Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance
Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K s ) and leaf (K l ) hydraulic cond...
Saved in:
Published in | The New phytologist Vol. 191; no. 2; pp. 480 - 495 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
John Wiley & Sons
01.07.2011
Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K s ) and leaf (K l ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K l with drought tolerance, we found a strong, negative correlation between K l and species' shade tolerance. Across species, K s and K l were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off. |
---|---|
AbstractList | Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K(l) with drought tolerance, we found a strong, negative correlation between K(l) and species' shade tolerance. Across species, K(s) and K(l) were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off. Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species’ life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (Ks) and leaf (Kl) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species’ drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of Kl with drought tolerance, we found a strong, negative correlation between Kl and species’ shade tolerance. Across species, Ks and Kl were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off. Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K(l) with drought tolerance, we found a strong, negative correlation between K(l) and species' shade tolerance. Across species, K(s) and K(l) were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off.Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K(l) with drought tolerance, we found a strong, negative correlation between K(l) and species' shade tolerance. Across species, K(s) and K(l) were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off. Summary • Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species’ life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. • We measured the sapwood (Ks) and leaf (Kl) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species’ drought (dry‐season leaf water potential) and shade (juvenile crown exposure) tolerance. • Hydraulic properties varied across species and between life‐history groups (pioneers vs shade‐tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of Kl with drought tolerance, we found a strong, negative correlation between Kl and species’ shade tolerance. Across species, Ks and Kl were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. • Hydraulic properties varied across species, corresponding to the classical trade‐off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade‐off. • Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. • We measured the sapwood (Ks) and leaf (Kl) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. • Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of Kl with drought tolerance, we found a strong, negative correlation between Kl and species' shade tolerance. Across species, Ks and Kl were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. • Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off. times Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. Summary * Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. * We measured the sapwood (Ks) and leaf (Kl) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. * Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of Kl with drought tolerance, we found a strong, negative correlation between Kl and species' shade tolerance. Across species, Ks and Kl were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. * Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off. |
Author | Sack, Lawren Bongers, Frans Paz, Horacio Poorter, Lourens Markesteijn, Lars |
Author_xml | – sequence: 1 givenname: Lars surname: Markesteijn fullname: Markesteijn, Lars – sequence: 2 givenname: Lourens surname: Poorter fullname: Poorter, Lourens – sequence: 3 givenname: Frans surname: Bongers fullname: Bongers, Frans – sequence: 4 givenname: Horacio surname: Paz fullname: Paz, Horacio – sequence: 5 givenname: Lawren surname: Sack fullname: Sack, Lawren |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21477008$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkl1vFCEUhompsdvqT9BM4kW92ZWvBaaJJqaprkmjXmjiHWEYpsuEhSnMpN1_X9hda9ILLRd8Pu-Bc3hPwJEP3gBQIbhAub3vF4iyei4Q4QsMEVpAwqFY3D0Ds4eDIzCDEIs5o-z3MThJqYcQ1kuGX4BjjCjnEIoZmFbbNqrJWZ0q5dvK2c5Ua5vGELdV6KoxhsFq5ao2r7sQTRrznjFVGoy2Jp1XOoTYWq9GG3xRHA7OsiJM1-txFzatVWuqMTgTldfmJXjeKZfMq8N4Cn59vvx5sZpfff_y9eLT1VwziMScMyI6QWqkMBGsRqbrdMO0MaIRBGOqRN0qStqG123HBORoSXltdMsFREQocgrO93Fv1bXx1udOehW1TTIoK51toopbeTtF6V0ZhqlJkkKGMM3is714iOFmyonLjU3aOKe8CVOSQtCCLXkm3_2TRBRChDnj5P8oxHjJaI6c0beP0D5M0ed6SSQQRzA_U2TqzYGamo1p5RDtpuT054szIPaAjiGlaLoHBEFZ3CR7WUwji2lkcZPcuUneZenHR1Jtx91Hj1FZ95QAHw71t85sn3yx_PZjVWZZ_3qv74sh_-YGixsEJveznu1o |
CitedBy_id | crossref_primary_10_1007_s11104_019_03947_9 crossref_primary_10_1111_nph_17464 crossref_primary_10_1111_1365_2745_13908 crossref_primary_10_1093_aob_mcac108 crossref_primary_10_1016_j_dendro_2016_11_001 crossref_primary_10_3389_ffgc_2020_00063 crossref_primary_10_5194_bg_17_2621_2020 crossref_primary_10_1111_ele_12781 crossref_primary_10_1007_s00468_021_02235_3 crossref_primary_10_3389_fpls_2021_674527 crossref_primary_10_1002_ece3_3547 crossref_primary_10_1016_j_gloplacha_2024_104669 crossref_primary_10_21829_abm129_2022_1917 crossref_primary_10_1016_j_gecco_2023_e02453 crossref_primary_10_1007_s10342_018_1156_6 crossref_primary_10_1093_jpe_rty017 crossref_primary_10_1111_btp_12324 crossref_primary_10_1007_s11258_012_0133_2 crossref_primary_10_1007_s10661_024_13393_5 crossref_primary_10_1111_j_1365_2745_2012_01966_x crossref_primary_10_1111_pce_12024 crossref_primary_10_1111_ecog_07620 crossref_primary_10_1016_j_scitotenv_2022_159334 crossref_primary_10_1007_s11258_014_0419_7 crossref_primary_10_1007_s10457_020_00522_5 crossref_primary_10_1016_j_foreco_2022_120098 crossref_primary_10_1016_j_ecolind_2022_109021 crossref_primary_10_1371_journal_pone_0109211 crossref_primary_10_1111_1365_2435_12576 crossref_primary_10_1016_j_dendro_2021_125840 crossref_primary_10_5194_gmd_9_4227_2016 crossref_primary_10_1111_1365_2435_12452 crossref_primary_10_1111_btp_13404 crossref_primary_10_1016_j_flora_2018_08_009 crossref_primary_10_1002_ece3_7000 crossref_primary_10_1007_s00468_018_1796_7 crossref_primary_10_1016_j_foreco_2018_04_048 crossref_primary_10_1111_aec_12455 crossref_primary_10_1111_pce_13687 crossref_primary_10_1071_FP14201 crossref_primary_10_3389_ffgc_2023_1204596 crossref_primary_10_1038_s41598_017_11343_5 crossref_primary_10_1111_nph_18418 crossref_primary_10_1111_nph_13646 crossref_primary_10_1139_cjb_2019_0010 crossref_primary_10_1111_1365_2435_12462 crossref_primary_10_1111_1365_2664_13505 crossref_primary_10_5194_bg_9_2203_2012 crossref_primary_10_18359_rfcb_3901 crossref_primary_10_1111_nph_12548 crossref_primary_10_1093_treephys_tpz016 crossref_primary_10_1111_1365_2745_13354 crossref_primary_10_1093_treephys_tpu001 crossref_primary_10_1093_aob_mcs092 crossref_primary_10_1002_ece3_10406 crossref_primary_10_1073_pnas_1319342111 crossref_primary_10_1016_j_foreco_2014_06_039 crossref_primary_10_1007_s10342_019_01236_9 crossref_primary_10_1002_ajb2_16146 crossref_primary_10_1111_1365_2745_13022 crossref_primary_10_1111_j_1365_3040_2012_02582_x crossref_primary_10_1111_j_1469_8137_2012_04273_x crossref_primary_10_17129_botsci_2878 crossref_primary_10_1111_geb_13350 crossref_primary_10_1111_ele_13168 crossref_primary_10_1111_gcb_13863 crossref_primary_10_1111_btp_12646 crossref_primary_10_1016_j_ppees_2016_09_007 crossref_primary_10_1111_1365_2435_12085 crossref_primary_10_1007_s11258_020_01106_0 crossref_primary_10_1016_j_flora_2018_02_010 crossref_primary_10_1111_ecog_05803 crossref_primary_10_1111_nph_15071 crossref_primary_10_1002_ece3_6744 crossref_primary_10_1111_1365_2745_12165 crossref_primary_10_1093_treephys_tpy146 crossref_primary_10_3389_ffgc_2023_1112560 crossref_primary_10_3389_fpls_2019_01718 crossref_primary_10_1007_s11104_025_07217_9 crossref_primary_10_7747_JFES_2016_32_3_291 crossref_primary_10_1016_j_fecs_2024_100190 crossref_primary_10_1111_1365_2664_12874 crossref_primary_10_1371_journal_pone_0073855 crossref_primary_10_1016_j_agwat_2016_10_010 crossref_primary_10_1111_btp_12992 crossref_primary_10_1016_j_envexpbot_2016_12_006 crossref_primary_10_1002_eap_2297 crossref_primary_10_1007_s40725_023_00199_w crossref_primary_10_1016_j_ecolind_2022_109469 crossref_primary_10_1002_ecy_2537 crossref_primary_10_3389_fpls_2018_01761 crossref_primary_10_1007_s40626_021_00201_5 crossref_primary_10_1111_nph_16151 crossref_primary_10_1016_j_ppees_2021_125630 crossref_primary_10_1016_j_rse_2020_111828 crossref_primary_10_1007_s00468_012_0829_x crossref_primary_10_1007_s40626_022_00244_2 crossref_primary_10_3389_ffgc_2020_596256 crossref_primary_10_3390_f11080894 crossref_primary_10_3389_feart_2019_00083 crossref_primary_10_1002_ecs2_3824 crossref_primary_10_3389_ffgc_2022_930099 crossref_primary_10_3390_f13060909 crossref_primary_10_1111_ecog_01904 crossref_primary_10_1002_ajb2_16037 crossref_primary_10_1111_ele_70014 crossref_primary_10_1093_treephys_tpx033 crossref_primary_10_1007_s42773_024_00355_w crossref_primary_10_1093_jpe_rtz051 crossref_primary_10_1002_ecy_2666 crossref_primary_10_1111_jbi_13198 crossref_primary_10_3390_ecologies2030015 crossref_primary_10_3389_fpls_2020_00212 crossref_primary_10_1111_1365_2745_13031 crossref_primary_10_1111_nph_16941 crossref_primary_10_1016_j_agrformet_2018_11_037 crossref_primary_10_1111_1365_2435_12158 crossref_primary_10_1007_s00442_011_2196_5 crossref_primary_10_1111_1365_2435_12036 crossref_primary_10_1093_treephys_tps107 crossref_primary_10_1111_nph_15684 crossref_primary_10_3390_plants11081013 crossref_primary_10_7717_peerj_13458 crossref_primary_10_1007_s00468_020_02021_7 crossref_primary_10_1002_ece3_11095 crossref_primary_10_1007_s10021_016_0029_4 crossref_primary_10_3389_fpls_2023_1127292 crossref_primary_10_1890_12_1629_1 crossref_primary_10_1111_plb_12544 crossref_primary_10_1098_rsos_150589 crossref_primary_10_3389_fpls_2023_1260707 crossref_primary_10_1111_geb_13027 crossref_primary_10_3390_f14030522 crossref_primary_10_1038_s41598_019_55256_x crossref_primary_10_1002_ecy_2766 crossref_primary_10_1007_s00468_012_0818_0 crossref_primary_10_1890_13_2377_1 crossref_primary_10_4336_2021_pfb_41e202002129 crossref_primary_10_1007_s11676_014_0426_5 crossref_primary_10_1016_j_agrformet_2023_109392 crossref_primary_10_1093_treephys_tpx135 crossref_primary_10_1111_geb_12056 crossref_primary_10_3389_fpls_2015_00511 crossref_primary_10_1111_gcb_13731 crossref_primary_10_1002_2014GB004934 crossref_primary_10_1007_s11056_021_09862_1 crossref_primary_10_1002_ajb2_16407 crossref_primary_10_1088_1748_9326_11_11_115003 crossref_primary_10_1016_j_foreco_2021_119101 crossref_primary_10_1111_j_1365_2664_2012_02164_x crossref_primary_10_1111_pce_12510 crossref_primary_10_1016_j_foreco_2022_120129 crossref_primary_10_1111_pce_12511 crossref_primary_10_1002_eco_1943 crossref_primary_10_3390_f10050443 crossref_primary_10_1111_geb_12288 crossref_primary_10_3389_ffgc_2023_1028359 crossref_primary_10_1007_s00468_022_02382_1 crossref_primary_10_1111_1365_2435_14235 crossref_primary_10_1111_nph_13007 crossref_primary_10_1016_j_dendro_2018_09_004 crossref_primary_10_1111_gcb_15352 crossref_primary_10_1093_aobpla_plz023 crossref_primary_10_1007_s00468_019_01836_3 crossref_primary_10_1016_j_agrformet_2013_12_010 crossref_primary_10_1111_btp_12380 crossref_primary_10_3390_f10050428 crossref_primary_10_1098_rspb_2023_1732 crossref_primary_10_1002_eco_2129 crossref_primary_10_1093_treephys_tpac061 crossref_primary_10_1111_nph_16502 crossref_primary_10_1071_FP12316 crossref_primary_10_1002_ecs2_1712 crossref_primary_10_1111_1365_2435_13203 crossref_primary_10_24188_recia_v8_n1_2016_232 crossref_primary_10_3389_fpls_2023_1276424 crossref_primary_10_1002_ecy_2954 crossref_primary_10_1111_pce_12846 crossref_primary_10_3390_f6062047 crossref_primary_10_1890_ES13_00111_1 crossref_primary_10_1111_jvs_12781 crossref_primary_10_1088_1748_9326_aa5968 crossref_primary_10_1080_17550874_2022_2143731 crossref_primary_10_1890_15_1815_1 crossref_primary_10_1111_1365_2745_12332 crossref_primary_10_1080_11263504_2020_1762782 crossref_primary_10_1016_j_flora_2014_02_005 crossref_primary_10_1111_j_1365_2745_2011_01883_x crossref_primary_10_1111_1365_2435_12246 crossref_primary_10_1007_s00468_022_02345_6 crossref_primary_10_3390_d12100397 crossref_primary_10_1371_journal_pone_0143955 crossref_primary_10_1111_pce_15449 crossref_primary_10_1111_pce_12862 crossref_primary_10_1016_j_agwat_2023_108613 crossref_primary_10_3390_plants12142607 crossref_primary_10_1093_treephys_tpac017 crossref_primary_10_1007_s00442_013_2650_7 crossref_primary_10_1111_j_1461_0248_2012_01751_x crossref_primary_10_1111_ele_13659 crossref_primary_10_1186_s40663_018_0158_7 crossref_primary_10_1111_1365_2435_13906 crossref_primary_10_1093_aob_mcs289 crossref_primary_10_1371_journal_pone_0193268 crossref_primary_10_1002_2013JG002509 crossref_primary_10_1371_journal_pone_0047882 crossref_primary_10_1111_nph_15909 crossref_primary_10_1002_ajb2_70011 crossref_primary_10_1093_treephys_tpv124 crossref_primary_10_1007_s00442_015_3329_z crossref_primary_10_1007_s12038_011_9159_1 crossref_primary_10_1093_aobpla_plab066 crossref_primary_10_6090_jarq_51_363 crossref_primary_10_1080_17550874_2023_2286233 crossref_primary_10_1111_nph_19132 crossref_primary_10_3389_frwa_2022_950346 crossref_primary_10_1016_j_gecco_2018_e00408 crossref_primary_10_1111_nph_14009 crossref_primary_10_1134_S2079086416010084 |
Cites_doi | 10.1093/treephys/24.8.891 10.1111/j.1365-3040.1993.tb00898.x 10.1104/pp.104.058404 10.1104/pp.102.018937 10.1111/j.1469-8137.2010.03212.x 10.1007/s00442-002-0873-0 10.1046/j.0016-8025.2001.00799.x 10.1086/503056 10.1046/j.1365-3040.2003.00975.x 10.1890/04-0598 10.1111/j.1744-7429.2007.00316.x 10.1146/annurev.ecolsys.33.010802.150452 10.1104/pp.88.3.574 10.1111/j.0022-0477.2004.00876.x 10.2307/1937467 10.1007/BF00324232 10.1086/512045 10.1111/j.1469-8137.2009.03092.x 10.1007/s004420050450 10.1007/BF00044629 10.1046/j.1365-3040.2000.00647.x 10.1017/S0266467410000271 10.2307/2656722 10.1111/j.1469-8137.2005.01432.x 10.3732/ajb.0900178 10.1007/978-3-662-22627-8 10.1111/j.1365-2435.2008.01483.x 10.3732/ajb.89.5.820 10.1002/j.1537-2197.1989.tb11360.x 10.1111/j.1469-8137.1994.tb02964.x 10.1007/BF00318025 10.1890/0012-9615(2000)070[0171:IORCIF]2.0.CO;2 10.1007/s00442-006-0368-5 10.1046/j.1365-2435.2000.00414.x 10.1111/j.1399-3054.2006.00718.x 10.1111/j.1461-0248.2009.01285.x 10.1890/05-1879 10.1078/1433-8319-00049 10.1007/978-3-662-04931-0 10.1071/BT96018 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2 10.1890/08-1482.1 10.1007/s00468-004-0393-0 10.1890/0012-9658(1999)080[2662:EFATLS]2.0.CO;2 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2 10.1034/j.1600-0706.2000.900107.x 10.1093/jxb/erf078 10.1111/j.1469-185X.1977.tb01347.x 10.1016/S0065-2504(01)32012-3 10.1111/j.1365-2435.2007.01320.x 10.1007/s00442-004-1624-1 10.1046/j.1466-822X.2003.00026.x 10.1111/j.1461-0248.2010.01517.x 10.1007/s004420100628 10.1093/aob/mcn103 10.1111/j.1469-8137.2006.01713.x 10.1007/s11284-008-0482-4 10.1890/02-0538 10.2307/1940195 10.1007/s004680000071 10.1111/j.1365-2745.2008.01466.x 10.1111/j.1365-3040.1988.tb01774.x 10.1890/03-4022 10.1111/j.1365-3040.2010.02231.x 10.1038/nature05747 10.1111/j.1469-8137.1991.tb00035.x 10.1017/S0266467498000583 10.1111/j.1744-7429.2003.tb00586.x 10.2307/1940675 10.1111/j.1469-8137.2007.02137.x 10.1139/b00-095 10.1079/9780851997346.0041 10.1046/j.1469-8137.2000.00763.x 10.1890/0012-9658(2006)87[1281:LHTITT]2.0.CO;2 10.1023/A:1024423820136 10.1078/1433-8319-00017 10.1093/oxfordjournals.aob.a087848 10.1126/science.1057175 10.1890/02-0038 10.1046/j.1469-8137.1999.00425.x 10.1111/j.1365-3040.2006.01539.x 10.1016/S0169-5347(98)01532-8 10.1111/j.1469-8137.2008.02715.x 10.1890/06-0984 10.1111/j.1365-2435.2007.01374.x 10.1146/annurev.es.18.110187.002243 10.1163/22941932-90001369 10.1086/283244 10.1111/j.1469-8137.2006.01712.x 10.1111/j.0030-1299.2004.13184.x 10.1111/j.1744-7429.2007.00380.x 10.1007/s11258-009-9668-2 10.1017/S0266467400005137 10.1111/j.1469-8137.2007.02264.x 10.1525/9780520320567 10.1086/285524 10.1007/s00442-003-1290-8 10.1046/j.1365-3040.2002.00919.x 10.1007/s00468-004-0392-1 10.1007/BF00031680 |
ContentType | Journal Article |
Copyright | Copyright © 2011 New Phytologist Trust 2011 The Authors. New Phytologist © 2011 New Phytologist Trust 2011 The Authors. New Phytologist © 2011 New Phytologist Trust. Wageningen University & Research |
Copyright_xml | – notice: Copyright © 2011 New Phytologist Trust – notice: 2011 The Authors. New Phytologist © 2011 New Phytologist Trust – notice: 2011 The Authors. New Phytologist © 2011 New Phytologist Trust. – notice: Wageningen University & Research |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7S9 L.6 7X8 QVL |
DOI | 10.1111/j.1469-8137.2011.03708.x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic NARCIS:Publications |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 495 |
ExternalDocumentID | oai_library_wur_nl_wurpubs_406124 4172601151 21477008 10_1111_j_1469_8137_2011_03708_x NPH3708 20869182 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Bolivia |
GeographicLocations_xml | – name: Bolivia |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABLJU ABPLY ABPVW ABSQW ABTLG ABVKB ABXSQ ACAHQ ACCZN ACFBH ACGFS ACHIC ACNCT ACPOU ACSCC ACSTJ ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFWVQ AFZJQ AGUYK AGXDD AGYGG AHBTC AHXOZ AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI D-E D-F DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM E3Z EBS ECGQY EJD F00 F01 F04 F5P FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGLYW HTVGU HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 YNT YQT ZCG ZZTAW ~02 ~IA ~KM ~WT 24P AAHHS AASVR ABEFU ABEML ACCFJ ACQPF AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ DOOOF ESX HGD HQ2 IPNFZ JSODD LPU MVM NEJ RCA WHG WRC XOL YXE AAYXX ABGDZ ADXHL AGHNM CITATION CGR CUY CVF ECM EIF NPM 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7S9 L.6 7X8 - 02 08R 0R 31 3N 8RP AAPBV ABFLS ABHUG ABPTK ABUFD ABWRO ACXME ADACO ADAWD ADDAD ADZLD AESBF AFMIJ AGJLS AS CWIXF DWIUU F20 GA HZ IA KM LW7 NF P4A QVL UNR WT X XHC Y3 ZY4 |
ID | FETCH-LOGICAL-c6018-7638f8391a238691effcb6cee8b83224a89da43db79df680715479ecd780138a3 |
IEDL.DBID | DR2 |
ISSN | 0028-646X 1469-8137 |
IngestDate | Fri Feb 05 18:08:26 EST 2021 Fri Jul 11 05:47:02 EDT 2025 Fri Jul 11 11:53:26 EDT 2025 Fri Jul 11 07:27:37 EDT 2025 Fri Jul 25 10:41:37 EDT 2025 Mon Jul 21 05:35:45 EDT 2025 Tue Jul 01 03:09:07 EDT 2025 Thu Apr 24 22:52:22 EDT 2025 Wed Jan 22 16:26:40 EST 2025 Thu Jul 03 22:53:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2011 The Authors. New Phytologist © 2011 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6018-7638f8391a238691effcb6cee8b83224a89da43db79df680715479ecd780138a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 21477008 |
PQID | 1817100618 |
PQPubID | 2026848 |
PageCount | 16 |
ParticipantIDs | wageningen_narcis_oai_library_wur_nl_wurpubs_406124 proquest_miscellaneous_884124357 proquest_miscellaneous_1400127673 proquest_miscellaneous_1022564412 proquest_journals_1817100618 pubmed_primary_21477008 crossref_primary_10_1111_j_1469_8137_2011_03708_x crossref_citationtrail_10_1111_j_1469_8137_2011_03708_x wiley_primary_10_1111_j_1469_8137_2011_03708_x_NPH3708 jstor_primary_20869182 |
ProviderPackageCode | CITATION AAYXX QVL |
PublicationCentury | 2000 |
PublicationDate | July 2011 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: July 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2011 |
Publisher | John Wiley & Sons Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | 2010; 97 2010; 13 2000; 87 2004; 24 1997; 45 1975 2010; 185 1973 2010; 186 2000; 90 2006; 170 2008; 102 1988; 75 1989; 46 2007; 77 1978 1991; 119 2009; 12 2010; 26 2009; 97 2000; 14 2000; 15 2002; 89 2007; 176 2009; 90 2007; 175 1988; 88 2006; 29 1983 2008; 22 1982 2003; 168 2006; 167 1998; 14 1994; 75 1988 2007; 169 1989; 64 2007; 447 2002; 131 2010; 207 2009; 181 2002; 130 2004; 140 2003; 35 1988; 11 2005; 86 2000; 70 1991 2005; 19 2000; 78 2000; 104 2003; 26 1994; 15 1998; 1 1977; 111 2008; 40 2007; 88 1994; 98 2001; 32 2007; 39 1989; 83 2002; 53 2006; 76 2005; 139 1998; 114 1999; 80 2003; 12 2004; 74 1989; 76 2000 2001; 291 1989; 70 1999; 14 2006; 127 2007; 21 2003; 84 2009; 23 2004; 85 2009; 24 2000; 23 2010 2002; 33 2009 1999; 143 2004 2011; 34 2003 2002 2003; 136 2004; 107 2001; 126 1998; 23 1993; 142 1987; 18 1991; 7 2003; 132 2002; 25 2004; 92 1994; 126 1993; 16 2000; 148 2006; 87 2005; 167 2001; 4 1993; 96 1977; 52 2006; 148 e_1_2_6_114_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_110_1 e_1_2_6_19_1 Myers BA (e_1_2_6_65_1) 1998; 23 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_99_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_41_1 e_1_2_6_83_1 Navarro G (e_1_2_6_67_1) 2002 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_113_1 Tilman D (e_1_2_6_98_1) 1988 e_1_2_6_35_1 Hutchinson G (e_1_2_6_48_1) 1978 e_1_2_6_12_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 Maharjan SK (e_1_2_6_60_1) e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_101_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_112_1 Tilman D (e_1_2_6_97_1) 1982 Jardim A (e_1_2_6_52_1) 2003 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 e_1_2_6_100_1 e_1_2_6_7_1 Goldstein G (e_1_2_6_39_1) 1989; 46 Lebrija‐Trejos E (e_1_2_6_57_1) 2009 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_115_1 Ellenberg H (e_1_2_6_31_1) 1991 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_111_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_29_1 e_1_2_6_44_1 |
References_xml | – volume: 87 start-page: 1281 year: 2006 end-page: 1288 article-title: Life history trade‐offs in tropical trees and lianas publication-title: Ecology – volume: 170 start-page: 807 year: 2006 end-page: 818 article-title: Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms publication-title: New Phytologist – volume: 181 start-page: 890 year: 2009 end-page: 900 article-title: Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests publication-title: New Phytologist – volume: 104 start-page: 13 year: 2000 end-page: 23 article-title: Hydraulic constraints on plant gas exchange publication-title: Agricultural and Forest Meteorology – volume: 75 start-page: 81 year: 1988 end-page: 86 article-title: On the definition of ecological species groups in tropical rain forests publication-title: Vegetatio – volume: 18 start-page: 431 year: 1987 end-page: 451 article-title: Tropical rainforest gaps and tree species diversity publication-title: Annual Review of Ecology and Systematics – year: 1975 – volume: 84 start-page: 3174 year: 2003 end-page: 3185 article-title: Gap‐dependent recruitment, realized vital rates, and size distributions of tropical trees publication-title: Ecology – volume: 15 start-page: 335 year: 1994 end-page: 360 article-title: Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? publication-title: IAWA Journal – volume: 21 start-page: 1044 year: 2007 end-page: 1054 article-title: Physical defense traits enhance seedling survival of Neotropical tree species publication-title: Functional Ecology – volume: 167 start-page: 403 year: 2005 end-page: 413 article-title: Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees publication-title: New Phytologist – volume: 16 start-page: 511 year: 1993 end-page: 519 article-title: Different vulnerabilities of L. to freeze‐ and summer drought‐induced xylem embolism: an ecological interpretation publication-title: Plant, Cell & Environment – volume: 53 start-page: 2239 year: 2002 end-page: 2247 article-title: Drought until death do us part: a case study of the desiccation‐tolerance of a tropical moist forest seedling‐tree, (Hemsl.) Fritsch publication-title: Journal of Experimental Botany – volume: 167 start-page: 758 year: 2006 end-page: 765 article-title: Leaf traits determine the growth–survival trade‐off across rain forest tree species publication-title: The American Naturalist – volume: 12 start-page: 191 year: 2003 end-page: 205 article-title: Global synthesis of leaf area index observations: implications for ecological and remote sensing studies publication-title: Global Ecology and Biogeography – volume: 143 start-page: 143 year: 1999 end-page: 154 article-title: Research review: low‐light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad‐leaved evergreen species differ? publication-title: New Phytologist – volume: 98 start-page: 419 year: 1994 end-page: 428 article-title: Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees publication-title: Oecologia – volume: 25 start-page: 1435 year: 2002 end-page: 1444 article-title: Hydraulic and photosynthetic co‐ordination in seasonally dry tropical forest trees publication-title: Plant, Cell & Environment – volume: 13 start-page: 1338 year: 2010 end-page: 1347 article-title: Decoupled leaf and stem economics in rain forest trees publication-title: Ecology Letters – volume: 19 start-page: 312 year: 2005 end-page: 321 article-title: Drought effects on seedling survival in a tropical moist forest publication-title: Trees – Structure and Function – volume: 25 start-page: 251 year: 2002 end-page: 263 article-title: Water deficits and hydraulic limits to leaf water supply publication-title: Plant, Cell & Environment – volume: 140 start-page: 543 year: 2004 end-page: 550 article-title: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in panamanian forest canopy trees publication-title: Oecologia – volume: 97 start-page: 207 year: 2010 end-page: 215 article-title: Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity publication-title: American Journal of Botany – volume: 126 start-page: 457 year: 2001 end-page: 461 article-title: Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure publication-title: Oecologia – volume: 85 start-page: 2184 year: 2004 end-page: 2199 article-title: Adaptive variation in the vulnerability of woody plants to xylem cavitation publication-title: Ecology – volume: 26 start-page: 497 year: 2010 end-page: 508 article-title: Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest publication-title: Journal of Tropical Ecology – volume: 23 start-page: 329 year: 1998 end-page: 339 article-title: Does irrigation affect leaf phenology in deciduous and evergreen trees of the savannas of northern Australia? publication-title: Australian Journal of Botany – volume: 52 start-page: 107 year: 1977 end-page: 145 article-title: The maintenance of species‐richness in plant communities: the importance of the regeneration niche publication-title: Biological Reviews – volume: 74 start-page: 25 year: 2004 end-page: 44 article-title: Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance publication-title: Ecological Monographs – volume: 127 start-page: 353 year: 2006 end-page: 359 article-title: Ecological relevance of minimum seasonal water potentials publication-title: Physiologia Plantarum – volume: 14 start-page: 11 year: 1999 end-page: 16 article-title: Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics publication-title: Trends in Ecology & Evolution – volume: 168 start-page: 139 year: 2003 end-page: 163 article-title: The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain publication-title: Plant Ecology – volume: 185 start-page: 481 year: 2010 end-page: 492 article-title: The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species publication-title: New Phytologist – volume: 19 start-page: 305 year: 2005 end-page: 311 article-title: Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north‐eastern Australia publication-title: Trees – Structure and Function – year: 1973 – volume: 291 start-page: 1059 year: 2001 end-page: 1062 article-title: Hydrogel control of xylem hydraulic resistance in plants publication-title: Science – year: 2010 – volume: 102 start-page: 367 year: 2008 end-page: 375 article-title: The relationships of wood‐, gas‐ and water fractions of tree stems to performance and life history variation in tropical trees publication-title: Annals of Botany – volume: 39 start-page: 610 year: 2007 end-page: 619 article-title: Species dynamics during early secondary forest succession: recruitment, mortality and species turnover publication-title: Biotropica – volume: 12 start-page: 351 year: 2009 end-page: 366 article-title: Towards a worldwide wood economics spectrum publication-title: Ecology Letters – volume: 80 start-page: 2662 year: 1999 article-title: Edaphic factors and the landscape‐scale distributions of tropical rain forest trees publication-title: Ecology – volume: 75 start-page: 1437 year: 1994 end-page: 1449 article-title: Soil and stem water storage determine phenology and distribution of tropical dry forest trees publication-title: Ecology – volume: 46 start-page: 488s year: 1989 end-page: 453s article-title: Gas exchange and water relations of evergreen and deciduous tropical savanna trees publication-title: Annals of Forest Science – volume: 29 start-page: 1618 year: 2006 end-page: 1628 article-title: Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem publication-title: Plant, Cell & Environment – volume: 7 start-page: 85 year: 1991 end-page: 97 article-title: Acclimation of seedlings of three mexican tropical rain forest tree species to a change in light availability publication-title: Journal of Tropical Ecology – volume: 11 start-page: 35 year: 1988 end-page: 40 article-title: A method for measuring hydraulic conductivity and embolism in xylem publication-title: Plant, Cell & Environment – volume: 32 start-page: 113 year: 2001 end-page: 197 article-title: Ecophysiology of trees of seasonally dry tropics: comparisons among phenologies publication-title: Advances in Ecological Research – volume: 111 start-page: 1169 year: 1977 end-page: 1194 article-title: Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory publication-title: The American Naturalist – year: 2002 – volume: 148 start-page: 258 year: 2006 end-page: 269 article-title: Short dry spells in the wet season increase mortality of tropical pioneer seedlings publication-title: Oecologia – volume: 90 start-page: 2755 year: 2009 end-page: 2765 article-title: Seasonal and spatial variation in water availability drive habitat associations in a tropical forest publication-title: Ecology – volume: 24 start-page: 891 year: 2004 end-page: 899 article-title: Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant publication-title: Tree Physiology – volume: 107 start-page: 110 year: 2004 end-page: 127 article-title: Responses of temperate woody seedlings to shade and drought: do trade‐offs limit potential niche differentiation? publication-title: Oikos – volume: 45 start-page: 211 year: 1997 end-page: 224 article-title: Seasonal patterns in soil moisture, vapour pressure deficit, tree canopy cover and predawn water potential in a northern Australian savanna publication-title: Australian Journal of Botany – year: 1978 – volume: 130 start-page: 1 year: 2002 end-page: 14 article-title: Plant diversity in tropical forests: A review of mechanisms of species coexistence publication-title: Oecologia – volume: 76 start-page: 645 year: 1989 end-page: 656 article-title: Techniques for measuring vessel lengths and diameters in stems of woody plants publication-title: American Journal of Botany – volume: 90 start-page: 67 year: 2000 end-page: 78 article-title: Combined effects of shade and drought on tulip poplar seedlings: trade‐off in tolerance or facilitation? publication-title: Oikos – volume: 14 start-page: 803 year: 1998 end-page: 827 article-title: Diversity, composition and structure of a tropical semideciduous forest in the Chiquitania region of Santa Cruz, Bolivia publication-title: Journal of Tropical Ecology – volume: 97 start-page: 311 year: 2009 end-page: 325 article-title: Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought‐ and shade‐tolerance publication-title: Journal of Ecology – volume: 24 start-page: 65 year: 2009 end-page: 73 article-title: Inter‐species variation of photosynthetic and xylem hydraulic traits in the deciduous and evergreen Euphorbiaceae tree species from a seasonally tropical forest in south‐western China publication-title: Ecological Research – year: 2009 – volume: 88 start-page: 574 year: 1988 end-page: 580 article-title: Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? 1 Answers from a model publication-title: Plant Physiology – volume: 132 start-page: 1439 year: 2003 end-page: 1447 article-title: Desiccation tolerance of five tropical seedlings in panama. relationship to a field assessment of drought performance publication-title: Plant Physiology – volume: 34 start-page: 137 year: 2011 end-page: 148 article-title: Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits publication-title: Plant, Cell & Environment – volume: 119 start-page: 345 year: 1991 end-page: 360 article-title: Tansley Review No. 34. The hydraulic architecture of trees and other woody plants publication-title: New Phytologist – volume: 1 start-page: 3 year: 1998 end-page: 31 article-title: A reassessment of the strategies of plants which cope with shortages of resources publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 23 start-page: 93 year: 2009 end-page: 102 article-title: Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution publication-title: Functional Ecology – volume: 40 start-page: 321 year: 2008 end-page: 331 article-title: Seedling traits determine drought tolerance of tropical tree species publication-title: Biotropica – volume: 23 start-page: 1381 year: 2000 end-page: 1388 article-title: Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from new Caledonian and Tasmanian rainforests publication-title: Plant, Cell & Environment – volume: 176 start-page: 764 year: 2007 end-page: 774 article-title: Global meta‐analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny publication-title: New Phytologist – article-title: Plant functional traits and the distribution of West African rain forest trees along the rainfall gradient publication-title: Biotropica – year: 1982 – volume: 64 start-page: 325 year: 1989 end-page: 336 article-title: Different aspects of cavitation resistance in , a drought‐avoiding Mediterranean tree publication-title: Annals of Botany – volume: 87 start-page: 1733 year: 2006 end-page: 1743 article-title: Leaf traits are good predictors of plant performance across 53 rain forest species publication-title: Ecology – volume: 70 start-page: 536 year: 1989 end-page: 538 article-title: Canopy gaps and the two major groups of forest trees publication-title: Ecology – volume: 35 start-page: 318 year: 2003 end-page: 332 article-title: Root/shoot allocation and root architecture in seedlings: variation among forest sites, microhabitats, and ecological groups publication-title: Biotropica – volume: 186 start-page: 708 year: 2010 end-page: 721 article-title: Tissue‐level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species publication-title: New Phytologist – volume: 88 start-page: 1000 year: 2007 end-page: 1011 article-title: Carbohydrate storage and light requirements of tropical moist and dry forest tree species publication-title: Ecology – volume: 87 start-page: 1287 year: 2000 end-page: 1299 article-title: Vulnerability to xylem cavitation and the distribution of sonoran desert vegetation 1 publication-title: American Journal of Botany – year: 1983 – volume: 26 start-page: 443 year: 2003 end-page: 450 article-title: Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees publication-title: Plant, Cell & Environment – volume: 148 start-page: 195 year: 2000 end-page: 218 article-title: Theoretical considerations of optimal conduit length for water transport in vascular plants publication-title: New Phytologist – volume: 136 start-page: 383 year: 2003 end-page: 393 article-title: Comparative drought‐resistance of seedlings of 28 species of co‐occurring tropical woody plants publication-title: Oecologia – volume: 126 start-page: 695 year: 1994 end-page: 705 article-title: Conduit diameter and drought‐induced embolism in Greene (Labiatae) publication-title: New Phytologist – volume: 76 start-page: 521 year: 2006 end-page: 547 article-title: Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs publication-title: Ecological Monographs – volume: 169 start-page: 433 year: 2007 end-page: 442 article-title: Are species adapted to their regeneration niche, adult niche, or both? publication-title: American Naturalist – volume: 86 start-page: 3063 year: 2005 end-page: 3077 article-title: Edaphic specialization in tropical trees: physiological correlates and responses to reciprocal transplantation publication-title: Ecology – volume: 70 start-page: 171 year: 2000 end-page: 207 article-title: Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments publication-title: Ecological Monographs – volume: 207 start-page: 233 year: 2010 end-page: 244 article-title: Morphological traits and water use strategies in seedlings of Mediterranean coexisting species publication-title: Plant Ecology – year: 2003 – year: 2000 – volume: 14 start-page: 244 year: 2000 end-page: 251 article-title: On the measurement of growth with applications to the modelling and analysis of plant growth publication-title: Functional Ecology – volume: 142 start-page: 78 year: 1993 end-page: 92 article-title: Evolution of suites of traits in response to environmental stress publication-title: American Naturalist – volume: 447 start-page: 80 year: 2007 end-page: 82 article-title: Drought sensitivity shapes species distribution patterns in tropical forests publication-title: Nature – volume: 96 start-page: 19 year: 1993 end-page: 23 article-title: Trade‐off between water transport efficiency and leaf life‐span in a tropical dry forest publication-title: Oecologia – volume: 77 start-page: 99 year: 2007 end-page: 115 article-title: Cavitation resistance among 26 chaparral species of southern california publication-title: Ecological Monographs – volume: 78 start-page: 1336 year: 2000 end-page: 1347 article-title: In situ field measurements of photosynthetic rates of tropical tree species: a test of the functional group hypothesis publication-title: Canadian Journal of Botany – volume: 131 start-page: 175 year: 2002 end-page: 185 article-title: The combined impacts of deep shade and drought on the growth and biomass allocation of shade‐tolerant woody seedlings publication-title: Oecologia – start-page: 41 year: 2004 end-page: 52 – volume: 170 start-page: 819 year: 2006 end-page: 834 article-title: Interactions of drought and shade effects on seedlings of four species: physiological and structural leaf responses publication-title: New Phytologist – volume: 92 start-page: 214 year: 2004 end-page: 229 article-title: Tree species distributions and local habitat variation in the amazon: large forest plot in eastern ecuador publication-title: Journal of Ecology – volume: 33 start-page: 125 year: 2002 end-page: 159 article-title: Plant ecological strategies: some leading dimensions of variation between species publication-title: Annual Reviews in Ecology and Systematics – volume: 175 start-page: 686 year: 2007 end-page: 698 article-title: Diversity of hydraulic traits in nine species growing in tropical forests with contrasting precipitation publication-title: New Phytologist – year: 1988 – volume: 15 start-page: 14 year: 2000 end-page: 24 article-title: Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation? publication-title: Trees – Structure and Function – volume: 22 start-page: 221 year: 2008 end-page: 231 article-title: The role of desiccation tolerance in determining tree species distributions along the Malay‐Thai peninsula publication-title: Functional Ecology – volume: 4 start-page: 97 year: 2001 end-page: 115 article-title: Functional and ecological xylem anatomy publication-title: Perspectives in Plant Ecology, Evolution and Systematics – volume: 83 start-page: 49 year: 1989 end-page: 69 article-title: A theory of the spatial and temporal dynamics of plant communities publication-title: Plant Ecology – volume: 139 start-page: 546 year: 2005 end-page: 556 article-title: Do xylem fibers affect vessel cavitation resistance? publication-title: Plant Physiology – volume: 89 start-page: 820 year: 2002 end-page: 828 article-title: Shoot dieback during prolonged drought in (Rhamnaceae) chaparral of California: a possible case of hydraulic failure publication-title: American Journal of Botany – year: 1991 – volume: 114 start-page: 293 year: 1998 end-page: 298 article-title: Growth dynamics of root and shoot hydraulic conductance in seedlings of five neotropical tree species: scaling to show possible adaptation to differing light regimes publication-title: Oecologia – ident: e_1_2_6_14_1 doi: 10.1093/treephys/24.8.891 – ident: e_1_2_6_58_1 doi: 10.1111/j.1365-3040.1993.tb00898.x – ident: e_1_2_6_50_1 doi: 10.1104/pp.104.058404 – volume: 23 start-page: 329 year: 1998 ident: e_1_2_6_65_1 article-title: Does irrigation affect leaf phenology in deciduous and evergreen trees of the savannas of northern Australia? publication-title: Australian Journal of Botany – ident: e_1_2_6_100_1 doi: 10.1104/pp.102.018937 – ident: e_1_2_6_55_1 doi: 10.1111/j.1469-8137.2010.03212.x – ident: e_1_2_6_84_1 doi: 10.1007/s00442-002-0873-0 – ident: e_1_2_6_91_1 doi: 10.1046/j.0016-8025.2001.00799.x – ident: e_1_2_6_94_1 doi: 10.1086/503056 – ident: e_1_2_6_12_1 doi: 10.1046/j.1365-3040.2003.00975.x – ident: e_1_2_6_6_1 doi: 10.1890/04-0598 – ident: e_1_2_6_107_1 doi: 10.1111/j.1744-7429.2007.00316.x – ident: e_1_2_6_109_1 doi: 10.1146/annurev.ecolsys.33.010802.150452 – ident: e_1_2_6_102_1 doi: 10.1104/pp.88.3.574 – ident: e_1_2_6_106_1 doi: 10.1111/j.0022-0477.2004.00876.x – ident: e_1_2_6_10_1 doi: 10.2307/1937467 – ident: e_1_2_6_54_1 doi: 10.1007/BF00324232 – ident: e_1_2_6_72_1 doi: 10.1086/512045 – ident: e_1_2_6_78_1 doi: 10.1111/j.1469-8137.2009.03092.x – ident: e_1_2_6_104_1 doi: 10.1007/s004420050450 – ident: e_1_2_6_96_1 doi: 10.1007/BF00044629 – ident: e_1_2_6_11_1 doi: 10.1046/j.1365-3040.2000.00647.x – ident: e_1_2_6_62_1 doi: 10.1017/S0266467410000271 – ident: e_1_2_6_71_1 doi: 10.2307/2656722 – ident: e_1_2_6_86_1 doi: 10.1111/j.1469-8137.2005.01432.x – ident: e_1_2_6_113_1 doi: 10.3732/ajb.0900178 – ident: e_1_2_6_114_1 doi: 10.1007/978-3-662-22627-8 – ident: e_1_2_6_56_1 doi: 10.1111/j.1365-2435.2008.01483.x – ident: e_1_2_6_26_1 doi: 10.3732/ajb.89.5.820 – ident: e_1_2_6_37_1 doi: 10.1002/j.1537-2197.1989.tb11360.x – ident: e_1_2_6_45_1 doi: 10.1111/j.1469-8137.1994.tb02964.x – ident: e_1_2_6_90_1 doi: 10.1007/BF00318025 – ident: e_1_2_6_25_1 doi: 10.1890/0012-9615(2000)070[0171:IORCIF]2.0.CO;2 – ident: e_1_2_6_34_1 doi: 10.1007/s00442-006-0368-5 – ident: e_1_2_6_82_1 doi: 10.1046/j.1365-2435.2000.00414.x – ident: e_1_2_6_93_1 doi: 10.1046/j.0016-8025.2001.00799.x – ident: e_1_2_6_8_1 doi: 10.1111/j.1399-3054.2006.00718.x – ident: e_1_2_6_17_1 doi: 10.1111/j.1461-0248.2009.01285.x – ident: e_1_2_6_51_1 doi: 10.1890/05-1879 – ident: e_1_2_6_42_1 doi: 10.1078/1433-8319-00049 – ident: e_1_2_6_105_1 doi: 10.1007/978-3-662-04931-0 – ident: e_1_2_6_28_1 doi: 10.1071/BT96018 – ident: e_1_2_6_68_1 doi: 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2 – ident: e_1_2_6_23_1 doi: 10.1890/08-1482.1 – ident: e_1_2_6_36_1 doi: 10.1007/s00468-004-0393-0 – volume: 46 start-page: 488s year: 1989 ident: e_1_2_6_39_1 article-title: Gas exchange and water relations of evergreen and deciduous tropical savanna trees publication-title: Annals of Forest Science – ident: e_1_2_6_21_1 doi: 10.1890/0012-9658(1999)080[2662:EFATLS]2.0.CO;2 – ident: e_1_2_6_75_1 doi: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2 – ident: e_1_2_6_47_1 doi: 10.1034/j.1600-0706.2000.900107.x – ident: e_1_2_6_103_1 doi: 10.1093/jxb/erf078 – volume-title: Tropical dry forest recovery: processes and causes of change year: 2009 ident: e_1_2_6_57_1 – ident: e_1_2_6_41_1 doi: 10.1111/j.1469-185X.1977.tb01347.x – ident: e_1_2_6_60_1 article-title: Plant functional traits and the distribution of West African rain forest trees along the rainfall gradient publication-title: Biotropica – ident: e_1_2_6_30_1 doi: 10.1016/S0065-2504(01)32012-3 – ident: e_1_2_6_3_1 doi: 10.1111/j.1365-2435.2007.01320.x – ident: e_1_2_6_88_1 doi: 10.1007/s00442-004-1624-1 – ident: e_1_2_6_4_1 doi: 10.1046/j.1466-822X.2003.00026.x – ident: e_1_2_6_7_1 doi: 10.1111/j.1461-0248.2010.01517.x – ident: e_1_2_6_44_1 doi: 10.1007/s004420100628 – ident: e_1_2_6_73_1 doi: 10.1093/aob/mcn103 – volume-title: Plant strategies and the dynamics and structure of plant communities year: 1988 ident: e_1_2_6_98_1 – ident: e_1_2_6_81_1 doi: 10.1111/j.1469-8137.2006.01713.x – ident: e_1_2_6_49_1 – ident: e_1_2_6_18_1 doi: 10.1007/s11284-008-0482-4 – ident: e_1_2_6_61_1 doi: 10.1890/02-0538 – ident: e_1_2_6_110_1 doi: 10.2307/1940195 – ident: e_1_2_6_66_1 doi: 10.1007/s004680000071 – ident: e_1_2_6_22_1 – ident: e_1_2_6_63_1 doi: 10.1111/j.1365-2745.2008.01466.x – ident: e_1_2_6_92_1 doi: 10.1111/j.1365-3040.1988.tb01774.x – ident: e_1_2_6_2_1 doi: 10.1890/03-4022 – volume-title: Guía de los árboles y arbustos del bosque seco Chiquitano, Bolivia year: 2003 ident: e_1_2_6_52_1 – ident: e_1_2_6_64_1 doi: 10.1111/j.1365-3040.2010.02231.x – ident: e_1_2_6_33_1 doi: 10.1038/nature05747 – ident: e_1_2_6_101_1 doi: 10.1111/j.1469-8137.1991.tb00035.x – ident: e_1_2_6_53_1 doi: 10.1017/S0266467498000583 – ident: e_1_2_6_69_1 doi: 10.1111/j.1744-7429.2003.tb00586.x – volume-title: Geografía ecológica de Bolivia: Vegetación y ambientes acuáticos year: 2002 ident: e_1_2_6_67_1 – ident: e_1_2_6_111_1 doi: 10.2307/1940675 – ident: e_1_2_6_20_1 doi: 10.1111/j.1469-8137.2007.02137.x – ident: e_1_2_6_32_1 doi: 10.1139/b00-095 – ident: e_1_2_6_9_1 doi: 10.1079/9780851997346.0041 – ident: e_1_2_6_24_1 doi: 10.1046/j.1469-8137.2000.00763.x – ident: e_1_2_6_38_1 doi: 10.1890/0012-9658(2006)87[1281:LHTITT]2.0.CO;2 – ident: e_1_2_6_85_1 doi: 10.1023/A:1024423820136 – ident: e_1_2_6_43_1 doi: 10.1078/1433-8319-00017 – ident: e_1_2_6_87_1 doi: 10.1093/oxfordjournals.aob.a087848 – ident: e_1_2_6_115_1 doi: 10.1126/science.1057175 – volume-title: Resource competition and community structure year: 1982 ident: e_1_2_6_97_1 – ident: e_1_2_6_112_1 doi: 10.1890/02-0038 – ident: e_1_2_6_108_1 doi: 10.1046/j.1469-8137.1999.00425.x – ident: e_1_2_6_70_1 doi: 10.1111/j.1365-3040.2006.01539.x – ident: e_1_2_6_29_1 doi: 10.1016/S0169-5347(98)01532-8 – ident: e_1_2_6_74_1 doi: 10.1111/j.1469-8137.2008.02715.x – ident: e_1_2_6_76_1 doi: 10.1890/06-0984 – volume-title: Zeigerwerte von Pflanzen in Mitteleuropa year: 1991 ident: e_1_2_6_31_1 – ident: e_1_2_6_5_1 doi: 10.1111/j.1365-2435.2007.01374.x – ident: e_1_2_6_27_1 doi: 10.1146/annurev.es.18.110187.002243 – ident: e_1_2_6_99_1 doi: 10.1163/22941932-90001369 – ident: e_1_2_6_40_1 doi: 10.1086/283244 – ident: e_1_2_6_80_1 doi: 10.1111/j.1469-8137.2006.01712.x – ident: e_1_2_6_83_1 doi: 10.1111/j.0030-1299.2004.13184.x – ident: e_1_2_6_77_1 doi: 10.1111/j.1744-7429.2007.00380.x – volume-title: An introduction to population ecology year: 1978 ident: e_1_2_6_48_1 – ident: e_1_2_6_46_1 doi: 10.1007/s11258-009-9668-2 – ident: e_1_2_6_79_1 doi: 10.1017/S0266467400005137 – ident: e_1_2_6_59_1 doi: 10.1111/j.1469-8137.2007.02264.x – ident: e_1_2_6_15_1 doi: 10.1525/9780520320567 – ident: e_1_2_6_16_1 doi: 10.1086/285524 – ident: e_1_2_6_95_1 – ident: e_1_2_6_35_1 doi: 10.1007/s00442-003-1290-8 – ident: e_1_2_6_13_1 doi: 10.1046/j.1365-3040.2002.00919.x – ident: e_1_2_6_19_1 doi: 10.1007/s00468-004-0392-1 – ident: e_1_2_6_89_1 doi: 10.1007/BF00031680 |
SSID | ssj0009562 |
Score | 2.4771466 |
Snippet | Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such... Summary • Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species’ life history... Summary * Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history... times Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies,... • Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such... Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species’ life history strategies, such... |
SourceID | wageningen proquest pubmed crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 480 |
SubjectTerms | Adaptation, Physiological biomass allocation Bolivia cavitation resistance correlation Deciduous trees desiccation-tolerance Drought Drought resistance drought tolerance Droughts Dry forests Dry matter dry matter content Ecosystem Evergreen trees fluid mechanics Forest ecology Forest trees hydraulic conductivity Hydraulic properties Hydraulics juvenile crown exposure leaf traits leaf water potential Leaves Life history life‐history strategies midday dry season leaf water potential photosynthetic traits physiology plant architecture Plant ecology Plant Leaves Plant Leaves - physiology Plant species Plant Stems Plant Stems - physiology Plant Transpiration Plant Vascular Bundle Plant Vascular Bundle - physiology Plants regeneration niche sapwood Seasons Shade tolerance Species stems Stress, Physiological Sunlight trade-off trade‐offs Trees Trees - physiology Tropical Climate tropical dry forest Tropical forests Water Water potential water potentials Water transport Wood wood density woody-plants xylem cavitation |
Title | Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance |
URI | https://www.jstor.org/stable/20869182 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8137.2011.03708.x https://www.ncbi.nlm.nih.gov/pubmed/21477008 https://www.proquest.com/docview/1817100618 https://www.proquest.com/docview/1022564412 https://www.proquest.com/docview/1400127673 https://www.proquest.com/docview/884124357 http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F406124 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB6hikM58F9qKGiRuDqK187umhsgqohDhRCVclvtn0XUyK5iWyE99TV4PZ6EGdtJSVVQhTglkXdW3s3M7De7s98AvOGCarinNraJ43FmbYiNlSEmLnRhvKPL15RtcSKmp9mn2WQ25D_RXZieH2K74UaW0flrMnBj6-tGTltYqRyYOFM5ViPCk5S6RfjoC_-Nf1fwDSGzyMRsN6nnxo52Vqo-WfEmGHoP9ldo-mV3F2oX4nZr1PEDONuMrk9NORu1jR25i2vEj_9n-A_h_gBl2bte9x7BnVA-hrvvK4Sb6yewmq790rSLuauZKT1bzIvAenbjNasK1iyrc1IQ5vE3ImccLKMTckZ3PzF8f8tchYHxvN-tJInhwc_LHyhDxYWaruP6m_GBNdUiUI2Q8BROjz9-_TCNhyoPscNgUMXo4FSBMC0xiB5EnoSicFbg2q0seZvMqNybjGigc18IhZBoksk8OC8VnbKa9AD2yqoMh8CEw1h_Mg55wS0CUW-5SXMveeoKb5VQEcjNP6rdQIFOlTgWeicUyjXNqqZZ1d2s6u8RJFvJ854G5BYyB53SbAX4mManeARHGy3Sg8eoNSItIloSCb7l6-1jtHU6wDFlqFpsg4BrQgCW_6VN1mUTCJlGwP7QRimqOZ5OZATPeiW-esckkxJxYQTplVbrkupa1ZqoyAfd1Kt2qcsFfWAPtSZcyLMIRKezt54jffJ5St-e_6vgC9jvd_kpgfoI9pplG14iTGzsq84B_AJ0WFmN |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfQQGI88H8QGGAkXlM1Tmo7vAFiCjAqhDapb5b_RauIkqlJVMoTX4OvxyfhLkk7Og00IZ7aKj4rdu_Ov7PPvyPkBeNYwz02oYksCxNjfKiN8CFyoXPtLF6-xmyLKc-Ok_ezyWwoB4R3YXp-iM2GG1pG56_RwHFD-ryV4x5WLAYqzliM5QgA5VUs8N3FV5_Zbwy8nK0pmXnCZ9tpPRf2tLVW9emKFwHRG2R3CcZfdrehtkFut0od3CLFenx9csqXUduYkf12jvrxP03AbXJzQLP0Va9-d8gVX94l115XgDhX98gyW7mFbou5rakuHS3muac9wfGKVjltFtUp6gh18BvAM4yW4iE5xeufEMG_pLaC2Hjeb1iixPDg5_cfIIP1hZqu4_pEO0-bqvBYJsTfJ8cHb4_eZOFQ6CG0EA_KEHyczAGpRRoABE8jn-fWcFi-pUGHk2iZOp0gE3Tqci4BFU0SkXrrhMSDVh3vkZ2yKv1DQrmFcH8y9mnODGBRZ5iOUydYbHNnJJcBEeu_VNmBBR2LcRRqKxpKFc6qwllV3ayqrwGJNpKnPRPIJWT2Oq3ZCLAxjk-ygOyv1UgNTqNWALaQa4lH8JbPN4_B3PEMR5e-aqENYK4JYlj2lzZJl1DARRwQ-oc2UmLZ8XgiAvKg1-Kzd4wSIQAaBiQ-U2tVYmmrWiEb-aCcatkuVFngB_RQK4SGLAkI75T20nOkpp8y_PboXwWfkevZ0cdDdfhu-uEx2e03_TGfep_sNIvWPwHU2JinnTf4BfFEXag |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQgtBy4L0QWMBIXFM1Tmo73IClKg9VK8RKvVl-RVQbJVWTqJQTf4O_xy9hJkm7dLWgFeLUVvFYsTsz_sYef0PIC8axhntsQhNZFibG-FAb4UPkQufaWbx8jdkWUz45Sd7PRrM-_wnvwnT8ENsNN7SM1l-jgS9cdt7IcQsrFj0TZyyGcgB48mrChxI1_OgT-42Al7MNIzNP-Gw3q-fCnnaWqi5b8SIceoPsr8D2i_Yy1C7GbRep8S1yuhlel5tyOmhqM7DfzjE__p_x3yY3eyxLX3XKd4dc8cVdcu11CXhzfY-sJmu31E0-txXVhaP5PPO0ozde0zKj9bJcoIZQB78BOsNgKR6RU7z8CfH7S2pLiIzn3XYlSvQPfn7_ATJYXahuO66-aOdpXeYei4T4--Rk_Pbzm0nYl3kILUSDMgQPJzPAaZEG-MDTyGeZNRwWb2nQ3SRapk4nyAOduoxLwESjRKTeOiHxmFXHB2SvKAv_kFBuIdgfDX2aMQNI1Bmm49QJFtvMGcllQMTmH1W250DHUhy52omFUoWzqnBWVTur6mtAoq3kouMBuYTMQas0WwE2xPFJFpDDjRap3mVUCqAWMi3xCN7y-fYxGDue4OjClw20AcQ1QgTL_tImadMJuIgDQv_QRkosOh6PREAedEp89o5RIgQAw4DEZ1qtCixsVSnkIu91U62apSpy_IAeKoXAkCUB4a3OXnqO1PR4gt8e_avgM3L9-GisPr6bfnhM9rsdf0ymPiR79bLxTwAy1uZp6wt-AaGiXGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydraulics+and+life+history+of+tropical+dry+forest+tree+species%3A+coordination+of+species%E2%80%99+drought+and+shade+tolerance&rft.jtitle=The+New+phytologist&rft.au=Markesteijn%2C+Lars&rft.au=Poorter%2C+Lourens&rft.au=Bongers%2C+Frans&rft.au=Paz%2C+Horacio&rft.date=2011-07-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=191&rft.issue=2&rft.spage=480&rft.epage=495&rft_id=info:doi/10.1111%2Fj.1469-8137.2011.03708.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1469_8137_2011_03708_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |