SpyA is a membrane-bound ADP-ribosyltransferase of Streptococcus pyogenes which modifies a streptococcal peptide, SpyB

Summary All sequenced genomes of Streptococcus pyogenes (Group A Streptococcus, GAS) encode a protein, SpyA, with homology to C3‐like ADP‐ribosyltransferase toxins. SpyA is a novel virulence factor which plays a role in pathogenesis in a mouse model of soft‐tissue infection. In this study we demonst...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 83; no. 5; pp. 936 - 952
Main Authors Korotkova, Natalia, Hoff, Jessica S., Becker, Devon M., Quinn, John Kyle Heggen, Icenogle, Laura M., Moseley, Steve L.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.03.2012
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary All sequenced genomes of Streptococcus pyogenes (Group A Streptococcus, GAS) encode a protein, SpyA, with homology to C3‐like ADP‐ribosyltransferase toxins. SpyA is a novel virulence factor which plays a role in pathogenesis in a mouse model of soft‐tissue infection. In this study we demonstrate that SpyA is a surface‐exposed membrane protein which is anchored to the streptococcal membrane by an N‐terminal transmembrane sequence. We identified a small gene upstream of spyA, designated spyB, which encodes a peptide of 35 amino acids, and is co‐transcribed with spyA. Expression of spyBA is strongly influenced by translational coupling: mutational inactivation of spyB translation completely abolishes translation of spyA. spyB expression increases with increasing cell density and reaches its maximum at late exponential growth phase. The SpyB N‐terminus is predicted to fold into an amphipathic α‐helix, a structural motif that targets a protein to the cytoplasmic membrane. Consistent with the prediction, we found that a SpyB fusion with peptide affinity tags is located in the streptococcal membrane. An ADP‐ribosylation assay with recombinant SpyA demonstrated that SpyA modifies SpyB. Thus, our study suggests that ADP‐ribosylation of SpyB may be an important function of SpyA.
AbstractList Summary All sequenced genomes of Streptococcus pyogenes (Group A Streptococcus, GAS) encode a protein, SpyA, with homology to C3‐like ADP‐ribosyltransferase toxins. SpyA is a novel virulence factor which plays a role in pathogenesis in a mouse model of soft‐tissue infection. In this study we demonstrate that SpyA is a surface‐exposed membrane protein which is anchored to the streptococcal membrane by an N‐terminal transmembrane sequence. We identified a small gene upstream of spyA, designated spyB, which encodes a peptide of 35 amino acids, and is co‐transcribed with spyA. Expression of spyBA is strongly influenced by translational coupling: mutational inactivation of spyB translation completely abolishes translation of spyA. spyB expression increases with increasing cell density and reaches its maximum at late exponential growth phase. The SpyB N‐terminus is predicted to fold into an amphipathic α‐helix, a structural motif that targets a protein to the cytoplasmic membrane. Consistent with the prediction, we found that a SpyB fusion with peptide affinity tags is located in the streptococcal membrane. An ADP‐ribosylation assay with recombinant SpyA demonstrated that SpyA modifies SpyB. Thus, our study suggests that ADP‐ribosylation of SpyB may be an important function of SpyA.
All sequenced genomes of Streptococcus pyogenes (Group A Streptococcus , GAS) encode a protein, SpyA, with homology to C3-like ADP-ribosyltransferase toxins. SpyA is a novel virulence factor which plays a role in pathogenesis in a mouse model of soft-tissue infection. In this study we demonstrate that SpyA is a surface-exposed membrane protein which is anchored to the streptococcal membrane by an N-terminal transmembrane sequence. We identified a small gene upstream of spyA , designated spyB, which encodes a peptide of 35 amino acids, and is co-transcribed with spyA . Expression of spyBA is strongly influenced by translational coupling: mutational inactivation of spyB translation completely abolishes translation of spyA. spyB expression increases with increasing cell density and reaches its maximum at late exponential growth phase. The SpyB N-terminus is predicted to fold into an amphipathic α-helix, a structural motif that targets a protein to the cytoplasmic membrane. Consistent with the prediction, we found that a SpyB fusion with peptide affinity tags is located in the streptococcal membrane. An ADP-ribosylation assay with recombinant SpyA demonstrated that SpyA modifies SpyB. Thus, our study suggests that ADP-ribosylation of SpyB may be an important function of SpyA.
All sequenced genomes of Streptococcus pyogenes (Group A Streptococcus, GAS) encode a protein, SpyA, with homology to C3-like ADP-ribosyltransferase toxins. SpyA is a novel virulence factor which plays a role in pathogenesis in a mouse model of soft-tissue infection. In this study we demonstrate that SpyA is a surface-exposed membrane protein which is anchored to the streptococcal membrane by an N-terminal transmembrane sequence. We identified a small gene upstream of spyA, designated spyB, which encodes a peptide of 35 amino acids, and is co-transcribed with spyA. Expression of spyBA is strongly influenced by translational coupling: mutational inactivation of spyB translation completely abolishes translation of spyA. spyB expression increases with increasing cell density and reaches its maximum at late exponential growth phase. The SpyB N-terminus is predicted to fold into an amphipathic α-helix, a structural motif that targets a protein to the cytoplasmic membrane. Consistent with the prediction, we found that a SpyB fusion with peptide affinity tags is located in the streptococcal membrane. An ADP-ribosylation assay with recombinant SpyA demonstrated that SpyA modifies SpyB. Thus, our study suggests that ADP-ribosylation of SpyB may be an important function of SpyA. [PUBLICATION ABSTRACT]
All sequenced genomes of Streptococcus pyogenes (Group A Streptococcus, GAS) encode a protein, SpyA, with homology to C3-like ADP-ribosyltransferase toxins. SpyA is a novel virulence factor which plays a role in pathogenesis in a mouse model of soft-tissue infection. In this study we demonstrate that SpyA is a surface-exposed membrane protein which is anchored to the streptococcal membrane by an N-terminal transmembrane sequence. We identified a small gene upstream of spyA, designated spyB, which encodes a peptide of 35 amino acids, and is co-transcribed with spyA. Expression of spyBA is strongly influenced by translational coupling: mutational inactivation of spyB translation completely abolishes translation of spyA. spyB expression increases with increasing cell density and reaches its maximum at late exponential growth phase. The SpyB N-terminus is predicted to fold into an amphipathic alpha -helix, a structural motif that targets a protein to the cytoplasmic membrane. Consistent with the prediction, we found that a SpyB fusion with peptide affinity tags is located in the streptococcal membrane. An ADP-ribosylation assay with recombinant SpyA demonstrated that SpyA modifies SpyB. Thus, our study suggests that ADP-ribosylation of SpyB may be an important function of SpyA.
All sequenced genomes of Streptococcus pyogenes (Group A Streptococcus, GAS) encode a protein, SpyA, with homology to C3-like ADP-ribosyltransferase toxins. SpyA is a novel virulence factor which plays a role in pathogenesis in a mouse model of soft-tissue infection. In this study we demonstrate that SpyA is a surface-exposed membrane protein which is anchored to the streptococcal membrane by an N-terminal transmembrane sequence. We identified a small gene upstream of spyA, designated spyB, which encodes a peptide of 35 amino acids, and is co-transcribed with spyA. Expression of spyBA is strongly influenced by translational coupling: mutational inactivation of spyB translation completely abolishes translation of spyA. spyB expression increases with increasing cell density and reaches its maximum at late exponential growth phase. The SpyB N-terminus is predicted to fold into an amphipathic α-helix, a structural motif that targets a protein to the cytoplasmic membrane. Consistent with the prediction, we found that a SpyB fusion with peptide affinity tags is located in the streptococcal membrane. An ADP-ribosylation assay with recombinant SpyA demonstrated that SpyA modifies SpyB. Thus, our study suggests that ADP-ribosylation of SpyB may be an important function of SpyA.
Summary All sequenced genomes of Streptococcus pyogenes (Group A Streptococcus , GAS) encode a protein, SpyA, with homology to C3‐like ADP‐ribosyltransferase toxins. SpyA is a novel virulence factor which plays a role in pathogenesis in a mouse model of soft‐tissue infection. In this study we demonstrate that SpyA is a surface‐exposed membrane protein which is anchored to the streptococcal membrane by an N‐terminal transmembrane sequence. We identified a small gene upstream of spyA , designated spyB , which encodes a peptide of 35 amino acids, and is co‐transcribed with spyA . Expression of spyBA is strongly influenced by translational coupling: mutational inactivation of spyB translation completely abolishes translation of spyA . spyB expression increases with increasing cell density and reaches its maximum at late exponential growth phase. The SpyB N‐terminus is predicted to fold into an amphipathic α‐helix, a structural motif that targets a protein to the cytoplasmic membrane. Consistent with the prediction, we found that a SpyB fusion with peptide affinity tags is located in the streptococcal membrane. An ADP‐ribosylation assay with recombinant SpyA demonstrated that SpyA modifies SpyB. Thus, our study suggests that ADP‐ribosylation of SpyB may be an important function of SpyA.
Author Icenogle, Laura M.
Moseley, Steve L.
Becker, Devon M.
Korotkova, Natalia
Quinn, John Kyle Heggen
Hoff, Jessica S.
AuthorAffiliation 1 Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536-0509, USA
2 Department of Microbiology, University of Washington, Box 357735, Seattle, WA 98195-7735, USA
AuthorAffiliation_xml – name: 1 Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536-0509, USA
– name: 2 Department of Microbiology, University of Washington, Box 357735, Seattle, WA 98195-7735, USA
Author_xml – sequence: 1
  givenname: Natalia
  surname: Korotkova
  fullname: Korotkova, Natalia
  email: nkorotkova@uky.edu
  organization: Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536-0509, USA
– sequence: 2
  givenname: Jessica S.
  surname: Hoff
  fullname: Hoff, Jessica S.
  organization: Department of Microbiology, University of Washington, Box 357735, Seattle, WA 98195-7735, USA
– sequence: 3
  givenname: Devon M.
  surname: Becker
  fullname: Becker, Devon M.
  organization: Department of Microbiology, University of Washington, Box 357735, Seattle, WA 98195-7735, USA
– sequence: 4
  givenname: John Kyle Heggen
  surname: Quinn
  fullname: Quinn, John Kyle Heggen
  organization: Department of Microbiology, University of Washington, Box 357735, Seattle, WA 98195-7735, USA
– sequence: 5
  givenname: Laura M.
  surname: Icenogle
  fullname: Icenogle, Laura M.
  organization: Department of Microbiology, University of Washington, Box 357735, Seattle, WA 98195-7735, USA
– sequence: 6
  givenname: Steve L.
  surname: Moseley
  fullname: Moseley, Steve L.
  organization: Department of Microbiology, University of Washington, Box 357735, Seattle, WA 98195-7735, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25589302$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22288436$$D View this record in MEDLINE/PubMed
BookMark eNqNUV1v0zAUtdAQ2wp_AVlISDyQ4o_asR9AKgXWoZUPDQRvluM4q7skDnaztf8eh5YOeMIvvvI95_iee07BUetbCwDEaIzTebEaY8pZRiQTY4IwGaNc5nK8uQdODo0jcIIkQxkV5PsxOI1xhRCmiNMH4JgQIsSE8hNwc9ltp9BFqGFjmyLo1maF79sSTt98yoIrfNzW6_QcKxt0tNBX8HIdbLf2xhvTR9ht_ZVtbYS3S2eWsPGlq5wdBOMdTtewS7Ur7XOYfnz9ENyvdB3to_09Al_fvf0ym2cXH8_OZ9OLzHCEZYZxSTXTONkzBcWUGcGJzStqhdATTIShfFJIjhDBJUay0piXXBdaGGalzekIvNrpdn3R2NLYNnmpVRdco8NWee3U353WLdWVv1E0LQiTQeDZXiD4H72Na9W4aGxdp0X5PiqMqGBSDqsdgSf_QFe-D22ypyThjMl8QhJI7EAm-BiDrQ6zYKSGbNVKDRGqIUI1ZKt-Zas2ifr4Ty8H4u8wE-DpHqBj2niVUjMu3uEYE5KiYYaXO9ytq-32vwdQi8X5UCV-tuO7uLabA1-Ha8VzmjP17cOZWog5m_HP79Wc_gTdUtIk
CitedBy_id crossref_primary_10_2217_fmb_2017_0142
crossref_primary_10_1111_cmi_12531
crossref_primary_10_1016_j_chom_2013_11_003
crossref_primary_10_3390_toxins11060332
crossref_primary_10_1038_nrmicro3310
crossref_primary_10_1128_mBio_00133_15
crossref_primary_10_1073_pnas_1914395116
crossref_primary_10_3389_fcimb_2016_00126
crossref_primary_10_1128_mmbr_00052_22
Cites_doi 10.1016/S1074-7613(03)00266-8
10.1038/nprot.2009.2
10.1111/j.1365-2958.2007.05830.x
10.1093/emboj/cdg209
10.1042/bj3230173
10.1128/JB.187.9.3139-3150.2005
10.1021/ac025529o
10.1016/0378-1119(95)00402-R
10.1128/IAI.56.6.1665-1667.1988
10.1128/mr.53.3.333-366.1989
10.1002/j.1460-2075.1985.tb03835.x
10.1021/bi00001a041
10.1016/0378-1119(89)90359-4
10.1073/pnas.0505839102
10.1073/pnas.122238899
10.1016/S0968-0004(98)01336-X
10.1073/pnas.0507808102
10.1007/BF00330576
10.1038/sj.bjp.0704187
10.1128/JB.184.2.410-419.2002
10.1002/bip.360370504
10.1016/S0002-9440(10)62268-7
10.1016/S0966-842X(03)00098-2
10.1128/AEM.64.8.2763-2769.1998
10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
10.1128/iai.60.12.5119-5125.1992
10.1073/pnas.96.4.1218
10.1128/JB.00485-09
10.1111/j.1365-2958.2005.04620.x
10.1093/genetics/95.4.785
10.1046/j.1432-1327.1999.00473.x
10.1016/j.jmb.2008.11.027
10.1128/IAI.01191-10
10.1074/jbc.M311349200
10.1152/physiol.00028.2005
10.1016/S0021-9258(19)39586-9
10.1016/0022-2836(92)90468-Y
10.1093/nar/gkp363
10.1016/S0021-9258(19)74388-9
10.1016/S0021-9258(19)50014-X
10.1021/ac025747h
10.1074/jbc.M205367200
10.2353/ajpath.2006.060112
10.1073/pnas.87.12.4645
10.1271/bbb.80006
10.1093/bioinformatics/btl379
10.1073/pnas.0808301105
10.1371/journal.ppat.0020005
10.1016/S0006-291X(89)80199-8
10.1021/pr0503533
10.1110/ps.9.11.2068
10.1016/0006-291X(91)91438-I
10.1038/nsmb1194
10.1016/0076-6879(91)04028-M
10.1111/j.1365-2958.1991.tb00754.x
10.1016/0014-5793(93)81742-I
10.1074/jbc.M011035200
10.1086/432514
10.1111/j.1365-2958.2004.04262.x
10.1093/clinids/5.Supplement_4.S723
ContentType Journal Article
Copyright 2012 Blackwell Publishing Ltd
2015 INIST-CNRS
2012 Blackwell Publishing Ltd.
Copyright Blackwell Publishing Ltd. Mar 2012
Copyright_xml – notice: 2012 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: 2012 Blackwell Publishing Ltd.
– notice: Copyright Blackwell Publishing Ltd. Mar 2012
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1111/j.1365-2958.2012.07979.x
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList

Virology and AIDS Abstracts
Bacteriology Abstracts (Microbiology B)
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2958
EndPage 952
ExternalDocumentID 2603735871
10_1111_j_1365_2958_2012_07979_x
22288436
25589302
MMI7979
ark_67375_WNG_M8H5C6QJ_H
Genre article
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: 2P20 RR020171
– fundername: NCRR NIH HHS
  grantid: P20 RR020171-03
– fundername: NIAID NIH HHS
  grantid: R01 AI064515
– fundername: PHS HHS
  grantid: A1064515
– fundername: NIAID NIH HHS
  grantid: R01 AI064515-05
– fundername: NCRR NIH HHS
  grantid: P20 RR020171
– fundername: National Center for Research Resources : NCRR
  grantid: P20 RR020171-03 || RR
GroupedDBID ---
-DZ
.3N
.55
.GA
.GJ
.HR
.Y3
05W
0R~
10A
123
1OB
1OC
24P
29M
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
D-E
D-F
DC6
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FSRTE
FZ0
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HH5
HVGLF
HZI
HZ~
IH2
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBC
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
Y6R
YFH
YUY
ZGI
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAJUZ
AAPBV
AAUGY
ABCVL
ABHUG
ABPTK
ABWRO
ACSMX
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
AKALU
IQODW
XFK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c6019-11d3a5a1079cb3135c862e7f3e88a4128c364b960021d109fa16d6aba8c5e9e73
IEDL.DBID DR2
ISSN 0950-382X
IngestDate Tue Sep 17 20:47:27 EDT 2024
Fri Aug 16 03:41:59 EDT 2024
Thu Oct 10 18:11:39 EDT 2024
Fri Aug 23 02:58:04 EDT 2024
Sat Sep 28 08:01:19 EDT 2024
Sun Oct 22 16:04:26 EDT 2023
Sat Aug 24 01:11:25 EDT 2024
Wed Oct 30 09:53:02 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Streptococcaceae
ADP ribosylation
Gene
Peptides
Enzyme
Bacteria
Micrococcales
Streptococcus pyogenes
Language English
License CC BY 4.0
2012 Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6019-11d3a5a1079cb3135c862e7f3e88a4128c364b960021d109fa16d6aba8c5e9e73
Notes Supporting info item
ark:/67375/WNG-M8H5C6QJ-H
ArticleID:MMI7979
istex:427EDAD7C727ABF7D3217C40C3A9F26712089A3B
Present address: Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc3288127?pdf=render
PMID 22288436
PQID 926559742
PQPubID 35968
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3288127
proquest_miscellaneous_1038599001
proquest_journals_926559742
crossref_primary_10_1111_j_1365_2958_2012_07979_x
pubmed_primary_22288436
pascalfrancis_primary_25589302
wiley_primary_10_1111_j_1365_2958_2012_07979_x_MMI7979
istex_primary_ark_67375_WNG_M8H5C6QJ_H
PublicationCentury 2000
PublicationDate March 2012
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 03
  year: 2012
  text: March 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Molecular microbiology
PublicationTitleAlternate Mol Microbiol
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Caparon, M.G., and Scott, J.R. (1991) Genetic manipulation of pathogenic streptococci. Methods Enzymol 204: 556-586.
Graham, M.R., Virtaneva, K., Porcella, S.F., Gardner, D.J., Long, R.D., Welty, D.M., et al. (2006) Analysis of the transcriptome of group A Streptococcus in mouse soft tissue infection. Am J Pathol 169: 927-942.
Kelley, L.A., and Sternberg, M.J. (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4: 363-371.
Raz, A., and Fischetti, V.A. (2008) Sortase A localizes to distinct foci on the Streptococcus pyogenes membrane. Proc Natl Acad Sci USA 105: 18549-18554.
Keller, A., Nesvizhskii, A.I., Kolker, E., and Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74: 5383-5392.
Sumby, P., Whitney, A.R., Graviss, E.A., DeLeo, F.R., and Musser, J.M. (2006) Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog 2: e5.
Saier, M.H., Jr, Werner, P.K., and Muller, M. (1989) Insertion of proteins into bacterial membranes: mechanism, characteristics, and comparisons with the eucaryotic process. Microbiol Rev 53: 333-366.
Zolkiewska, A. (2005) Ecto-ADP-ribose transferases: cell-surface response to local tissue injury. Physiology (Bethesda) 20: 374-381.
Just, I., Selzer, J., Jung, M., van Damme, J., Vandekerckhove, J., and Aktories, K. (1995) Rho-ADP-ribosylating exoenzyme from Bacillus cereus. Purification, characterization, and identification of the NAD-binding site. Biochemistry 34: 334-340.
Mayville, P., Ji, G., Beavis, R., Yang, H., Goger, M., Novick, R., and Muir, T.W. (1999) Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc Natl Acad Sci USA 96: 1218-1223.
Licklider, L.J., Thoreen, C.C., Peng, J., and Gygi, S. (2002) Automation of nanoscale microcapillary liquid chromatography-tandem mass spectrometry with a vented column. Anal Chem 74: 3076-3083.
Bacon Schneider, K., Palmer, T.M., and Grossman, A.D. (2002) Characterization of comQ and comX, two genes required for production of ComX pheromone in Bacillus subtilis. J Bacteriol 184: 410-419.
Gerike, U., and Dimroth, P. (1993) N-terminal amino acid sequences of the subunits of the Na(+)-translocating F1F0 ATPase from Propionigenium modestum. FEBS Lett 316: 89-92.
Oppenheim, D.S., and Yanofsky, C. (1980) Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics 95: 785-795.
Grant, S.G., Jessee, J., Bloom, F.R., and Hanahan, D. (1990) Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87: 4645-4649.
Aktories, K., Braun, U., Rosener, S., Just, I., and Hall, A. (1989) The rho gene product expressed in E. coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158: 209-213.
Ivey-Hoyle, M., and Steege, D.A. (1992) Mutational analysis of an inherently defective translation initiation site. J Mol Biol 224: 1039-1054.
Jones, E.M., and Baird, A. (1997) Cell-surface ADP-ribosylation of fibroblast growth factor-2 by an arginine-specific ADP-ribosyltransferase. Biochem J 323: 173-177.
Kreikemeyer, B., McIver, K.S., and Podbielski, A. (2003) Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen-host interactions. Trends Microbiol 11: 224-232.
Bernsel, A., Viklund, H., Hennerdal, A., and Elofsson, A. (2009) TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37: W465-W468.
Just, I., Mohr, C., Schallehn, G., Menard, L., Didsbury, J.R., Vandekerckhove, J., et al. (1992) Purification and characterization of an ADP-ribosyltransferase produced by Clostridium limosum. J Biol Chem 267: 10274-10280.
Rauch, A., Bellew, M., Eng, J., Fitzgibbon, M., Holzman, T., Hussey, P., et al. (2006) Computational Proteomics Analysis System (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J Proteome Res 5: 112-121.
Linke, C., Caradoc-Davies, T.T., Young, P.G., Proft, T., and Baker, E.N. (2009) The laminin-binding protein Lbp from Streptococcus pyogenes is a zinc receptor. J Bacteriol 191: 5814-5823.
Rajagopal, L., Vo, A., Silvestroni, A., and Rubens, C.E. (2005) Regulation of purine biosynthesis by a eukaryotic-type kinase in Streptococcus agalactiae. Mol Microbiol 56: 1329-1346.
Karow, M.L., and Piggot, P.J. (1995) Construction of gusA transcriptional fusion vectors for Bacillus subtilis and their utilization for studies of spore formation. Gene 163: 69-74.
Zolkiewska, A., and Moss, J. (1993) Integrin alpha 7 as substrate for a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells. J Biol Chem 268: 25273-25276.
Coye, L.H., and Collins, C.M. (2004) Identification of SpyA, a novel ADP-ribosyltransferase of Streptococcus pyogenes. Mol Microbiol 54: 89-98.
Ji, G., Pei, W., Zhang, L., Qiu, R., Lin, J., Benito, Y., et al. (2005) Staphylococcus intermedius produces a functional agr autoinducing peptide containing a cyclic lactone. J Bacteriol 187: 3139-3150.
Nakai, K., and Horton, P. (1999) psort: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24: 34-36.
Adhin, M.R., and van Duin, J. (1989) Translational regulation of the lysis gene in RNA bacteriophage fr requires a UUG initiation codon. Mol Gen Genet 218: 137-142.
Corda, D., and Di Girolamo, M. (2003) Functional aspects of protein mono-ADP-ribosylation. EMBO J 22: 1953-1958.
Mora, M., Bensi, G., Capo, S., Falugi, F., Zingaretti, C., Manetti, A.G., et al. (2005) Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci USA 102: 15641-15646.
Sumby, P., Porcella, S.F., Madrigal, A.G., Barbian, K.D., Virtaneva, K., Ricklefs, S.M., et al. (2005) Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J Infect Dis 192: 771-782.
Eichenbaum, Z., Federle, M.J., Marra, D., de Vos, W.M., Kuipers, O.P., Kleerebezem, M., and Scott, J.R. (1998) Use of the lactococcal nisA promoter to regulate gene expression in gram-positive bacteria: comparison of induction level and promoter strength. Appl Environ Microbiol 64: 2763-2769.
Milligan, D.L., and Koshland, D.E., Jr (1990) The amino terminus of the aspartate chemoreceptor is formylmethionine. J Biol Chem 265: 4455-4460.
Paone, G., Wada, A., Stevens, L.A., Matin, A., Hirayama, T., Levine, R.L., and Moss, J. (2002) ADP ribosylation of human neutrophil peptide-1 regulates its biological properties. Proc Natl Acad Sci USA 99: 8231-8235.
Graham, M.R., Virtaneva, K., Porcella, S.F., Barry, W.T., Gowen, B.B., Johnson, C.R., et al. (2005) Group A Streptococcus transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival strategies. Am J Pathol 166: 455-465.
Michel, H., Weyer, K.A., Gruenberg, H., and Lottspeich, F. (1985) The 'heavy' subunit of the photosynthetic reaction centre from Rhodopseudomonas viridis: isolation of the gene, nucleotide and amino acid sequence. EMBO J 4: 1667-1672.
Kavanaugh, J.S., Thoendel, M., and Horswill, A.R. (2007) A role for type I signal peptidase in Staphylococcus aureus quorum sensing. Mol Microbiol 65: 780-798.
MacLean, B., Eng, J.K., Beavis, R.C., and McIntosh, M. (2006) General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics 22: 2830-2832.
Shelburne, S.A., 3rd, Sumby, P., Sitkiewicz, I., Granville, C., DeLeo, F.R., and Musser, J.M. (2005) Central role of a bacterial two-component gene regulatory system of previously unknown function in pathogen persistence in human saliva. Proc Natl Acad Sci USA 102: 16037-16042.
Wilde, C., Chhatwal, G.S., Schmalzing, G., Aktories, K., and Just, I. (2001) A novel C3-like ADP-ribosyltransferase from Staphylococcus aureus modifying RhoE and Rnd3. J Biol Chem 276: 9537-9542.
Hellmuth, K., Rex, G., Surin, B., Zinck, R., and McCarthy, J.E. (1991) Translational coupling varying in efficiency between different pairs of genes in the central region of the atp operon of Escherichia coli. Mol Microbiol 5: 813-824.
Hoff, J.S., DeWald, M., Moseley, S.L., Collins, C.M., and Voyich, J.M. (2011) SpyA, a C3-like ADP-ribosyltransferase, contributes to virulence in a mouse subcutaneous model of Streptococcus pyogenes infection. Infect Immun 79: 2404-2411.
Wannamaker, L.W. (1983) Streptococcal toxins. Rev Infect Dis 5 (Suppl. 4): S723-S732.
Doran, J.D., Nomizu, M., Takebe, S., Menard, R., Griffith, D., and Ziomek, E. (1999) Autocatalytic processing of the streptococcal cysteine protease zymogen: processing mechanism and characterization of the autoproteolytic cleavage sites. Eur J Biochem 263: 145-151.
Drin, G., Casella, J.F., Gautier, R., Boehmer, T., Schwartz, T.U., and Antonny, B. (2007) A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol 14: 138-146.
Saxty, B.A., Yadollahi-Farsani, M., Upton, P.D., Johnstone, S.R., and MacDermot, J. (2001) Inactivation of platelet-derived growth factor-BB following modification by ADP-ribosyltransferase. Br J Pharmacol 133: 1219-1226.
Hanski, E., Horwitz, P.A., and Caparon, M.G. (1992) Expression of protein F, the fibronectin-binding protein of Streptococcus pyogenes JRS4, in heterologous streptococcal and enterococcal strains promotes their adherence to respiratory epithelial cells. Infect Immun 60: 5119-5125.
Pradhan, P., Li, W., and Kaur, P. (2009) Translational coupling controls expression and function of the DrrAB drug efflux pump. J Mol Biol 385: 831-842.
Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins silver
1989; 158
1995; 37
1995; 34
2000; 9
2002; 99
1983; 5
2002; 277
2005; 20
2008; 105
2003; 19
2008; 72
1990; 265
2003; 11
2001; 133
1990; 87
1989; 77
2005; 187
2002; 184
2006; 22
2005; 102
1999; 96
2007; 65
1996; 68
1995; 163
2006; 169
1991; 174
2005; 192
1989; 218
2002; 74
1985; 4
1992; 267
1992; 224
1999; 263
1999; 24
1988; 56
2006; 5
2002; 4
2011; 79
2006; 2
1993; 268
1998; 64
2007; 14
1991; 5
2004; 54
2001; 276
1997; 323
1993; 316
1989; 53
2004; 279
2005; 166
2009; 191
1980; 95
2009; 385
2009; 4
1991; 204
1992; 60
2009; 37
2005; 56
2003; 22
7557481 - Gene. 1995 Sep 22;163(1):69-74
6162715 - Genetics. 1980 Aug;95(4):785-95
16446783 - PLoS Pathog. 2006 Jan;2(1):e5
16249338 - Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16037-42
11124969 - J Biol Chem. 2001 Mar 23;276(12):9537-42
1830358 - Mol Microbiol. 1991 Apr;5(4):813-24
11498506 - Br J Pharmacol. 2001 Aug;133(8):1219-26
17608791 - Mol Microbiol. 2007 Aug;65(3):780-98
11751817 - J Bacteriol. 2002 Jan;184(2):410-9
12060767 - Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8231-5
16453623 - EMBO J. 1985 Jul;4(7):1667-72
15681829 - Am J Pathol. 2005 Feb;166(2):455-65
6356291 - Rev Infect Dis. 1983 Sep-Oct;5 Suppl 4:S723-32
15001569 - J Biol Chem. 2004 May 7;279(19):19448-56
16287986 - Physiology (Bethesda). 2005 Dec;20:374-81
9687428 - Appl Environ Microbiol. 1998 Aug;64(8):2763-9
2677637 - Microbiol Rev. 1989 Sep;53(3):333-66
15458407 - Mol Microbiol. 2004 Oct;54(1):89-98
1569566 - J Mol Biol. 1992 Apr 20;224(4):1039-54
12403597 - Anal Chem. 2002 Oct 15;74(20):5383-92
3286506 - Infect Immun. 1988 Jun;56(6):1665-7
12781526 - Trends Microbiol. 2003 May;11(5):224-32
11152118 - Protein Sci. 2000 Nov;9(11):2068-73
14563321 - Immunity. 2003 Oct;19(4):571-82
19617361 - J Bacteriol. 2009 Sep;191(18):5814-23
2155229 - J Biol Chem. 1990 Mar 15;265(8):4455-60
1993048 - Biochem Biophys Res Commun. 1991 Jan 31;174(2):459-64
15838041 - J Bacteriol. 2005 May;187(9):3139-50
8244957 - J Biol Chem. 1993 Dec 5;268(34):25273-6
2162051 - Proc Natl Acad Sci U S A. 1990 Jun;87(12):4645-9
19429891 - Nucleic Acids Res. 2009 Jul;37(Web Server issue):W465-8
12727863 - EMBO J. 2003 May 1;22(9):1953-8
1452345 - Infect Immun. 1992 Dec;60(12):5119-25
12122003 - J Biol Chem. 2002 Sep 20;277(38):34736-42
17220896 - Nat Struct Mol Biol. 2007 Feb;14(2):138-46
7632881 - Biopolymers. 1995;37(5):319-38
9990004 - Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1218-23
19247286 - Nat Protoc. 2009;4(3):363-71
16396501 - J Proteome Res. 2006 Jan;5(1):112-21
2744488 - Gene. 1989 Apr 15;77(1):61-8
16936267 - Am J Pathol. 2006 Sep;169(3):927-42
2492192 - Biochem Biophys Res Commun. 1989 Jan 16;158(1):209-13
1904538 - Mol Gen Genet. 1991 May;227(1):65-71
1658571 - Methods Enzymol. 1991;204:556-86
18323630 - Biosci Biotechnol Biochem. 2008 Mar;72(3):914-8
19017791 - Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18549-54
10087920 - Trends Biochem Sci. 1999 Jan;24(1):34-6
2779514 - Mol Gen Genet. 1989 Jul;218(1):137-42
19063901 - J Mol Biol. 2009 Jan 23;385(3):831-42
16877754 - Bioinformatics. 2006 Nov 15;22(22):2830-2
11931553 - J Mol Microbiol Biotechnol. 2002 May;4(3):235-42
16223875 - Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15641-6
9173879 - Biochem J. 1997 Apr 1;323 ( Pt 1):173-7
8422943 - FEBS Lett. 1993 Jan 18;316(1):89-92
1587816 - J Biol Chem. 1992 May 25;267(15):10274-80
16088826 - J Infect Dis. 2005 Sep 1;192(5):771-82
8779443 - Anal Chem. 1996 Mar 1;68(5):850-8
10429198 - Eur J Biochem. 1999 Jul;263(1):145-51
7819216 - Biochemistry. 1995 Jan 10;34(1):334-40
12141667 - Anal Chem. 2002 Jul 1;74(13):3076-83
15882424 - Mol Microbiol. 2005 Jun;56(5):1329-46
21422178 - Infect Immun. 2011 Jun;79(6):2404-11
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_57_1
e_1_2_6_43_1
Schmitz R.A. (e_1_2_6_50_1) 2002; 4
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Milligan D.L. (e_1_2_6_38_1) 1990; 265
Saier M.H. (e_1_2_6_48_1) 1989; 53
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
Zolkiewska A. (e_1_2_6_62_1) 1993; 268
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 14
  start-page: 138
  year: 2007
  end-page: 146
  article-title: A general amphipathic alpha‐helical motif for sensing membrane curvature
  publication-title: Nat Struct Mol Biol
– volume: 133
  start-page: 1219
  year: 2001
  end-page: 1226
  article-title: Inactivation of platelet‐derived growth factor‐BB following modification by ADP‐ribosyltransferase
  publication-title: Br J Pharmacol
– volume: 192
  start-page: 771
  year: 2005
  end-page: 782
  article-title: Evolutionary origin and emergence of a highly successful clone of serotype M1 group A involved multiple horizontal gene transfer events
  publication-title: J Infect Dis
– volume: 166
  start-page: 455
  year: 2005
  end-page: 465
  article-title: Group A transcriptome dynamics during growth in human blood reveals bacterial adaptive and survival strategies
  publication-title: Am J Pathol
– volume: 99
  start-page: 8231
  year: 2002
  end-page: 8235
  article-title: ADP ribosylation of human neutrophil peptide‐1 regulates its biological properties
  publication-title: Proc Natl Acad Sci USA
– volume: 276
  start-page: 9537
  year: 2001
  end-page: 9542
  article-title: A novel C3‐like ADP‐ribosyltransferase from modifying RhoE and Rnd3
  publication-title: J Biol Chem
– volume: 158
  start-page: 209
  year: 1989
  end-page: 213
  article-title: The gene product expressed in is a substrate of botulinum ADP‐ribosyltransferase C3
  publication-title: Biochem Biophys Res Commun
– volume: 74
  start-page: 5383
  year: 2002
  end-page: 5392
  article-title: Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search
  publication-title: Anal Chem
– volume: 20
  start-page: 374
  year: 2005
  end-page: 381
  article-title: Ecto‐ADP‐ribose transferases: cell‐surface response to local tissue injury
  publication-title: Physiology (Bethesda)
– volume: 74
  start-page: 3076
  year: 2002
  end-page: 3083
  article-title: Automation of nanoscale microcapillary liquid chromatography‐tandem mass spectrometry with a vented column
  publication-title: Anal Chem
– volume: 204
  start-page: 556
  year: 1991
  end-page: 586
  article-title: Genetic manipulation of pathogenic streptococci
  publication-title: Methods Enzymol
– volume: 65
  start-page: 780
  year: 2007
  end-page: 798
  article-title: A role for type I signal peptidase in quorum sensing
  publication-title: Mol Microbiol
– volume: 37
  start-page: 319
  year: 1995
  end-page: 338
  article-title: Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides
  publication-title: Biopolymers
– volume: 60
  start-page: 5119
  year: 1992
  end-page: 5125
  article-title: Expression of protein F, the fibronectin‐binding protein of JRS4, in heterologous streptococcal and enterococcal strains promotes their adherence to respiratory epithelial cells
  publication-title: Infect Immun
– volume: 277
  start-page: 34736
  year: 2002
  end-page: 34742
  article-title: Transmembrane topology of AgrB, the protein involved in the post‐translational modification of AgrD in
  publication-title: J Biol Chem
– volume: 77
  start-page: 61
  year: 1989
  end-page: 68
  article-title: Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension
  publication-title: Gene
– volume: 218
  start-page: 137
  year: 1989
  end-page: 142
  article-title: Translational regulation of the lysis gene in RNA bacteriophage fr requires a UUG initiation codon
  publication-title: Mol Gen Genet
– volume: 279
  start-page: 19448
  year: 2004
  end-page: 19456
  article-title: Membrane anchoring of the AgrD N‐terminal amphipathic region is required for its processing to produce a quorum‐sensing pheromone in
  publication-title: J Biol Chem
– volume: 79
  start-page: 2404
  year: 2011
  end-page: 2411
  article-title: SpyA, a C3‐like ADP‐ribosyltransferase, contributes to virulence in a mouse subcutaneous model of infection
  publication-title: Infect Immun
– volume: 187
  start-page: 3139
  year: 2005
  end-page: 3150
  article-title: Staphylococcus intermedius produces a functional agr autoinducing peptide containing a cyclic lactone
  publication-title: J Bacteriol
– volume: 54
  start-page: 89
  year: 2004
  end-page: 98
  article-title: Identification of SpyA, a novel ADP‐ribosyltransferase of
  publication-title: Mol Microbiol
– volume: 184
  start-page: 410
  year: 2002
  end-page: 419
  article-title: Characterization of and , two genes required for production of ComX pheromone in
  publication-title: J Bacteriol
– volume: 34
  start-page: 334
  year: 1995
  end-page: 340
  article-title: Rho‐ADP‐ribosylating exoenzyme from . Purification, characterization, and identification of the NAD‐binding site
  publication-title: Biochemistry
– volume: 4
  start-page: 235
  year: 2002
  end-page: 242
  article-title: Regulation of nitrogen fixation in and : NifL, transducing two environmental signals to the nif transcriptional activator NifA
  publication-title: J Mol Microbiol Biotechnol
– volume: 385
  start-page: 831
  year: 2009
  end-page: 842
  article-title: Translational coupling controls expression and function of the DrrAB drug efflux pump
  publication-title: J Mol Biol
– volume: 5
  start-page: S723
  issue: 4
  year: 1983
  end-page: S732
  article-title: Streptococcal toxins
  publication-title: Rev Infect Dis
– volume: 22
  start-page: 1953
  year: 2003
  end-page: 1958
  article-title: Functional aspects of protein mono‐ADP‐ribosylation
  publication-title: EMBO J
– volume: 267
  start-page: 10274
  year: 1992
  end-page: 10280
  article-title: Purification and characterization of an ADP‐ribosyltransferase produced by
  publication-title: J Biol Chem
– volume: 265
  start-page: 4455
  year: 1990
  end-page: 4460
  article-title: The amino terminus of the aspartate chemoreceptor is formylmethionine
  publication-title: J Biol Chem
– volume: 22
  start-page: 2830
  year: 2006
  end-page: 2832
  article-title: General framework for developing and evaluating database scoring algorithms using the TANDEM search engine
  publication-title: Bioinformatics
– volume: 24
  start-page: 34
  year: 1999
  end-page: 36
  article-title: psort: a program for detecting sorting signals in proteins and predicting their subcellular localization
  publication-title: Trends Biochem Sci
– volume: 191
  start-page: 5814
  year: 2009
  end-page: 5823
  article-title: The laminin‐binding protein Lbp from is a zinc receptor
  publication-title: J Bacteriol
– volume: 68
  start-page: 850
  year: 1996
  end-page: 858
  article-title: Mass spectrometric sequencing of proteins silver‐stained polyacrylamide gels
  publication-title: Anal Chem
– volume: 96
  start-page: 1218
  year: 1999
  end-page: 1223
  article-title: Structure‐activity analysis of synthetic autoinducing thiolactone peptides from responsible for virulence
  publication-title: Proc Natl Acad Sci USA
– volume: 4
  start-page: 1667
  year: 1985
  end-page: 1672
  article-title: The ‘heavy’ subunit of the photosynthetic reaction centre from : isolation of the gene, nucleotide and amino acid sequence
  publication-title: EMBO J
– volume: 268
  start-page: 25273
  year: 1993
  end-page: 25276
  article-title: Integrin alpha 7 as substrate for a glycosylphosphatidylinositol‐anchored ADP‐ribosyltransferase on the surface of skeletal muscle cells
  publication-title: J Biol Chem
– volume: 72
  start-page: 914
  year: 2008
  end-page: 918
  article-title: Chemical structure of posttranslational modification with a farnesyl group on tryptophan
  publication-title: Biosci Biotechnol Biochem
– volume: 87
  start-page: 4645
  year: 1990
  end-page: 4649
  article-title: Differential plasmid rescue from transgenic mouse DNAs into methylation‐restriction mutants
  publication-title: Proc Natl Acad Sci USA
– volume: 2
  start-page: e5
  year: 2006
  article-title: Genome‐wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity
  publication-title: PLoS Pathog
– volume: 11
  start-page: 224
  year: 2003
  end-page: 232
  article-title: Virulence factor regulation and regulatory networks in and their impact on pathogen–host interactions
  publication-title: Trends Microbiol
– volume: 224
  start-page: 1039
  year: 1992
  end-page: 1054
  article-title: Mutational analysis of an inherently defective translation initiation site
  publication-title: J Mol Biol
– volume: 37
  start-page: W465
  year: 2009
  end-page: W468
  article-title: TOPCONS: consensus prediction of membrane protein topology
  publication-title: Nucleic Acids Res
– volume: 9
  start-page: 2068
  year: 2000
  end-page: 2073
  article-title: Primary structure of a novel subunit in ba3‐cytochrome oxidase from
  publication-title: Protein Sci
– volume: 163
  start-page: 69
  year: 1995
  end-page: 74
  article-title: Construction of gusA transcriptional fusion vectors for and their utilization for studies of spore formation
  publication-title: Gene
– volume: 5
  start-page: 813
  year: 1991
  end-page: 824
  article-title: Translational coupling varying in efficiency between different pairs of genes in the central region of the operon of
  publication-title: Mol Microbiol
– volume: 5
  start-page: 112
  year: 2006
  end-page: 121
  article-title: Computational Proteomics Analysis System (CPAS): an extensible, open‐source analytic system for evaluating and publishing proteomic data and high throughput biological experiments
  publication-title: J Proteome Res
– volume: 53
  start-page: 333
  year: 1989
  end-page: 366
  article-title: Insertion of proteins into bacterial membranes: mechanism, characteristics, and comparisons with the eucaryotic process
  publication-title: Microbiol Rev
– volume: 19
  start-page: 571
  year: 2003
  end-page: 582
  article-title: NAD‐induced T cell death: ADP‐ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor
  publication-title: Immunity
– volume: 102
  start-page: 16037
  year: 2005
  end-page: 16042
  article-title: Central role of a bacterial two‐component gene regulatory system of previously unknown function in pathogen persistence in human saliva
  publication-title: Proc Natl Acad Sci USA
– volume: 95
  start-page: 785
  year: 1980
  end-page: 795
  article-title: Translational coupling during expression of the tryptophan operon of
  publication-title: Genetics
– volume: 64
  start-page: 2763
  year: 1998
  end-page: 2769
  article-title: Use of the lactococcal promoter to regulate gene expression in gram‐positive bacteria: comparison of induction level and promoter strength
  publication-title: Appl Environ Microbiol
– volume: 56
  start-page: 1665
  year: 1988
  end-page: 1667
  article-title: Cloning of the gene, , for streptococcal pyrogenic exotoxin type B in
  publication-title: Infect Immun
– volume: 316
  start-page: 89
  year: 1993
  end-page: 92
  article-title: N‐terminal amino acid sequences of the subunits of the Na(+)‐translocating F1F0 ATPase from
  publication-title: FEBS Lett
– volume: 323
  start-page: 173
  year: 1997
  end-page: 177
  article-title: Cell‐surface ADP‐ribosylation of fibroblast growth factor‐2 by an arginine‐specific ADP‐ribosyltransferase
  publication-title: Biochem J
– volume: 105
  start-page: 18549
  year: 2008
  end-page: 18554
  article-title: Sortase A localizes to distinct foci on the membrane
  publication-title: Proc Natl Acad Sci USA
– volume: 102
  start-page: 15641
  year: 2005
  end-page: 15646
  article-title: Group A produce pilus‐like structures containing protective antigens and Lancefield T antigens
  publication-title: Proc Natl Acad Sci USA
– volume: 263
  start-page: 145
  year: 1999
  end-page: 151
  article-title: Autocatalytic processing of the streptococcal cysteine protease zymogen: processing mechanism and characterization of the autoproteolytic cleavage sites
  publication-title: Eur J Biochem
– volume: 4
  start-page: 363
  year: 2009
  end-page: 371
  article-title: Protein structure prediction on the Web: a case study using the Phyre server
  publication-title: Nat Protoc
– volume: 56
  start-page: 1329
  year: 2005
  end-page: 1346
  article-title: Regulation of purine biosynthesis by a eukaryotic‐type kinase in
  publication-title: Mol Microbiol
– volume: 169
  start-page: 927
  year: 2006
  end-page: 942
  article-title: Analysis of the transcriptome of group A in mouse soft tissue infection
  publication-title: Am J Pathol
– volume: 174
  start-page: 459
  year: 1991
  end-page: 464
  article-title: Molecular cloning and sequencing of the epidermal cell differentiation inhibitor gene from
  publication-title: Biochem Biophys Res Commun
– ident: e_1_2_6_51_1
  doi: 10.1016/S1074-7613(03)00266-8
– ident: e_1_2_6_31_1
  doi: 10.1038/nprot.2009.2
– ident: e_1_2_6_29_1
  doi: 10.1111/j.1365-2958.2007.05830.x
– ident: e_1_2_6_8_1
  doi: 10.1093/emboj/cdg209
– ident: e_1_2_6_25_1
  doi: 10.1042/bj3230173
– ident: e_1_2_6_24_1
  doi: 10.1128/JB.187.9.3139-3150.2005
– ident: e_1_2_6_33_1
  doi: 10.1021/ac025529o
– ident: e_1_2_6_28_1
  doi: 10.1016/0378-1119(95)00402-R
– ident: e_1_2_6_6_1
  doi: 10.1128/IAI.56.6.1665-1667.1988
– volume: 53
  start-page: 333
  year: 1989
  ident: e_1_2_6_48_1
  article-title: Insertion of proteins into bacterial membranes: mechanism, characteristics, and comparisons with the eucaryotic process
  publication-title: Microbiol Rev
  doi: 10.1128/mr.53.3.333-366.1989
  contributor:
    fullname: Saier M.H.
– ident: e_1_2_6_37_1
  doi: 10.1002/j.1460-2075.1985.tb03835.x
– ident: e_1_2_6_27_1
  doi: 10.1021/bi00001a041
– ident: e_1_2_6_21_1
  doi: 10.1016/0378-1119(89)90359-4
– ident: e_1_2_6_52_1
  doi: 10.1073/pnas.0505839102
– ident: e_1_2_6_43_1
  doi: 10.1073/pnas.122238899
– ident: e_1_2_6_40_1
  doi: 10.1016/S0968-0004(98)01336-X
– ident: e_1_2_6_39_1
  doi: 10.1073/pnas.0507808102
– ident: e_1_2_6_2_1
  doi: 10.1007/BF00330576
– ident: e_1_2_6_49_1
  doi: 10.1038/sj.bjp.0704187
– ident: e_1_2_6_4_1
  doi: 10.1128/JB.184.2.410-419.2002
– ident: e_1_2_6_13_1
  doi: 10.1002/bip.360370504
– ident: e_1_2_6_15_1
  doi: 10.1016/S0002-9440(10)62268-7
– ident: e_1_2_6_32_1
  doi: 10.1016/S0966-842X(03)00098-2
– ident: e_1_2_6_12_1
  doi: 10.1128/AEM.64.8.2763-2769.1998
– ident: e_1_2_6_53_1
  doi: 10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
– ident: e_1_2_6_18_1
  doi: 10.1128/iai.60.12.5119-5125.1992
– ident: e_1_2_6_36_1
  doi: 10.1073/pnas.96.4.1218
– ident: e_1_2_6_34_1
  doi: 10.1128/JB.00485-09
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1365-2958.2005.04620.x
– ident: e_1_2_6_42_1
  doi: 10.1093/genetics/95.4.785
– ident: e_1_2_6_10_1
  doi: 10.1046/j.1432-1327.1999.00473.x
– ident: e_1_2_6_44_1
  doi: 10.1016/j.jmb.2008.11.027
– ident: e_1_2_6_20_1
  doi: 10.1128/IAI.01191-10
– ident: e_1_2_6_60_1
  doi: 10.1074/jbc.M311349200
– ident: e_1_2_6_61_1
  doi: 10.1152/physiol.00028.2005
– volume: 265
  start-page: 4455
  year: 1990
  ident: e_1_2_6_38_1
  article-title: The amino terminus of the aspartate chemoreceptor is formylmethionine
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)39586-9
  contributor:
    fullname: Milligan D.L.
– ident: e_1_2_6_23_1
  doi: 10.1016/0022-2836(92)90468-Y
– ident: e_1_2_6_5_1
  doi: 10.1093/nar/gkp363
– volume: 268
  start-page: 25273
  year: 1993
  ident: e_1_2_6_62_1
  article-title: Integrin alpha 7 as substrate for a glycosylphosphatidylinositol‐anchored ADP‐ribosyltransferase on the surface of skeletal muscle cells
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)74388-9
  contributor:
    fullname: Zolkiewska A.
– ident: e_1_2_6_26_1
  doi: 10.1016/S0021-9258(19)50014-X
– ident: e_1_2_6_30_1
  doi: 10.1021/ac025747h
– ident: e_1_2_6_59_1
  doi: 10.1074/jbc.M205367200
– ident: e_1_2_6_16_1
  doi: 10.2353/ajpath.2006.060112
– ident: e_1_2_6_17_1
  doi: 10.1073/pnas.87.12.4645
– ident: e_1_2_6_41_1
  doi: 10.1271/bbb.80006
– ident: e_1_2_6_35_1
  doi: 10.1093/bioinformatics/btl379
– ident: e_1_2_6_47_1
  doi: 10.1073/pnas.0808301105
– ident: e_1_2_6_56_1
  doi: 10.1371/journal.ppat.0020005
– ident: e_1_2_6_3_1
  doi: 10.1016/S0006-291X(89)80199-8
– ident: e_1_2_6_46_1
  doi: 10.1021/pr0503533
– ident: e_1_2_6_54_1
  doi: 10.1110/ps.9.11.2068
– ident: e_1_2_6_22_1
  doi: 10.1016/0006-291X(91)91438-I
– ident: e_1_2_6_11_1
  doi: 10.1038/nsmb1194
– ident: e_1_2_6_7_1
  doi: 10.1016/0076-6879(91)04028-M
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1365-2958.1991.tb00754.x
– ident: e_1_2_6_14_1
  doi: 10.1016/0014-5793(93)81742-I
– volume: 4
  start-page: 235
  year: 2002
  ident: e_1_2_6_50_1
  article-title: Regulation of nitrogen fixation in Klebsiella pneumoniae and Azotobacter vinelandii: NifL, transducing two environmental signals to the nif transcriptional activator NifA
  publication-title: J Mol Microbiol Biotechnol
  contributor:
    fullname: Schmitz R.A.
– ident: e_1_2_6_58_1
  doi: 10.1074/jbc.M011035200
– ident: e_1_2_6_55_1
  doi: 10.1086/432514
– ident: e_1_2_6_9_1
  doi: 10.1111/j.1365-2958.2004.04262.x
– ident: e_1_2_6_57_1
  doi: 10.1093/clinids/5.Supplement_4.S723
SSID ssj0013063
Score 2.1354334
Snippet Summary All sequenced genomes of Streptococcus pyogenes (Group A Streptococcus, GAS) encode a protein, SpyA, with homology to C3‐like ADP‐ribosyltransferase...
All sequenced genomes of Streptococcus pyogenes (Group A Streptococcus, GAS) encode a protein, SpyA, with homology to C3-like ADP-ribosyltransferase toxins....
Summary All sequenced genomes of Streptococcus pyogenes (Group A Streptococcus , GAS) encode a protein, SpyA, with homology to C3‐like ADP‐ribosyltransferase...
All sequenced genomes of Streptococcus pyogenes (Group A Streptococcus , GAS) encode a protein, SpyA, with homology to C3-like ADP-ribosyltransferase toxins....
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 936
SubjectTerms ADP Ribose Transferases - genetics
ADP Ribose Transferases - metabolism
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Bacteriology
Biological and medical sciences
DNA, Bacterial - genetics
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation, Bacterial
Membrane Proteins - genetics
Membrane Proteins - metabolism
Membranes
Microbiology
Miscellaneous
Mutagenesis, Site-Directed
Operon
Plasmids
Protein Structure, Secondary
Proteins
Streptococcus infections
Streptococcus pyogenes
Streptococcus pyogenes - enzymology
Streptococcus pyogenes - genetics
Virulence Factors - genetics
Virulence Factors - metabolism
Title SpyA is a membrane-bound ADP-ribosyltransferase of Streptococcus pyogenes which modifies a streptococcal peptide, SpyB
URI https://api.istex.fr/ark:/67375/WNG-M8H5C6QJ-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2958.2012.07979.x
https://www.ncbi.nlm.nih.gov/pubmed/22288436
https://www.proquest.com/docview/926559742
https://search.proquest.com/docview/1038599001
https://pubmed.ncbi.nlm.nih.gov/PMC3288127
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJiReYHyHwWQkxBOt6jhx4seyMcqkTnxN9M2yY2etSpOqacW6J_4E_kb-Eu6cfiywB4R4i-Kc017uzr-Lf7kj5EVkMsnz3ECSY5NWFFrR0jw1YMsR0zmIMIfvO_qnoncWnQziwYr_hN_C1PUhNi_c0DN8vEYH16ZqOrlnaMnYM7TCdieRiWwjnmQ8QXbX0cdwu6GwaqomYywnGw6apJ5rJ2qsVLuo9AtkTuoKlJfXXS-ug6V_siuvol6_bB3fIeP1H67ZKuP2Ym7a2eVvtSD_j0b2yO0VuqXd2hzvkhuuuEdu1v0ul_fJ5afpsktHFdV04iZwq8L9_P7DYGcn2j16D8ezkSmr5de5h9NuBkssLXOKW-fTeQmxO1tUdLoszzFC02_DUTakk9KOcsj3YdJqex38iikSdqx7ReGurx-Qs-M3nw97rVXzh1YGOaJsMWa5jjVkpzIznPE4g9zLJTl3aaojWFUzLiIjcVuRWdaRuWbCCm10msVOuoQ_JDtFWbjHhNo8RRyTWIhNUaaFjhyzaceJ0AI6kzogbP2g1bSu8aGu5EagU4U6VahT5XWqLgLy0lvERkDPxsiRS2L15fSt6qe9-FB8OFG9gBw0TGYjALkcYMVOGJD9tQ2pVfyolAyFT_Vg9PlmFBwfd3Pg2ZSLSmFl-xiwRIcF5FFtcdu5wzBNIy4CkjRscXMBFhVvjhSjoS8uzkESdBUQ4U3trxWi-v13ePTkXwX3yS08XfP7npKd-WzhngHgm5sD78q_AGknS0k
link.rule.ids 230,315,783,787,888,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfQJgQvjG-ywTAS4olWcZw48WPZGN1YKz420TfLiR1abW2qphXrnvgT-Bv5S7hz-rHAHhDiLZJ9dnK-O__OvtwR8jJMM8nzPAUnx8SNMDCioXmSgiyHTOdAwiyed3S6on0aHvWi3qIcEP4LU-WHWB24oWY4e40KjgfSdS13IVoyciFaQdOPZSybACg3Qfs51nHY_xSsrxQWZdVkhAllg149rOfakWp71Say_QJjJ3UJ7MuruhfXAdM_4yuv4l63cR1skfPlJ1fxKmfN2TRtZpe_ZYP8Tzy5S-4sAC5tVRJ5j9ywo_vkZlXycv6AXH4ez1t0UFJNh3YIc43sz-8_UizuRFv7H-B5MkiLcn4-dYjaTmCXpUVO8fZ8PC3AfGezko7nxVc00vRbf5D16bAwgxxcfhi0XPeDtxhjzI6xrynM-uYhOT14e7LXbizqPzQycBNlgzHDdaTBQZVZyhmPMnC_bJxzmyQ6hI014yJMJd4sMsN8mWsmjNCpTrLIShvzR2RjVIzsE0JNniCUiQ2YpzDTQoeWmcS3IjAA0KT2CFuutBpXaT7UFfcIeKqQpwp5qhxP1YVHXjmRWBHoyRmGycWR-tJ9pzpJO9oTH49U2yO7NZlZEYA7B3DRDzyysxQitTAhpZKBcN4etL5YtYLu44UOrE0xKxUmt48ATvjMI48rkVuPHQRJEnLhkbgmjKsOmFe83jIa9F1-cQ6UwCuPCCdrf80Q1ekc4tP2vxI-J7faJ51jdXzYfb9DbmOXKtzvKdmYTmb2GeC_abrr9PoX7mZPYQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQrkBceD_CwmIkxIlWdR5OfCy7lO5Cq-WxojfLiR0alTZR04rtnvgJ_EZ-CTNO2m5gDwhxi2SP00xmxt_EX2cIee7HifDSNIYkR4ct39W8pbwoBlv2mUpBhBn83jEY8v6pfzwKRjX_Cf8LU9WH2HxwQ8-w8RodvNBp08ktQ0sElqHltjuhCEUb8OSuzwEII0D64G5PFOquaiLAerLuqMnquXSlxla1i1o_Q-qkKkF7adX24jJc-ie98iLstftW7yaZrJ-4oqtM2stF3E7OfysG-X9UcovcqOEt7Vb2eJtcMbM75GrV8HJ1l5x_LFZdmpVU0amZwq1m5uf3HzG2dqLdwxO4nmdxXq6-LiyeNnPYY2meUjw7LxY5BO9kWdJilX_BEE2_jbNkTKe5zlJI-GHRcjsPfkWBjB1tXlK466t75LT3-tNBv1V3f2glkCSKFmPaU4GC9FQksce8IIHky4SpZ6JI-bCtJh73Y4HnikyzjkgV45qrWEVJYIQJvftkZ5bPzENCdRohkAk1BCc_UVz5humoY7irAZ4J5RC2ftGyqIp8yAvJEehUok4l6lRancozh7ywFrERUPMJkuTCQH4evpGDqB8c8PfHsu-Q_YbJbAQgmQOw2HEdsre2IVkHkFIKl9tcD0afbUbB8_E4B95NviwllrYPAEx0mEMeVBa3Xdt1o8j3uEPChi1uJmBV8ebILBvb6uIeSIKuHMKtqf21QuRgcIRXj_5V8Cm5dnLYk--Ohm_3yHWcUXH9HpOdxXxpngD4W8T71qt_Ab0LThA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpyA+is+a+membrane%E2%80%90bound+ADP%E2%80%90ribosyltransferase+of+Streptococcus+pyogenes+which+modifies+a+streptococcal+peptide%2C+SpyB&rft.jtitle=Molecular+microbiology&rft.au=Korotkova%2C+Natalia&rft.au=Hoff%2C+Jessica+S.&rft.au=Becker%2C+Devon+M.&rft.au=Quinn%2C+John+Kyle+Heggen&rft.date=2012-03-01&rft.issn=0950-382X&rft.eissn=1365-2958&rft.volume=83&rft.issue=5&rft.spage=936&rft.epage=952&rft_id=info:doi/10.1111%2Fj.1365-2958.2012.07979.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2958_2012_07979_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-382X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-382X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-382X&client=summon