde tracers into two targets and examine labeled cells for the presence of both tracers. Double-labeled cells are considered to have collateral projections to the two injection sites. This method is widely considered to underestimate the extent of collaterals. To test the efficiency of double-labeling, we mixed equal volumes of two tracers, injected them into one site in a guinea-pig brain, and counted the resulting labeled cells. Ideally, the tracers would have precisely overlapping injection sites and all labeled cells would contain both tracers. We tested several combinations of tracers: 1) Fast Blue and fluorescein dextran; 2) fluorescein dextran and FluoroGold; 3) fluorescein dextran and FluoroRuby; 4) FluoroGold and green beads; 5) FluoroGold and red beads; 6) FluoroRuby and green beads; and, 7) green beads and red beads. For each combination, a mixture was injected into the left inferior colliculus. After 1 week to allow for transport, labeled cells were counted in the right inferior colliculus and the left temporal cortex. For each mixture, the results were similar for the two areas. The percentage of cells that were double-labeled varied from 0% to 100%, depending on tracer combination. The highest efficiencies (>96%) were observed with red beads and green beads or with FluoroRuby and fluorescein dextran. The limited efficiency of other mixtures could be accounted for only in part by incomplete overlap of the two tracers at the injection site. The results indicate that the specific combination of tracers used to search for collateral projections can greatly affect the findings.
Author Schofield, B.R
Motts, S.D
Sorensen, K.A
Schofield, R.M
AuthorAffiliation b Neuroscience Graduate Program, School of Biomedical Sciences, Kent State University, Kent, OH
a Dept. of Neurobiology, Northeastern Ohio Universities College of Medicine, Rootstown, OH
AuthorAffiliation_xml – name: a Dept. of Neurobiology, Northeastern Ohio Universities College of Medicine, Rootstown, OH
– name: b Neuroscience Graduate Program, School of Biomedical Sciences, Kent State University, Kent, OH
Author_xml – sequence: 1
  fullname: Schofield, B.R
– sequence: 2
  fullname: Schofield, R.M
– sequence: 3
  fullname: Sorensen, K.A
– sequence: 4
  fullname: Motts, S.D
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18767092$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17379419$$D View this record in MEDLINE/PubMed
BookMark eNqNktuKFDEQhoOsuAd9BWkEvZuxcuhO4sWCrEdY2Av3PmTS1TsZe5IxSa_u25tmBncVQUNBLvLVX1X565QchRiQkBcUlhRo93qzDDilmJ3H4HDJAOQSWI3uETmhSvKFbIU4IifAoVuIlrFjcprzBuppBX9CjqnkUguqT0i5Ck1ZYzNlbOLQJCwp3iTbY1OSdZhyM8TU-B5D8YN3tvgYZtD-qLeL42gLJjvm5rsv62Y7jcXvRmyGcYoJs6tpf9F8Sh4PNQefHe4zcv3h_fXFp8Xl1cfPF28vF64DWhZMA2gJtNccQNnODQp6qVsuOiqYElqzVTtoUCuUSlMnBcN2YCuugHPe8jNyvpfdTast9nMztVWzS35r052J1pvfX4Jfm5t4a1inoFOiCrw6CKT4bcJczNbXmerQAeOUjQTBpeTdP0Fax1Ci1RV8swdd9S8nHH51Q8HM5pqNeWiumc01wGrMVZ4_nOc-9eBmBV4eAJudHYdkg_P5nlOyk6BZ5d7tOayff-sxmUO53id0xfTR_18_53_IuNGHuiTjV7zDvIlTCtVeQ02uCebLvI7zNoKEqswl_wnDCuJ2
CODEN NRSCDN
CitedBy_id crossref_primary_10_1016_j_nbd_2016_12_005
crossref_primary_10_1007_s00429_020_02041_6
crossref_primary_10_1038_nprot_2009_93
crossref_primary_10_3389_fnsys_2014_00188
crossref_primary_10_1093_cercor_bhq286
crossref_primary_10_1002_cne_23527
crossref_primary_10_3390_pr7060336
crossref_primary_10_1016_j_neuroscience_2011_01_044
crossref_primary_10_1038_s41598_017_08331_0
crossref_primary_10_1002_cne_21997
crossref_primary_10_1016_j_brainres_2013_04_057
crossref_primary_10_3389_fnsys_2021_674098
crossref_primary_10_1002_nau_23456
crossref_primary_10_1523_JNEUROSCI_0721_23_2023
crossref_primary_10_1007_s00429_020_02098_3
crossref_primary_10_1038_nprot_2007_263
crossref_primary_10_1093_cercor_bhad227
crossref_primary_10_1016_j_neulet_2010_11_007
crossref_primary_10_1007_s00429_013_0543_5
crossref_primary_10_1515_BC_2008_100
crossref_primary_10_1016_j_jchemneu_2013_04_003
crossref_primary_10_1007_s00429_021_02289_6
crossref_primary_10_1016_j_jneumeth_2016_06_004
crossref_primary_10_3389_fnana_2014_00070
crossref_primary_10_3389_fncir_2021_715369
crossref_primary_10_1016_j_neuroscience_2009_01_012
crossref_primary_10_1016_j_neuroscience_2008_01_010
crossref_primary_10_1002_cne_24600
crossref_primary_10_1007_s00221_008_1690_4
crossref_primary_10_1016_j_neuroscience_2009_02_036
crossref_primary_10_3233_RNN_170750
crossref_primary_10_3389_fnana_2014_00010
crossref_primary_10_1016_j_neulet_2015_02_033
crossref_primary_10_1007_s00429_018_1689_y
crossref_primary_10_1016_j_neuroscience_2008_11_013
crossref_primary_10_1371_journal_pone_0060093
crossref_primary_10_3389_fnana_2014_00017
crossref_primary_10_3389_fnana_2014_00136
crossref_primary_10_7554_eLife_43770
crossref_primary_10_1093_cercor_bhn259
crossref_primary_10_1523_JNEUROSCI_1436_19_2019
crossref_primary_10_1016_j_jss_2012_03_053
crossref_primary_10_1186_s13024_019_0308_6
crossref_primary_10_1007_s00775_017_1503_y
crossref_primary_10_1002_0471142301_ns0117s43
Cites_doi 10.1016/S0165-0270(97)02227-9
10.1007/s00221-003-1604-4
10.1046/j.1460-9568.2000.00897.x
10.1007/s10162-005-0025-4
10.1016/0006-8993(94)91974-7
10.1016/0006-8993(90)91358-N
10.1016/0006-8993(86)91180-7
10.1016/S0301-0082(00)00019-8
10.1016/0306-4522(94)90208-9
10.1016/0165-0270(82)90083-8
10.1016/S1385-299X(98)00007-5
10.1016/0165-0270(95)00162-X
10.1016/S0165-0270(02)00098-5
10.1002/cne.902720111
10.1016/0006-8993(84)90885-0
10.1016/S0304-3940(97)00183-3
10.1016/0165-0270(82)90084-X
10.1016/S0165-0270(99)00044-8
10.1002/cne.903120106
10.1016/0165-0270(93)90114-7
10.1523/JNEUROSCI.12-04-01319.1992
10.1016/0165-0270(94)90142-2
10.1016/j.brainres.2005.02.015
10.1002/cne.20334
10.1002/cne.903170409
ContentType Journal Article
Copyright IBRO
2007 IBRO
2007 INIST-CNRS
Copyright_xml – notice: IBRO
– notice: 2007 IBRO
– notice: 2007 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
5PM
DOI 10.1016/j.neuroscience.2007.02.026
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1873-7544
EndPage 783
ExternalDocumentID 10_1016_j_neuroscience_2007_02_026
17379419
18767092
S0306452207001637
1_s2_0_S0306452207001637
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDCD NIH HHS
  grantid: DC04391
– fundername: NIDCD NIH HHS
  grantid: R01 DC004391
– fundername: NIDCD NIH HHS
  grantid: R01 DC004391-08
GroupedDBID ---
--K
--M
-DZ
-~X
.1-
.55
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABTEW
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEVXI
AFCTW
AFJKZ
AFKWA
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMQ
HVGLF
HZ~
IHE
J1W
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OP~
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSN
SSZ
T5K
UNMZH
WUQ
X7M
YYP
Z5R
ZGI
ZXP
~G-
AADPK
AAIAV
ABYKQ
AJBFU
EFLBG
08R
AAUGY
ABPIF
ABPTK
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7X8
5PM
ID FETCH-LOGICAL-c601t-29009701d93008a6cf80d79534614284992b5f908be7891c742e5f2b38033353
IEDL.DBID AIKHN
ISSN 0306-4522
IngestDate Tue Sep 17 21:13:28 EDT 2024
Fri Oct 25 01:59:16 EDT 2024
Sun Sep 29 07:30:31 EDT 2024
Thu Sep 26 16:35:48 EDT 2024
Sat Sep 28 07:44:38 EDT 2024
Sun Oct 22 16:08:34 EDT 2023
Fri Feb 23 02:23:11 EST 2024
Tue Oct 15 22:55:52 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords FG
fluorescent microspheres
fluorescent tracers
axon branching
FluoroGold
MW
molecular weight
FR
RB
red beads
FluoroRuby (tetramethylrhodamine dextran)
fluorescent dextran
Fast Blue
inferior colliculus
IC
GB
green beads
FB
FD
fluorescein dextran
Dextran
Axonic collateral
Axon
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c601t-29009701d93008a6cf80d79534614284992b5f908be7891c742e5f2b38033353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Section Editor: Dr. Charles R. Gerfen
OpenAccessLink https://europepmc.org/articles/pmc2680684?pdf=render
PMID 17379419
PQID 19708459
PQPubID 23462
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2680684
proquest_miscellaneous_70437736
proquest_miscellaneous_19708459
crossref_primary_10_1016_j_neuroscience_2007_02_026
pubmed_primary_17379419
pascalfrancis_primary_18767092
elsevier_sciencedirect_doi_10_1016_j_neuroscience_2007_02_026
elsevier_clinicalkeyesjournals_1_s2_0_S0306452207001637
PublicationCentury 2000
PublicationDate 2007-05-11
PublicationDateYYYYMMDD 2007-05-11
PublicationDate_xml – month: 05
  year: 2007
  text: 2007-05-11
  day: 11
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: United States
PublicationTitle Neuroscience
PublicationTitleAlternate Neuroscience
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Lanciego, Luquin, Guillen, Gimenez-Amaya (bib19) 1998; 2
Hallman, Schofield, Lin (bib14) 1988; 272
Schofield, Coomes, Schofield (bib26) 2006; 7
Doucet, Molavi, Ryugo (bib10) 2003; 153
Choi, Li, Raisman (bib5) 2002; 117
Alheid, Carlsen, De Olmos, Heimer (bib1) 1984; 292
Novikova, Novikov, Kellerth (bib22) 1997; 74
Dado, Burstein, Cliffer, Giesler (bib7) 1990; 533
Muly, Fitzpatrick (bib21) 1992; 12
Schofield (bib24) 1991; 312
Güntürkün, Melsbach, Hörster, Daniel (bib13) 1993; 49
Köbbert, Apps, Bechmann, Lanciego, Mey, Thanos (bib17) 2000; 62
Apps, Garwicz (bib2) 2000; 12
Illert, Fritz, Aschoff, Holländer (bib15) 1982; 6
Schofield, Cant (bib25) 1992; 317
Kuypers, Huisman (bib18) 1984; Vol. 5
Fisher, Boylan, Hull, Buchwald, Levine (bib12) 1986; 384
Burger, Cramer, Pfeiffer, Rubel (bib4) 2005; 481
Kaneko, Saeki, Lee, Mizuno (bib16) 1996; 65
Coomes, Schofield, Schofield (bib6) 2005; 1042
Féger, Bevan, Crossman (bib11) 1994; 60
Aschoff, Holländer (bib3) 1982; 6
Richmond, Gladdy, Creasy, Kitamura, Smits, Thomson (bib23) 1994; 53
Deschênes, Bourassa, Pinault (bib9) 1994; 664
Deng, Rogers (bib8) 1999; 89
Li, Mizuno (bib20) 1997; 225
6697205 - Brain Res. 1984 Jan 30;292(1):17-22
1744244 - J Comp Neurol. 1991 Oct 1;312(1):68-76
10856608 - Prog Neurobiol. 2000 Nov;62(4):327-51
9143008 - Neurosci Lett. 1997 Mar 28;225(1):21-4
8052406 - Neuroscience. 1994 May;60(1):125-32
7895031 - Brain Res. 1994 Nov 21;664(1-2):215-9
1705157 - Brain Res. 1990 Nov 19;533(2):329-33
7144234 - J Neurosci Methods. 1982 Sep;6(3):179-97
3779389 - Brain Res. 1986 Oct 8;384(2):395-400
6183536 - J Neurosci Methods. 1982 Sep;6(3):199-218
12100982 - J Neurosci Methods. 2002 Jun 30;117(2):167-72
9210570 - J Neurosci Methods. 1997 Jun 6;74(1):9-15
1578006 - J Comp Neurol. 1992 Mar 22;317(4):438-55
7527476 - J Neurosci Methods. 1994 Jul;53(1):35-46
8740593 - J Neurosci Methods. 1996 Apr;65(2):157-65
9630705 - Brain Res Brain Res Protoc. 1998 Jun;2(4):323-32
15558730 - J Comp Neurol. 2005 Jan 3;481(1):6-18
13680047 - Exp Brain Res. 2003 Dec;153(4):461-6
1313492 - J Neurosci. 1992 Apr;12(4):1319-34
10476686 - J Neurosci Methods. 1999 Jul 1;89(1):75-86
10651875 - Eur J Neurosci. 2000 Jan;12(1):205-14
16557424 - J Assoc Res Otolaryngol. 2006 Jun;7(2):95-109
7505865 - J Neurosci Methods. 1993 Aug;49(1-2):103-11
3385021 - J Comp Neurol. 1988 Jun 1;272(1):149-60
15823254 - Brain Res. 2005 Apr 25;1042(1):62-72
Choi (10.1016/j.neuroscience.2007.02.026_bib5) 2002; 117
Muly (10.1016/j.neuroscience.2007.02.026_bib21) 1992; 12
Lanciego (10.1016/j.neuroscience.2007.02.026_bib19) 1998; 2
Li (10.1016/j.neuroscience.2007.02.026_bib20) 1997; 225
Hallman (10.1016/j.neuroscience.2007.02.026_bib14) 1988; 272
Kuypers (10.1016/j.neuroscience.2007.02.026_bib18) 1984; Vol. 5
Schofield (10.1016/j.neuroscience.2007.02.026_bib25) 1992; 317
Deschênes (10.1016/j.neuroscience.2007.02.026_bib9) 1994; 664
Schofield (10.1016/j.neuroscience.2007.02.026_bib26) 2006; 7
Köbbert (10.1016/j.neuroscience.2007.02.026_bib17) 2000; 62
Dado (10.1016/j.neuroscience.2007.02.026_bib7) 1990; 533
Fisher (10.1016/j.neuroscience.2007.02.026_bib12) 1986; 384
Illert (10.1016/j.neuroscience.2007.02.026_bib15) 1982; 6
Alheid (10.1016/j.neuroscience.2007.02.026_bib1) 1984; 292
Kaneko (10.1016/j.neuroscience.2007.02.026_bib16) 1996; 65
Apps (10.1016/j.neuroscience.2007.02.026_bib2) 2000; 12
Güntürkün (10.1016/j.neuroscience.2007.02.026_bib13) 1993; 49
Schofield (10.1016/j.neuroscience.2007.02.026_bib24) 1991; 312
Aschoff (10.1016/j.neuroscience.2007.02.026_bib3) 1982; 6
Féger (10.1016/j.neuroscience.2007.02.026_bib11) 1994; 60
Novikova (10.1016/j.neuroscience.2007.02.026_bib22) 1997; 74
Burger (10.1016/j.neuroscience.2007.02.026_bib4) 2005; 481
Doucet (10.1016/j.neuroscience.2007.02.026_bib10) 2003; 153
Richmond (10.1016/j.neuroscience.2007.02.026_bib23) 1994; 53
Coomes (10.1016/j.neuroscience.2007.02.026_bib6) 2005; 1042
Deng (10.1016/j.neuroscience.2007.02.026_bib8) 1999; 89
References_xml – volume: 1042
  start-page: 62
  year: 2005
  end-page: 72
  ident: bib6
  article-title: Unilateral and bilateral projections from cortical cells to the inferior colliculus in guinea pigs
  publication-title: Brain Res
  contributor:
    fullname: Schofield
– volume: 62
  start-page: 327
  year: 2000
  end-page: 351
  ident: bib17
  article-title: Current concepts in neuroanatomical tracing
  publication-title: Prog Neurobiol
  contributor:
    fullname: Thanos
– volume: 272
  start-page: 149
  year: 1988
  end-page: 160
  ident: bib14
  article-title: Dendritic morphology and axon collaterals of corticotectal, corticopontine, and callosal neurons in layer V of primary visual cortex of the hooded rat
  publication-title: J Comp Neurol
  contributor:
    fullname: Lin
– volume: 292
  start-page: 17
  year: 1984
  end-page: 22
  ident: bib1
  article-title: Quantitative determination of collateral anterior olfactory nucleus projections using a fluorescent tracer with an algebraic solution to the problem of double retrograde labeling
  publication-title: Brain Res
  contributor:
    fullname: Heimer
– volume: 117
  start-page: 167
  year: 2002
  end-page: 172
  ident: bib5
  article-title: Fluorescent retrograde neuronal tracers that label the rat facial nucleus: a comparison of Fast Blue, Fluoro-Ruby, Fluoro-Emerald, Fluoro-Gold and DiI
  publication-title: J Neurosci Methods
  contributor:
    fullname: Raisman
– volume: 60
  start-page: 125
  year: 1994
  end-page: 132
  ident: bib11
  article-title: The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: a comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study
  publication-title: Neuroscience
  contributor:
    fullname: Crossman
– volume: 6
  start-page: 199
  year: 1982
  end-page: 218
  ident: bib15
  article-title: Fluorescent compounds as retrograde tracers compared with horseradish peroxidase (HRP)
  publication-title: J Neurosci Methods
  contributor:
    fullname: Holländer
– volume: 49
  start-page: 103
  year: 1993
  end-page: 111
  ident: bib13
  article-title: Different sets of afferents are demonstrated by the fluorescent tracers Fast Blue and Rhodamine
  publication-title: J Neurosci Methods
  contributor:
    fullname: Daniel
– volume: 6
  start-page: 179
  year: 1982
  end-page: 197
  ident: bib3
  article-title: Fluorescent compounds as retrograde tracers compared with horseradish peroxidase (HRP)
  publication-title: J Neurosci Methods
  contributor:
    fullname: Holländer
– volume: 65
  start-page: 157
  year: 1996
  end-page: 165
  ident: bib16
  article-title: Improved retrograde axonal transport and subsequent visualization of tetramethylrhodamine (TMR)-dextran amine by means of an acidic injection vehicle and antibodies against TMR
  publication-title: J Neurosci Methods
  contributor:
    fullname: Mizuno
– volume: 12
  start-page: 1319
  year: 1992
  end-page: 1334
  ident: bib21
  article-title: The morphological basis for binocular and ON/OFF convergence in tree shrew striate cortex
  publication-title: J Neurosci
  contributor:
    fullname: Fitzpatrick
– volume: 74
  start-page: 9
  year: 1997
  end-page: 15
  ident: bib22
  article-title: Persistent neuronal labeling by retrograde fluorescent tracers: a comparison between Fast Blue, Fluoro-Gold and various dextran conjugates
  publication-title: J Neurosci Methods
  contributor:
    fullname: Kellerth
– volume: 533
  start-page: 329
  year: 1990
  end-page: 333
  ident: bib7
  article-title: Evidence that Fluoro-Gold can be transported avidly through fibers of passage
  publication-title: Brain Res
  contributor:
    fullname: Giesler
– volume: 664
  start-page: 215
  year: 1994
  end-page: 219
  ident: bib9
  article-title: Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons
  publication-title: Brain Res
  contributor:
    fullname: Pinault
– volume: 312
  start-page: 68
  year: 1991
  end-page: 76
  ident: bib24
  article-title: Superior paraolivary nucleus in the pigmented guinea pig: separate classes of neurons project to the inferior colliculus and the cochlear nucleus
  publication-title: J Comp Neurol
  contributor:
    fullname: Schofield
– volume: 53
  start-page: 35
  year: 1994
  end-page: 46
  ident: bib23
  article-title: Efficacy of seven retrograde tracers, compared in multiple-labelling studies of feline motoneurones
  publication-title: J Neurosci Methods
  contributor:
    fullname: Thomson
– volume: 153
  start-page: 461
  year: 2003
  end-page: 466
  ident: bib10
  article-title: The source of corticocollicular and corticobulbar projections in area Te1 of the rat
  publication-title: Exp Brain Res
  contributor:
    fullname: Ryugo
– volume: 384
  start-page: 395
  year: 1986
  end-page: 400
  ident: bib12
  article-title: Branched projections of cat sensorimotor cortex: multiple retrograde labeling via commissural corticocortical, decussated corticostriatal and undecussated corticostriatal axons
  publication-title: Brain Res
  contributor:
    fullname: Levine
– volume: 481
  start-page: 6
  year: 2005
  end-page: 18
  ident: bib4
  article-title: Avian superior olivary nucleus provides divergent inhibitory input to parallel auditory pathways
  publication-title: J Comp Neurol
  contributor:
    fullname: Rubel
– volume: 12
  start-page: 205
  year: 2000
  end-page: 214
  ident: bib2
  article-title: Precise matching of olivo-cortical divergence and cortico-nuclear convergence between somatotopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum
  publication-title: Eur J Neurosci
  contributor:
    fullname: Garwicz
– volume: Vol. 5
  start-page: 307
  year: 1984
  end-page: 340
  ident: bib18
  article-title: Fluorescent neuronal tracers
  publication-title: Advances in cellular neurobiology
  contributor:
    fullname: Huisman
– volume: 89
  start-page: 75
  year: 1999
  end-page: 86
  ident: bib8
  article-title: Differential sensitivities of the two visual pathways of the chick to labelling by fluorescent retrograde tracers
  publication-title: J Neurosci Methods
  contributor:
    fullname: Rogers
– volume: 317
  start-page: 438
  year: 1992
  end-page: 455
  ident: bib25
  article-title: Organization of the superior olivary complex in the guinea pig: II
  publication-title: J Comp Neurol
  contributor:
    fullname: Cant
– volume: 2
  start-page: 323
  year: 1998
  end-page: 332
  ident: bib19
  article-title: Multiple neuroanatomical tracing in primates
  publication-title: Brain Res Protoc
  contributor:
    fullname: Gimenez-Amaya
– volume: 225
  start-page: 21
  year: 1997
  end-page: 24
  ident: bib20
  article-title: Collateral projections from single neurons in the dorsal column nuclei to the inferior colliculus and the ventrobasal thalamus: a retrograde double-labeling study in the rat
  publication-title: Neurosci Lett
  contributor:
    fullname: Mizuno
– volume: 7
  start-page: 95
  year: 2006
  end-page: 109
  ident: bib26
  article-title: Cells in auditory cortex that project to the cochlear nucleus in guinea pigs
  publication-title: J Assoc Res Otolaryngol
  contributor:
    fullname: Schofield
– volume: 74
  start-page: 9
  year: 1997
  ident: 10.1016/j.neuroscience.2007.02.026_bib22
  article-title: Persistent neuronal labeling by retrograde fluorescent tracers: a comparison between Fast Blue, Fluoro-Gold and various dextran conjugates
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(97)02227-9
  contributor:
    fullname: Novikova
– volume: 153
  start-page: 461
  year: 2003
  ident: 10.1016/j.neuroscience.2007.02.026_bib10
  article-title: The source of corticocollicular and corticobulbar projections in area Te1 of the rat
  publication-title: Exp Brain Res
  doi: 10.1007/s00221-003-1604-4
  contributor:
    fullname: Doucet
– volume: 12
  start-page: 205
  year: 2000
  ident: 10.1016/j.neuroscience.2007.02.026_bib2
  article-title: Precise matching of olivo-cortical divergence and cortico-nuclear convergence between somatotopically corresponding areas in the medial C1 and medial C3 zones of the paravermal cerebellum
  publication-title: Eur J Neurosci
  doi: 10.1046/j.1460-9568.2000.00897.x
  contributor:
    fullname: Apps
– volume: 7
  start-page: 95
  year: 2006
  ident: 10.1016/j.neuroscience.2007.02.026_bib26
  article-title: Cells in auditory cortex that project to the cochlear nucleus in guinea pigs
  publication-title: J Assoc Res Otolaryngol
  doi: 10.1007/s10162-005-0025-4
  contributor:
    fullname: Schofield
– volume: 664
  start-page: 215
  year: 1994
  ident: 10.1016/j.neuroscience.2007.02.026_bib9
  article-title: Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons
  publication-title: Brain Res
  doi: 10.1016/0006-8993(94)91974-7
  contributor:
    fullname: Deschênes
– volume: 533
  start-page: 329
  year: 1990
  ident: 10.1016/j.neuroscience.2007.02.026_bib7
  article-title: Evidence that Fluoro-Gold can be transported avidly through fibers of passage
  publication-title: Brain Res
  doi: 10.1016/0006-8993(90)91358-N
  contributor:
    fullname: Dado
– volume: 384
  start-page: 395
  year: 1986
  ident: 10.1016/j.neuroscience.2007.02.026_bib12
  article-title: Branched projections of cat sensorimotor cortex: multiple retrograde labeling via commissural corticocortical, decussated corticostriatal and undecussated corticostriatal axons
  publication-title: Brain Res
  doi: 10.1016/0006-8993(86)91180-7
  contributor:
    fullname: Fisher
– volume: 62
  start-page: 327
  year: 2000
  ident: 10.1016/j.neuroscience.2007.02.026_bib17
  article-title: Current concepts in neuroanatomical tracing
  publication-title: Prog Neurobiol
  doi: 10.1016/S0301-0082(00)00019-8
  contributor:
    fullname: Köbbert
– volume: 60
  start-page: 125
  year: 1994
  ident: 10.1016/j.neuroscience.2007.02.026_bib11
  publication-title: Neuroscience
  doi: 10.1016/0306-4522(94)90208-9
  contributor:
    fullname: Féger
– volume: 6
  start-page: 179
  year: 1982
  ident: 10.1016/j.neuroscience.2007.02.026_bib3
  article-title: Fluorescent compounds as retrograde tracers compared with horseradish peroxidase (HRP)
  publication-title: J Neurosci Methods
  doi: 10.1016/0165-0270(82)90083-8
  contributor:
    fullname: Aschoff
– volume: 2
  start-page: 323
  year: 1998
  ident: 10.1016/j.neuroscience.2007.02.026_bib19
  article-title: Multiple neuroanatomical tracing in primates
  publication-title: Brain Res Protoc
  doi: 10.1016/S1385-299X(98)00007-5
  contributor:
    fullname: Lanciego
– volume: 65
  start-page: 157
  year: 1996
  ident: 10.1016/j.neuroscience.2007.02.026_bib16
  article-title: Improved retrograde axonal transport and subsequent visualization of tetramethylrhodamine (TMR)-dextran amine by means of an acidic injection vehicle and antibodies against TMR
  publication-title: J Neurosci Methods
  doi: 10.1016/0165-0270(95)00162-X
  contributor:
    fullname: Kaneko
– volume: Vol. 5
  start-page: 307
  year: 1984
  ident: 10.1016/j.neuroscience.2007.02.026_bib18
  article-title: Fluorescent neuronal tracers
  contributor:
    fullname: Kuypers
– volume: 117
  start-page: 167
  year: 2002
  ident: 10.1016/j.neuroscience.2007.02.026_bib5
  article-title: Fluorescent retrograde neuronal tracers that label the rat facial nucleus: a comparison of Fast Blue, Fluoro-Ruby, Fluoro-Emerald, Fluoro-Gold and DiI
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(02)00098-5
  contributor:
    fullname: Choi
– volume: 272
  start-page: 149
  year: 1988
  ident: 10.1016/j.neuroscience.2007.02.026_bib14
  article-title: Dendritic morphology and axon collaterals of corticotectal, corticopontine, and callosal neurons in layer V of primary visual cortex of the hooded rat
  publication-title: J Comp Neurol
  doi: 10.1002/cne.902720111
  contributor:
    fullname: Hallman
– volume: 292
  start-page: 17
  year: 1984
  ident: 10.1016/j.neuroscience.2007.02.026_bib1
  article-title: Quantitative determination of collateral anterior olfactory nucleus projections using a fluorescent tracer with an algebraic solution to the problem of double retrograde labeling
  publication-title: Brain Res
  doi: 10.1016/0006-8993(84)90885-0
  contributor:
    fullname: Alheid
– volume: 225
  start-page: 21
  year: 1997
  ident: 10.1016/j.neuroscience.2007.02.026_bib20
  article-title: Collateral projections from single neurons in the dorsal column nuclei to the inferior colliculus and the ventrobasal thalamus: a retrograde double-labeling study in the rat
  publication-title: Neurosci Lett
  doi: 10.1016/S0304-3940(97)00183-3
  contributor:
    fullname: Li
– volume: 6
  start-page: 199
  year: 1982
  ident: 10.1016/j.neuroscience.2007.02.026_bib15
  article-title: Fluorescent compounds as retrograde tracers compared with horseradish peroxidase (HRP)
  publication-title: J Neurosci Methods
  doi: 10.1016/0165-0270(82)90084-X
  contributor:
    fullname: Illert
– volume: 89
  start-page: 75
  year: 1999
  ident: 10.1016/j.neuroscience.2007.02.026_bib8
  article-title: Differential sensitivities of the two visual pathways of the chick to labelling by fluorescent retrograde tracers
  publication-title: J Neurosci Methods
  doi: 10.1016/S0165-0270(99)00044-8
  contributor:
    fullname: Deng
– volume: 312
  start-page: 68
  year: 1991
  ident: 10.1016/j.neuroscience.2007.02.026_bib24
  article-title: Superior paraolivary nucleus in the pigmented guinea pig: separate classes of neurons project to the inferior colliculus and the cochlear nucleus
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903120106
  contributor:
    fullname: Schofield
– volume: 49
  start-page: 103
  year: 1993
  ident: 10.1016/j.neuroscience.2007.02.026_bib13
  article-title: Different sets of afferents are demonstrated by the fluorescent tracers Fast Blue and Rhodamine
  publication-title: J Neurosci Methods
  doi: 10.1016/0165-0270(93)90114-7
  contributor:
    fullname: Güntürkün
– volume: 12
  start-page: 1319
  year: 1992
  ident: 10.1016/j.neuroscience.2007.02.026_bib21
  article-title: The morphological basis for binocular and ON/OFF convergence in tree shrew striate cortex
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.12-04-01319.1992
  contributor:
    fullname: Muly
– volume: 53
  start-page: 35
  year: 1994
  ident: 10.1016/j.neuroscience.2007.02.026_bib23
  article-title: Efficacy of seven retrograde tracers, compared in multiple-labelling studies of feline motoneurones
  publication-title: J Neurosci Methods
  doi: 10.1016/0165-0270(94)90142-2
  contributor:
    fullname: Richmond
– volume: 1042
  start-page: 62
  year: 2005
  ident: 10.1016/j.neuroscience.2007.02.026_bib6
  article-title: Unilateral and bilateral projections from cortical cells to the inferior colliculus in guinea pigs
  publication-title: Brain Res
  doi: 10.1016/j.brainres.2005.02.015
  contributor:
    fullname: Coomes
– volume: 481
  start-page: 6
  year: 2005
  ident: 10.1016/j.neuroscience.2007.02.026_bib4
  article-title: Avian superior olivary nucleus provides divergent inhibitory input to parallel auditory pathways
  publication-title: J Comp Neurol
  doi: 10.1002/cne.20334
  contributor:
    fullname: Burger
– volume: 317
  start-page: 438
  year: 1992
  ident: 10.1016/j.neuroscience.2007.02.026_bib25
  article-title: Organization of the superior olivary complex in the guinea pig: II
  publication-title: J Comp Neurol
  doi: 10.1002/cne.903170409
  contributor:
    fullname: Schofield
SSID ssj0000543
Score 2.1400828
Snippet Abstract A common method for identifying collateral projections is to inject different retrograde tracers into two targets and examine labeled cells for the...
A common method for identifying collateral projections is to inject different retrograde tracers into two targets and examine labeled cells for the presence of...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 773
SubjectTerms Amidines
Animals
axon branching
Axons - metabolism
Axons - physiology
Biological and medical sciences
Brain - anatomy & histology
Brain Mapping
Coloring Agents - administration & dosage
Coloring Agents - metabolism
Dextrans - administration & dosage
Dextrans - metabolism
Fast Blue
Female
Fluoresceins - administration & dosage
Fluoresceins - metabolism
fluorescent dextran
fluorescent microspheres
fluorescent tracers
FluoroGold
Fundamental and applied biological sciences. Psychology
Guinea Pigs
Indicators and Reagents - administration & dosage
Male
Neural Pathways - anatomy & histology
Neural Pathways - metabolism
Neurology
Vertebrates: nervous system and sense organs
Title On the use of retrograde tracers for identification of axon collaterals with multiple fluorescent retrograde tracers
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0306452207001637
https://dx.doi.org/10.1016/j.neuroscience.2007.02.026
https://www.ncbi.nlm.nih.gov/pubmed/17379419
https://search.proquest.com/docview/19708459
https://search.proquest.com/docview/70437736
https://pubmed.ncbi.nlm.nih.gov/PMC2680684
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7tdi9ICAHLozyKD4hbtn7FjwOHasWqgFgOLNLerDRxRNGSVk0qsZf97YydZNtCkZCQWlVKx05ij2e-scefAV6XmUcckptEC24T6SVPMmN5IqUoTJaiz8nCPOSnczX9Kj9cppcHcNrvhQlplZ3tb216tNbdlXHXmuPlfD7-EtBu4AOnYelUCX0IR3GRaABHk_cfp-cbg5y2yXMon4QCPfdoTPPaoo30HaMhP4lcC_v91N1lVmPrle2xF_tw6e_plVv-6uw-3OuAJpm07_IADnz1EI4nFQbZP67JGxJTP-Oc-jE0nyuCQJCsa08WJVn5JmZtFZ5gzTkCRILQlsyLLrModmYQzH7ib9SksI_5qiZhVpf0OYqkvFovVi1d1J46H8HF2buL02nSHceQ5Bi1NQm3YdMHZYUVCBwylZeGFtqmQqpA24ahE5-lpaVm5rWxLMeg26clnwlDhRCpeAyDalH5p0AkzzEwwW_BBNqMwrKisNJIo5hXkpZDEH3bu2VLuuH6bLTvbrvHwima2lGOHzUE3XeT67eVoiH0dTcqa8dcjZLuD80ZwtvbkjvK59Cv_NOdRztasXlo9DWaWj6EV72aOBy-YU0mq_xijY-ELWpkav8uoQP7lBZ4kyetWm1q1wKtKcOyekfhbgUCdfjuP9X8W6QQ58pQZeSz_3zx53CnnetOE8ZewKBZrf1LBGnNbASHJzds1A3FX6eXPxI
link.rule.ids 230,315,783,787,888,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VcgCpQkB5LI_WB8Qt3fgRPw4cqopqgbYcWKTerGzsqItKdrXJSuXCb2fsJN1dWCQkpESRkomT2OOZb5zxZ4A3Ze4RhxQ6UZyZRHjBklwblgjBnc4z9Dl5GIc8v5Cjr-LjZXa5Ayf9XJiQVtnZ_tamR2vdnRl2tTmcT6fDLwHtBj7wNPw6lVzdgbsi8GehUh_9XOV5ICZp10jG0DmI98yjMclrjTTSd3yG7CgyLWz3UnvzvMa6K9tFL7ah0t-TK9e81elDeNDBTHLcfskj2PHVY9g_rjDE_v6DvCUx8TOOqO9D87kiCAPJsvZkVpKFb2LOlvMESy4QHhIEtmTquryi2JRBML_BY9SjMIv5uiZhTJf0GYqkvF7OFi1Z1JYyn8D49P34ZJR0izEkBcZsTcJMmPKRUmc4woZcFqVOnTIZFzKQtmHgxCZZaVI98UobWmDI7bOSTbhOOecZfwq71azyz4EIVmBYgrujHC2GM9Q5I7TQknop0nIAvK97O28pN2yfi_bNrrdYWENT2ZThJgeg-may_aRSNIO-7vpkbamtUdL-oTcDeHd754bqWfQq__Tkgw2tWL00ehqVGjaAw15NLHbe8Ecmr_xsia-ENapFZv4uoQL3lOL4kGetWq1KVxxtKcV71YbC3QoE4vDNK9X0KhKIM6lTqcWL__zwQ7g3Gp-f2bMPF59ewv121DtLKH0Fu81i6V8jXGsmB7E7_gK-Ej_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+use+of+retrograde+tracers+for+identification+of+axon+collaterals+with+multiple+fluorescent+retrograde+tracers&rft.jtitle=Neuroscience&rft.au=SCHOFIELD%2C+B.+R&rft.au=SCHOFIELD%2C+R.+M&rft.au=SORENSEN%2C+K.+A&rft.au=MOTTS%2C+S.+D&rft.date=2007-05-11&rft.pub=Elsevier&rft.issn=0306-4522&rft.eissn=1873-7544&rft.volume=146&rft.issue=2&rft.spage=773&rft.epage=783&rft_id=info:doi/10.1016%2Fj.neuroscience.2007.02.026&rft.externalDBID=n%2Fa&rft.externalDocID=18767092
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03064522%2FS0306452207X07358%2Fcov150h.gif