Honey bee (Apis mellifera) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract
Summary There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the contribution of the honey bee gut microbiota to host detoxification ability has yet to be investigated. In order to address this question, we compared...
Saved in:
Published in | Microbial biotechnology Vol. 13; no. 4; pp. 1201 - 1212 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.07.2020
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the contribution of the honey bee gut microbiota to host detoxification ability has yet to be investigated. In order to address this question, we compared the expression of cytochrome P450s (P450s) genes between gut microbiota deficient (GD) workers and conventional gut community (CV) workers and compared the mortality rates and the pesticide residue levels of GD and CV workers treated with thiacloprid or tau‐fluvalinate. Our results showed that gut microbiota promotes the expression of P450 enzymes in the midgut, and the mortality rate and pesticide residue levels of GD workers are significantly higher than those of CV workers. Further comparisons between tetracycline‐treated workers and untreated workers demonstrated that antibiotic‐induced gut dysbiosis leads to attenuated expression of P450s in the midgut. The co‐treatment of antibiotics and pesticides leads to reduced survival rate and a significantly higher amount of pesticide residues in honey bees. Taken together, our results demonstrated that honey bee gut symbiont could contribute to bee health through the modification of the host xenobiotics detoxification pathways and revealed a potential negative impact of antibiotics to honey bee detoxification ability and health.
Our results demonstrated that honey bee gut symbiont could contribute to bee health through the modification of the host xenobiotics detoxification pathways and revealed a potential negative impact of antibiotics to honey bee detoxification ability and health. |
---|---|
AbstractList | Summary There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the contribution of the honey bee gut microbiota to host detoxification ability has yet to be investigated. In order to address this question, we compared the expression of cytochrome P450s (P450s) genes between gut microbiota deficient (GD) workers and conventional gut community (CV) workers and compared the mortality rates and the pesticide residue levels of GD and CV workers treated with thiacloprid or tau‐fluvalinate. Our results showed that gut microbiota promotes the expression of P450 enzymes in the midgut, and the mortality rate and pesticide residue levels of GD workers are significantly higher than those of CV workers. Further comparisons between tetracycline‐treated workers and untreated workers demonstrated that antibiotic‐induced gut dysbiosis leads to attenuated expression of P450s in the midgut. The co‐treatment of antibiotics and pesticides leads to reduced survival rate and a significantly higher amount of pesticide residues in honey bees. Taken together, our results demonstrated that honey bee gut symbiont could contribute to bee health through the modification of the host xenobiotics detoxification pathways and revealed a potential negative impact of antibiotics to honey bee detoxification ability and health. There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the contribution of the honey bee gut microbiota to host detoxification ability has yet to be investigated. In order to address this question, we compared the expression of cytochrome P450s (P450s) genes between gut microbiota deficient (GD) workers and conventional gut community (CV) workers and compared the mortality rates and the pesticide residue levels of GD and CV workers treated with thiacloprid or tau‐fluvalinate. Our results showed that gut microbiota promotes the expression of P450 enzymes in the midgut, and the mortality rate and pesticide residue levels of GD workers are significantly higher than those of CV workers. Further comparisons between tetracycline‐treated workers and untreated workers demonstrated that antibiotic‐induced gut dysbiosis leads to attenuated expression of P450s in the midgut. The co‐treatment of antibiotics and pesticides leads to reduced survival rate and a significantly higher amount of pesticide residues in honey bees. Taken together, our results demonstrated that honey bee gut symbiont could contribute to bee health through the modification of the host xenobiotics detoxification pathways and revealed a potential negative impact of antibiotics to honey bee detoxification ability and health. There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the contribution of the honey bee gut microbiota to host detoxification ability has yet to be investigated. In order to address this question, we compared the expression of cytochrome P450s (P450s) genes between gut microbiota deficient (GD) workers and conventional gut community (CV) workers and compared the mortality rates and the pesticide residue levels of GD and CV workers treated with thiacloprid or tau ‐fluvalinate. Our results showed that gut microbiota promotes the expression of P450 enzymes in the midgut, and the mortality rate and pesticide residue levels of GD workers are significantly higher than those of CV workers. Further comparisons between tetracycline‐treated workers and untreated workers demonstrated that antibiotic‐induced gut dysbiosis leads to attenuated expression of P450s in the midgut. The co‐treatment of antibiotics and pesticides leads to reduced survival rate and a significantly higher amount of pesticide residues in honey bees. Taken together, our results demonstrated that honey bee gut symbiont could contribute to bee health through the modification of the host xenobiotics detoxification pathways and revealed a potential negative impact of antibiotics to honey bee detoxification ability and health. Our results demonstrated that honey bee gut symbiont could contribute to bee health through the modification of the host xenobiotics detoxification pathways and revealed a potential negative impact of antibiotics to honey bee detoxification ability and health. There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the contribution of the honey bee gut microbiota to host detoxification ability has yet to be investigated. In order to address this question, we compared the expression of cytochrome P450s (P450s) genes between gut microbiota deficient (GD) workers and conventional gut community (CV) workers and compared the mortality rates and the pesticide residue levels of GD and CV workers treated with thiacloprid or tau ‐fluvalinate. Our results showed that gut microbiota promotes the expression of P450 enzymes in the midgut, and the mortality rate and pesticide residue levels of GD workers are significantly higher than those of CV workers. Further comparisons between tetracycline‐treated workers and untreated workers demonstrated that antibiotic‐induced gut dysbiosis leads to attenuated expression of P450s in the midgut. The co‐treatment of antibiotics and pesticides leads to reduced survival rate and a significantly higher amount of pesticide residues in honey bees. Taken together, our results demonstrated that honey bee gut symbiont could contribute to bee health through the modification of the host xenobiotics detoxification pathways and revealed a potential negative impact of antibiotics to honey bee detoxification ability and health. Summary There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the contribution of the honey bee gut microbiota to host detoxification ability has yet to be investigated. In order to address this question, we compared the expression of cytochrome P450s (P450s) genes between gut microbiota deficient (GD) workers and conventional gut community (CV) workers and compared the mortality rates and the pesticide residue levels of GD and CV workers treated with thiacloprid or tau‐fluvalinate. Our results showed that gut microbiota promotes the expression of P450 enzymes in the midgut, and the mortality rate and pesticide residue levels of GD workers are significantly higher than those of CV workers. Further comparisons between tetracycline‐treated workers and untreated workers demonstrated that antibiotic‐induced gut dysbiosis leads to attenuated expression of P450s in the midgut. The co‐treatment of antibiotics and pesticides leads to reduced survival rate and a significantly higher amount of pesticide residues in honey bees. Taken together, our results demonstrated that honey bee gut symbiont could contribute to bee health through the modification of the host xenobiotics detoxification pathways and revealed a potential negative impact of antibiotics to honey bee detoxification ability and health. Our results demonstrated that honey bee gut symbiont could contribute to bee health through the modification of the host xenobiotics detoxification pathways and revealed a potential negative impact of antibiotics to honey bee detoxification ability and health. There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the contribution of the honey bee gut microbiota to host detoxification ability has yet to be investigated. In order to address this question, we compared the expression of cytochrome P450s (P450s) genes between gut microbiota deficient (GD) workers and conventional gut community (CV) workers and compared the mortality rates and the pesticide residue levels of GD and CV workers treated with thiacloprid or tau-fluvalinate. Our results showed that gut microbiota promotes the expression of P450 enzymes in the midgut, and the mortality rate and pesticide residue levels of GD workers are significantly higher than those of CV workers. Further comparisons between tetracycline-treated workers and untreated workers demonstrated that antibiotic-induced gut dysbiosis leads to attenuated expression of P450s in the midgut. The co-treatment of antibiotics and pesticides leads to reduced survival rate and a significantly higher amount of pesticide residues in honey bees. Taken together, our results demonstrated that honey bee gut symbiont could contribute to bee health through the modification of the host xenobiotics detoxification pathways and revealed a potential negative impact of antibiotics to honey bee detoxification ability and health.There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the contribution of the honey bee gut microbiota to host detoxification ability has yet to be investigated. In order to address this question, we compared the expression of cytochrome P450s (P450s) genes between gut microbiota deficient (GD) workers and conventional gut community (CV) workers and compared the mortality rates and the pesticide residue levels of GD and CV workers treated with thiacloprid or tau-fluvalinate. Our results showed that gut microbiota promotes the expression of P450 enzymes in the midgut, and the mortality rate and pesticide residue levels of GD workers are significantly higher than those of CV workers. Further comparisons between tetracycline-treated workers and untreated workers demonstrated that antibiotic-induced gut dysbiosis leads to attenuated expression of P450s in the midgut. The co-treatment of antibiotics and pesticides leads to reduced survival rate and a significantly higher amount of pesticide residues in honey bees. Taken together, our results demonstrated that honey bee gut symbiont could contribute to bee health through the modification of the host xenobiotics detoxification pathways and revealed a potential negative impact of antibiotics to honey bee detoxification ability and health. |
Author | Chen, Yanan Zheng, Huoqing Hu, Fuliang Wu, Yuqi Zheng, Yufei Wang, Shuai Chen, Yanping |
AuthorAffiliation | 2 USDA‐ARS Bee Research Laboratory Beltsville MD USA 1 College of Animal Sciences Zhejiang University Hangzhou China |
AuthorAffiliation_xml | – name: 2 USDA‐ARS Bee Research Laboratory Beltsville MD USA – name: 1 College of Animal Sciences Zhejiang University Hangzhou China |
Author_xml | – sequence: 1 givenname: Yuqi orcidid: 0000-0003-3301-3927 surname: Wu fullname: Wu, Yuqi organization: Zhejiang University – sequence: 2 givenname: Yufei surname: Zheng fullname: Zheng, Yufei organization: Zhejiang University – sequence: 3 givenname: Yanan surname: Chen fullname: Chen, Yanan organization: Zhejiang University – sequence: 4 givenname: Shuai surname: Wang fullname: Wang, Shuai organization: Zhejiang University – sequence: 5 givenname: Yanping surname: Chen fullname: Chen, Yanping organization: USDA‐ARS Bee Research Laboratory – sequence: 6 givenname: Fuliang surname: Hu fullname: Hu, Fuliang email: flhu@zju.edu.cn organization: Zhejiang University – sequence: 7 givenname: Huoqing surname: Zheng fullname: Zheng, Huoqing email: hqzheng@zju.edu.cn organization: Zhejiang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32338446$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAUtFARbRfO3JAlLuWwre3Y-bgglQpopSI4lLPl2C9Zr5J4sZ2l-1f4tTibtmorIXyx9Twzfp43x-hgcAMg9JaSU5rWGS0EXRYVFac0E0X1Ah09VA4enQ_RcQhrQnJCBHuFDjOWZSXn-RH6c5kEd7gGwCfnGxtwD11nG_DqA27HiHurvautiwpvvOtdhIBXLkQMg3EtDG4M2EB0t7axWkXrBqzVRtW2s3GHt1ZhD-3YzTeuwT-4IDjxAMPtxkMIU90OOK4AG9tCiHYLOHql42v0slFdgDd3-wL9_PL55uJyef3969XF-fVS54RWS8UoMEKhIRUxwBpS8qLkSui8Lnmmi9LUBurM1LUR3DBqyozWQlXUCKirBFmgq1nXOLWWG2975XfSKSv3BedbqXy0ugOpC5VBTnJFQPCymEQaUUIyFURZJVcX6OOstRnrHoyGIX2leyL69GawK9m6rSxYzgteJoGTOwHvfo3JDtnboNNM1ADJa8mySrCcVmR66_0z6NqNfkhWScYnF3KSVQn17nFHD63cRyABxAxIgw7BQyO1jft5pQZtJymRU9TkFCY5hUnuo5Z4Z89499L_ZuQz47ftYPc_uPz26YbNxL_IfuaQ |
CitedBy_id | crossref_primary_10_1016_j_jare_2021_08_002 crossref_primary_10_3389_fmicb_2022_913113 crossref_primary_10_1007_s12602_025_10507_4 crossref_primary_10_1016_j_ecoenv_2023_115467 crossref_primary_10_3390_microorganisms12040635 crossref_primary_10_1007_s00248_022_02004_w crossref_primary_10_1093_femsre_fuab056 crossref_primary_10_55446_IJE_2024_1312 crossref_primary_10_1007_s00248_021_01756_1 crossref_primary_10_1007_s11356_022_21857_9 crossref_primary_10_3389_fmicb_2022_1035644 crossref_primary_10_1016_j_envint_2023_107764 crossref_primary_10_3389_fmicb_2021_781746 crossref_primary_10_1093_ee_nvac053 crossref_primary_10_1007_s00248_022_02072_y crossref_primary_10_1007_s13592_022_00922_9 crossref_primary_10_3390_ijms242015435 crossref_primary_10_1371_journal_pone_0277455 crossref_primary_10_3389_fphys_2022_1112278 crossref_primary_10_1016_j_envpol_2022_120806 crossref_primary_10_1016_j_jenvman_2024_123486 crossref_primary_10_1111_imb_12957 crossref_primary_10_1016_j_scitotenv_2023_165084 crossref_primary_10_1016_j_ecoenv_2024_116565 crossref_primary_10_1007_s11356_023_31561_x crossref_primary_10_1016_j_ecoenv_2023_115499 crossref_primary_10_1186_s12864_023_09590_0 crossref_primary_10_3390_insects15050369 crossref_primary_10_3390_insects16010020 crossref_primary_10_3390_toxics9050109 crossref_primary_10_3390_cells10030701 crossref_primary_10_1016_j_envpol_2022_120340 crossref_primary_10_3389_fevo_2021_716660 crossref_primary_10_3389_fmicb_2021_649213 crossref_primary_10_3390_jox14020043 crossref_primary_10_1093_jisesa_iead039 crossref_primary_10_3389_fphys_2021_739800 crossref_primary_10_1016_j_scitotenv_2023_161700 crossref_primary_10_1016_j_scitotenv_2024_177076 crossref_primary_10_1016_j_ecoenv_2022_114027 crossref_primary_10_1038_s41579_023_00990_3 crossref_primary_10_3390_insects13070583 crossref_primary_10_1016_j_tim_2020_06_006 crossref_primary_10_1128_spectrum_00520_23 crossref_primary_10_1021_acs_est_3c07581 crossref_primary_10_1016_j_scitotenv_2024_171984 crossref_primary_10_3389_fphys_2023_1174236 crossref_primary_10_1016_j_scitotenv_2024_170174 crossref_primary_10_1038_s41598_021_82573_x crossref_primary_10_1152_physiol_00033_2023 crossref_primary_10_3390_insects13030308 crossref_primary_10_1016_j_jhazmat_2025_137112 crossref_primary_10_3389_fphys_2023_1172859 crossref_primary_10_1016_j_envres_2025_121306 crossref_primary_10_3390_microorganisms12061154 crossref_primary_10_1016_j_pestbp_2024_105808 crossref_primary_10_1016_j_cois_2024_101192 crossref_primary_10_1016_j_ijbiomac_2020_12_217 crossref_primary_10_3390_insects13121167 crossref_primary_10_1098_rstb_2021_0156 crossref_primary_10_3389_fmicb_2021_722901 crossref_primary_10_1016_j_chemosphere_2024_142207 crossref_primary_10_3390_biology14020147 crossref_primary_10_3390_insects15120927 crossref_primary_10_3390_agriculture12030389 crossref_primary_10_3390_insects13090765 crossref_primary_10_1128_aem_02036_24 crossref_primary_10_1128_aem_01739_23 crossref_primary_10_1016_j_cois_2024_101270 crossref_primary_10_1055_a_2259_0101 crossref_primary_10_3389_fmicb_2021_665101 crossref_primary_10_1016_j_jhazmat_2021_127213 crossref_primary_10_3389_fmicb_2025_1531847 crossref_primary_10_1007_s00248_023_02222_w crossref_primary_10_1016_j_cois_2025_101346 crossref_primary_10_1007_s10646_024_02758_8 crossref_primary_10_1016_j_scitotenv_2024_178264 crossref_primary_10_1021_acs_jafc_4c10828 crossref_primary_10_1128_Spectrum_00103_21 crossref_primary_10_1016_j_isci_2021_103726 crossref_primary_10_3390_ani14192857 crossref_primary_10_1038_s41522_023_00369_5 crossref_primary_10_1186_s12915_023_01586_2 crossref_primary_10_1016_j_jhazmat_2024_135886 crossref_primary_10_1007_s13744_022_00974_7 crossref_primary_10_1016_j_envpol_2022_120915 crossref_primary_10_1128_spectrum_00578_24 |
Cites_doi | 10.1080/20477724.2017.1356052 10.1016/j.cbpb.2009.08.008 10.1016/j.cois.2018.02.012 10.1128/AEM.07810-11 10.1073/pnas.1803880115 10.1080/00218839.2018.1460911 10.3896/IBRA.1.53.1.02 10.1146/annurev-ento-011613-162005 10.1128/mBio.00271-10 10.1006/meth.2001.1262 10.1038/s41396-019-0445-5 10.1016/j.jinsphys.2016.10.017 10.1111/1462-2920.12426 10.1007/s10646-012-0863-x 10.1098/rspb.2006.3721 10.1126/sciadv.1600513 10.1126/science.1255957 10.1016/j.cub.2018.02.045 10.1093/jee/99.4.1046 10.1038/nrmicro.2016.43 10.1016/j.ecolecon.2008.06.014 10.1093/aesa/say009 10.1146/annurev.en.34.010189.000453 10.1080/00218839.2016.1260240 10.1128/AEM.01861-14 10.1128/AEM.00545-18 10.1073/pnas.1109535108 10.1073/pnas.1614864114 10.1073/pnas.1606631113 10.1111/eea.12372 10.1016/S0165-6147(00)01820-4 10.1371/journal.pone.0171529 10.1371/journal.pbio.2001861 10.1016/j.jip.2009.06.011 10.1073/pnas.1701819114 10.1051/apido/2010018 10.1002/etc.2527 10.1080/00498250802651984 10.1371/journal.pone.0187505 10.1172/JCI72333 10.1126/science.aam7470 10.1038/nature14420 10.1111/mec.14434 10.1242/jeb.202077 10.3389/fmicb.2016.01255 10.1016/j.cois.2015.03.005 10.1186/s40168-017-0236-z 10.1016/j.cropro.2003.08.018 10.1186/s13765-019-0415-7 10.1126/science.1215039 10.1016/j.tibs.2012.11.006 10.1038/s41467-019-08303-0 10.1038/nature11585 10.1186/s40168-018-0602-5 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Ltd and Society for Applied Microbiology. 2020 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Ltd and Society for Applied Microbiology. – notice: 2020 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7T7 7X7 7XB 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M7P M7S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS RC3 7X8 5PM DOA |
DOI | 10.1111/1751-7915.13579 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts ProQuest Engineering Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Bee gut symbiont helps host detoxify pesticide |
EISSN | 1751-7915 |
EndPage | 1212 |
ExternalDocumentID | oai_doaj_org_article_c7a3e606a0e5487a91df58e052e58932 PMC7264748 32338446 10_1111_1751_7915_13579 MBT213579 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Science and Technology Department of Zhejiang Province funderid: 2016C02054‐11 – fundername: National Natural Science Foundation of China funderid: 31672498; 31872431; 31902222 – fundername: Modern Agroindustry Technology Research System funderid: CARS‐44 – fundername: NIEHS NIH HHS grantid: 27304C2054 – fundername: ; grantid: 31672498; 31872431; 31902222 – fundername: Modern Agroindustry Technology Research System grantid: CARS‐44 – fundername: ; grantid: 2016C02054‐11 |
GroupedDBID | --- 0R~ 123 1OC 24P 29M 31~ 4.4 53G 5DZ 5VS 7X7 8-1 8FE 8FG 8FH 8FI 8FJ A8Z AAHHS AANHP AAZKR ABDBF ABJCF ABUWG ACBWZ ACCFJ ACCMX ACGFO ACIWK ACPRK ACRPL ACUHS ACXQS ACYXJ ADBBV ADKYN ADNMO ADPDF ADRAZ ADZMN AEEZP AEGXH AENEX AEQDE AEUYN AFKRA AFRAH AHMBA AIAGR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS ASPBG AVUZU AVWKF AZFZN BAWUL BBNVY BCNDV BDRZF BENPR BGLVJ BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 D-9 DIK EBD EBS EJD EMOBN ESX F5P FEDTE FYUFA GODZA GROUPED_DOAJ GX1 HCIFZ HMCUK HVGLF HYE IAO IHR ITC KQ8 L6V LH4 LK8 LW6 M48 M7P M7S ML0 MM. O9- OIG OK1 OVD OVEED P2P PIMPY PQQKQ PROAC PTHSS RNS RPM SV3 TEORI TUS UKHRP WIN AAYXX AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PQGLB 3V. 7QO 7T7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c6019-a21e201ef090de2f084784a5c6b843c78dbdeb3dbbd54d21d831b5a91d5eb9843 |
IEDL.DBID | M48 |
ISSN | 1751-7915 |
IngestDate | Wed Aug 27 01:27:51 EDT 2025 Thu Aug 21 14:37:16 EDT 2025 Fri Jul 11 05:13:05 EDT 2025 Wed Aug 13 02:54:58 EDT 2025 Mon Jul 21 06:00:18 EDT 2025 Thu Apr 24 23:07:35 EDT 2025 Tue Jul 01 03:38:00 EDT 2025 Wed Jan 22 16:33:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution 2020 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6019-a21e201ef090de2f084784a5c6b843c78dbdeb3dbbd54d21d831b5a91d5eb9843 |
Notes | The work was supported by National Natural Science Foundation of China (31902222, Y.W., 31672498, H.Z. and 31872431, F.H.), Science and Technology Department of Zhejiang Province, China (2016C02054‐11, F.H.), the Modern Agroindustry Technology Research System (CARS‐44, F.H. and H.Z.). Funding Information ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3301-3927 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/1751-7915.13579 |
PMID | 32338446 |
PQID | 2408476039 |
PQPubID | 1016378 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c7a3e606a0e5487a91df58e052e58932 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7264748 proquest_miscellaneous_2395261902 proquest_journals_2408476039 pubmed_primary_32338446 crossref_citationtrail_10_1111_1751_7915_13579 crossref_primary_10_1111_1751_7915_13579 wiley_primary_10_1111_1751_7915_13579_MBT213579 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bedford – name: Hoboken |
PublicationTitle | Microbial biotechnology |
PublicationTitleAlternate | Microb Biotechnol |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2017; 5 2017; 3 2015; 347 2019; 10 2019; 13 2010; 103 2004; 23 2009; 154 2017; 111 2017; 114 2017; 356 2012; 491 2018; 6 1989; 34 2019; 62 2001 2018b; 84 2016; 113 2012; 336 2012; 21 1996; 67 2014; 124 2014; 53 2009; 68 2018; 28 2015; 17 2011; 2 2015; 521 2006; 99 2015; 10 2018a; 27 2001; 22 2012; 78 2001; 25 2010; 41 2016; 14 2019; 222 2018; 26 2016; 55 2018; 111 2016; 7 2011; 108 2014; 80 2013; 38 2015; 60 2017; 15 2015; 157 2017; 98 2018; 115 2007; 274 2017; 12 2014; 33 2018; 57 2009; 39 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 Mutinelli F. (e_1_2_8_39_1) 1996; 67 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 Smagghe G. (e_1_2_8_49_1) 2001 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 98 start-page: 14 year: 2017 end-page: 22 article-title: The metabolic fate of nectar nicotine in worker honey bees publication-title: J Insect Physiol – volume: 78 start-page: 2830 year: 2012 end-page: 2840 article-title: Establishment of characteristic gut bacteria during development of the honeybee worker publication-title: Appl Environ Microbiol – volume: 22 start-page: 573 year: 2001 end-page: 580 article-title: Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors publication-title: Trends Pharmacol Sci – volume: 12 year: 2017 article-title: Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub‐lethal doses of imidacloprid in laboratory and field experiments publication-title: PLOS One – volume: 34 start-page: 77 year: 1989 end-page: 96 article-title: Neurotoxic actions of pyrethroid insecticides publication-title: Ann Rev Entomol – volume: 25 start-page: 402 year: 2001 end-page: 408 article-title: Analysis of relative gene expression data using real‐time quantitative PCR and the 2−ΔΔCT method publication-title: Methods – volume: 38 start-page: 140 year: 2013 end-page: 150 article-title: What makes a P450 tick? publication-title: Trends Biochem Sci – volume: 114 start-page: 4775 year: 2017 end-page: 4780 article-title: Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling publication-title: Proc Natl Acad Sci USA – volume: 154 start-page: 427 year: 2009 end-page: 434 article-title: Quercetin‐metabolizing CYP6AS enzymes of the pollinator (Hymenoptera: Apidae) publication-title: Comp Biochem Physiol B: Biochem Mol Biol – volume: 157 start-page: 334 year: 2015 end-page: 345 article-title: Infection of ‘ the protein content and alters the activity of detoxifying enzymes in publication-title: Entomol Exp Appl – volume: 124 start-page: 4212 year: 2014 end-page: 4218 article-title: Antibiotics and the gut microbiota publication-title: J Clin Investig – volume: 21 start-page: 973 year: 2012 end-page: 992 article-title: Neonicotinoids in bees: a review on concentrations, side‐effects and risk assessment publication-title: Ecotoxicology – volume: 27 start-page: 2057 year: 2018a end-page: 2066 article-title: Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome publication-title: Mol Ecol – volume: 115 start-page: 10305 year: 2018 end-page: 10310 article-title: Glyphosate perturbs the gut microbiota of honey bees publication-title: Proc Natl Acad Sci USA – volume: 55 start-page: 375 year: 2016 end-page: 378 article-title: Preliminary analysis of loss rates of honey bee colonies during winter 2015/16 from the COLOSS survey publication-title: J Apic Res – volume: 99 start-page: 1046 year: 2006 end-page: 1050 article-title: Mediation of pyrethroid insecticide toxicity to honey bees (Hymenoptera: Apidae) by cytochrome P450 monooxygenases publication-title: J Econ Entomol – volume: 41 start-page: 312 year: 2010 end-page: 331 article-title: Pesticides and honey bee toxicity–USA publication-title: Apidologie – volume: 68 start-page: 810 year: 2009 end-page: 821 article-title: Economic valuation of the vulnerability of world agriculture confronted with pollinator decline publication-title: Ecol Econ – volume: 356 start-page: 1395 year: 2017 end-page: 1397 article-title: Chronic exposure to neonicotinoids reduces honey bee health near corn crops publication-title: Science – volume: 17 start-page: 969 year: 2015 end-page: 983 article-title: Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle publication-title: Environ Microbiol – volume: 39 start-page: 323 year: 2009 end-page: 334 article-title: Intestinal flora induces the expression of Cyp3a in the mouse liver publication-title: Xenobiotica – volume: 13 start-page: 2447 year: 2019 end-page: 2464 article-title: Pyrethroid exposure alters internal and cuticle surface bacterial communities in publication-title: ISME J – start-page: 293 year: 2001 end-page: 321 – volume: 23 start-page: 371 year: 2004 end-page: 378 article-title: Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, publication-title: Crop Prot – volume: 33 start-page: 719 year: 2014 end-page: 731 article-title: Risks of neonicotinoid insecticides to honeybees publication-title: Environ Toxicol Chemist – volume: 521 start-page: 77 year: 2015 article-title: Seed coating with a neonicotinoid insecticide negatively affects wild bees publication-title: Nature – volume: 26 start-page: 97 year: 2018 end-page: 104 article-title: The role of the gut microbiome in health and disease of adult honey bee workers publication-title: Curr Opin Insect Sci – volume: 14 start-page: 374 year: 2016 article-title: Gut microbial communities of social bees publication-title: Nat Rev Microbiol – volume: 28 start-page: 1137 year: 2018 end-page: 1143 article-title: Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides publication-title: Curr Biol – volume: 336 start-page: 348 year: 2012 end-page: 350 article-title: A common pesticide decreases foraging success and survival in honey bees publication-title: Science – volume: 222 start-page: jeb.02077 year: 2019 article-title: Pollen reverses decreased lifespan, altered nutritional metabolism, and suppressed immunity in honey bees ( ) treated with antibiotics publication-title: J Exp Biol – volume: 7 start-page: 1255 year: 2016 article-title: Honey bee gut microbiome is altered by in‐hive pesticide exposures publication-title: Front Microbiol – volume: 3 year: 2017 article-title: Dynamic microbiome evolution in social bees publication-title: Sci Adv – volume: 114 start-page: 2538 year: 2017 end-page: 2543 article-title: Disruption of quercetin metabolism by fungicide affects energy production in honey bees ( ) publication-title: Proc Natl Acad Sci USA – volume: 53 start-page: 19 year: 2014 end-page: 34 article-title: Results of international standardised beekeeper surveys of colony losses for winter 2012–2013: analysis of winter loss rates and mixed effects modelling of risk factors for winter loss publication-title: J Apic Res – volume: 15 year: 2017 article-title: Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees publication-title: PLoS Biol – volume: 491 start-page: 105 year: 2012 article-title: Combined pesticide exposure severely affects individual‐and colony‐level traits in bees publication-title: Nature – volume: 67 start-page: 65 year: 1996 end-page: 71 article-title: Practical application of antibacterial drugs for the control of honey bee diseases publication-title: J Invert Pathol – volume: 10 start-page: 51 year: 2015 end-page: 58 article-title: Xenobiotic detoxification pathways in honey bees publication-title: Cur Opin Insect Sci – volume: 12 year: 2017 article-title: New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee’s vulnerability to Nosema infection publication-title: PLoS ONE – volume: 57 start-page: 452 year: 2018 end-page: 457 article-title: Multi‐country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey publication-title: J Apic Res – volume: 103 start-page: S80 year: 2010 end-page: S95 article-title: A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them publication-title: J Invert Pathol – volume: 62 start-page: 6 year: 2019 article-title: Effect of transient exposure to carbaryl wettable powder on the gut microbial community of honey bees publication-title: Appl Biol Chemist – volume: 113 start-page: 9345 year: 2016 end-page: 9350 article-title: Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers publication-title: Proc Natl Acad Sci USA – volume: 60 start-page: 415 year: 2015 end-page: 434 article-title: Honey bee toxicology publication-title: Ann Rev Entomol – volume: 111 start-page: 92 year: 2018 end-page: 97 article-title: The links between insect symbionts and insecticide resistance: causal relationships and physiological tradeoffs publication-title: Ann Entomol Soc Am – volume: 10 start-page: 446 year: 2019 article-title: Genomic diversity landscape of the honey bee gut microbiota publication-title: Nat Commun – volume: 6 start-page: 224 year: 2018 article-title: Antibiotics may increase triazine herbicide exposure risk via disturbing gut microbiota publication-title: Microbiome – volume: 5 start-page: 13 year: 2017 article-title: Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly (Hendel) publication-title: Microbiome – volume: 2 year: 2011 article-title: Colonization‐induced host‐gut microbial metabolic interaction publication-title: mBio – volume: 274 start-page: 303 year: 2007 end-page: 313 article-title: Importance of pollinators in changing landscapes for world crops publication-title: Proc Biol Sci – volume: 111 start-page: 289 year: 2017 end-page: 296 article-title: The role of midgut symbiotic bacteria in resistance of (Diptera: Culicidae) to organophosphate insecticides publication-title: Pathogens Glob Health – volume: 84 year: 2018b article-title: Imidacloprid decreases honey bee survival rates but does not affect the gut microbiome publication-title: Appl Environ Microbiol – volume: 347 start-page: 1255957 year: 2015 article-title: Bee declines driven by combined stress from parasites, pesticides, and lack of flowers publication-title: Science – volume: 108 start-page: 12657 year: 2011 end-page: 12662 article-title: CYP9Q‐mediated detoxification of acaricides in the honey bee ( ) publication-title: Proc Natl Acad Sci USA – volume: 80 start-page: 7378 year: 2014 end-page: 7387 article-title: Routes of acquisition of the gut microbiota of the honey bee publication-title: Appl Environ Microbiol – ident: e_1_2_8_52_1 doi: 10.1080/20477724.2017.1356052 – ident: e_1_2_8_30_1 doi: 10.1016/j.cbpb.2009.08.008 – ident: e_1_2_8_43_1 doi: 10.1016/j.cois.2018.02.012 – ident: e_1_2_8_33_1 doi: 10.1128/AEM.07810-11 – ident: e_1_2_8_37_1 doi: 10.1073/pnas.1803880115 – ident: e_1_2_8_6_1 doi: 10.1080/00218839.2018.1460911 – ident: e_1_2_8_55_1 doi: 10.3896/IBRA.1.53.1.02 – ident: e_1_2_8_19_1 doi: 10.1146/annurev-ento-011613-162005 – ident: e_1_2_8_8_1 doi: 10.1128/mBio.00271-10 – ident: e_1_2_8_28_1 doi: 10.1006/meth.2001.1262 – ident: e_1_2_8_9_1 doi: 10.1038/s41396-019-0445-5 – ident: e_1_2_8_12_1 doi: 10.1016/j.jinsphys.2016.10.017 – ident: e_1_2_8_10_1 doi: 10.1111/1462-2920.12426 – ident: e_1_2_8_4_1 doi: 10.1007/s10646-012-0863-x – ident: e_1_2_8_23_1 doi: 10.1098/rspb.2006.3721 – ident: e_1_2_8_25_1 doi: 10.1126/sciadv.1600513 – ident: e_1_2_8_16_1 doi: 10.1126/science.1255957 – ident: e_1_2_8_29_1 doi: 10.1016/j.cub.2018.02.045 – ident: e_1_2_8_20_1 doi: 10.1093/jee/99.4.1046 – ident: e_1_2_8_24_1 doi: 10.1038/nrmicro.2016.43 – ident: e_1_2_8_14_1 doi: 10.1016/j.ecolecon.2008.06.014 – ident: e_1_2_8_41_1 doi: 10.1093/aesa/say009 – ident: e_1_2_8_51_1 doi: 10.1146/annurev.en.34.010189.000453 – ident: e_1_2_8_5_1 doi: 10.1080/00218839.2016.1260240 – ident: e_1_2_8_42_1 doi: 10.1128/AEM.01861-14 – ident: e_1_2_8_46_1 doi: 10.1128/AEM.00545-18 – ident: e_1_2_8_31_1 doi: 10.1073/pnas.1109535108 – ident: e_1_2_8_32_1 doi: 10.1073/pnas.1614864114 – ident: e_1_2_8_48_1 doi: 10.1073/pnas.1606631113 – ident: e_1_2_8_2_1 doi: 10.1111/eea.12372 – ident: e_1_2_8_34_1 doi: 10.1016/S0165-6147(00)01820-4 – ident: e_1_2_8_50_1 doi: 10.1371/journal.pone.0171529 – ident: e_1_2_8_44_1 doi: 10.1371/journal.pbio.2001861 – ident: e_1_2_8_35_1 doi: 10.1016/j.jip.2009.06.011 – ident: e_1_2_8_57_1 doi: 10.1073/pnas.1701819114 – ident: e_1_2_8_21_1 doi: 10.1051/apido/2010018 – ident: e_1_2_8_13_1 doi: 10.1002/etc.2527 – start-page: 293 volume-title: Insect midgut as a site for insecticide detoxification and resistance year: 2001 ident: e_1_2_8_49_1 – ident: e_1_2_8_53_1 doi: 10.1080/00498250802651984 – ident: e_1_2_8_26_1 doi: 10.1371/journal.pone.0187505 – ident: e_1_2_8_36_1 doi: 10.1172/JCI72333 – ident: e_1_2_8_54_1 doi: 10.1126/science.aam7470 – volume: 67 start-page: 65 year: 1996 ident: e_1_2_8_39_1 article-title: Practical application of antibacterial drugs for the control of honey bee diseases publication-title: J Invert Pathol – ident: e_1_2_8_47_1 doi: 10.1038/nature14420 – ident: e_1_2_8_45_1 doi: 10.1111/mec.14434 – ident: e_1_2_8_27_1 doi: 10.1242/jeb.202077 – ident: e_1_2_8_22_1 doi: 10.3389/fmicb.2016.01255 – ident: e_1_2_8_3_1 doi: 10.1016/j.cois.2015.03.005 – ident: e_1_2_8_7_1 doi: 10.1186/s40168-017-0236-z – ident: e_1_2_8_18_1 doi: 10.1016/j.cropro.2003.08.018 – ident: e_1_2_8_40_1 doi: 10.1186/s13765-019-0415-7 – ident: e_1_2_8_17_1 doi: 10.1126/science.1215039 – ident: e_1_2_8_38_1 doi: 10.1016/j.tibs.2012.11.006 – ident: e_1_2_8_11_1 doi: 10.1038/s41467-019-08303-0 – ident: e_1_2_8_15_1 doi: 10.1038/nature11585 – ident: e_1_2_8_56_1 doi: 10.1186/s40168-018-0602-5 |
SSID | ssj0060052 |
Score | 2.5316033 |
Snippet | Summary
There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the... There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the contribution of... Summary There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1201 |
SubjectTerms | Animals Antibiotics Apis mellifera Bacteria Bees Cytochrome Cytochrome P-450 Enzyme System - genetics Cytochrome P-450 Enzyme System - metabolism Cytochromes Detoxification Digestive system Dysbacteriosis Enzymes Experiments Fluvalinate Food contamination & poisoning Foraging behavior Gastrointestinal Microbiome Gastrointestinal tract Gastrointestinal Tract - metabolism Gene Expression Gut microbiota Honey Inactivation, Metabolic Insecticide resistance Insecticides Insects Intestinal microflora Metabolism Metabolites Microbiota Midgut Mortality Pesticide residues Pesticide resistance Pesticides Residues Survival Thiacloprid Workers (insect caste) Xenobiotics |
SummonAdditionalLinks | – databaseName: DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT3BAfJNS0CBxKIdQJ7bzcWwR1QqpiEMr9WbZ8QQi0exqN0XtX-HXMuNkV7sC1Au3VexkHc_Y8yZ5eSPEOyRILVuv08LRItchNGlVVC6N-vnBuaaMIklnX4rZhf58aS63Sn0xJ2yUBx4n7qgpnUJC2U4ig2tXZ6E1FUqTo6FYG3dfinnrZGrcgwt-2jkJ-TBvh2JkxsKMhss8MGtrKwZFqf6_4cs_aZLb8DXGn9NH4uEEHOF4HPBjcQ_7J-LBlpzgU_FrNu_xFjwiHB4vuhVcsdpmi0v3Hr5dD3DVjapLg4NFZOHhCvgjD8A-zEexVgg4zG-YPhQtBg3F0kifvYWfnYPlWLmeW-YtfNVGAp2HgDcTn7aHrgfClBDiiyvaSmHg77CeiYvTT-cfZ-lUeyFtKEWrU5dnSNgAW1nLgHkrKYpV2pmm8JVWZMHgA-XhwftgdMizUKnMG7aOQV9Tl-dir6ebfikAUZfK5RUG77QrC5_XrvRKS4eoKLtJxIe1NWwzCZNzfYwfdp2gsPksm89G8yXicHPCYtTk-HfXEzbvphuLaccD5GJ2cjF7l4sl4mDtHHZa4SvL0nC6LKSi_3i7aaa1yS9cXI9kMpur2nCGKukSL0Zf2oxE5UpVlIsnotzxsp2h7rb03feo_10SiC11lYij6I93zYE9OznP46_9_zEbr8T9nJ85RMrygdgbltf4moDZ4N_ENfgbeW80aA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagXOCAeBMoaJA4lENoYjuvE2oRywqpiEMr9RbZ8aSNRJNlN0XtX-HXMuMky6543aK1E8X7zdgz9pdvhHiNFFJHtdVhasjJtXNVmKe5Cb1-vjOmyrxI0tHndH6iP50mp-OG22qkVU5zop-oXVfxHvk-S3HpLI1U8W7xLeSqUXy6OpbQuCluxbTSMKUrn32cZuKU9zxHOR9m79BKGbM8Y8LFHpi7tbESecH-P0WZv5MlN4NYvwrN7om7Y_gIBwPe98UNbB-IOxuigg_Fj3nX4jVYRNg7WDQruGDNzRqX5g2cXfZw0QzaS72Bhefi4Qr4Uw_A1nWDZCs47LsrJhF53KCiFdWTaK_he2NgOdSv55auhi86iYDuQ8CrkVXbQtMCRZbg_PEVTajQ89dYj8TJ7MPx-3k4VmAIK0rUitDIGClCwDoqIoeyZghybZIqtblWhKOzjrJxZ61LtJOxy1VsE1PELkFbUJfHYqelQT8VgKgzZWSOzhptstTKwmRW6cggKspxAvF2QqOsRnlyrpLxtZzSFIavZPhKD18g9tY3LAZljr93PWR4191YUtv_0C3PytFDyyozCimdMxFyFseDqJMcyYQwoaBOBmJ3Mo5y9PNV-csqA_Fq3UweyscupkWCrJSqSDhPjegRTwZbWr-JkkrllJEHItuysq1X3W5pm3OvAp5RKJvpPBD73h7_9x-UR4fH0l89-_dAnovbkvcUPCV5V-z0y0t8QYFXb1967_oJTvYsgA priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagXOCAeBMoaJA4lEMgsZ3XsUVUK6SiHlqJW2THkxKpTVa7KWr_Sn9tZ5yHdnkIcYtiO6-Z8cw433wW4j1SSB3VVoepISPXzlVhnuYm9Pz5zpgq8yRJR9_Sxan--j2Z0IRcCzPwQ8wLbmwZfr5mAzd2vWHk5PdiJltMeOuGrLgr7nGBLaP6pD6eJuOUlz19TeTYeWT3YTDPLxfYckyev_9PQefv2MnNmNY7pcNH4uEYTcL-IP7H4g62T8SDDY7Bp-Jm0bV4DRYR9vaXzRoumIKzxpX5AGeXPVw0AxVTb2DpoXm4Bq78AGxdNzC4gsO-u2JMkRcjVORgPab2Gn42BlbDdvbc0tVwrJMIaBwCXo0g2xaaFijQBOf_ZtH8Cj0XZz0Tp4dfTj4vwnFDhrCivK0IjYyRAgasoyJyKOuIXFuuTVKlNteKxOqso-TcWesS7WTschXbxBSxS9AW1OW52GnppV8KQNSZMjJHZ402WWplYTKrdGQQFaU8gfg4SaOsRrZy3jTjvJyyFhZfyeIrvfgCsTcPWA5EHX_vesDinbsxw7Y_0a3OytFgyyozCim7MxFyUscvUSc5kjphQjGeDMTupBzlaPbrkvnidJZGiu7xbm4mg-W_MKZFElkpVZFw2hrRJV4MujQ_iZJK5ZSgByLb0rKtR91uaZsfnhQ8o8g203kgPnl9_Nc3KI8OTqQ_evXfI16L-5JXHTxoeVfs9KtLfEOhWW_feuO7BUl5MBk priority: 102 providerName: Wiley-Blackwell |
Title | Honey bee (Apis mellifera) gut microbiota promotes host endogenous detoxification capability via regulation of P450 gene expression in the digestive tract |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1751-7915.13579 https://www.ncbi.nlm.nih.gov/pubmed/32338446 https://www.proquest.com/docview/2408476039 https://www.proquest.com/docview/2395261902 https://pubmed.ncbi.nlm.nih.gov/PMC7264748 https://doaj.org/article/c7a3e606a0e5487a91df58e052e58932 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdrC6N7GPteui5osIfuwZ0jy5b9MEYzmoVBShgN5M1I1rkNtE6WuCX5V_bX7k62s4RlDPZijCX56-58v5POv2PsPSCk9nMjvUijkUtrMy-OYu05_nyrdaYcSdLgIuqP5LdxOP5dDqh-gYudoR3VkxrNb06XP1af0eA_NVk56AE7RLsYUhEHleyxA3RLisoZDOR6SSGiCdCa22fHoEP2MBAYrklCwhseyhH570KffyZRboJb5516T9jjGlbys0oPnrIHUDxjjzbIBp-zn_1pAStuAPjJ2Wyy4LfExZnDXH_gV3clv51UnEyl5jOXowcLTr-AcCjstKJy5RbK6ZKSi5w8eYae1iXXrvj9RPN5VdeeWqY5H8rQ5zgOOCzrbNuCTwqOiJNbt6yFH1pe0l9aL9iod375pe_VlRm8DAO4xNOiA4gcIPcT34LIffRxsdRhFplYBihfayxG6dYYG0orOjYOOibUSceGYBLs8pLtF_jQrxkHkCrQIgZrtNQqMiLRygTS1wABxj4tdtpII81q2nKqnnGTNuELSTIlSaZOki12sh4wqxg7_t61S-JddyOqbXdgOr9Ka8tNM6UDwDBP-0DRHT1EHsaA2gQhgj3RYseNcqSN-qZEHCdV5Ad4jXfrZrRcWo7RBaDIUhEkIcWvPp7iVaVL6ztpdLHF1JaWbd3qdksxuXbs4AohrpJxi310-vivd5AOupfC7R3997XesENB0xAui_mY7ZfzO3iLWK00bbYn5BC3aqxwG_e-ttlB9_xi-L3tZj_azkZ_AairQWc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKOQAHxJtAASOBVA5LN7b3dUCoBUJKm4pDKvW2tdezaaR2NyRbaP4KP4LfyIx3NyTideotynote2c8D_vzN4y9AAyp_dwoL9S4yJW1mReHsfYcf77VOoscSdLgIOwfqk9HwdEa-9HehSFYZWsTnaG2ZUZ75FtExaWi0JfJ28kXj6pG0elqW0KjVos9mH_DlG32Zvc9yvelEL0Pw3d9r6kq4GWYfCSeFl1Arwe5n_gWRE7dxkoHWWhiJXFs1ljMMK0xNlBWdG0suybQSdcGYBJsgv1eYVeVRE9ON9N7H1vLH9Iea0MfRGgh9MxdooMMqLgEYcWWPJ8rEPCnqPZ3cOZy0Oy8Xu8Wu9mEq3y71q_bbA2KO-zGEonhXfa9XxYw5waAb25PxjN-RhyfOUz1Kz46r_jZuOZ6qjSfOOwfzDhdLeFQ2LKmiOUWqvKCQEtOT3iGHtyBduf861jzKYyaImO8zPlnFfgc3wMOFw2Kt-DjgmMky607LkMDziu6_XWPHV6KbO6z9QIn_ZBxABVJLWKwRisdhUYkOjJS-RpAYk7VYa9baaRZQ4dOVTlO0zYtIvGlJL7Uia_DNhcvTGomkL833SHxLpoRhbf7o5yO0sYipFmkJWD6qH2grJEmkQcxoApBgEGk6LCNVjnSxq7M0l-roMOeLx6jRaBjHl0AiiwVMgkoL_axiwe1Li1GIoWUsVI4-2hFy1aGuvqkGJ841vEIQ-dIxR225fTxf98gHewMhfv16N8Tecau9YeD_XR_92DvMbsuaD_DwaE32Ho1PYcnGPRV5qlbaZwdX_bS_gnoTWm0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QNzpGGAkkMZDaOo4tweEVraqY6yq0CbtLdjxSam0JaXNYP0r_BR-Hec4SWnF7WlvUeMkds_xudifv8PYC8CQ2s20dAKFk1wakzpRECnH8ucbpdLQkiQdDYPBiXx_6p9usB_NWRiCVTY20RpqU6S0Rt4hKi4ZBq4Xd7IaFjHa67-dfnGoghTttDblNCoVOYTFN0zf5m8O9lDWL4Xo7x-_Gzh1hQEnxUQkdpToAnpAyNzYNSAy-kQklZ8GOpIe9tNog9mm0dr40oiuibyu9lXcNT7oGJvge6-xzZCyohbb7O0PRx8bPxDQimtNJkTYIfTTXSKH9KnUBCHHVvygLRfwpxj3d6jmaghtfWD_NrtVB698t9K2O2wD8rvs5gql4T32fVDksOAagO_sTidzfk6MnxnM1Cs-vij5-aRifioVn1okIMw5HTThkJuiIozlBsrikiBMVmt4iv7cQngX_OtE8RmM65JjvMj4SPoux-eAw2WN6c35JOcY13JjN8_QnPOSzoLdZydXIp0HrJXjoB8xDiBDT4kIjFZShYEWsQq1J10F4GGG1WavG2kkaU2OTjU6zpImSSLxJSS-xIqvzXaWD0wrXpC_N-2ReJfNiNDb_lDMxkltH5I0VB5gMqlcoBySBpH5EaAKgY8hpWiz7UY5ktrKzJNfc6LNni9vo32gTR-VA4osEV7sU5bs4iseVrq07IknPC-SEkcfrmnZWlfX7-STz5aDPMRAOpRRm3WsPv7vP0iOesfCXm39eyDP2HWc1smHg-HhY3ZD0OKGxUZvs1Y5u4AnGAGW-mk91Tj7dNWz-yfPlG9G |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Honey+bee+%28Apis+mellifera%29+gut+microbiota+promotes+host+endogenous+detoxification+capability+via+regulation+of+P450+gene+expression+in+the+digestive+tract&rft.jtitle=Microbial+biotechnology&rft.au=Wu%2C+Yuqi&rft.au=Zheng%2C+Yufei&rft.au=Chen%2C+Yanan&rft.au=Wang%2C+Shuai&rft.date=2020-07-01&rft.pub=John+Wiley+and+Sons+Inc&rft.eissn=1751-7915&rft.volume=13&rft.issue=4&rft.spage=1201&rft.epage=1212&rft_id=info:doi/10.1111%2F1751-7915.13579&rft_id=info%3Apmid%2F32338446&rft.externalDocID=PMC7264748 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7915&client=summon |