Thermoresponsive Complex Coacervate‐Based Underwater Adhesive
Sandcastle worms have developed protein‐based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the adhesive delivery is the formation of a fluidic complex coacervate phase. After delivery, the adhesive transforms into a solid upon an external...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 21; pp. e1808179 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.05.2019
Wiley-VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sandcastle worms have developed protein‐based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the adhesive delivery is the formation of a fluidic complex coacervate phase. After delivery, the adhesive transforms into a solid upon an external trigger. In this work, a fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) chains and starts out as a fluid complex coacervate that can be injected at room temperature. Upon increasing the temperature above the lower critical solution temperature of PNIPAM, the complex coacervate transitions into a nonflowing hydrogel while preserving its volume—the water content in the material stays constant. The adhesive functions in the presence of water and bonds to different surfaces regardless of their charge. This type of adhesive avoids many of the problems of current underwater adhesives and may be useful to bond biological tissues.
A fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly(N‐isopropylacrylamide) chains. The adhesive starts out as an injectable fluid at room temperature. Upon increasing the temperature, the complex coacervate transitions into a nonflowing hydrogel which bonds to different surfaces. |
---|---|
AbstractList | Sandcastle worms have developed protein‐based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the adhesive delivery is the formation of a fluidic complex coacervate phase. After delivery, the adhesive transforms into a solid upon an external trigger. In this work, a fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) chains and starts out as a fluid complex coacervate that can be injected at room temperature. Upon increasing the temperature above the lower critical solution temperature of PNIPAM, the complex coacervate transitions into a nonflowing hydrogel while preserving its volume—the water content in the material stays constant. The adhesive functions in the presence of water and bonds to different surfaces regardless of their charge. This type of adhesive avoids many of the problems of current underwater adhesives and may be useful to bond biological tissues.
A fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly(N‐isopropylacrylamide) chains. The adhesive starts out as an injectable fluid at room temperature. Upon increasing the temperature, the complex coacervate transitions into a nonflowing hydrogel which bonds to different surfaces. Sandcastle worms have developed protein-based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the adhesive delivery is the formation of a fluidic complex coacervate phase. After delivery, the adhesive transforms into a solid upon an external trigger. In this work, a fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) chains and starts out as a fluid complex coacervate that can be injected at room temperature. Upon increasing the temperature above the lower critical solution temperature of PNIPAM, the complex coacervate transitions into a nonflowing hydrogel while preserving its volume-the water content in the material stays constant. The adhesive functions in the presence of water and bonds to different surfaces regardless of their charge. This type of adhesive avoids many of the problems of current underwater adhesives and may be useful to bond biological tissues. Abstract Sandcastle worms have developed protein‐based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the adhesive delivery is the formation of a fluidic complex coacervate phase. After delivery, the adhesive transforms into a solid upon an external trigger. In this work, a fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly( N ‐isopropylacrylamide) (PNIPAM) chains and starts out as a fluid complex coacervate that can be injected at room temperature. Upon increasing the temperature above the lower critical solution temperature of PNIPAM, the complex coacervate transitions into a nonflowing hydrogel while preserving its volume—the water content in the material stays constant. The adhesive functions in the presence of water and bonds to different surfaces regardless of their charge. This type of adhesive avoids many of the problems of current underwater adhesives and may be useful to bond biological tissues. |
Author | van den Heuvel, Nicoline van der Gucht, Jasper Heckert, Olaf Dompé, Marco Cedano‐Serrano, Francisco J. Kamperman, Marleen Tran, Yvette Creton, Costantino Hourdet, Dominique |
Author_xml | – sequence: 1 givenname: Marco surname: Dompé fullname: Dompé, Marco organization: Wageningen University & Research – sequence: 2 givenname: Francisco J. surname: Cedano‐Serrano fullname: Cedano‐Serrano, Francisco J. organization: Sorbonne University – sequence: 3 givenname: Olaf surname: Heckert fullname: Heckert, Olaf organization: Wageningen University & Research – sequence: 4 givenname: Nicoline surname: van den Heuvel fullname: van den Heuvel, Nicoline organization: Wageningen University & Research – sequence: 5 givenname: Jasper surname: van der Gucht fullname: van der Gucht, Jasper organization: Wageningen University & Research – sequence: 6 givenname: Yvette surname: Tran fullname: Tran, Yvette organization: Sorbonne University – sequence: 7 givenname: Dominique surname: Hourdet fullname: Hourdet, Dominique organization: Sorbonne University – sequence: 8 givenname: Costantino surname: Creton fullname: Creton, Costantino organization: Sorbonne University – sequence: 9 givenname: Marleen surname: Kamperman fullname: Kamperman, Marleen email: marleen.kamperman@rug.nl organization: University of Groningen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30924992$$D View this record in MEDLINE/PubMed https://hal.science/hal-02396284$$DView record in HAL |
BookMark | eNqFkc1u1DAUhS3Uik4LW5ZoJDawyHDtxH9sUBigRRrEpl1bnviGSZU4wW5m6I5H4Bn7JHU0wyCxYeMjHX3nyLrnnJz43iMhLygsKAB7a11nFwyoAkWlfkJmlDOaFaD5CZmBznmmRaHOyHmMtwCgBYin5CwHzQqt2Yy8v95g6PqAceh9bLY4X_bd0OLPpLbCsLV3-PDr9wcb0c1vvMOwS06Yl26DE_6MnNa2jfj8oBfk5vOn6-VVtvp2-WVZrrJKANWZWzulFIhaoapZZWXFc8aFo1QKVXBHhZCu4LKWvFC2YBYlqyBZWmOVK5FfkHf73p39jr7x6THehqqJpreNaZt1sOHe7MZgfDvJMK6j4SkvdAq_2Yc3tjVDaLoJnWJX5cpMHrBcC6aKLU3s6z07hP7HiPHOdE2ssG2tx36MhjEAKQVIntBX_6C3_Rh8OkOimJQgFchELfZUFfoYA9bHH1Aw04Zm2tAcN0yBl4facd2hO-J_RkuAPtyiafH-P3Wm_Pi1_Fv-CN53qhs |
CitedBy_id | crossref_primary_10_1039_C9MH01148J crossref_primary_10_1039_D1TA01658J crossref_primary_10_1021_acsmacrolett_1c00647 crossref_primary_10_1021_acsami_3c04009 crossref_primary_10_1093_rb_rbac026 crossref_primary_10_1002_adma_201905761 crossref_primary_10_1007_s11431_021_1850_7 crossref_primary_10_1021_acsbiomaterials_0c01677 crossref_primary_10_1016_j_apmt_2022_101436 crossref_primary_10_1002_anie_202102158 crossref_primary_10_1016_j_cej_2021_134258 crossref_primary_10_1016_j_foodres_2019_108781 crossref_primary_10_1016_j_jcis_2024_04_121 crossref_primary_10_1021_acsami_0c20186 crossref_primary_10_1002_adma_201904957 crossref_primary_10_1039_D3TB00251A crossref_primary_10_1021_acs_macromol_3c02352 crossref_primary_10_1049_nbt2_12116 crossref_primary_10_1002_advs_202203890 crossref_primary_10_1007_s10118_024_3141_5 crossref_primary_10_1016_j_jcis_2020_12_067 crossref_primary_10_1016_j_progpolymsci_2021_101388 crossref_primary_10_1021_acsami_1c13744 crossref_primary_10_1021_acssuschemeng_2c05411 crossref_primary_10_1002_chem_202102902 crossref_primary_10_1021_acs_macromol_9b01924 crossref_primary_10_1002_SMMD_20220024 crossref_primary_10_1016_j_carbpol_2023_120836 crossref_primary_10_1016_j_ijbiomac_2024_132360 crossref_primary_10_1021_acs_chemrev_0c00798 crossref_primary_10_1002_advs_202300270 crossref_primary_10_1016_j_isci_2022_105106 crossref_primary_10_1016_j_colsurfa_2024_134597 crossref_primary_10_3390_gels7030148 crossref_primary_10_1002_smll_202004132 crossref_primary_10_1039_D2CS00618A crossref_primary_10_1016_j_cej_2023_148487 crossref_primary_10_1021_acsmacrolett_0c00252 crossref_primary_10_3390_polym13040666 crossref_primary_10_1016_j_progpolymsci_2024_101792 crossref_primary_10_1093_burnst_tkac033 crossref_primary_10_1038_s41467_022_32257_5 crossref_primary_10_3390_polym12020320 crossref_primary_10_1016_j_cej_2021_133460 crossref_primary_10_1002_admi_202101038 crossref_primary_10_1002_admt_202201477 crossref_primary_10_1002_ange_202100064 crossref_primary_10_1016_j_cocis_2019_11_010 crossref_primary_10_1021_acssuschemeng_0c01179 crossref_primary_10_1021_acssuschemeng_1c03183 crossref_primary_10_1039_C9PY01227C crossref_primary_10_1002_smtd_202201235 crossref_primary_10_1016_j_actbio_2022_09_075 crossref_primary_10_1021_acs_iecr_3c03830 crossref_primary_10_1021_acsnano_0c02396 crossref_primary_10_2174_1389557522666220622112959 crossref_primary_10_1002_adhm_202102749 crossref_primary_10_1016_j_cej_2021_131049 crossref_primary_10_1002_adfm_202105464 crossref_primary_10_1002_mabi_202300379 crossref_primary_10_1021_acs_chemrev_3c00615 crossref_primary_10_1002_anie_202204611 crossref_primary_10_1002_advs_202308538 crossref_primary_10_1002_adfm_202009334 crossref_primary_10_1002_admi_202201491 crossref_primary_10_1016_j_eurpolymj_2020_110034 crossref_primary_10_1021_acs_macromol_1c01461 crossref_primary_10_1002_marc_201900653 crossref_primary_10_1002_adfm_202403290 crossref_primary_10_1016_j_chempr_2023_02_012 crossref_primary_10_1021_acsmaterialslett_1c00167 crossref_primary_10_1002_ange_202204611 crossref_primary_10_1016_j_jcis_2022_11_071 crossref_primary_10_1016_j_jclepro_2021_127309 crossref_primary_10_1039_C9SC02555C crossref_primary_10_1021_acs_macromol_3c00269 crossref_primary_10_1016_j_jcis_2023_05_009 crossref_primary_10_1016_j_matt_2023_08_023 crossref_primary_10_1021_jacs_0c00520 crossref_primary_10_1002_pol_20210668 crossref_primary_10_1002_adma_202210769 crossref_primary_10_3389_fbioe_2022_855013 crossref_primary_10_1016_j_cej_2023_143793 crossref_primary_10_1039_D3SM01114C crossref_primary_10_1016_j_cej_2020_127069 crossref_primary_10_1021_acsapm_0c00185 crossref_primary_10_1021_acsomega_2c04163 crossref_primary_10_1002_adfm_202109687 crossref_primary_10_1038_s41467_023_44564_6 crossref_primary_10_1016_j_cej_2023_147639 crossref_primary_10_1002_adfm_202305484 crossref_primary_10_1021_acsmaterialslett_3c01566 crossref_primary_10_1186_s40824_023_00397_4 crossref_primary_10_1002_anie_202100064 crossref_primary_10_1002_adfm_202214091 crossref_primary_10_1016_j_bioadv_2023_213670 crossref_primary_10_1016_j_mtbio_2023_100592 crossref_primary_10_1002_adma_202110062 crossref_primary_10_1021_acs_macromol_2c00340 crossref_primary_10_1016_j_ijadhadh_2024_103697 crossref_primary_10_3390_gels9080616 crossref_primary_10_1002_admi_201901785 crossref_primary_10_1021_acs_macromol_0c00728 crossref_primary_10_1016_j_ijbiomac_2023_125773 crossref_primary_10_1126_sciadv_abe8739 crossref_primary_10_3390_ijms21010100 crossref_primary_10_1039_D0SM02236E crossref_primary_10_1016_j_ces_2023_119164 crossref_primary_10_1039_D1CS00316J crossref_primary_10_1021_acsapm_0c00479 crossref_primary_10_1016_j_cis_2021_102521 crossref_primary_10_1039_D3TB00099K crossref_primary_10_1002_pol_20210521 crossref_primary_10_1039_D3MH00301A crossref_primary_10_1021_acs_biomac_3c00840 crossref_primary_10_1002_marc_202000149 crossref_primary_10_1021_acs_macromol_2c01487 crossref_primary_10_1002_adhm_202300669 crossref_primary_10_1021_acs_macromol_1c02361 crossref_primary_10_1039_D2SM01534J crossref_primary_10_1021_acs_macromol_1c02000 crossref_primary_10_1002_advs_202400938 crossref_primary_10_1016_j_mtbio_2022_100369 crossref_primary_10_1021_acs_jpcb_9b08966 crossref_primary_10_1021_acs_chemmater_3c01949 crossref_primary_10_1021_acsami_2c06103 crossref_primary_10_1364_PRJ_380238 crossref_primary_10_1002_agt2_449 crossref_primary_10_1021_acsapm_1c01724 crossref_primary_10_1016_j_cis_2022_102706 crossref_primary_10_1002_adma_202300636 crossref_primary_10_3389_fchem_2022_1007212 crossref_primary_10_1021_acs_macromol_3c02335 crossref_primary_10_1039_D1MA00995H crossref_primary_10_1126_sciadv_abm9744 crossref_primary_10_1021_acsanm_2c00560 crossref_primary_10_1016_j_cej_2021_133017 crossref_primary_10_1039_D3BM01391J crossref_primary_10_1002_ange_202102158 crossref_primary_10_1002_adma_202102983 crossref_primary_10_1073_pnas_2209975119 |
Cites_doi | 10.1007/BF00367494 10.1002/adma.201704640 10.1002/adhm.201500825 10.1002/adfm.201704195 10.1080/10601326808051910 10.1021/bm101076e 10.1039/C6SM02380K 10.1557/mrs2003.124 10.1016/S0032-3861(98)00698-3 10.1021/bm900373c 10.1021/jacs.5b03827 10.1021/acs.macromol.6b02188 10.1021/ja0546424 10.1242/jeb.01330 10.1021/am200082v 10.1016/j.cis.2016.06.008 10.1021/la504611x 10.1039/C7SM02041D 10.1016/j.polymer.2015.01.038 10.1021/bm700886b 10.1080/00218460590944602 10.1002/adhm.201200316 10.1021/ma500500q 10.1021/ma101031t 10.1016/j.polymer.2007.09.040 10.1016/0376-7388(94)00268-4 10.1021/ma301730n 10.1002/adma.200902380 10.1039/b911541b 10.1016/j.cis.2010.10.009 10.1021/acsami.6b00446 10.1038/ncomms9663 10.1002/pol.1975.180130703 10.1039/b919944f 10.1021/ma1000173 10.1021/acs.biomac.6b00300 10.1016/0143-7496(87)90048-0 10.1002/adma.201504059 10.1016/j.jcis.2011.05.080 10.1038/nmat4539 10.1002/adfm.200901903 10.1039/c2sm25868d |
ContentType | Journal Article |
Copyright | 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Distributed under a Creative Commons Attribution 4.0 International License Wageningen University & Research |
Copyright_xml | – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Wageningen University & Research |
DBID | 24P WIN NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 1XC VOOES QVL |
DOI | 10.1002/adma.201808179 |
DatabaseName | Wiley Open Access Wiley Free Archive PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) NARCIS:Publications |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley-Blackwell Open Access Collection url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | oai_library_wur_nl_wurpubs_549969 oai_HAL_hal_02396284v1 10_1002_adma_201808179 30924992 ADMA201808179 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: European Research Council – fundername: European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska‐Curie funderid: 642861 – fundername: European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grantid: 642861 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WIN WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AAYOK ABEML ABTAH ACBWZ ACSCC AFFNX ASPBG AVWKF AZFZN FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH NPM PALCI RIWAO RJQFR SAMSI WTY ZY4 AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 1XC VOOES 6XO AAPBV ABFLS ABHUG ACXME ADAWD ADDAD AETEA AFVGU AGJLS QVL |
ID | FETCH-LOGICAL-c6019-dbd88806f8e8f2ca7c53256d1176845d1667d457f7548a42ae72c07d499ec3863 |
IEDL.DBID | 24P |
ISSN | 0935-9648 |
IngestDate | Thu Oct 13 09:31:44 EDT 2022 Tue Oct 15 14:42:00 EDT 2024 Fri Aug 16 05:02:16 EDT 2024 Thu Oct 10 15:40:35 EDT 2024 Thu Sep 26 15:57:09 EDT 2024 Wed Oct 16 00:49:47 EDT 2024 Sat Aug 24 00:56:36 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | poly(N-isopropylacrylamide) environmentally triggered phase transitions underwater adhesion complex coacervates lower critical solution temperature |
Language | English |
License | Attribution-NonCommercial 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6019-dbd88806f8e8f2ca7c53256d1176845d1667d457f7548a42ae72c07d499ec3863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0177-9680 0000-0002-0328-7014 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201808179 |
PMID | 30924992 |
PQID | 2227707807 |
PQPubID | 2045203 |
PageCount | 6 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_549969 hal_primary_oai_HAL_hal_02396284v1 proquest_miscellaneous_2200776075 proquest_journals_2227707807 crossref_primary_10_1002_adma_201808179 pubmed_primary_30924992 wiley_primary_10_1002_adma_201808179_ADMA201808179 |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc Wiley-VCH Verlag |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
References | 1970; 7 2018; 28 2015; 6 2013; 2 2013; 46 1968; 2 2015; 31 1987; 7 1975; 13 2008; 9 2014; 47 2005; 81 2011; 12 1999; 40 2004; 207 2011; 3 2016; 17 2016; 15 2017; 239 2010; 22 2016; 5 2010; 43 2010; 20 2015; 27 2009; 10 2015; 137 2015; 60 2005; 127 2017; 13 2018; 30 2003; 28 1995; 101 2011; 361 2016; 49 2011; 167 2016; 8 2010; 6 2007; 48 2018; 14 2012; 8 e_1_2_4_40_1 e_1_2_4_41_1 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_42_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_31_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_39_1 e_1_2_4_19_1 |
References_xml | – volume: 17 start-page: 1869 year: 2016 publication-title: Biomacromolecules – volume: 13 start-page: 1074 year: 2017 publication-title: Soft Matter – volume: 81 start-page: 297 year: 2005 publication-title: J. Adhes. – volume: 43 start-page: 3542 year: 2010 publication-title: Macromolecules – volume: 101 start-page: 13 year: 1995 publication-title: J. Membr. Sci. – volume: 12 start-page: 342 year: 2011 publication-title: Biomacromolecules – volume: 9 start-page: 122 year: 2008 publication-title: Biomacromolecules – volume: 361 start-page: 407 year: 2011 publication-title: J. Colloid Interface Sci. – volume: 10 start-page: 2968 year: 2009 publication-title: Biomacromolecules – volume: 46 start-page: 1633 year: 2013 publication-title: Macromolecules – volume: 8 start-page: 8184 year: 2012 publication-title: Soft Matter – volume: 28 start-page: 434 year: 2003 publication-title: MRS Bull. – volume: 13 start-page: 1285 year: 1975 publication-title: J. Polym. Sci., Polym. Phys. Ed. – volume: 43 start-page: 6476 year: 2010 publication-title: Macromolecules – volume: 6 start-page: 977 year: 2010 publication-title: Soft Matter – volume: 47 start-page: 3108 year: 2014 publication-title: Macromolecules – volume: 30 start-page: 1704640 year: 2018 publication-title: Adv. Mater. – volume: 2 start-page: 1441 year: 1968 publication-title: J. Macromol. Sci., Part A – volume: 239 start-page: 88 year: 2017 publication-title: Adv. Colloid Interface Sci. – volume: 40 start-page: 4941 year: 1999 publication-title: Polymer – volume: 6 start-page: 172 year: 2010 publication-title: Soft Matter – volume: 60 start-page: 164 year: 2015 publication-title: Polymer – volume: 49 start-page: 9568 year: 2016 publication-title: Macromolecules – volume: 8 start-page: 11729 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 48 start-page: 7098 year: 2007 publication-title: Polymer – volume: 27 start-page: 7344 year: 2015 publication-title: Adv. Mater. – volume: 2 start-page: 745 year: 2013 publication-title: Adv. Healthcare Mater. – volume: 28 start-page: 1704195 year: 2018 publication-title: Adv. Funct. Mater. – volume: 207 start-page: 4727 year: 2004 publication-title: J. Exp. Biol. – volume: 15 start-page: 407 year: 2016 publication-title: Nat. Mater. – volume: 7 start-page: 239 year: 1970 publication-title: Mar. Biol. – volume: 7 start-page: 9 year: 1987 publication-title: Int. J. Adhes. Adhes. – volume: 22 start-page: 729 year: 2010 publication-title: Adv. Mater. – volume: 20 start-page: 1803 year: 2010 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 8663 year: 2015 publication-title: Nat. Commun. – volume: 14 start-page: 2454 year: 2018 publication-title: Soft Matter – volume: 127 start-page: 14505 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 1564 year: 2015 publication-title: Langmuir – volume: 5 start-page: 795 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 3 start-page: 941 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 137 start-page: 9214 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 167 start-page: 85 year: 2011 publication-title: Adv. Colloid Interface Sci. – ident: e_1_2_4_2_1 doi: 10.1007/BF00367494 – ident: e_1_2_4_10_1 doi: 10.1002/adma.201704640 – ident: e_1_2_4_15_1 doi: 10.1002/adhm.201500825 – ident: e_1_2_4_31_1 doi: 10.1002/adfm.201704195 – ident: e_1_2_4_25_1 doi: 10.1080/10601326808051910 – ident: e_1_2_4_41_1 doi: 10.1021/bm101076e – ident: e_1_2_4_42_1 doi: 10.1039/C6SM02380K – ident: e_1_2_4_34_1 doi: 10.1557/mrs2003.124 – ident: e_1_2_4_23_1 doi: 10.1016/S0032-3861(98)00698-3 – ident: e_1_2_4_29_1 doi: 10.1021/bm900373c – ident: e_1_2_4_13_1 doi: 10.1021/jacs.5b03827 – ident: e_1_2_4_30_1 doi: 10.1021/acs.macromol.6b02188 – ident: e_1_2_4_26_1 doi: 10.1021/ja0546424 – ident: e_1_2_4_4_1 doi: 10.1242/jeb.01330 – ident: e_1_2_4_18_1 doi: 10.1021/am200082v – ident: e_1_2_4_5_1 doi: 10.1016/j.cis.2016.06.008 – ident: e_1_2_4_12_1 doi: 10.1021/la504611x – ident: e_1_2_4_27_1 doi: 10.1039/C7SM02041D – ident: e_1_2_4_22_1 doi: 10.1016/j.polymer.2015.01.038 – ident: e_1_2_4_40_1 doi: 10.1021/bm700886b – ident: e_1_2_4_3_1 doi: 10.1080/00218460590944602 – ident: e_1_2_4_20_1 doi: 10.1002/adhm.201200316 – ident: e_1_2_4_14_1 doi: 10.1021/ma500500q – ident: e_1_2_4_8_1 doi: 10.1021/ma101031t – ident: e_1_2_4_24_1 doi: 10.1016/j.polymer.2007.09.040 – ident: e_1_2_4_28_1 doi: 10.1016/0376-7388(94)00268-4 – ident: e_1_2_4_32_1 doi: 10.1021/ma301730n – ident: e_1_2_4_11_1 doi: 10.1002/adma.200902380 – ident: e_1_2_4_9_1 doi: 10.1039/b911541b – ident: e_1_2_4_6_1 doi: 10.1016/j.cis.2010.10.009 – ident: e_1_2_4_37_1 doi: 10.1021/acsami.6b00446 – ident: e_1_2_4_17_1 doi: 10.1038/ncomms9663 – ident: e_1_2_4_38_1 doi: 10.1002/pol.1975.180130703 – ident: e_1_2_4_19_1 doi: 10.1039/b919944f – ident: e_1_2_4_35_1 doi: 10.1021/ma1000173 – ident: e_1_2_4_39_1 doi: 10.1021/acs.biomac.6b00300 – ident: e_1_2_4_1_1 doi: 10.1016/0143-7496(87)90048-0 – ident: e_1_2_4_21_1 doi: 10.1002/adma.201504059 – ident: e_1_2_4_7_1 doi: 10.1016/j.jcis.2011.05.080 – ident: e_1_2_4_16_1 doi: 10.1038/nmat4539 – ident: e_1_2_4_33_1 doi: 10.1002/adfm.200901903 – ident: e_1_2_4_36_1 doi: 10.1039/c2sm25868d |
SSID | ssj0009606 |
Score | 2.6532407 |
Snippet | Sandcastle worms have developed protein‐based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the... Sandcastle worms have developed protein-based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the... Abstract Sandcastle worms have developed protein‐based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element... |
SourceID | wageningen hal proquest crossref pubmed wiley |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e1808179 |
SubjectTerms | Adhesives Bond strength complex coacervates Condensed Matter environmentally triggered phase transitions Hydrogels Isopropylacrylamide lower critical solution temperature Materials science Moisture content Physics poly(N‐isopropylacrylamide) Polyelectrolytes Soft Condensed Matter Tissues Tubes Underwater underwater adhesion |
Title | Thermoresponsive Complex Coacervate‐Based Underwater Adhesive |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201808179 https://www.ncbi.nlm.nih.gov/pubmed/30924992 https://www.proquest.com/docview/2227707807 https://search.proquest.com/docview/2200776075 https://hal.science/hal-02396284 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F549969 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4BvcABQfkLUJSiSpwi4p84zqlKC2iFCqqqInGzvLEjDiigXZblyCPwjH2Szji7WVYckLjEimM7zownnrE93wB8k5I8GH2dCKnrRNbeJdr7LJGsr7WtNJMuoH1eqt6VPL_Orl958bf4EN2CG0lG-F-TgNv-8HgGGmpdwA1iFDoiLxbhE8HGEHo-l79nsLsqRNek3b6kUFJPYRtTfjxff25aWryhQ5FvNc4VWB6jlDfB7Wlemw3T0dkarE70yLhsGb8OC775DCuv0AU34DsOgQGdo21PwT76mIT_1j9haquwGOv_Pb_8wHnMxSH-0RhzBnHpbjwV34Srs9O_P3vJJF5CUqFZVSSu79CeTVWtva55ZfMqE6jROMZoty1zTKncySyvczRTrOTW57xKMasofCW0Eluw1Nw1fgfivKLtVVZbAqB3VmpsQGDDjFsh6sxHcDQll7lvYTFMC4DMDRHWdISN4BCp2RUiNOte-ctQHvnVKpweH1kE-1Nim4kMDQ156RIWUZpH8LV7jKOftjRs4-9GVCbgEaHeE8F2y6TuVSIl27LgEYgZ10xDIZqGoR-TUWbGo4FpbinBFoaGLGaF_eaBve98nilPLsrubvcjlfZgmRP7winKfVh6GIz8F9R0HvoHYTDj9eQP_w83_vV3 |
link.rule.ids | 230,315,783,787,888,1378,11574,27936,27937,46064,46306,46488,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOBQOqLQ8QimkFRKniPgRxzlVaQvatgvqASRuljd2xAEFtMuyPfYn9Df2l3TG2c12xQGJUxTHcZJ5xDP2zDcAR1JSBqOvEyF1ncjau0R7nyWSDbS2lWbSBbTPC9W7kt-vs1k0IeXCtPgQ3YIbaUb4X5OC04L0yRw11LoAHMSodkReLMOqVCiNBO4sf85xd1Uor0nbfUmB12e4jSk_Wbx_YV5avqGoyKcm5zqsTVDNm5D3tGjOhvno7DVsTA3JuGw5vwlLvnkD6__BC76FTygDQwqkbcNgH31M2n_rf-HRVmE11v_9_eczTmQuDgWQJtgyjEt346n7FlydnV5-6SXTgglJhX5VkbiBQ4c2VbX2uuaVzatMoEnjGKPttswxpXIns7zO0U-xkluf8yrFpqLwldBKbMNKc9f4XYjzivZXWW0Jgd5ZqXEAgQMzboWoMx_B8Yxc5r7FxTAtAjI3RFjTETaCj0jNrhPBWffKvqE2SqxVOD8-sgj2Z8Q2UyUaGUrTJTCiNI_gQ3cZxZ_2NGzj78bUJwASoeETwU7LpO5RIiXnsuARiDnXTEM1mkbhPaZiZibjoWlu6YAjjAy5zArfmwf2PvN5pvx6XnZney-56RBe9S7P-6b_7eLHO1jjxMoQUrkPKw_DsX-PZs_D4CAI9j_M7_gC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIqH2QHkVQgsEhMQpbfxI4pyqQFktUCqEqNSb5bUdVaJKq310q574CfxGfklnnN1sFw5IcLLi2E7s8cTfxDOfAV5LSRGMvk6EVHUia-8S5X2WSDZQyljFpAtsn4d5_0h-PM6Ob0Txt_wQ3Q830ozwvSYFP3f17oI01LjAG8To6IiiXIHbMkf4S7Do64JAivB5YNsTWVLmUs1pG1O-u1x_aVlaOSGnyD8R5zqsTVHLmxD2tIxmw3LU2wAz70jrhfJ9ZzIe7Nir3zge_6en9-DuDKvGVTu57sMt3zyA9RsMhg9hD6fZkHx1W0_bCx_TB-bUX2JqbPjh63_9-PkW10oXhzOWppgzjCt34qn4Izjqvf_2rp_MzmRILJpuZeIGDm3mNK-VVzW3prCZQNTkGKMdvcyxPC-czIq6QFPISG58wW2KWWXprVC52ITV5qzxTyAuLG3hstoQyb0zUmEDAhtm3AhRZz6CN3OR6POWekO3JMtc05DobkgieIUS6woRY3a_OtCUR7G7OS7BFyyC7blA9UxPR5oigYnvKC0ieNndRg2jbRPT-LMJlQmcR4itInjcToTuUSIl-7XkEYjFzNANHQM1Cu8xk6-eToa6OaUEWxhpsspzfG8e5P6X7ulq_3PVXT39l0ov4M6X_Z4--HD4aQvWOEkyOG1uw-p4OPHPEFiNB8-D7lwDB9cYlw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermoresponsive+Complex+Coacervate-Based+Underwater+Adhesive&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Domp%C3%A9%2C+Marco&rft.au=Cedano-Serrano%2C+Francisco+J&rft.au=Heckert%2C+Olaf&rft.au=van+den+Heuvel%2C+Nicoline&rft.date=2019-05-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=21&rft.spage=e1808179&rft_id=info:doi/10.1002%2Fadma.201808179&rft_id=info%3Apmid%2F30924992&rft.externalDocID=30924992 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |