The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization

Summary We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild‐type mice, AHR‐null mice had lower platelet...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of haematology Vol. 152; no. 4; pp. 469 - 484
Main Authors Lindsey, Stephan, Papoutsakis, Eleftherios T.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.02.2011
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild‐type mice, AHR‐null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower‐ploidy megakaryocytes (Mks). AHR mRNA increased 3·6‐fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked‐down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations.
AbstractList We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR -null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3·6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations.
We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR-null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3·6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations.
Summary We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild‐type mice, AHR‐null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower‐ploidy megakaryocytes (Mks). AHR mRNA increased 3·6‐fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked‐down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations.
Summary We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild‐type mice, AHR ‐null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower‐ploidy megakaryocytes (Mks). AHR mRNA increased 3·6‐fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked‐down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations.
We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR-null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3.6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes greater than or equal to 16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations.
Author Papoutsakis, Eleftherios T.
Lindsey, Stephan
Author_xml – sequence: 1
  givenname: Stephan
  surname: Lindsey
  fullname: Lindsey, Stephan
– sequence: 2
  givenname: Eleftherios T.
  surname: Papoutsakis
  fullname: Papoutsakis, Eleftherios T.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23864950$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21226706$$D View this record in MEDLINE/PubMed
BookMark eNqNkVFv0zAUhS00xLrBX0B5QbCHlOvYSZwHkMYEFDQJCY1ny3GuWxc3DnYK6349zloKPIFfbN1z7tGxvjNy0vseCckozGk6L9dzyqoyLyin8wLSFETJxfz2AZkdhRMyA4A6p8DFKTmLcQ1AGZT0ETktaFFUNVQz0t6sMFNh57LVrgteq9D6PguocRh9yF5cLj5fZGNQfdTBDqNNolF6kgIut06NGLMNLtXXlOH1brQ6G7zbDc7bzt6paeExeWiUi_jkcJ-TL-_e3lwt8utP7z9cXV7nugIq8pYJ0A2l3JRt3TVVoSggL1iNQlUF61jJmFGGN0aAqVuGymhTQ0OxFG2asnPyep87bNsNdhr71NvJIdhNKie9svJvpbcrufTfJeMgqgJSwPNDQPDfthhHubFRo3OqR7-NsoGalpTz5p9Oweuy4fW9U-ydOvgYA5pjHwpyYinXckImJ2RyYinvWcrbtPr0z_8cF3_BS4ZnB4OKWjmTKGkbf_uYqHhTTv96tff9sA53_11Avvm4mF7sJ3vgvmA
CODEN BJHEAL
CitedBy_id crossref_primary_10_1021_acs_biomac_5b00541
crossref_primary_10_1016_j_bcmd_2014_07_010
crossref_primary_10_3389_fphys_2018_01623
crossref_primary_10_1016_j_taap_2013_06_024
crossref_primary_10_3390_ijms21155488
crossref_primary_10_1038_s41392_022_01167_9
crossref_primary_10_1093_jmcb_mjac001
crossref_primary_10_1182_blood_2012_11_466722
crossref_primary_10_1038_s41590_023_01662_3
crossref_primary_10_1124_pr_113_007823
crossref_primary_10_1007_s12015_012_9384_5
crossref_primary_10_1182_blood_2015_09_670208
crossref_primary_10_1182_bloodadvances_2018019547
crossref_primary_10_1016_j_isci_2018_05_006
crossref_primary_10_1097_MOH_0000000000000432
crossref_primary_10_1080_09537104_2019_1667497
crossref_primary_10_3390_toxins10100412
crossref_primary_10_1007_s11626_013_9633_1
crossref_primary_10_3389_fcell_2020_589752
crossref_primary_10_1007_s00281_013_0390_8
crossref_primary_10_1016_j_toxlet_2015_03_005
crossref_primary_10_3390_ijms23105355
crossref_primary_10_3390_ijms25063102
crossref_primary_10_1002_stem_2822
crossref_primary_10_1016_j_jtha_2023_04_007
crossref_primary_10_1016_j_exphem_2017_10_001
crossref_primary_10_1111_jth_12490
crossref_primary_10_1016_j_jconrel_2016_12_021
crossref_primary_10_1097_MOH_0000000000000064
crossref_primary_10_1007_s10787_019_00651_z
crossref_primary_10_1016_j_exphem_2011_10_006
Cites_doi 10.1289/ehp.5715
10.1074/jbc.M406788200
10.1634/stemcells.20-4-320
10.1016/j.cell.2009.12.042
10.1002/ajim.4700110609
10.4049/jimmunol.175.8.5269
10.1046/j.1365-2141.1998.00975.x
10.1038/371221a0
10.1074/jbc.M209594200
10.1074/jbc.M804704200
10.1093/nar/11.5.1475
10.1021/tx7001965
10.1007/s002770000285
10.1093/carcin/bgn224
10.1093/ajcp/98.6.637
10.1038/sj.leu.2403832
10.1152/physiolgenomics.00127.2007
10.1182/blood.V89.10.3636
10.1016/S0021-9258(19)77819-3
10.1111/j.1365-2141.2006.06341.x
10.1016/j.stem.2008.07.010
10.1182/blood.V98.12.3274
10.1182/blood-2009-03-207944
10.4161/cam.4.2.10387
10.1074/jbc.M603175200
10.1128/MCB.17.5.2933
10.1111/j.1538-7836.2007.02407.x
10.1093/emboj/16.13.3965
10.1186/1476-069X-5-24
10.1124/mol.65.1.165
10.1080/00039890109604474
10.1016/S0301-472X(99)00150-2
10.1111/j.1365-2567.2009.03054.x
10.1038/sj.leu.2401170
10.1128/MCB.00482-09
10.1074/jbc.M801923200
10.1128/MCB.25.10.4262-4271.2005
10.1210/jc.2008-1980
10.1186/1471-213X-6-16
10.1016/j.cub.2004.03.040
10.1073/pnas.0504757102
10.1126/science.1191536
10.1182/blood-2009-05-223107
10.1128/MCB.16.5.2144
10.1016/S0021-9258(18)48426-8
10.1038/nature06880
10.1074/jbc.M412081200
10.1016/j.exphem.2006.10.017
10.1182/blood-2002-06-1913
10.1186/1471-2164-8-384
10.2108/zsj.19.309
10.1111/j.1651-2227.1994.tb13086.x
10.1073/pnas.93.13.6731
10.1242/dev.128.23.4737
10.1046/j.1365-2141.1999.01203.x
10.1074/jbc.M608642200
10.4161/cc.8.6.7869
10.1289/ehp.7305119
ContentType Journal Article
Copyright 2011 Blackwell Publishing Ltd
2015 INIST-CNRS
2011 Blackwell Publishing Ltd.
2011 Blackwell Publishing Ltd 2011
Copyright_xml – notice: 2011 Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: 2011 Blackwell Publishing Ltd.
– notice: 2011 Blackwell Publishing Ltd 2011
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7T5
7TM
H94
5PM
DOI 10.1111/j.1365-2141.2010.08548.x
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Immunology Abstracts
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
DatabaseTitleList
MEDLINE

CrossRef
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1365-2141
EndPage 484
ExternalDocumentID 10_1111_j_1365_2141_2010_08548_x
21226706
23864950
BJH8548
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: F32 HL091620
– fundername: NHLBI NIH HHS
  grantid: F32HL091620
– fundername: NHLBI NIH HHS
  grantid: F32 HL091620-02
– fundername: National Heart, Lung, and Blood Institute : NHLBI
  grantid: F32 HL091620-02 || HL
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1KJ
1OB
1OC
23N
24P
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8F7
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAYEP
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EGARE
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IH2
IHE
IX1
J0M
J5H
K48
KBYEO
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
O66
O9-
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
V8K
V9Y
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
08R
AAJUZ
AAPBV
AAUGY
AAVGM
ABCVL
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
AKALU
IQODW
ZA5
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7T5
7TM
H94
5PM
ID FETCH-LOGICAL-c6018-b380c9114f5b7d962a10e4237e8a623d3533faf49f80f7b3eafcf7091e58b49f3
IEDL.DBID DR2
ISSN 0007-1048
IngestDate Tue Sep 17 21:20:43 EDT 2024
Fri Aug 16 02:32:49 EDT 2024
Fri Aug 16 10:58:19 EDT 2024
Fri Aug 23 02:40:58 EDT 2024
Sat Sep 28 07:57:38 EDT 2024
Sun Oct 22 16:04:35 EDT 2023
Sat Aug 24 01:03:33 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Megakaryocytopoiesis
Signal transduction
Aryl hydrocarbon receptor
Polyploidy
Hematology
Hematopoiesis
transcription factors
Cell biology
Megakaryocyte
Transcription factor
Thrombopoietin
haematopoiesis
Language English
License CC BY 4.0
2011 Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6018-b380c9114f5b7d962a10e4237e8a623d3533faf49f80f7b3eafcf7091e58b49f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc3408620?pdf=render
PMID 21226706
PQID 847594749
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3408620
proquest_miscellaneous_907151449
proquest_miscellaneous_847594749
crossref_primary_10_1111_j_1365_2141_2010_08548_x
pubmed_primary_21226706
pascalfrancis_primary_23864950
wiley_primary_10_1111_j_1365_2141_2010_08548_x_BJH8548
PublicationCentury 2000
PublicationDate February 2011
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: February 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle British journal of haematology
PublicationTitleAlternate Br J Haematol
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References 2004; 65
2002; 19
2005; 175
1997; 89
1994; 371
2008b; 33
1988; 263
2010; 140
2008; 3
1992; 98
2009; 119
2003; 278
2009; 114
2007; 35
2003; 111
1983; 11
2006; 135
2005; 25
2009; 94
2005; 102
2010; 115
2002; 100
2007; 8
2008; 118
1997; 17
1997; 16
2008; 21
2007; 5
2009; 284
2006; 281
2001; 56
2010; 4
1998; 12
2009; 127
2001; 98
1987; 11
2010; 329
2000; 28
2007; 282
1992; 267
1996; 93
2006; 5
2006; 6
2008a; 283
1999; 104
1996; 16
1994; 83
2001; 128
2009; 29
2001; 80
2005; 280
2005; 19
2009; 30
2002; 20
2004; 14
2009; 8
1998; 103
2008; 453
1973; 5
15790560 - J Biol Chem. 2005 May 27;280(21):20340-8
8078582 - Nature. 1994 Sep 15;371(6494):221-6
10720691 - Exp Hematol. 2000 Mar;28(3):267-75
18246201 - J Clin Invest. 2008 Mar;118(3):853-67
6828386 - Nucleic Acids Res. 1983 Mar 11;11(5):1475-89
9766506 - Leukemia. 1998 Oct;12(10):1603-11
9827900 - Br J Haematol. 1998 Nov;103(2):317-25
12621046 - J Biol Chem. 2003 May 16;278(20):17767-74
19287095 - J Clin Invest. 2009 Apr;119(4):852-64
19538249 - Immunology. 2009 Jul;127(3):299-311
19366855 - J Clin Endocrinol Metab. 2009 Jul;94(7):2571-8
18786418 - Cell Stem Cell. 2008 Sep 11;3(3):314-26
18252802 - Physiol Genomics. 2008 Apr 22;33(2):159-69
20178745 - Cell. 2010 Feb 19;140(4):529-39
7919753 - Acta Paediatr. 1994 Jun;83(6):583-7
19620289 - Mol Cell Biol. 2009 Sep;29(18):5168-80
18820284 - Carcinogenesis. 2009 Jan;30(1):11-9
17309828 - Exp Hematol. 2007 Mar;35(3):476-489
12149188 - Blood. 2002 Aug 15;100(4):1123-32
11446731 - Ann Hematol. 2001 May;80(5):284-91
12948893 - Environ Health Perspect. 2003 Sep;111(12):1519-23
16542414 - BMC Dev Biol. 2006;6:16
9111365 - Mol Cell Biol. 1997 May;17(5):2933-43
15563463 - J Biol Chem. 2005 Feb 11;280(6):4929-39
4752898 - Environ Health Perspect. 1973 Sep;5:119-23
2846558 - J Biol Chem. 1988 Nov 25;263(33):17221-4
15959531 - Leukemia. 2005 Aug;19(8):1404-10
12125929 - Zoolog Sci. 2002 Mar;19(3):309-19
18362915 - Nature. 2008 May 1;453(7191):65-71
1281383 - Am J Clin Pathol. 1992 Dec;98(6):637-46
1370462 - J Biol Chem. 1992 Jan 15;267(2):1279-85
17953764 - BMC Genomics. 2007;8:384
16807248 - J Biol Chem. 2006 Aug 25;281(34):24721-7
3605105 - Am J Ind Med. 1987;11(6):685-91
19022774 - J Biol Chem. 2009 Jan 23;284(4):2549-67
11731454 - Development. 2001 Dec;128(23):4737-46
16210632 - J Immunol. 2005 Oct 15;175(8):5269-79
17403200 - J Thromb Haemost. 2007 Apr;5(4):661-9
20190565 - Cell Adh Migr. 2010 Apr-Jun;4(2):172-5
20688981 - Science. 2010 Sep 10;329(5997):1345-8
18076143 - Chem Res Toxicol. 2008 Jan;21(1):102-16
11777020 - Arch Environ Health. 2001 Sep-Oct;56(5):396-405
15870295 - Mol Cell Biol. 2005 May;25(10):4262-71
9160668 - Blood. 1997 May 15;89(10):3636-43
8628281 - Mol Cell Biol. 1996 May;16(5):2144-50
12110701 - Stem Cells. 2002;20(4):320-8
16301529 - Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17858-63
19901266 - Blood. 2010 Jan 21;115(3):677-86
11719364 - Blood. 2001 Dec 1;98(12):3274-82
15062106 - Curr Biol. 2004 Apr 6;14(7):630-6
9233806 - EMBO J. 1997 Jul 1;16(13):3965-73
16956419 - Environ Health. 2006;5:24
14722248 - Mol Pharmacol. 2004 Jan;65(1):165-71
17138561 - J Biol Chem. 2007 Jan 26;282(4):2237-49
10086791 - Br J Haematol. 1999 Mar;104(3):530-7
19221497 - Cell Cycle. 2009 Mar 15;8(6):832-7
19491391 - Blood. 2009 Jul 30;114(5):983-94
17054670 - Br J Haematol. 2006 Nov;135(4):554-66
8692887 - Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6731-6
18397889 - J Biol Chem. 2008 Jun 6;283(23):15589-600
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
Mercher T. (e_1_2_6_35_1) 2009; 119
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Denison M.S. (e_1_2_6_11_1) 1988; 263
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
Dorfman D.M. (e_1_2_6_14_1) 1992; 267
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Weissberg J.B. (e_1_2_6_60_1) 1973; 5
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
Konieczna I. (e_1_2_6_28_1) 2008; 118
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 4
  start-page: 172
  year: 2010
  end-page: 175
  article-title: A remarkable new target gene for the dioxin receptor: the Vav3 proto‐oncogene links AhR to adhesion and migration
  publication-title: Cell Adhesion and Migration
– volume: 175
  start-page: 5269
  year: 2005
  end-page: 5279
  article-title: HoxA10 represses transcription of the gene encoding p67phox in phagocytic cells
  publication-title: Journal of Immunology
– volume: 80
  start-page: 284
  year: 2001
  end-page: 291
  article-title: Requirement of thrombopoietin‐induced activation of ERK for megakaryocyte differentiation and of p38 for erythroid differentiation
  publication-title: Annals of Hematology
– volume: 371
  start-page: 221
  year: 1994
  end-page: 226
  article-title: An early haematopoietic defect in mice lacking the transcription factor GATA‐2
  publication-title: Nature
– volume: 94
  start-page: 2571
  year: 2009
  end-page: 2578
  article-title: The tyrosine kinase receptor RET interacts in vivo with aryl hydrocarbon receptor‐interacting protein to alter survivin availability
  publication-title: Journal of Clinical Endocrinology and Metabolism
– volume: 111
  start-page: 1519
  year: 2003
  end-page: 1523
  article-title: Persistent hematologic and immunologic disturbances in 8‐year‐old Dutch children associated with perinatal dioxin exposure
  publication-title: Environmental Health Perspectives
– volume: 329
  start-page: 1345
  year: 2010
  end-page: 1348
  article-title: Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells
  publication-title: Science
– volume: 25
  start-page: 4262
  year: 2005
  end-page: 4271
  article-title: Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1
  publication-title: Molecular and Cellular Biology
– volume: 281
  start-page: 24721
  year: 2006
  end-page: 24727
  article-title: Regulation of survivin stability by the aryl hydrocarbon receptor‐interacting protein
  publication-title: Journal of Biological Chemistry
– volume: 6
  start-page: 16
  year: 2006
  article-title: Notch signaling through tramtrack bypasses the mitosis promoting activity of the JNK pathway in the mitotic‐to‐endocycle transition of Drosophila follicle cells
  publication-title: BMC Developmental Biology
– volume: 93
  start-page: 6731
  year: 1996
  end-page: 6736
  article-title: Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 11
  start-page: 685
  year: 1987
  end-page: 691
  article-title: Pilot study on health effects of environmental 2,3,7,8‐TCDD in Missouri
  publication-title: American Journal of Industrial Medicine
– volume: 98
  start-page: 3274
  year: 2001
  end-page: 3282
  article-title: Role of p21(Cip1/Waf1) in cell‐cycle exit of endomitotic megakaryocytes
  publication-title: Blood
– volume: 263
  start-page: 17221
  year: 1988
  end-page: 17224
  article-title: The DNA recognition site for the dioxin‐Ah receptor complex. Nucleotide sequence and functional analysis
  publication-title: Journal of Biological Chemistry
– volume: 140
  start-page: 529
  year: 2010
  end-page: 539
  article-title: Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus
  publication-title: Cell
– volume: 115
  start-page: 677
  year: 2010
  end-page: 686
  article-title: NF‐E2 domination over Nrf2 promotes ROS accumulation and megakaryocytic maturation
  publication-title: Blood
– volume: 100
  start-page: 1123
  year: 2002
  end-page: 1132
  article-title: Development of myelofibrosis in mice genetically impaired for GATA‐1 expression (GATA‐1(low) mice)
  publication-title: Blood
– volume: 284
  start-page: 2549
  year: 2009
  end-page: 2567
  article-title: Constitutively active SHP2 cooperates with HoxA10 overexpression to induce acute myeloid leukemia
  publication-title: Journal of Biological Chemistry
– volume: 128
  start-page: 4737
  year: 2001
  end-page: 4746
  article-title: Notch‐Delta signaling induces a transition from mitotic cell cycle to endocycle in Drosophila follicle cells
  publication-title: Development
– volume: 16
  start-page: 2144
  year: 1996
  end-page: 2150
  article-title: The aromatic hydrocarbon receptor modulates the Hepa 1c1c7 cell cycle and differentiated state independently of dioxin
  publication-title: Molecular and Cellular Biology
– volume: 17
  start-page: 2933
  year: 1997
  end-page: 2943
  article-title: Thrombopoietin‐induced differentiation of a human megakaryoblastic leukemia cell line, CMK, involves transcriptional activation of p21(WAF1/Cip1) by STAT5
  publication-title: Molecular and Cellular Biology
– volume: 20
  start-page: 320
  year: 2002
  end-page: 328
  article-title: Higher pH promotes megakaryocytic maturation and apoptosis
  publication-title: Stem Cells
– volume: 5
  start-page: 661
  year: 2007
  end-page: 669
  article-title: A guide to murine platelet structure, function, assays, and genetic alterations
  publication-title: Journal of Thrombosis and Haemostasis
– volume: 453
  start-page: 65
  year: 2008
  end-page: 71
  article-title: Control of T(reg) and T(H)17 cell differentiation by the aryl hydrocarbon receptor
  publication-title: Nature
– volume: 12
  start-page: 1603
  year: 1998
  end-page: 1611
  article-title: Effects of thrombopoietin, interleukin‐3 and the kinase inhibitor K‐252a on growth and polyploidization of the megakaryocytic cell line M‐07e
  publication-title: Leukemia
– volume: 89
  start-page: 3636
  year: 1997
  end-page: 3643
  article-title: Transcription factor GATA‐2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation
  publication-title: Blood
– volume: 11
  start-page: 1475
  year: 1983
  end-page: 1489
  article-title: Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei
  publication-title: Nucleic Acids Research
– volume: 19
  start-page: 1404
  year: 2005
  end-page: 1410
  article-title: Dlk1 in normal and abnormal hematopoiesis
  publication-title: Leukemia
– volume: 8
  start-page: 384
  year: 2007
  article-title: A systems‐biology analysis of isogenic megakaryocytic and granulocytic cultures identifies new molecular components of megakaryocytic apoptosis
  publication-title: BMC Genomics
– volume: 102
  start-page: 17858
  year: 2005
  end-page: 17863
  article-title: Aryl hydrocarbon receptor‐dependent liver development and hepatotoxicity are mediated by different cell types
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 103
  start-page: 317
  year: 1998
  end-page: 325
  article-title: pH is a potent modulator of erythroid differentiation
  publication-title: British Journal of Haematology
– volume: 104
  start-page: 530
  year: 1999
  end-page: 537
  article-title: A rapid single‐laser flow cytometric method for discrimination of early apoptotic cells in a heterogenous cell population
  publication-title: British Journal of Haematology
– volume: 118
  start-page: 853
  year: 2008
  end-page: 867
  article-title: Constitutive activation of SHP2 in mice cooperates with ICSBP deficiency to accelerate progression to acute myeloid leukemia
  publication-title: Journal of Clinical Investigation
– volume: 83
  start-page: 583
  year: 1994
  end-page: 587
  article-title: Clinical laboratory manifestations of exposure to background levels of dioxins in the perinatal period
  publication-title: Acta Paediatrica
– volume: 119
  start-page: 852
  year: 2009
  end-page: 864
  article-title: The OTT‐MAL fusion oncogene activates RBPJ‐mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model
  publication-title: Journal of Clinical Investigation
– volume: 280
  start-page: 4929
  year: 2005
  end-page: 4939
  article-title: Notch signals inhibit the development of erythroid/megakaryocytic cells by suppressing GATA‐1 activity through the induction of HES1
  publication-title: Journal of Biological Chemistry
– volume: 127
  start-page: 299
  year: 2009
  end-page: 311
  article-title: The aryl hydrocarbon receptor: a perspective on potential roles in the immune system
  publication-title: Immunology
– volume: 98
  start-page: 637
  year: 1992
  end-page: 646
  article-title: The significance of platelets with increased RNA content (reticulated platelets). A measure of the rate of thrombopoiesis
  publication-title: American Journal of Clinical Pathology
– volume: 5
  start-page: 24
  year: 2006
  article-title: Over‐expression of AhR (aryl hydrocarbon receptor) induces neural differentiation of Neuro2a cells: neurotoxicology study
  publication-title: Environmental Health
– volume: 278
  start-page: 17767
  year: 2003
  end-page: 17774
  article-title: Resistance to 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin toxicity and abnormal liver development in mice carrying a mutation in the nuclear localization sequence of the aryl hydrocarbon receptor
  publication-title: Journal of Biological Chemistry
– volume: 35
  start-page: 476
  year: 2007
  end-page: 489
  article-title: Comparative, genome‐scale transcriptional analysis of CHRF‐288‐11 and primary human megakaryocytic cell cultures provides novel insights into lineage‐specific differentiation
  publication-title: Experimental Hematology
– volume: 280
  start-page: 20340
  year: 2005
  end-page: 20348
  article-title: Transcriptional regulation of NF‐E2 p45‐related factor (NRF2) expression by the aryl hydrocarbon receptor‐xenobiotic response element signaling pathway: direct cross‐talk between phase I and II drug‐metabolizing enzymes
  publication-title: Journal of Biological Chemistry
– volume: 16
  start-page: 3965
  year: 1997
  end-page: 3973
  article-title: A lineage‐selective knockout establishes the critical role of transcription factor GATA‐1 in megakaryocyte growth and platelet development
  publication-title: EMBO Journal
– volume: 30
  start-page: 11
  year: 2009
  end-page: 19
  article-title: Treatment of mice with the Ah receptor agonist and human carcinogen dioxin results in altered numbers and function of hematopoietic stem cells
  publication-title: Carcinogenesis
– volume: 8
  start-page: 832
  year: 2009
  end-page: 837
  article-title: Cell “circadian” cycle: new role for mammalian core clock genes
  publication-title: Cell Cycle
– volume: 19
  start-page: 309
  year: 2002
  end-page: 319
  article-title: Aryl hydrocarbon receptor is required for prevention of blood clotting and for the development of vasculature and bone in the embryos of medaka fish, Oryzias latipes
  publication-title: Zoological Science
– volume: 56
  start-page: 396
  year: 2001
  end-page: 405
  article-title: Relation of serum 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD) level to hematological examination results in veterans of Operation Ranch Hand
  publication-title: Archives of Environmental Health
– volume: 283
  start-page: 15589
  year: 2008a
  end-page: 15600
  article-title: Tumor suppressor protein p53 regulates megakaryocytic polyploidization and apoptosis
  publication-title: Journal of Biological Chemistry
– volume: 14
  start-page: 630
  year: 2004
  end-page: 636
  article-title: Notch‐dependent Fizzy‐related/Hec1/Cdh1 expression is required for the mitotic‐to‐endocycle transition in Drosophila follicle cells
  publication-title: Current Biology
– volume: 282
  start-page: 2237
  year: 2007
  end-page: 2249
  article-title: Activation of SHP2 protein‐tyrosine phosphatase increases HoxA10‐induced repression of the genes encoding gp91(PHOX) and p67(PHOX)
  publication-title: Journal of Biological Chemistry
– volume: 5
  start-page: 119
  year: 1973
  end-page: 123
  article-title: Effects of 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin upon hemostasis and hematologic function in the rat
  publication-title: Environmental Health Perspectives
– volume: 3
  start-page: 314
  year: 2008
  end-page: 326
  article-title: Notch signaling specifies megakaryocyte development from hematopoietic stem cells
  publication-title: Cell Stem Cell
– volume: 33
  start-page: 159
  year: 2008b
  end-page: 169
  article-title: Gene Ontology‐driven transcriptional analysis of CD34+ cell‐initiated megakaryocytic cultures identifies new transcriptional regulators of megakaryopoiesis
  publication-title: Physiological Genomics
– volume: 29
  start-page: 5168
  year: 2009
  end-page: 5180
  article-title: GATA‐2 reinforces megakaryocyte development in the absence of GATA‐1
  publication-title: Molecular and Cellular Biology
– volume: 21
  start-page: 102
  year: 2008
  end-page: 116
  article-title: The search for endogenous activators of the aryl hydrocarbon receptor
  publication-title: Chemical Research in Toxicology
– volume: 28
  start-page: 267
  year: 2000
  end-page: 275
  article-title: Physiologically significant effects of pH and oxygen tension on granulopoiesis
  publication-title: Experimental Hematology
– volume: 135
  start-page: 554
  year: 2006
  end-page: 566
  article-title: Nicotinamide (vitamin B3) increases the polyploidisation and proplatelet formation of cultured primary human megakaryocytes
  publication-title: British Journal of Haematology
– volume: 114
  start-page: 983
  year: 2009
  end-page: 994
  article-title: Graded repression of PU.1/Sfpi1 gene transcription by GATA factors regulates hematopoietic cell fate
  publication-title: Blood
– volume: 267
  start-page: 1279
  year: 1992
  end-page: 1285
  article-title: Human transcription factor GATA‐2. Evidence for regulation of preproendothelin‐1 gene expression in endothelial cells
  publication-title: Journal of Biological Chemistry
– volume: 65
  start-page: 165
  year: 2004
  end-page: 171
  article-title: HES‐1, a novel target gene for the aryl hydrocarbon receptor
  publication-title: Molecular Pharmacology
– ident: e_1_2_6_54_1
  doi: 10.1289/ehp.5715
– volume: 118
  start-page: 853
  year: 2008
  ident: e_1_2_6_28_1
  article-title: Constitutive activation of SHP2 in mice cooperates with ICSBP deficiency to accelerate progression to acute myeloid leukemia
  publication-title: Journal of Clinical Investigation
  contributor:
    fullname: Konieczna I.
– ident: e_1_2_6_23_1
  doi: 10.1074/jbc.M406788200
– ident: e_1_2_6_61_1
  doi: 10.1634/stemcells.20-4-320
– ident: e_1_2_6_13_1
  doi: 10.1016/j.cell.2009.12.042
– ident: e_1_2_6_59_1
  doi: 10.1002/ajim.4700110609
– ident: e_1_2_6_29_1
  doi: 10.4049/jimmunol.175.8.5269
– ident: e_1_2_6_33_1
  doi: 10.1046/j.1365-2141.1998.00975.x
– ident: e_1_2_6_53_1
  doi: 10.1038/371221a0
– ident: e_1_2_6_7_1
  doi: 10.1074/jbc.M209594200
– ident: e_1_2_6_58_1
  doi: 10.1074/jbc.M804704200
– ident: e_1_2_6_12_1
  doi: 10.1093/nar/11.5.1475
– ident: e_1_2_6_41_1
  doi: 10.1021/tx7001965
– ident: e_1_2_6_38_1
  doi: 10.1007/s002770000285
– ident: e_1_2_6_49_1
  doi: 10.1093/carcin/bgn224
– ident: e_1_2_6_3_1
  doi: 10.1093/ajcp/98.6.637
– ident: e_1_2_6_45_1
  doi: 10.1038/sj.leu.2403832
– ident: e_1_2_6_18_1
  doi: 10.1152/physiolgenomics.00127.2007
– ident: e_1_2_6_52_1
  doi: 10.1182/blood.V89.10.3636
– volume: 263
  start-page: 17221
  year: 1988
  ident: e_1_2_6_11_1
  article-title: The DNA recognition site for the dioxin‐Ah receptor complex. Nucleotide sequence and functional analysis
  publication-title: Journal of Biological Chemistry
  doi: 10.1016/S0021-9258(19)77819-3
  contributor:
    fullname: Denison M.S.
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1365-2141.2006.06341.x
– ident: e_1_2_6_34_1
  doi: 10.1016/j.stem.2008.07.010
– ident: e_1_2_6_4_1
  doi: 10.1182/blood.V98.12.3274
– ident: e_1_2_6_9_1
  doi: 10.1182/blood-2009-03-207944
– ident: e_1_2_6_15_1
  doi: 10.4161/cam.4.2.10387
– ident: e_1_2_6_26_1
  doi: 10.1074/jbc.M603175200
– ident: e_1_2_6_32_1
  doi: 10.1128/MCB.17.5.2933
– ident: e_1_2_6_24_1
  doi: 10.1111/j.1538-7836.2007.02407.x
– ident: e_1_2_6_48_1
  doi: 10.1093/emboj/16.13.3965
– ident: e_1_2_6_2_1
  doi: 10.1186/1476-069X-5-24
– ident: e_1_2_6_51_1
  doi: 10.1124/mol.65.1.165
– ident: e_1_2_6_37_1
  doi: 10.1080/00039890109604474
– ident: e_1_2_6_21_1
  doi: 10.1016/S0301-472X(99)00150-2
– ident: e_1_2_6_50_1
  doi: 10.1111/j.1365-2567.2009.03054.x
– ident: e_1_2_6_43_1
  doi: 10.1038/sj.leu.2401170
– ident: e_1_2_6_22_1
  doi: 10.1128/MCB.00482-09
– ident: e_1_2_6_17_1
  doi: 10.1074/jbc.M801923200
– ident: e_1_2_6_40_1
  doi: 10.1128/MCB.25.10.4262-4271.2005
– ident: e_1_2_6_56_1
  doi: 10.1210/jc.2008-1980
– ident: e_1_2_6_25_1
  doi: 10.1186/1471-213X-6-16
– ident: e_1_2_6_46_1
  doi: 10.1016/j.cub.2004.03.040
– ident: e_1_2_6_57_1
  doi: 10.1073/pnas.0504757102
– ident: e_1_2_6_5_1
  doi: 10.1126/science.1191536
– ident: e_1_2_6_39_1
  doi: 10.1182/blood-2009-05-223107
– ident: e_1_2_6_31_1
  doi: 10.1128/MCB.16.5.2144
– volume: 267
  start-page: 1279
  year: 1992
  ident: e_1_2_6_14_1
  article-title: Human transcription factor GATA‐2. Evidence for regulation of preproendothelin‐1 gene expression in endothelial cells
  publication-title: Journal of Biological Chemistry
  doi: 10.1016/S0021-9258(18)48426-8
  contributor:
    fullname: Dorfman D.M.
– ident: e_1_2_6_44_1
  doi: 10.1038/nature06880
– ident: e_1_2_6_36_1
  doi: 10.1074/jbc.M412081200
– ident: e_1_2_6_16_1
  doi: 10.1016/j.exphem.2006.10.017
– ident: e_1_2_6_55_1
  doi: 10.1182/blood-2002-06-1913
– ident: e_1_2_6_8_1
  doi: 10.1186/1471-2164-8-384
– ident: e_1_2_6_27_1
  doi: 10.2108/zsj.19.309
– ident: e_1_2_6_42_1
  doi: 10.1111/j.1651-2227.1994.tb13086.x
– ident: e_1_2_6_47_1
  doi: 10.1073/pnas.93.13.6731
– ident: e_1_2_6_10_1
  doi: 10.1242/dev.128.23.4737
– ident: e_1_2_6_20_1
  doi: 10.1046/j.1365-2141.1999.01203.x
– ident: e_1_2_6_30_1
  doi: 10.1074/jbc.M608642200
– ident: e_1_2_6_6_1
  doi: 10.4161/cc.8.6.7869
– volume: 119
  start-page: 852
  year: 2009
  ident: e_1_2_6_35_1
  article-title: The OTT‐MAL fusion oncogene activates RBPJ‐mediated transcription and induces acute megakaryoblastic leukemia in a knockin mouse model
  publication-title: Journal of Clinical Investigation
  contributor:
    fullname: Mercher T.
– volume: 5
  start-page: 119
  year: 1973
  ident: e_1_2_6_60_1
  article-title: Effects of 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin upon hemostasis and hematologic function in the rat
  publication-title: Environmental Health Perspectives
  doi: 10.1289/ehp.7305119
  contributor:
    fullname: Weissberg J.B.
SSID ssj0013051
Score 2.2197409
Snippet Summary We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was...
We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 469
SubjectTerms Animals
Biological and medical sciences
Blood Platelets - physiology
cell biology
Cell Differentiation - genetics
Gene Expression Regulation - genetics
Gene Knockdown Techniques
haematopoiesis
Hematologic and hematopoietic diseases
Humans
Medical sciences
Megakaryocytes - cytology
Megakaryocytes - metabolism
megakaryocytopoiesis
Mice
Mice, Knockout
Platelet Count
Polyploidy
Receptors, Aryl Hydrocarbon - deficiency
Receptors, Aryl Hydrocarbon - genetics
Receptors, Aryl Hydrocarbon - physiology
Reverse Transcriptase Polymerase Chain Reaction - methods
RNA, Messenger - genetics
Thrombopoiesis - genetics
thrombopoietin
transcription factors
Transcription Factors - physiology
Tumor Cells, Cultured
Title The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2141.2010.08548.x
https://www.ncbi.nlm.nih.gov/pubmed/21226706
https://search.proquest.com/docview/847594749
https://search.proquest.com/docview/907151449
https://pubmed.ncbi.nlm.nih.gov/PMC3408620
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEA-HDyIcnp6nt36RBx_0oUuzTdv0UUVZBO9BTvAtJGmismtb3F1w_eudSbur9QNEfCttmraTmclvkl9nCNljChweVzowlsUBzyFg1TDuQWiFDSPAE9p5lu-_pH_Jz67iq4b_hP_C1Pkh5gtuaBneX6OBKz1qG7lnaDHOGoaWAPTdRTyJefUQH130njcUwrgpnpeC5-GiTep5t6PWTPWzUiMQmqurXbwHR9-yKl-iXT9dnf4ig9mH1iyVQXcy1l3z-CoH5PdIYoUsN6iWHtZquEp-2OI3WTxv9u3XiAZtpPCAIb2Z5jBlqntdFhScra0g5qf7h_2LAzrGaXPmxGhdCAjaXGOBMTuid_ZaDaCP0kzhKbQqh9NqWN7mzY-kf8jl6cn_437QVHcIDASBItCRCA24Wu5ineZZ0lMstEjSsUIBJssjAKJOOZ45EbpUR1Y541KANzYWGs5G62ShKAv7l9AMMImJuerlEefWCJ2YJMm0Zj7Zf8Y6hM1GUlZ1Eg_5IvgB4UkUnkThSS88-dAhu60hn98IGCeBqDLsEDrTAQkmifssqrDlZCQF5lDkKc8-bpIBsgOoik02aq157p8BIk7DpEPSlj7NG2BC8PaV4vbGJwaPOAao8GaJV5dPf6s8Ouvj0eZXb9wiS_VaO9J8tsnC-H5idwCsjfWuN8Mnm2wyOw
link.rule.ids 230,315,786,790,891,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hIgES4v1YHsUHDnDIKt44iXMsjyqUtoeqlXqzbMduqy5J1N2VWH49M05220CREOIWJX7E45nxN_Z4BuAt16jwhDaRdTyNRIUGq8F5j2InXZwgnjA-ePnuZ-WR2DlOj_t0QHQXposPsd5wI8kI-poEnDakh1IeXLS44L2LlkT4PUZAeROlPyUp_XQwuTxSiNM-fV6OukfIoVvPtS0N1qq7rZ4h2XyX7-I6QPq7X-VVvBsWrO37MF0NtfNTOR8v5mZsf_wSBfI_0eIB3OuBLdvqOPEh3HD1I7i11x_dPwaDDMmwhyk7XVa4auoL09QM9a1r0exn77bKg_dsTivnSo-xLhcQljmhHGNuxr65E32ObTR2ib2wtpku22lzVvV3SZ_A0fbnw49l1Cd4iCzagTIyiYwtalvhU5NXRTbRPHbkp-OkRlhWJYhFvfai8DL2uUmc9tbniHBcKg2-TZ7CRt3U7jmwAmGJTYWeVIkQzkqT2SwrjOEh3n_BR8BXU6naLo6HumL_IPEUEU8R8VQgnvo-gs3BnK8rIszJ0LCMR8BWTKBQKumoRdeuWcyUpDCKIhfFn4sUCO4QrVKRZx3bXLbPERTncTaCfMBQ6wIUE3z4pT47DbHBE0E2Kv5ZFvjlr8eqPuyU9PTiXyu-gdvl4d6u2v2y__Ul3Om23snr5xVszC8W7jVit7nZDDL5E79iNls
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swED8hJqFJ0zb2Ad0H8wMP20OquHEc55GNVYUNNKEh8WbZjg2oJYloK63763d20kI2Jk0Tb1HiOMn57vw7-5c7gF2q0OExpSNjaRqxAgNWjeMexVbYOEE8oV1g-R7z0Sk7PEvPWv6T_xemyQ-xWnDzlhH8tTfwunBdIw8MLcpoy9ASiL77iCcfMJ4MfCC2fzK42VGI07Z6Xoauh4kuq-fOnjpT1aNaTVFqril3cRce_ZNWeRvuhvlq-ATGyy9taCrj_nym--bnb0kg70cUT-FxC2vJXqOHm7Bmy2ewcdRu3D8HjepI8AETcrEocM5U17oqCXpbW2PQT97vjU4-kJmfN5dejDSVgLDNua8wZqfkyp6rMfZRmQU-hdTVZFFPqsui_ZP0BZwOP3__NIra8g6RwShQRDoRsUFfy1yqsyLnA0Vj61k6VigEZUWCSNQpx3InYpfpxCpnXIb4xqZC49nkJayXVWm3geQISkzK1KBIGLNGaG44z7WmIdt_TntAlyMp6yaLh7wV_aDwpBee9MKTQXjyRw92OkO-uhFBDsewMu4BWeqARJv0Gy2qtNV8KoVPosgylv-9SY7QDrGqb7LVaM1N_xQhcRbzHmQdfVo18BnBu1fKy4uQGTxhPkLFN-NBXf75W-XHw5E_evW_N76DjW_7Q_n14PjLa3jYrLt7ys8bWJ9dz-1bBG4zvRMs8hfolTUK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+aryl+hydrocarbon+receptor+%28AHR%29+transcription+factor+regulates+megakaryocytic+polyploidization&rft.jtitle=British+journal+of+haematology&rft.au=LINDSEY%2C+Stephan&rft.au=PAPOUTSAKIS%2C+Eleftherios+T&rft.date=2011-02-01&rft.pub=Blackwell&rft.issn=0007-1048&rft.eissn=1365-2141&rft.volume=152&rft.issue=4&rft.spage=469&rft.epage=484&rft_id=info:doi/10.1111%2Fj.1365-2141.2010.08548.x&rft.externalDBID=n%2Fa&rft.externalDocID=23864950
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1048&client=summon