Thermoresponsive Complex Coacervate‐Based Underwater Adhesive

Sandcastle worms have developed protein‐based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the adhesive delivery is the formation of a fluidic complex coacervate phase. After delivery, the adhesive transforms into a solid upon an external...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 21; pp. e1808179 - n/a
Main Authors Dompé, Marco, Cedano‐Serrano, Francisco J., Heckert, Olaf, van den Heuvel, Nicoline, van der Gucht, Jasper, Tran, Yvette, Hourdet, Dominique, Creton, Costantino, Kamperman, Marleen
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.05.2019
Wiley-VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sandcastle worms have developed protein‐based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the adhesive delivery is the formation of a fluidic complex coacervate phase. After delivery, the adhesive transforms into a solid upon an external trigger. In this work, a fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) chains and starts out as a fluid complex coacervate that can be injected at room temperature. Upon increasing the temperature above the lower critical solution temperature of PNIPAM, the complex coacervate transitions into a nonflowing hydrogel while preserving its volume—the water content in the material stays constant. The adhesive functions in the presence of water and bonds to different surfaces regardless of their charge. This type of adhesive avoids many of the problems of current underwater adhesives and may be useful to bond biological tissues. A fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly(N‐isopropylacrylamide) chains. The adhesive starts out as an injectable fluid at room temperature. Upon increasing the temperature, the complex coacervate transitions into a nonflowing hydrogel which bonds to different surfaces.
AbstractList Sandcastle worms have developed protein‐based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the adhesive delivery is the formation of a fluidic complex coacervate phase. After delivery, the adhesive transforms into a solid upon an external trigger. In this work, a fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) chains and starts out as a fluid complex coacervate that can be injected at room temperature. Upon increasing the temperature above the lower critical solution temperature of PNIPAM, the complex coacervate transitions into a nonflowing hydrogel while preserving its volume—the water content in the material stays constant. The adhesive functions in the presence of water and bonds to different surfaces regardless of their charge. This type of adhesive avoids many of the problems of current underwater adhesives and may be useful to bond biological tissues. A fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly(N‐isopropylacrylamide) chains. The adhesive starts out as an injectable fluid at room temperature. Upon increasing the temperature, the complex coacervate transitions into a nonflowing hydrogel which bonds to different surfaces.
Sandcastle worms have developed protein-based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the adhesive delivery is the formation of a fluidic complex coacervate phase. After delivery, the adhesive transforms into a solid upon an external trigger. In this work, a fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) chains and starts out as a fluid complex coacervate that can be injected at room temperature. Upon increasing the temperature above the lower critical solution temperature of PNIPAM, the complex coacervate transitions into a nonflowing hydrogel while preserving its volume-the water content in the material stays constant. The adhesive functions in the presence of water and bonds to different surfaces regardless of their charge. This type of adhesive avoids many of the problems of current underwater adhesives and may be useful to bond biological tissues.
Abstract Sandcastle worms have developed protein‐based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the adhesive delivery is the formation of a fluidic complex coacervate phase. After delivery, the adhesive transforms into a solid upon an external trigger. In this work, a fully synthetic in situ setting adhesive based on complex coacervation is reported by mimicking the main features of the sandcastle worm's glue. The adhesive consists of oppositely charged polyelectrolytes grafted with thermoresponsive poly( N ‐isopropylacrylamide) (PNIPAM) chains and starts out as a fluid complex coacervate that can be injected at room temperature. Upon increasing the temperature above the lower critical solution temperature of PNIPAM, the complex coacervate transitions into a nonflowing hydrogel while preserving its volume—the water content in the material stays constant. The adhesive functions in the presence of water and bonds to different surfaces regardless of their charge. This type of adhesive avoids many of the problems of current underwater adhesives and may be useful to bond biological tissues.
Author van den Heuvel, Nicoline
van der Gucht, Jasper
Heckert, Olaf
Dompé, Marco
Cedano‐Serrano, Francisco J.
Kamperman, Marleen
Tran, Yvette
Creton, Costantino
Hourdet, Dominique
Author_xml – sequence: 1
  givenname: Marco
  surname: Dompé
  fullname: Dompé, Marco
  organization: Wageningen University & Research
– sequence: 2
  givenname: Francisco J.
  surname: Cedano‐Serrano
  fullname: Cedano‐Serrano, Francisco J.
  organization: Sorbonne University
– sequence: 3
  givenname: Olaf
  surname: Heckert
  fullname: Heckert, Olaf
  organization: Wageningen University & Research
– sequence: 4
  givenname: Nicoline
  surname: van den Heuvel
  fullname: van den Heuvel, Nicoline
  organization: Wageningen University & Research
– sequence: 5
  givenname: Jasper
  surname: van der Gucht
  fullname: van der Gucht, Jasper
  organization: Wageningen University & Research
– sequence: 6
  givenname: Yvette
  surname: Tran
  fullname: Tran, Yvette
  organization: Sorbonne University
– sequence: 7
  givenname: Dominique
  surname: Hourdet
  fullname: Hourdet, Dominique
  organization: Sorbonne University
– sequence: 8
  givenname: Costantino
  surname: Creton
  fullname: Creton, Costantino
  organization: Sorbonne University
– sequence: 9
  givenname: Marleen
  surname: Kamperman
  fullname: Kamperman, Marleen
  email: marleen.kamperman@rug.nl
  organization: University of Groningen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30924992$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02396284$$DView record in HAL
BookMark eNqFkc1u1DAUhS3Uik4LW5ZoJDawyHDtxH9sUBigRRrEpl1bnviGSZU4wW5m6I5H4Bn7JHU0wyCxYeMjHX3nyLrnnJz43iMhLygsKAB7a11nFwyoAkWlfkJmlDOaFaD5CZmBznmmRaHOyHmMtwCgBYin5CwHzQqt2Yy8v95g6PqAceh9bLY4X_bd0OLPpLbCsLV3-PDr9wcb0c1vvMOwS06Yl26DE_6MnNa2jfj8oBfk5vOn6-VVtvp2-WVZrrJKANWZWzulFIhaoapZZWXFc8aFo1QKVXBHhZCu4LKWvFC2YBYlqyBZWmOVK5FfkHf73p39jr7x6THehqqJpreNaZt1sOHe7MZgfDvJMK6j4SkvdAq_2Yc3tjVDaLoJnWJX5cpMHrBcC6aKLU3s6z07hP7HiPHOdE2ssG2tx36MhjEAKQVIntBX_6C3_Rh8OkOimJQgFchELfZUFfoYA9bHH1Aw04Zm2tAcN0yBl4facd2hO-J_RkuAPtyiafH-P3Wm_Pi1_Fv-CN53qhs
CitedBy_id crossref_primary_10_1039_C9MH01148J
crossref_primary_10_1039_D1TA01658J
crossref_primary_10_1021_acsmacrolett_1c00647
crossref_primary_10_1021_acsami_3c04009
crossref_primary_10_1093_rb_rbac026
crossref_primary_10_1002_adma_201905761
crossref_primary_10_1007_s11431_021_1850_7
crossref_primary_10_1021_acsbiomaterials_0c01677
crossref_primary_10_1016_j_apmt_2022_101436
crossref_primary_10_1002_anie_202102158
crossref_primary_10_1016_j_cej_2021_134258
crossref_primary_10_1016_j_foodres_2019_108781
crossref_primary_10_1016_j_jcis_2024_04_121
crossref_primary_10_1021_acsami_0c20186
crossref_primary_10_1002_adma_201904957
crossref_primary_10_1039_D3TB00251A
crossref_primary_10_1021_acs_macromol_3c02352
crossref_primary_10_1049_nbt2_12116
crossref_primary_10_1002_advs_202203890
crossref_primary_10_1007_s10118_024_3141_5
crossref_primary_10_1016_j_jcis_2020_12_067
crossref_primary_10_1016_j_progpolymsci_2021_101388
crossref_primary_10_1021_acsami_1c13744
crossref_primary_10_1021_acssuschemeng_2c05411
crossref_primary_10_1002_chem_202102902
crossref_primary_10_1021_acs_macromol_9b01924
crossref_primary_10_1002_SMMD_20220024
crossref_primary_10_1016_j_carbpol_2023_120836
crossref_primary_10_1016_j_ijbiomac_2024_132360
crossref_primary_10_1021_acs_chemrev_0c00798
crossref_primary_10_1002_advs_202300270
crossref_primary_10_1016_j_isci_2022_105106
crossref_primary_10_1016_j_colsurfa_2024_134597
crossref_primary_10_3390_gels7030148
crossref_primary_10_1002_smll_202004132
crossref_primary_10_1039_D2CS00618A
crossref_primary_10_1016_j_cej_2023_148487
crossref_primary_10_1021_acsmacrolett_0c00252
crossref_primary_10_3390_polym13040666
crossref_primary_10_1016_j_progpolymsci_2024_101792
crossref_primary_10_1093_burnst_tkac033
crossref_primary_10_1038_s41467_022_32257_5
crossref_primary_10_3390_polym12020320
crossref_primary_10_1016_j_cej_2021_133460
crossref_primary_10_1002_admi_202101038
crossref_primary_10_1002_admt_202201477
crossref_primary_10_1002_ange_202100064
crossref_primary_10_1016_j_cocis_2019_11_010
crossref_primary_10_1021_acssuschemeng_0c01179
crossref_primary_10_1021_acssuschemeng_1c03183
crossref_primary_10_1039_C9PY01227C
crossref_primary_10_1002_smtd_202201235
crossref_primary_10_1016_j_actbio_2022_09_075
crossref_primary_10_1021_acs_iecr_3c03830
crossref_primary_10_1021_acsnano_0c02396
crossref_primary_10_2174_1389557522666220622112959
crossref_primary_10_1002_adhm_202102749
crossref_primary_10_1016_j_cej_2021_131049
crossref_primary_10_1002_adfm_202105464
crossref_primary_10_1002_mabi_202300379
crossref_primary_10_1021_acs_chemrev_3c00615
crossref_primary_10_1002_anie_202204611
crossref_primary_10_1002_advs_202308538
crossref_primary_10_1002_adfm_202009334
crossref_primary_10_1002_admi_202201491
crossref_primary_10_1016_j_eurpolymj_2020_110034
crossref_primary_10_1021_acs_macromol_1c01461
crossref_primary_10_1002_marc_201900653
crossref_primary_10_1002_adfm_202403290
crossref_primary_10_1016_j_chempr_2023_02_012
crossref_primary_10_1021_acsmaterialslett_1c00167
crossref_primary_10_1002_ange_202204611
crossref_primary_10_1016_j_jcis_2022_11_071
crossref_primary_10_1016_j_jclepro_2021_127309
crossref_primary_10_1039_C9SC02555C
crossref_primary_10_1021_acs_macromol_3c00269
crossref_primary_10_1016_j_jcis_2023_05_009
crossref_primary_10_1016_j_matt_2023_08_023
crossref_primary_10_1021_jacs_0c00520
crossref_primary_10_1002_pol_20210668
crossref_primary_10_1002_adma_202210769
crossref_primary_10_3389_fbioe_2022_855013
crossref_primary_10_1016_j_cej_2023_143793
crossref_primary_10_1039_D3SM01114C
crossref_primary_10_1016_j_cej_2020_127069
crossref_primary_10_1021_acsapm_0c00185
crossref_primary_10_1021_acsomega_2c04163
crossref_primary_10_1002_adfm_202109687
crossref_primary_10_1038_s41467_023_44564_6
crossref_primary_10_1016_j_cej_2023_147639
crossref_primary_10_1002_adfm_202305484
crossref_primary_10_1021_acsmaterialslett_3c01566
crossref_primary_10_1186_s40824_023_00397_4
crossref_primary_10_1002_anie_202100064
crossref_primary_10_1002_adfm_202214091
crossref_primary_10_1016_j_bioadv_2023_213670
crossref_primary_10_1016_j_mtbio_2023_100592
crossref_primary_10_1002_adma_202110062
crossref_primary_10_1021_acs_macromol_2c00340
crossref_primary_10_1016_j_ijadhadh_2024_103697
crossref_primary_10_3390_gels9080616
crossref_primary_10_1002_admi_201901785
crossref_primary_10_1021_acs_macromol_0c00728
crossref_primary_10_1016_j_ijbiomac_2023_125773
crossref_primary_10_1126_sciadv_abe8739
crossref_primary_10_3390_ijms21010100
crossref_primary_10_1039_D0SM02236E
crossref_primary_10_1016_j_ces_2023_119164
crossref_primary_10_1039_D1CS00316J
crossref_primary_10_1021_acsapm_0c00479
crossref_primary_10_1016_j_cis_2021_102521
crossref_primary_10_1039_D3TB00099K
crossref_primary_10_1002_pol_20210521
crossref_primary_10_1039_D3MH00301A
crossref_primary_10_1021_acs_biomac_3c00840
crossref_primary_10_1002_marc_202000149
crossref_primary_10_1021_acs_macromol_2c01487
crossref_primary_10_1002_adhm_202300669
crossref_primary_10_1021_acs_macromol_1c02361
crossref_primary_10_1039_D2SM01534J
crossref_primary_10_1021_acs_macromol_1c02000
crossref_primary_10_1002_advs_202400938
crossref_primary_10_1016_j_mtbio_2022_100369
crossref_primary_10_1021_acs_jpcb_9b08966
crossref_primary_10_1021_acs_chemmater_3c01949
crossref_primary_10_1021_acsami_2c06103
crossref_primary_10_1364_PRJ_380238
crossref_primary_10_1002_agt2_449
crossref_primary_10_1021_acsapm_1c01724
crossref_primary_10_1016_j_cis_2022_102706
crossref_primary_10_1002_adma_202300636
crossref_primary_10_3389_fchem_2022_1007212
crossref_primary_10_1021_acs_macromol_3c02335
crossref_primary_10_1039_D1MA00995H
crossref_primary_10_1126_sciadv_abm9744
crossref_primary_10_1021_acsanm_2c00560
crossref_primary_10_1016_j_cej_2021_133017
crossref_primary_10_1039_D3BM01391J
crossref_primary_10_1002_ange_202102158
crossref_primary_10_1002_adma_202102983
crossref_primary_10_1073_pnas_2209975119
Cites_doi 10.1007/BF00367494
10.1002/adma.201704640
10.1002/adhm.201500825
10.1002/adfm.201704195
10.1080/10601326808051910
10.1021/bm101076e
10.1039/C6SM02380K
10.1557/mrs2003.124
10.1016/S0032-3861(98)00698-3
10.1021/bm900373c
10.1021/jacs.5b03827
10.1021/acs.macromol.6b02188
10.1021/ja0546424
10.1242/jeb.01330
10.1021/am200082v
10.1016/j.cis.2016.06.008
10.1021/la504611x
10.1039/C7SM02041D
10.1016/j.polymer.2015.01.038
10.1021/bm700886b
10.1080/00218460590944602
10.1002/adhm.201200316
10.1021/ma500500q
10.1021/ma101031t
10.1016/j.polymer.2007.09.040
10.1016/0376-7388(94)00268-4
10.1021/ma301730n
10.1002/adma.200902380
10.1039/b911541b
10.1016/j.cis.2010.10.009
10.1021/acsami.6b00446
10.1038/ncomms9663
10.1002/pol.1975.180130703
10.1039/b919944f
10.1021/ma1000173
10.1021/acs.biomac.6b00300
10.1016/0143-7496(87)90048-0
10.1002/adma.201504059
10.1016/j.jcis.2011.05.080
10.1038/nmat4539
10.1002/adfm.200901903
10.1039/c2sm25868d
ContentType Journal Article
Copyright 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Distributed under a Creative Commons Attribution 4.0 International License
Wageningen University & Research
Copyright_xml – notice: 2019 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Wageningen University & Research
DBID 24P
WIN
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
1XC
VOOES
QVL
DOI 10.1002/adma.201808179
DatabaseName Wiley Open Access
Wiley Free Archive
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
NARCIS:Publications
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
PubMed
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley-Blackwell Open Access Collection
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1521-4095
EndPage n/a
ExternalDocumentID oai_library_wur_nl_wurpubs_549969
oai_HAL_hal_02396284v1
10_1002_adma_201808179
30924992
ADMA201808179
Genre article
Journal Article
GrantInformation_xml – fundername: European Research Council
– fundername: European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska‐Curie
  funderid: 642861
– fundername: European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
  grantid: 642861
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
1XC
VOOES
6XO
AAPBV
ABFLS
ABHUG
ACXME
ADAWD
ADDAD
AETEA
AFVGU
AGJLS
QVL
ID FETCH-LOGICAL-c6019-dbd88806f8e8f2ca7c53256d1176845d1667d457f7548a42ae72c07d499ec3863
IEDL.DBID 24P
ISSN 0935-9648
IngestDate Thu Oct 13 09:31:44 EDT 2022
Tue Oct 15 14:42:00 EDT 2024
Fri Aug 16 05:02:16 EDT 2024
Thu Oct 10 15:40:35 EDT 2024
Thu Sep 26 15:57:09 EDT 2024
Wed Oct 16 00:49:47 EDT 2024
Sat Aug 24 00:56:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords poly(N-isopropylacrylamide)
environmentally triggered phase transitions
underwater adhesion
complex coacervates
lower critical solution temperature
Language English
License Attribution-NonCommercial
2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6019-dbd88806f8e8f2ca7c53256d1176845d1667d457f7548a42ae72c07d499ec3863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0177-9680
0000-0002-0328-7014
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201808179
PMID 30924992
PQID 2227707807
PQPubID 2045203
PageCount 6
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_549969
hal_primary_oai_HAL_hal_02396284v1
proquest_miscellaneous_2200776075
proquest_journals_2227707807
crossref_primary_10_1002_adma_201808179
pubmed_primary_30924992
wiley_primary_10_1002_adma_201808179_ADMA201808179
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References 1970; 7
2018; 28
2015; 6
2013; 2
2013; 46
1968; 2
2015; 31
1987; 7
1975; 13
2008; 9
2014; 47
2005; 81
2011; 12
1999; 40
2004; 207
2011; 3
2016; 17
2016; 15
2017; 239
2010; 22
2016; 5
2010; 43
2010; 20
2015; 27
2009; 10
2015; 137
2015; 60
2005; 127
2017; 13
2018; 30
2003; 28
1995; 101
2011; 361
2016; 49
2011; 167
2016; 8
2010; 6
2007; 48
2018; 14
2012; 8
e_1_2_4_40_1
e_1_2_4_41_1
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_42_1
e_1_2_4_22_1
e_1_2_4_25_1
e_1_2_4_24_1
e_1_2_4_27_1
e_1_2_4_26_1
e_1_2_4_29_1
e_1_2_4_28_1
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_30_1
e_1_2_4_32_1
e_1_2_4_10_1
e_1_2_4_31_1
e_1_2_4_11_1
e_1_2_4_34_1
e_1_2_4_12_1
e_1_2_4_33_1
e_1_2_4_13_1
e_1_2_4_36_1
e_1_2_4_14_1
e_1_2_4_35_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_38_1
e_1_2_4_37_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_39_1
e_1_2_4_19_1
References_xml – volume: 17
  start-page: 1869
  year: 2016
  publication-title: Biomacromolecules
– volume: 13
  start-page: 1074
  year: 2017
  publication-title: Soft Matter
– volume: 81
  start-page: 297
  year: 2005
  publication-title: J. Adhes.
– volume: 43
  start-page: 3542
  year: 2010
  publication-title: Macromolecules
– volume: 101
  start-page: 13
  year: 1995
  publication-title: J. Membr. Sci.
– volume: 12
  start-page: 342
  year: 2011
  publication-title: Biomacromolecules
– volume: 9
  start-page: 122
  year: 2008
  publication-title: Biomacromolecules
– volume: 361
  start-page: 407
  year: 2011
  publication-title: J. Colloid Interface Sci.
– volume: 10
  start-page: 2968
  year: 2009
  publication-title: Biomacromolecules
– volume: 46
  start-page: 1633
  year: 2013
  publication-title: Macromolecules
– volume: 8
  start-page: 8184
  year: 2012
  publication-title: Soft Matter
– volume: 28
  start-page: 434
  year: 2003
  publication-title: MRS Bull.
– volume: 13
  start-page: 1285
  year: 1975
  publication-title: J. Polym. Sci., Polym. Phys. Ed.
– volume: 43
  start-page: 6476
  year: 2010
  publication-title: Macromolecules
– volume: 6
  start-page: 977
  year: 2010
  publication-title: Soft Matter
– volume: 47
  start-page: 3108
  year: 2014
  publication-title: Macromolecules
– volume: 30
  start-page: 1704640
  year: 2018
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1441
  year: 1968
  publication-title: J. Macromol. Sci., Part A
– volume: 239
  start-page: 88
  year: 2017
  publication-title: Adv. Colloid Interface Sci.
– volume: 40
  start-page: 4941
  year: 1999
  publication-title: Polymer
– volume: 6
  start-page: 172
  year: 2010
  publication-title: Soft Matter
– volume: 60
  start-page: 164
  year: 2015
  publication-title: Polymer
– volume: 49
  start-page: 9568
  year: 2016
  publication-title: Macromolecules
– volume: 8
  start-page: 11729
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 48
  start-page: 7098
  year: 2007
  publication-title: Polymer
– volume: 27
  start-page: 7344
  year: 2015
  publication-title: Adv. Mater.
– volume: 2
  start-page: 745
  year: 2013
  publication-title: Adv. Healthcare Mater.
– volume: 28
  start-page: 1704195
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 207
  start-page: 4727
  year: 2004
  publication-title: J. Exp. Biol.
– volume: 15
  start-page: 407
  year: 2016
  publication-title: Nat. Mater.
– volume: 7
  start-page: 239
  year: 1970
  publication-title: Mar. Biol.
– volume: 7
  start-page: 9
  year: 1987
  publication-title: Int. J. Adhes. Adhes.
– volume: 22
  start-page: 729
  year: 2010
  publication-title: Adv. Mater.
– volume: 20
  start-page: 1803
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 8663
  year: 2015
  publication-title: Nat. Commun.
– volume: 14
  start-page: 2454
  year: 2018
  publication-title: Soft Matter
– volume: 127
  start-page: 14505
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 31
  start-page: 1564
  year: 2015
  publication-title: Langmuir
– volume: 5
  start-page: 795
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 3
  start-page: 941
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 137
  start-page: 9214
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 167
  start-page: 85
  year: 2011
  publication-title: Adv. Colloid Interface Sci.
– ident: e_1_2_4_2_1
  doi: 10.1007/BF00367494
– ident: e_1_2_4_10_1
  doi: 10.1002/adma.201704640
– ident: e_1_2_4_15_1
  doi: 10.1002/adhm.201500825
– ident: e_1_2_4_31_1
  doi: 10.1002/adfm.201704195
– ident: e_1_2_4_25_1
  doi: 10.1080/10601326808051910
– ident: e_1_2_4_41_1
  doi: 10.1021/bm101076e
– ident: e_1_2_4_42_1
  doi: 10.1039/C6SM02380K
– ident: e_1_2_4_34_1
  doi: 10.1557/mrs2003.124
– ident: e_1_2_4_23_1
  doi: 10.1016/S0032-3861(98)00698-3
– ident: e_1_2_4_29_1
  doi: 10.1021/bm900373c
– ident: e_1_2_4_13_1
  doi: 10.1021/jacs.5b03827
– ident: e_1_2_4_30_1
  doi: 10.1021/acs.macromol.6b02188
– ident: e_1_2_4_26_1
  doi: 10.1021/ja0546424
– ident: e_1_2_4_4_1
  doi: 10.1242/jeb.01330
– ident: e_1_2_4_18_1
  doi: 10.1021/am200082v
– ident: e_1_2_4_5_1
  doi: 10.1016/j.cis.2016.06.008
– ident: e_1_2_4_12_1
  doi: 10.1021/la504611x
– ident: e_1_2_4_27_1
  doi: 10.1039/C7SM02041D
– ident: e_1_2_4_22_1
  doi: 10.1016/j.polymer.2015.01.038
– ident: e_1_2_4_40_1
  doi: 10.1021/bm700886b
– ident: e_1_2_4_3_1
  doi: 10.1080/00218460590944602
– ident: e_1_2_4_20_1
  doi: 10.1002/adhm.201200316
– ident: e_1_2_4_14_1
  doi: 10.1021/ma500500q
– ident: e_1_2_4_8_1
  doi: 10.1021/ma101031t
– ident: e_1_2_4_24_1
  doi: 10.1016/j.polymer.2007.09.040
– ident: e_1_2_4_28_1
  doi: 10.1016/0376-7388(94)00268-4
– ident: e_1_2_4_32_1
  doi: 10.1021/ma301730n
– ident: e_1_2_4_11_1
  doi: 10.1002/adma.200902380
– ident: e_1_2_4_9_1
  doi: 10.1039/b911541b
– ident: e_1_2_4_6_1
  doi: 10.1016/j.cis.2010.10.009
– ident: e_1_2_4_37_1
  doi: 10.1021/acsami.6b00446
– ident: e_1_2_4_17_1
  doi: 10.1038/ncomms9663
– ident: e_1_2_4_38_1
  doi: 10.1002/pol.1975.180130703
– ident: e_1_2_4_19_1
  doi: 10.1039/b919944f
– ident: e_1_2_4_35_1
  doi: 10.1021/ma1000173
– ident: e_1_2_4_39_1
  doi: 10.1021/acs.biomac.6b00300
– ident: e_1_2_4_1_1
  doi: 10.1016/0143-7496(87)90048-0
– ident: e_1_2_4_21_1
  doi: 10.1002/adma.201504059
– ident: e_1_2_4_7_1
  doi: 10.1016/j.jcis.2011.05.080
– ident: e_1_2_4_16_1
  doi: 10.1038/nmat4539
– ident: e_1_2_4_33_1
  doi: 10.1002/adfm.200901903
– ident: e_1_2_4_36_1
  doi: 10.1039/c2sm25868d
SSID ssj0009606
Score 2.6532407
Snippet Sandcastle worms have developed protein‐based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the...
Sandcastle worms have developed protein-based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element in the...
Abstract Sandcastle worms have developed protein‐based adhesives, which they use to construct protective tubes from sand grains and shell bits. A key element...
SourceID wageningen
hal
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e1808179
SubjectTerms Adhesives
Bond strength
complex coacervates
Condensed Matter
environmentally triggered phase transitions
Hydrogels
Isopropylacrylamide
lower critical solution temperature
Materials science
Moisture content
Physics
poly(N‐isopropylacrylamide)
Polyelectrolytes
Soft Condensed Matter
Tissues
Tubes
Underwater
underwater adhesion
Title Thermoresponsive Complex Coacervate‐Based Underwater Adhesive
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201808179
https://www.ncbi.nlm.nih.gov/pubmed/30924992
https://www.proquest.com/docview/2227707807
https://search.proquest.com/docview/2200776075
https://hal.science/hal-02396284
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F549969
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4BvcABQfkLUJSiSpwi4p84zqlKC2iFCqqqInGzvLEjDiigXZblyCPwjH2Szji7WVYckLjEimM7zownnrE93wB8k5I8GH2dCKnrRNbeJdr7LJGsr7WtNJMuoH1eqt6VPL_Orl958bf4EN2CG0lG-F-TgNv-8HgGGmpdwA1iFDoiLxbhE8HGEHo-l79nsLsqRNek3b6kUFJPYRtTfjxff25aWryhQ5FvNc4VWB6jlDfB7Wlemw3T0dkarE70yLhsGb8OC775DCuv0AU34DsOgQGdo21PwT76mIT_1j9haquwGOv_Pb_8wHnMxSH-0RhzBnHpbjwV34Srs9O_P3vJJF5CUqFZVSSu79CeTVWtva55ZfMqE6jROMZoty1zTKncySyvczRTrOTW57xKMasofCW0Eluw1Nw1fgfivKLtVVZbAqB3VmpsQGDDjFsh6sxHcDQll7lvYTFMC4DMDRHWdISN4BCp2RUiNOte-ctQHvnVKpweH1kE-1Nim4kMDQ156RIWUZpH8LV7jKOftjRs4-9GVCbgEaHeE8F2y6TuVSIl27LgEYgZ10xDIZqGoR-TUWbGo4FpbinBFoaGLGaF_eaBve98nilPLsrubvcjlfZgmRP7winKfVh6GIz8F9R0HvoHYTDj9eQP_w83_vV3
link.rule.ids 230,315,783,787,888,1378,11574,27936,27937,46064,46306,46488,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOBQOqLQ8QimkFRKniPgRxzlVaQvatgvqASRuljd2xAEFtMuyPfYn9Df2l3TG2c12xQGJUxTHcZJ5xDP2zDcAR1JSBqOvEyF1ncjau0R7nyWSDbS2lWbSBbTPC9W7kt-vs1k0IeXCtPgQ3YIbaUb4X5OC04L0yRw11LoAHMSodkReLMOqVCiNBO4sf85xd1Uor0nbfUmB12e4jSk_Wbx_YV5avqGoyKcm5zqsTVDNm5D3tGjOhvno7DVsTA3JuGw5vwlLvnkD6__BC76FTygDQwqkbcNgH31M2n_rf-HRVmE11v_9_eczTmQuDgWQJtgyjEt346n7FlydnV5-6SXTgglJhX5VkbiBQ4c2VbX2uuaVzatMoEnjGKPttswxpXIns7zO0U-xkluf8yrFpqLwldBKbMNKc9f4XYjzivZXWW0Jgd5ZqXEAgQMzboWoMx_B8Yxc5r7FxTAtAjI3RFjTETaCj0jNrhPBWffKvqE2SqxVOD8-sgj2Z8Q2UyUaGUrTJTCiNI_gQ3cZxZ_2NGzj78bUJwASoeETwU7LpO5RIiXnsuARiDnXTEM1mkbhPaZiZibjoWlu6YAjjAy5zArfmwf2PvN5pvx6XnZney-56RBe9S7P-6b_7eLHO1jjxMoQUrkPKw_DsX-PZs_D4CAI9j_M7_gC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIqH2QHkVQgsEhMQpbfxI4pyqQFktUCqEqNSb5bUdVaJKq310q574CfxGfklnnN1sFw5IcLLi2E7s8cTfxDOfAV5LSRGMvk6EVHUia-8S5X2WSDZQyljFpAtsn4d5_0h-PM6Ob0Txt_wQ3Q830ozwvSYFP3f17oI01LjAG8To6IiiXIHbMkf4S7Do64JAivB5YNsTWVLmUs1pG1O-u1x_aVlaOSGnyD8R5zqsTVHLmxD2tIxmw3LU2wAz70jrhfJ9ZzIe7Nir3zge_6en9-DuDKvGVTu57sMt3zyA9RsMhg9hD6fZkHx1W0_bCx_TB-bUX2JqbPjh63_9-PkW10oXhzOWppgzjCt34qn4Izjqvf_2rp_MzmRILJpuZeIGDm3mNK-VVzW3prCZQNTkGKMdvcyxPC-czIq6QFPISG58wW2KWWXprVC52ITV5qzxTyAuLG3hstoQyb0zUmEDAhtm3AhRZz6CN3OR6POWekO3JMtc05DobkgieIUS6woRY3a_OtCUR7G7OS7BFyyC7blA9UxPR5oigYnvKC0ieNndRg2jbRPT-LMJlQmcR4itInjcToTuUSIl-7XkEYjFzNANHQM1Cu8xk6-eToa6OaUEWxhpsspzfG8e5P6X7ulq_3PVXT39l0ov4M6X_Z4--HD4aQvWOEkyOG1uw-p4OPHPEFiNB8-D7lwDB9cYlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermoresponsive+Complex+Coacervate-Based+Underwater+Adhesive&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Domp%C3%A9%2C+Marco&rft.au=Cedano-Serrano%2C+Francisco+J&rft.au=Heckert%2C+Olaf&rft.au=van+den+Heuvel%2C+Nicoline&rft.date=2019-05-01&rft.eissn=1521-4095&rft.volume=31&rft.issue=21&rft.spage=e1808179&rft_id=info:doi/10.1002%2Fadma.201808179&rft_id=info%3Apmid%2F30924992&rft.externalDocID=30924992
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon