Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance

Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K s ) and leaf (K l ) hydraulic cond...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 191; no. 2; pp. 480 - 495
Main Authors Markesteijn, Lars, Poorter, Lourens, Bongers, Frans, Paz, Horacio, Sack, Lawren
Format Journal Article
LanguageEnglish
Published Oxford, UK John Wiley & Sons 01.07.2011
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K s ) and leaf (K l ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K l with drought tolerance, we found a strong, negative correlation between K l and species' shade tolerance. Across species, K s and K l were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off.
AbstractList Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K(l) with drought tolerance, we found a strong, negative correlation between K(l) and species' shade tolerance. Across species, K(s) and K(l) were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off.
Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species’ life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (Ks) and leaf (Kl) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species’ drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of Kl with drought tolerance, we found a strong, negative correlation between Kl and species’ shade tolerance. Across species, Ks and Kl were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off.
Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K(l) with drought tolerance, we found a strong, negative correlation between K(l) and species' shade tolerance. Across species, K(s) and K(l) were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off.Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K(l) with drought tolerance, we found a strong, negative correlation between K(l) and species' shade tolerance. Across species, K(s) and K(l) were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off.
Summary • Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species’ life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. • We measured the sapwood (Ks) and leaf (Kl) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species’ drought (dry‐season leaf water potential) and shade (juvenile crown exposure) tolerance. • Hydraulic properties varied across species and between life‐history groups (pioneers vs shade‐tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of Kl with drought tolerance, we found a strong, negative correlation between Kl and species’ shade tolerance. Across species, Ks and Kl were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. • Hydraulic properties varied across species, corresponding to the classical trade‐off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade‐off.
• Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. • We measured the sapwood (Ks) and leaf (Kl) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. • Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of Kl with drought tolerance, we found a strong, negative correlation between Kl and species' shade tolerance. Across species, Ks and Kl were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. • Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off.
times Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory.
Summary * Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. * We measured the sapwood (Ks) and leaf (Kl) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. * Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of Kl with drought tolerance, we found a strong, negative correlation between Kl and species' shade tolerance. Across species, Ks and Kl were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. * Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off.
Author Sack, Lawren
Bongers, Frans
Paz, Horacio
Poorter, Lourens
Markesteijn, Lars
Author_xml – sequence: 1
  givenname: Lars
  surname: Markesteijn
  fullname: Markesteijn, Lars
– sequence: 2
  givenname: Lourens
  surname: Poorter
  fullname: Poorter, Lourens
– sequence: 3
  givenname: Frans
  surname: Bongers
  fullname: Bongers, Frans
– sequence: 4
  givenname: Horacio
  surname: Paz
  fullname: Paz, Horacio
– sequence: 5
  givenname: Lawren
  surname: Sack
  fullname: Sack, Lawren
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21477008$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1vFCEUhompsdvqT9BM4kW92ZWvBaaJJqaprkmjXmjiHWEYpsuEhSnMpN1_X9hda9ILLRd8Pu-Bc3hPwJEP3gBQIbhAub3vF4iyei4Q4QsMEVpAwqFY3D0Ds4eDIzCDEIs5o-z3MThJqYcQ1kuGX4BjjCjnEIoZmFbbNqrJWZ0q5dvK2c5Ua5vGELdV6KoxhsFq5ao2r7sQTRrznjFVGoy2Jp1XOoTYWq9GG3xRHA7OsiJM1-txFzatVWuqMTgTldfmJXjeKZfMq8N4Cn59vvx5sZpfff_y9eLT1VwziMScMyI6QWqkMBGsRqbrdMO0MaIRBGOqRN0qStqG123HBORoSXltdMsFREQocgrO93Fv1bXx1udOehW1TTIoK51toopbeTtF6V0ZhqlJkkKGMM3is714iOFmyonLjU3aOKe8CVOSQtCCLXkm3_2TRBRChDnj5P8oxHjJaI6c0beP0D5M0ed6SSQQRzA_U2TqzYGamo1p5RDtpuT054szIPaAjiGlaLoHBEFZ3CR7WUwji2lkcZPcuUneZenHR1Jtx91Hj1FZ95QAHw71t85sn3yx_PZjVWZZ_3qv74sh_-YGixsEJveznu1o
CitedBy_id crossref_primary_10_1007_s11104_019_03947_9
crossref_primary_10_1111_nph_17464
crossref_primary_10_1111_1365_2745_13908
crossref_primary_10_1093_aob_mcac108
crossref_primary_10_1016_j_dendro_2016_11_001
crossref_primary_10_3389_ffgc_2020_00063
crossref_primary_10_5194_bg_17_2621_2020
crossref_primary_10_1111_ele_12781
crossref_primary_10_1007_s00468_021_02235_3
crossref_primary_10_3389_fpls_2021_674527
crossref_primary_10_1002_ece3_3547
crossref_primary_10_1016_j_gloplacha_2024_104669
crossref_primary_10_21829_abm129_2022_1917
crossref_primary_10_1016_j_gecco_2023_e02453
crossref_primary_10_1007_s10342_018_1156_6
crossref_primary_10_1093_jpe_rty017
crossref_primary_10_1111_btp_12324
crossref_primary_10_1007_s11258_012_0133_2
crossref_primary_10_1007_s10661_024_13393_5
crossref_primary_10_1111_j_1365_2745_2012_01966_x
crossref_primary_10_1111_pce_12024
crossref_primary_10_1111_ecog_07620
crossref_primary_10_1016_j_scitotenv_2022_159334
crossref_primary_10_1007_s11258_014_0419_7
crossref_primary_10_1007_s10457_020_00522_5
crossref_primary_10_1016_j_foreco_2022_120098
crossref_primary_10_1016_j_ecolind_2022_109021
crossref_primary_10_1371_journal_pone_0109211
crossref_primary_10_1111_1365_2435_12576
crossref_primary_10_1016_j_dendro_2021_125840
crossref_primary_10_5194_gmd_9_4227_2016
crossref_primary_10_1111_1365_2435_12452
crossref_primary_10_1111_btp_13404
crossref_primary_10_1016_j_flora_2018_08_009
crossref_primary_10_1002_ece3_7000
crossref_primary_10_1007_s00468_018_1796_7
crossref_primary_10_1016_j_foreco_2018_04_048
crossref_primary_10_1111_aec_12455
crossref_primary_10_1111_pce_13687
crossref_primary_10_1071_FP14201
crossref_primary_10_3389_ffgc_2023_1204596
crossref_primary_10_1038_s41598_017_11343_5
crossref_primary_10_1111_nph_18418
crossref_primary_10_1111_nph_13646
crossref_primary_10_1139_cjb_2019_0010
crossref_primary_10_1111_1365_2435_12462
crossref_primary_10_1111_1365_2664_13505
crossref_primary_10_5194_bg_9_2203_2012
crossref_primary_10_18359_rfcb_3901
crossref_primary_10_1111_nph_12548
crossref_primary_10_1093_treephys_tpz016
crossref_primary_10_1111_1365_2745_13354
crossref_primary_10_1093_treephys_tpu001
crossref_primary_10_1093_aob_mcs092
crossref_primary_10_1002_ece3_10406
crossref_primary_10_1073_pnas_1319342111
crossref_primary_10_1016_j_foreco_2014_06_039
crossref_primary_10_1007_s10342_019_01236_9
crossref_primary_10_1002_ajb2_16146
crossref_primary_10_1111_1365_2745_13022
crossref_primary_10_1111_j_1365_3040_2012_02582_x
crossref_primary_10_1111_j_1469_8137_2012_04273_x
crossref_primary_10_17129_botsci_2878
crossref_primary_10_1111_geb_13350
crossref_primary_10_1111_ele_13168
crossref_primary_10_1111_gcb_13863
crossref_primary_10_1111_btp_12646
crossref_primary_10_1016_j_ppees_2016_09_007
crossref_primary_10_1111_1365_2435_12085
crossref_primary_10_1007_s11258_020_01106_0
crossref_primary_10_1016_j_flora_2018_02_010
crossref_primary_10_1111_ecog_05803
crossref_primary_10_1111_nph_15071
crossref_primary_10_1002_ece3_6744
crossref_primary_10_1111_1365_2745_12165
crossref_primary_10_1093_treephys_tpy146
crossref_primary_10_3389_ffgc_2023_1112560
crossref_primary_10_3389_fpls_2019_01718
crossref_primary_10_1007_s11104_025_07217_9
crossref_primary_10_7747_JFES_2016_32_3_291
crossref_primary_10_1016_j_fecs_2024_100190
crossref_primary_10_1111_1365_2664_12874
crossref_primary_10_1371_journal_pone_0073855
crossref_primary_10_1016_j_agwat_2016_10_010
crossref_primary_10_1111_btp_12992
crossref_primary_10_1016_j_envexpbot_2016_12_006
crossref_primary_10_1002_eap_2297
crossref_primary_10_1007_s40725_023_00199_w
crossref_primary_10_1016_j_ecolind_2022_109469
crossref_primary_10_1002_ecy_2537
crossref_primary_10_3389_fpls_2018_01761
crossref_primary_10_1007_s40626_021_00201_5
crossref_primary_10_1111_nph_16151
crossref_primary_10_1016_j_ppees_2021_125630
crossref_primary_10_1016_j_rse_2020_111828
crossref_primary_10_1007_s00468_012_0829_x
crossref_primary_10_1007_s40626_022_00244_2
crossref_primary_10_3389_ffgc_2020_596256
crossref_primary_10_3390_f11080894
crossref_primary_10_3389_feart_2019_00083
crossref_primary_10_1002_ecs2_3824
crossref_primary_10_3389_ffgc_2022_930099
crossref_primary_10_3390_f13060909
crossref_primary_10_1111_ecog_01904
crossref_primary_10_1002_ajb2_16037
crossref_primary_10_1111_ele_70014
crossref_primary_10_1093_treephys_tpx033
crossref_primary_10_1007_s42773_024_00355_w
crossref_primary_10_1093_jpe_rtz051
crossref_primary_10_1002_ecy_2666
crossref_primary_10_1111_jbi_13198
crossref_primary_10_3390_ecologies2030015
crossref_primary_10_3389_fpls_2020_00212
crossref_primary_10_1111_1365_2745_13031
crossref_primary_10_1111_nph_16941
crossref_primary_10_1016_j_agrformet_2018_11_037
crossref_primary_10_1111_1365_2435_12158
crossref_primary_10_1007_s00442_011_2196_5
crossref_primary_10_1111_1365_2435_12036
crossref_primary_10_1093_treephys_tps107
crossref_primary_10_1111_nph_15684
crossref_primary_10_3390_plants11081013
crossref_primary_10_7717_peerj_13458
crossref_primary_10_1007_s00468_020_02021_7
crossref_primary_10_1002_ece3_11095
crossref_primary_10_1007_s10021_016_0029_4
crossref_primary_10_3389_fpls_2023_1127292
crossref_primary_10_1890_12_1629_1
crossref_primary_10_1111_plb_12544
crossref_primary_10_1098_rsos_150589
crossref_primary_10_3389_fpls_2023_1260707
crossref_primary_10_1111_geb_13027
crossref_primary_10_3390_f14030522
crossref_primary_10_1038_s41598_019_55256_x
crossref_primary_10_1002_ecy_2766
crossref_primary_10_1007_s00468_012_0818_0
crossref_primary_10_1890_13_2377_1
crossref_primary_10_4336_2021_pfb_41e202002129
crossref_primary_10_1007_s11676_014_0426_5
crossref_primary_10_1016_j_agrformet_2023_109392
crossref_primary_10_1093_treephys_tpx135
crossref_primary_10_1111_geb_12056
crossref_primary_10_3389_fpls_2015_00511
crossref_primary_10_1111_gcb_13731
crossref_primary_10_1002_2014GB004934
crossref_primary_10_1007_s11056_021_09862_1
crossref_primary_10_1002_ajb2_16407
crossref_primary_10_1088_1748_9326_11_11_115003
crossref_primary_10_1016_j_foreco_2021_119101
crossref_primary_10_1111_j_1365_2664_2012_02164_x
crossref_primary_10_1111_pce_12510
crossref_primary_10_1016_j_foreco_2022_120129
crossref_primary_10_1111_pce_12511
crossref_primary_10_1002_eco_1943
crossref_primary_10_3390_f10050443
crossref_primary_10_1111_geb_12288
crossref_primary_10_3389_ffgc_2023_1028359
crossref_primary_10_1007_s00468_022_02382_1
crossref_primary_10_1111_1365_2435_14235
crossref_primary_10_1111_nph_13007
crossref_primary_10_1016_j_dendro_2018_09_004
crossref_primary_10_1111_gcb_15352
crossref_primary_10_1093_aobpla_plz023
crossref_primary_10_1007_s00468_019_01836_3
crossref_primary_10_1016_j_agrformet_2013_12_010
crossref_primary_10_1111_btp_12380
crossref_primary_10_3390_f10050428
crossref_primary_10_1098_rspb_2023_1732
crossref_primary_10_1002_eco_2129
crossref_primary_10_1093_treephys_tpac061
crossref_primary_10_1111_nph_16502
crossref_primary_10_1071_FP12316
crossref_primary_10_1002_ecs2_1712
crossref_primary_10_1111_1365_2435_13203
crossref_primary_10_24188_recia_v8_n1_2016_232
crossref_primary_10_3389_fpls_2023_1276424
crossref_primary_10_1002_ecy_2954
crossref_primary_10_1111_pce_12846
crossref_primary_10_3390_f6062047
crossref_primary_10_1890_ES13_00111_1
crossref_primary_10_1111_jvs_12781
crossref_primary_10_1088_1748_9326_aa5968
crossref_primary_10_1080_17550874_2022_2143731
crossref_primary_10_1890_15_1815_1
crossref_primary_10_1111_1365_2745_12332
crossref_primary_10_1080_11263504_2020_1762782
crossref_primary_10_1016_j_flora_2014_02_005
crossref_primary_10_1111_j_1365_2745_2011_01883_x
crossref_primary_10_1111_1365_2435_12246
crossref_primary_10_1007_s00468_022_02345_6
crossref_primary_10_3390_d12100397
crossref_primary_10_1371_journal_pone_0143955
crossref_primary_10_1111_pce_15449
crossref_primary_10_1111_pce_12862
crossref_primary_10_1016_j_agwat_2023_108613
crossref_primary_10_3390_plants12142607
crossref_primary_10_1093_treephys_tpac017
crossref_primary_10_1007_s00442_013_2650_7
crossref_primary_10_1111_j_1461_0248_2012_01751_x
crossref_primary_10_1111_ele_13659
crossref_primary_10_1186_s40663_018_0158_7
crossref_primary_10_1111_1365_2435_13906
crossref_primary_10_1093_aob_mcs289
crossref_primary_10_1371_journal_pone_0193268
crossref_primary_10_1002_2013JG002509
crossref_primary_10_1371_journal_pone_0047882
crossref_primary_10_1111_nph_15909
crossref_primary_10_1002_ajb2_70011
crossref_primary_10_1093_treephys_tpv124
crossref_primary_10_1007_s00442_015_3329_z
crossref_primary_10_1007_s12038_011_9159_1
crossref_primary_10_1093_aobpla_plab066
crossref_primary_10_6090_jarq_51_363
crossref_primary_10_1080_17550874_2023_2286233
crossref_primary_10_1111_nph_19132
crossref_primary_10_3389_frwa_2022_950346
crossref_primary_10_1016_j_gecco_2018_e00408
crossref_primary_10_1111_nph_14009
crossref_primary_10_1134_S2079086416010084
Cites_doi 10.1093/treephys/24.8.891
10.1111/j.1365-3040.1993.tb00898.x
10.1104/pp.104.058404
10.1104/pp.102.018937
10.1111/j.1469-8137.2010.03212.x
10.1007/s00442-002-0873-0
10.1046/j.0016-8025.2001.00799.x
10.1086/503056
10.1046/j.1365-3040.2003.00975.x
10.1890/04-0598
10.1111/j.1744-7429.2007.00316.x
10.1146/annurev.ecolsys.33.010802.150452
10.1104/pp.88.3.574
10.1111/j.0022-0477.2004.00876.x
10.2307/1937467
10.1007/BF00324232
10.1086/512045
10.1111/j.1469-8137.2009.03092.x
10.1007/s004420050450
10.1007/BF00044629
10.1046/j.1365-3040.2000.00647.x
10.1017/S0266467410000271
10.2307/2656722
10.1111/j.1469-8137.2005.01432.x
10.3732/ajb.0900178
10.1007/978-3-662-22627-8
10.1111/j.1365-2435.2008.01483.x
10.3732/ajb.89.5.820
10.1002/j.1537-2197.1989.tb11360.x
10.1111/j.1469-8137.1994.tb02964.x
10.1007/BF00318025
10.1890/0012-9615(2000)070[0171:IORCIF]2.0.CO;2
10.1007/s00442-006-0368-5
10.1046/j.1365-2435.2000.00414.x
10.1111/j.1399-3054.2006.00718.x
10.1111/j.1461-0248.2009.01285.x
10.1890/05-1879
10.1078/1433-8319-00049
10.1007/978-3-662-04931-0
10.1071/BT96018
10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2
10.1890/08-1482.1
10.1007/s00468-004-0393-0
10.1890/0012-9658(1999)080[2662:EFATLS]2.0.CO;2
10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
10.1034/j.1600-0706.2000.900107.x
10.1093/jxb/erf078
10.1111/j.1469-185X.1977.tb01347.x
10.1016/S0065-2504(01)32012-3
10.1111/j.1365-2435.2007.01320.x
10.1007/s00442-004-1624-1
10.1046/j.1466-822X.2003.00026.x
10.1111/j.1461-0248.2010.01517.x
10.1007/s004420100628
10.1093/aob/mcn103
10.1111/j.1469-8137.2006.01713.x
10.1007/s11284-008-0482-4
10.1890/02-0538
10.2307/1940195
10.1007/s004680000071
10.1111/j.1365-2745.2008.01466.x
10.1111/j.1365-3040.1988.tb01774.x
10.1890/03-4022
10.1111/j.1365-3040.2010.02231.x
10.1038/nature05747
10.1111/j.1469-8137.1991.tb00035.x
10.1017/S0266467498000583
10.1111/j.1744-7429.2003.tb00586.x
10.2307/1940675
10.1111/j.1469-8137.2007.02137.x
10.1139/b00-095
10.1079/9780851997346.0041
10.1046/j.1469-8137.2000.00763.x
10.1890/0012-9658(2006)87[1281:LHTITT]2.0.CO;2
10.1023/A:1024423820136
10.1078/1433-8319-00017
10.1093/oxfordjournals.aob.a087848
10.1126/science.1057175
10.1890/02-0038
10.1046/j.1469-8137.1999.00425.x
10.1111/j.1365-3040.2006.01539.x
10.1016/S0169-5347(98)01532-8
10.1111/j.1469-8137.2008.02715.x
10.1890/06-0984
10.1111/j.1365-2435.2007.01374.x
10.1146/annurev.es.18.110187.002243
10.1163/22941932-90001369
10.1086/283244
10.1111/j.1469-8137.2006.01712.x
10.1111/j.0030-1299.2004.13184.x
10.1111/j.1744-7429.2007.00380.x
10.1007/s11258-009-9668-2
10.1017/S0266467400005137
10.1111/j.1469-8137.2007.02264.x
10.1525/9780520320567
10.1086/285524
10.1007/s00442-003-1290-8
10.1046/j.1365-3040.2002.00919.x
10.1007/s00468-004-0392-1
10.1007/BF00031680
ContentType Journal Article
Copyright Copyright © 2011 New Phytologist Trust
2011 The Authors. New Phytologist © 2011 New Phytologist Trust
2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
Wageningen University & Research
Copyright_xml – notice: Copyright © 2011 New Phytologist Trust
– notice: 2011 The Authors. New Phytologist © 2011 New Phytologist Trust
– notice: 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
– notice: Wageningen University & Research
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7S9
L.6
7X8
QVL
DOI 10.1111/j.1469-8137.2011.03708.x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic


AGRICOLA
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 495
ExternalDocumentID oai_library_wur_nl_wurpubs_406124
4172601151
21477008
10_1111_j_1469_8137_2011_03708_x
NPH3708
20869182
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Bolivia
GeographicLocations_xml – name: Bolivia
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABLJU
ABPLY
ABPVW
ABSQW
ABTLG
ABVKB
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFS
ACHIC
ACNCT
ACPOU
ACSCC
ACSTJ
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
E3Z
EBS
ECGQY
EJD
F00
F01
F04
F5P
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGLYW
HTVGU
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
YNT
YQT
ZCG
ZZTAW
~02
~IA
~KM
~WT
24P
AAHHS
AASVR
ABEFU
ABEML
ACCFJ
ACQPF
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
DOOOF
ESX
HGD
HQ2
IPNFZ
JSODD
LPU
MVM
NEJ
RCA
WHG
WRC
XOL
YXE
AAYXX
ABGDZ
ADXHL
AGHNM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7S9
L.6
7X8
-
02
08R
0R
31
3N
8RP
AAPBV
ABFLS
ABHUG
ABPTK
ABUFD
ABWRO
ACXME
ADACO
ADAWD
ADDAD
ADZLD
AESBF
AFMIJ
AGJLS
AS
CWIXF
DWIUU
F20
GA
HZ
IA
KM
LW7
NF
P4A
QVL
UNR
WT
X
XHC
Y3
ZY4
ID FETCH-LOGICAL-c6018-7638f8391a238691effcb6cee8b83224a89da43db79df680715479ecd780138a3
IEDL.DBID DR2
ISSN 0028-646X
1469-8137
IngestDate Fri Feb 05 18:08:26 EST 2021
Fri Jul 11 05:47:02 EDT 2025
Fri Jul 11 11:53:26 EDT 2025
Fri Jul 11 07:27:37 EDT 2025
Fri Jul 25 10:41:37 EDT 2025
Mon Jul 21 05:35:45 EDT 2025
Tue Jul 01 03:09:07 EDT 2025
Thu Apr 24 22:52:22 EDT 2025
Wed Jan 22 16:26:40 EST 2025
Thu Jul 03 22:53:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6018-7638f8391a238691effcb6cee8b83224a89da43db79df680715479ecd780138a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 21477008
PQID 1817100618
PQPubID 2026848
PageCount 16
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_406124
proquest_miscellaneous_884124357
proquest_miscellaneous_1400127673
proquest_miscellaneous_1022564412
proquest_journals_1817100618
pubmed_primary_21477008
crossref_primary_10_1111_j_1469_8137_2011_03708_x
crossref_citationtrail_10_1111_j_1469_8137_2011_03708_x
wiley_primary_10_1111_j_1469_8137_2011_03708_x_NPH3708
jstor_primary_20869182
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate July 2011
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: July 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2011
Publisher John Wiley & Sons
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons
– name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References 2010; 97
2010; 13
2000; 87
2004; 24
1997; 45
1975
2010; 185
1973
2010; 186
2000; 90
2006; 170
2008; 102
1988; 75
1989; 46
2007; 77
1978
1991; 119
2009; 12
2010; 26
2009; 97
2000; 14
2000; 15
2002; 89
2007; 176
2009; 90
2007; 175
1988; 88
2006; 29
1983
2008; 22
1982
2003; 168
2006; 167
1998; 14
1994; 75
1988
2007; 169
1989; 64
2007; 447
2002; 131
2010; 207
2009; 181
2002; 130
2004; 140
2003; 35
1988; 11
2005; 86
2000; 70
1991
2005; 19
2000; 78
2000; 104
2003; 26
1994; 15
1998; 1
1977; 111
2008; 40
2007; 88
1994; 98
2001; 32
2007; 39
1989; 83
2002; 53
2006; 76
2005; 139
1998; 114
1999; 80
2003; 12
2004; 74
1989; 76
2000
2001; 291
1989; 70
1999; 14
2006; 127
2007; 21
2003; 84
2009; 23
2004; 85
2009; 24
2000; 23
2010
2002; 33
2009
1999; 143
2004
2011; 34
2003
2002
2003; 136
2004; 107
2001; 126
1998; 23
1993; 142
1987; 18
1991; 7
2003; 132
2002; 25
2004; 92
1994; 126
1993; 16
2000; 148
2006; 87
2005; 167
2001; 4
1993; 96
1977; 52
2006; 148
e_1_2_6_114_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_110_1
e_1_2_6_19_1
Myers BA (e_1_2_6_65_1) 1998; 23
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_99_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_41_1
e_1_2_6_83_1
Navarro G (e_1_2_6_67_1) 2002
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_113_1
Tilman D (e_1_2_6_98_1) 1988
e_1_2_6_35_1
Hutchinson G (e_1_2_6_48_1) 1978
e_1_2_6_12_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
Maharjan SK (e_1_2_6_60_1)
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_101_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_112_1
Tilman D (e_1_2_6_97_1) 1982
Jardim A (e_1_2_6_52_1) 2003
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_100_1
e_1_2_6_7_1
Goldstein G (e_1_2_6_39_1) 1989; 46
Lebrija‐Trejos E (e_1_2_6_57_1) 2009
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_115_1
Ellenberg H (e_1_2_6_31_1) 1991
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_111_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_29_1
e_1_2_6_44_1
References_xml – volume: 87
  start-page: 1281
  year: 2006
  end-page: 1288
  article-title: Life history trade‐offs in tropical trees and lianas
  publication-title: Ecology
– volume: 170
  start-page: 807
  year: 2006
  end-page: 818
  article-title: Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms
  publication-title: New Phytologist
– volume: 181
  start-page: 890
  year: 2009
  end-page: 900
  article-title: Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests
  publication-title: New Phytologist
– volume: 104
  start-page: 13
  year: 2000
  end-page: 23
  article-title: Hydraulic constraints on plant gas exchange
  publication-title: Agricultural and Forest Meteorology
– volume: 75
  start-page: 81
  year: 1988
  end-page: 86
  article-title: On the definition of ecological species groups in tropical rain forests
  publication-title: Vegetatio
– volume: 18
  start-page: 431
  year: 1987
  end-page: 451
  article-title: Tropical rainforest gaps and tree species diversity
  publication-title: Annual Review of Ecology and Systematics
– year: 1975
– volume: 84
  start-page: 3174
  year: 2003
  end-page: 3185
  article-title: Gap‐dependent recruitment, realized vital rates, and size distributions of tropical trees
  publication-title: Ecology
– volume: 15
  start-page: 335
  year: 1994
  end-page: 360
  article-title: Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction?
  publication-title: IAWA Journal
– volume: 21
  start-page: 1044
  year: 2007
  end-page: 1054
  article-title: Physical defense traits enhance seedling survival of Neotropical tree species
  publication-title: Functional Ecology
– volume: 167
  start-page: 403
  year: 2005
  end-page: 413
  article-title: Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees
  publication-title: New Phytologist
– volume: 16
  start-page: 511
  year: 1993
  end-page: 519
  article-title: Different vulnerabilities of L. to freeze‐ and summer drought‐induced xylem embolism: an ecological interpretation
  publication-title: Plant, Cell & Environment
– volume: 53
  start-page: 2239
  year: 2002
  end-page: 2247
  article-title: Drought until death do us part: a case study of the desiccation‐tolerance of a tropical moist forest seedling‐tree, (Hemsl.) Fritsch
  publication-title: Journal of Experimental Botany
– volume: 167
  start-page: 758
  year: 2006
  end-page: 765
  article-title: Leaf traits determine the growth–survival trade‐off across rain forest tree species
  publication-title: The American Naturalist
– volume: 12
  start-page: 191
  year: 2003
  end-page: 205
  article-title: Global synthesis of leaf area index observations: implications for ecological and remote sensing studies
  publication-title: Global Ecology and Biogeography
– volume: 143
  start-page: 143
  year: 1999
  end-page: 154
  article-title: Research review: low‐light carbon balance and shade tolerance in the seedlings of woody plants: do winter deciduous and broad‐leaved evergreen species differ?
  publication-title: New Phytologist
– volume: 98
  start-page: 419
  year: 1994
  end-page: 428
  article-title: Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees
  publication-title: Oecologia
– volume: 25
  start-page: 1435
  year: 2002
  end-page: 1444
  article-title: Hydraulic and photosynthetic co‐ordination in seasonally dry tropical forest trees
  publication-title: Plant, Cell & Environment
– volume: 13
  start-page: 1338
  year: 2010
  end-page: 1347
  article-title: Decoupled leaf and stem economics in rain forest trees
  publication-title: Ecology Letters
– volume: 19
  start-page: 312
  year: 2005
  end-page: 321
  article-title: Drought effects on seedling survival in a tropical moist forest
  publication-title: Trees – Structure and Function
– volume: 25
  start-page: 251
  year: 2002
  end-page: 263
  article-title: Water deficits and hydraulic limits to leaf water supply
  publication-title: Plant, Cell & Environment
– volume: 140
  start-page: 543
  year: 2004
  end-page: 550
  article-title: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in panamanian forest canopy trees
  publication-title: Oecologia
– volume: 97
  start-page: 207
  year: 2010
  end-page: 215
  article-title: Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity
  publication-title: American Journal of Botany
– volume: 126
  start-page: 457
  year: 2001
  end-page: 461
  article-title: Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure
  publication-title: Oecologia
– volume: 85
  start-page: 2184
  year: 2004
  end-page: 2199
  article-title: Adaptive variation in the vulnerability of woody plants to xylem cavitation
  publication-title: Ecology
– volume: 26
  start-page: 497
  year: 2010
  end-page: 508
  article-title: Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest
  publication-title: Journal of Tropical Ecology
– volume: 23
  start-page: 329
  year: 1998
  end-page: 339
  article-title: Does irrigation affect leaf phenology in deciduous and evergreen trees of the savannas of northern Australia?
  publication-title: Australian Journal of Botany
– volume: 52
  start-page: 107
  year: 1977
  end-page: 145
  article-title: The maintenance of species‐richness in plant communities: the importance of the regeneration niche
  publication-title: Biological Reviews
– volume: 74
  start-page: 25
  year: 2004
  end-page: 44
  article-title: Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance
  publication-title: Ecological Monographs
– volume: 127
  start-page: 353
  year: 2006
  end-page: 359
  article-title: Ecological relevance of minimum seasonal water potentials
  publication-title: Physiologia Plantarum
– volume: 14
  start-page: 11
  year: 1999
  end-page: 16
  article-title: Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics
  publication-title: Trends in Ecology & Evolution
– volume: 168
  start-page: 139
  year: 2003
  end-page: 163
  article-title: The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in southern Spain
  publication-title: Plant Ecology
– volume: 185
  start-page: 481
  year: 2010
  end-page: 492
  article-title: The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species
  publication-title: New Phytologist
– volume: 19
  start-page: 305
  year: 2005
  end-page: 311
  article-title: Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north‐eastern Australia
  publication-title: Trees – Structure and Function
– year: 1973
– volume: 291
  start-page: 1059
  year: 2001
  end-page: 1062
  article-title: Hydrogel control of xylem hydraulic resistance in plants
  publication-title: Science
– year: 2010
– volume: 102
  start-page: 367
  year: 2008
  end-page: 375
  article-title: The relationships of wood‐, gas‐ and water fractions of tree stems to performance and life history variation in tropical trees
  publication-title: Annals of Botany
– volume: 39
  start-page: 610
  year: 2007
  end-page: 619
  article-title: Species dynamics during early secondary forest succession: recruitment, mortality and species turnover
  publication-title: Biotropica
– volume: 12
  start-page: 351
  year: 2009
  end-page: 366
  article-title: Towards a worldwide wood economics spectrum
  publication-title: Ecology Letters
– volume: 80
  start-page: 2662
  year: 1999
  article-title: Edaphic factors and the landscape‐scale distributions of tropical rain forest trees
  publication-title: Ecology
– volume: 75
  start-page: 1437
  year: 1994
  end-page: 1449
  article-title: Soil and stem water storage determine phenology and distribution of tropical dry forest trees
  publication-title: Ecology
– volume: 46
  start-page: 488s
  year: 1989
  end-page: 453s
  article-title: Gas exchange and water relations of evergreen and deciduous tropical savanna trees
  publication-title: Annals of Forest Science
– volume: 29
  start-page: 1618
  year: 2006
  end-page: 1628
  article-title: Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem
  publication-title: Plant, Cell & Environment
– volume: 7
  start-page: 85
  year: 1991
  end-page: 97
  article-title: Acclimation of seedlings of three mexican tropical rain forest tree species to a change in light availability
  publication-title: Journal of Tropical Ecology
– volume: 11
  start-page: 35
  year: 1988
  end-page: 40
  article-title: A method for measuring hydraulic conductivity and embolism in xylem
  publication-title: Plant, Cell & Environment
– volume: 32
  start-page: 113
  year: 2001
  end-page: 197
  article-title: Ecophysiology of trees of seasonally dry tropics: comparisons among phenologies
  publication-title: Advances in Ecological Research
– volume: 111
  start-page: 1169
  year: 1977
  end-page: 1194
  article-title: Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory
  publication-title: The American Naturalist
– year: 2002
– volume: 148
  start-page: 258
  year: 2006
  end-page: 269
  article-title: Short dry spells in the wet season increase mortality of tropical pioneer seedlings
  publication-title: Oecologia
– volume: 90
  start-page: 2755
  year: 2009
  end-page: 2765
  article-title: Seasonal and spatial variation in water availability drive habitat associations in a tropical forest
  publication-title: Ecology
– volume: 24
  start-page: 891
  year: 2004
  end-page: 899
  article-title: Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant
  publication-title: Tree Physiology
– volume: 107
  start-page: 110
  year: 2004
  end-page: 127
  article-title: Responses of temperate woody seedlings to shade and drought: do trade‐offs limit potential niche differentiation?
  publication-title: Oikos
– volume: 45
  start-page: 211
  year: 1997
  end-page: 224
  article-title: Seasonal patterns in soil moisture, vapour pressure deficit, tree canopy cover and predawn water potential in a northern Australian savanna
  publication-title: Australian Journal of Botany
– year: 1978
– volume: 130
  start-page: 1
  year: 2002
  end-page: 14
  article-title: Plant diversity in tropical forests: A review of mechanisms of species coexistence
  publication-title: Oecologia
– volume: 76
  start-page: 645
  year: 1989
  end-page: 656
  article-title: Techniques for measuring vessel lengths and diameters in stems of woody plants
  publication-title: American Journal of Botany
– volume: 90
  start-page: 67
  year: 2000
  end-page: 78
  article-title: Combined effects of shade and drought on tulip poplar seedlings: trade‐off in tolerance or facilitation?
  publication-title: Oikos
– volume: 14
  start-page: 803
  year: 1998
  end-page: 827
  article-title: Diversity, composition and structure of a tropical semideciduous forest in the Chiquitania region of Santa Cruz, Bolivia
  publication-title: Journal of Tropical Ecology
– volume: 97
  start-page: 311
  year: 2009
  end-page: 325
  article-title: Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought‐ and shade‐tolerance
  publication-title: Journal of Ecology
– volume: 24
  start-page: 65
  year: 2009
  end-page: 73
  article-title: Inter‐species variation of photosynthetic and xylem hydraulic traits in the deciduous and evergreen Euphorbiaceae tree species from a seasonally tropical forest in south‐western China
  publication-title: Ecological Research
– year: 2009
– volume: 88
  start-page: 574
  year: 1988
  end-page: 580
  article-title: Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? 1 Answers from a model
  publication-title: Plant Physiology
– volume: 132
  start-page: 1439
  year: 2003
  end-page: 1447
  article-title: Desiccation tolerance of five tropical seedlings in panama. relationship to a field assessment of drought performance
  publication-title: Plant Physiology
– volume: 34
  start-page: 137
  year: 2011
  end-page: 148
  article-title: Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits
  publication-title: Plant, Cell & Environment
– volume: 119
  start-page: 345
  year: 1991
  end-page: 360
  article-title: Tansley Review No. 34. The hydraulic architecture of trees and other woody plants
  publication-title: New Phytologist
– volume: 1
  start-page: 3
  year: 1998
  end-page: 31
  article-title: A reassessment of the strategies of plants which cope with shortages of resources
  publication-title: Perspectives in Plant Ecology, Evolution and Systematics
– volume: 23
  start-page: 93
  year: 2009
  end-page: 102
  article-title: Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution
  publication-title: Functional Ecology
– volume: 40
  start-page: 321
  year: 2008
  end-page: 331
  article-title: Seedling traits determine drought tolerance of tropical tree species
  publication-title: Biotropica
– volume: 23
  start-page: 1381
  year: 2000
  end-page: 1388
  article-title: Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from new Caledonian and Tasmanian rainforests
  publication-title: Plant, Cell & Environment
– volume: 176
  start-page: 764
  year: 2007
  end-page: 774
  article-title: Global meta‐analysis shows that relationships of leaf mass per area with species shade tolerance depend on leaf habit and ontogeny
  publication-title: New Phytologist
– article-title: Plant functional traits and the distribution of West African rain forest trees along the rainfall gradient
  publication-title: Biotropica
– year: 1982
– volume: 64
  start-page: 325
  year: 1989
  end-page: 336
  article-title: Different aspects of cavitation resistance in , a drought‐avoiding Mediterranean tree
  publication-title: Annals of Botany
– volume: 87
  start-page: 1733
  year: 2006
  end-page: 1743
  article-title: Leaf traits are good predictors of plant performance across 53 rain forest species
  publication-title: Ecology
– volume: 70
  start-page: 536
  year: 1989
  end-page: 538
  article-title: Canopy gaps and the two major groups of forest trees
  publication-title: Ecology
– volume: 35
  start-page: 318
  year: 2003
  end-page: 332
  article-title: Root/shoot allocation and root architecture in seedlings: variation among forest sites, microhabitats, and ecological groups
  publication-title: Biotropica
– volume: 186
  start-page: 708
  year: 2010
  end-page: 721
  article-title: Tissue‐level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species
  publication-title: New Phytologist
– volume: 88
  start-page: 1000
  year: 2007
  end-page: 1011
  article-title: Carbohydrate storage and light requirements of tropical moist and dry forest tree species
  publication-title: Ecology
– volume: 87
  start-page: 1287
  year: 2000
  end-page: 1299
  article-title: Vulnerability to xylem cavitation and the distribution of sonoran desert vegetation 1
  publication-title: American Journal of Botany
– year: 1983
– volume: 26
  start-page: 443
  year: 2003
  end-page: 450
  article-title: Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees
  publication-title: Plant, Cell & Environment
– volume: 148
  start-page: 195
  year: 2000
  end-page: 218
  article-title: Theoretical considerations of optimal conduit length for water transport in vascular plants
  publication-title: New Phytologist
– volume: 136
  start-page: 383
  year: 2003
  end-page: 393
  article-title: Comparative drought‐resistance of seedlings of 28 species of co‐occurring tropical woody plants
  publication-title: Oecologia
– volume: 126
  start-page: 695
  year: 1994
  end-page: 705
  article-title: Conduit diameter and drought‐induced embolism in Greene (Labiatae)
  publication-title: New Phytologist
– volume: 76
  start-page: 521
  year: 2006
  end-page: 547
  article-title: Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs
  publication-title: Ecological Monographs
– volume: 169
  start-page: 433
  year: 2007
  end-page: 442
  article-title: Are species adapted to their regeneration niche, adult niche, or both?
  publication-title: American Naturalist
– volume: 86
  start-page: 3063
  year: 2005
  end-page: 3077
  article-title: Edaphic specialization in tropical trees: physiological correlates and responses to reciprocal transplantation
  publication-title: Ecology
– volume: 70
  start-page: 171
  year: 2000
  end-page: 207
  article-title: Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments
  publication-title: Ecological Monographs
– volume: 207
  start-page: 233
  year: 2010
  end-page: 244
  article-title: Morphological traits and water use strategies in seedlings of Mediterranean coexisting species
  publication-title: Plant Ecology
– year: 2003
– year: 2000
– volume: 14
  start-page: 244
  year: 2000
  end-page: 251
  article-title: On the measurement of growth with applications to the modelling and analysis of plant growth
  publication-title: Functional Ecology
– volume: 142
  start-page: 78
  year: 1993
  end-page: 92
  article-title: Evolution of suites of traits in response to environmental stress
  publication-title: American Naturalist
– volume: 447
  start-page: 80
  year: 2007
  end-page: 82
  article-title: Drought sensitivity shapes species distribution patterns in tropical forests
  publication-title: Nature
– volume: 96
  start-page: 19
  year: 1993
  end-page: 23
  article-title: Trade‐off between water transport efficiency and leaf life‐span in a tropical dry forest
  publication-title: Oecologia
– volume: 77
  start-page: 99
  year: 2007
  end-page: 115
  article-title: Cavitation resistance among 26 chaparral species of southern california
  publication-title: Ecological Monographs
– volume: 78
  start-page: 1336
  year: 2000
  end-page: 1347
  article-title: In situ field measurements of photosynthetic rates of tropical tree species: a test of the functional group hypothesis
  publication-title: Canadian Journal of Botany
– volume: 131
  start-page: 175
  year: 2002
  end-page: 185
  article-title: The combined impacts of deep shade and drought on the growth and biomass allocation of shade‐tolerant woody seedlings
  publication-title: Oecologia
– start-page: 41
  year: 2004
  end-page: 52
– volume: 170
  start-page: 819
  year: 2006
  end-page: 834
  article-title: Interactions of drought and shade effects on seedlings of four species: physiological and structural leaf responses
  publication-title: New Phytologist
– volume: 92
  start-page: 214
  year: 2004
  end-page: 229
  article-title: Tree species distributions and local habitat variation in the amazon: large forest plot in eastern ecuador
  publication-title: Journal of Ecology
– volume: 33
  start-page: 125
  year: 2002
  end-page: 159
  article-title: Plant ecological strategies: some leading dimensions of variation between species
  publication-title: Annual Reviews in Ecology and Systematics
– volume: 175
  start-page: 686
  year: 2007
  end-page: 698
  article-title: Diversity of hydraulic traits in nine species growing in tropical forests with contrasting precipitation
  publication-title: New Phytologist
– year: 1988
– volume: 15
  start-page: 14
  year: 2000
  end-page: 24
  article-title: Limitation of stomatal conductance by hydraulic traits: sensing or preventing xylem cavitation?
  publication-title: Trees – Structure and Function
– volume: 22
  start-page: 221
  year: 2008
  end-page: 231
  article-title: The role of desiccation tolerance in determining tree species distributions along the Malay‐Thai peninsula
  publication-title: Functional Ecology
– volume: 4
  start-page: 97
  year: 2001
  end-page: 115
  article-title: Functional and ecological xylem anatomy
  publication-title: Perspectives in Plant Ecology, Evolution and Systematics
– volume: 83
  start-page: 49
  year: 1989
  end-page: 69
  article-title: A theory of the spatial and temporal dynamics of plant communities
  publication-title: Plant Ecology
– volume: 139
  start-page: 546
  year: 2005
  end-page: 556
  article-title: Do xylem fibers affect vessel cavitation resistance?
  publication-title: Plant Physiology
– volume: 89
  start-page: 820
  year: 2002
  end-page: 828
  article-title: Shoot dieback during prolonged drought in (Rhamnaceae) chaparral of California: a possible case of hydraulic failure
  publication-title: American Journal of Botany
– year: 1991
– volume: 114
  start-page: 293
  year: 1998
  end-page: 298
  article-title: Growth dynamics of root and shoot hydraulic conductance in seedlings of five neotropical tree species: scaling to show possible adaptation to differing light regimes
  publication-title: Oecologia
– ident: e_1_2_6_14_1
  doi: 10.1093/treephys/24.8.891
– ident: e_1_2_6_58_1
  doi: 10.1111/j.1365-3040.1993.tb00898.x
– ident: e_1_2_6_50_1
  doi: 10.1104/pp.104.058404
– volume: 23
  start-page: 329
  year: 1998
  ident: e_1_2_6_65_1
  article-title: Does irrigation affect leaf phenology in deciduous and evergreen trees of the savannas of northern Australia?
  publication-title: Australian Journal of Botany
– ident: e_1_2_6_100_1
  doi: 10.1104/pp.102.018937
– ident: e_1_2_6_55_1
  doi: 10.1111/j.1469-8137.2010.03212.x
– ident: e_1_2_6_84_1
  doi: 10.1007/s00442-002-0873-0
– ident: e_1_2_6_91_1
  doi: 10.1046/j.0016-8025.2001.00799.x
– ident: e_1_2_6_94_1
  doi: 10.1086/503056
– ident: e_1_2_6_12_1
  doi: 10.1046/j.1365-3040.2003.00975.x
– ident: e_1_2_6_6_1
  doi: 10.1890/04-0598
– ident: e_1_2_6_107_1
  doi: 10.1111/j.1744-7429.2007.00316.x
– ident: e_1_2_6_109_1
  doi: 10.1146/annurev.ecolsys.33.010802.150452
– ident: e_1_2_6_102_1
  doi: 10.1104/pp.88.3.574
– ident: e_1_2_6_106_1
  doi: 10.1111/j.0022-0477.2004.00876.x
– ident: e_1_2_6_10_1
  doi: 10.2307/1937467
– ident: e_1_2_6_54_1
  doi: 10.1007/BF00324232
– ident: e_1_2_6_72_1
  doi: 10.1086/512045
– ident: e_1_2_6_78_1
  doi: 10.1111/j.1469-8137.2009.03092.x
– ident: e_1_2_6_104_1
  doi: 10.1007/s004420050450
– ident: e_1_2_6_96_1
  doi: 10.1007/BF00044629
– ident: e_1_2_6_11_1
  doi: 10.1046/j.1365-3040.2000.00647.x
– ident: e_1_2_6_62_1
  doi: 10.1017/S0266467410000271
– ident: e_1_2_6_71_1
  doi: 10.2307/2656722
– ident: e_1_2_6_86_1
  doi: 10.1111/j.1469-8137.2005.01432.x
– ident: e_1_2_6_113_1
  doi: 10.3732/ajb.0900178
– ident: e_1_2_6_114_1
  doi: 10.1007/978-3-662-22627-8
– ident: e_1_2_6_56_1
  doi: 10.1111/j.1365-2435.2008.01483.x
– ident: e_1_2_6_26_1
  doi: 10.3732/ajb.89.5.820
– ident: e_1_2_6_37_1
  doi: 10.1002/j.1537-2197.1989.tb11360.x
– ident: e_1_2_6_45_1
  doi: 10.1111/j.1469-8137.1994.tb02964.x
– ident: e_1_2_6_90_1
  doi: 10.1007/BF00318025
– ident: e_1_2_6_25_1
  doi: 10.1890/0012-9615(2000)070[0171:IORCIF]2.0.CO;2
– ident: e_1_2_6_34_1
  doi: 10.1007/s00442-006-0368-5
– ident: e_1_2_6_82_1
  doi: 10.1046/j.1365-2435.2000.00414.x
– ident: e_1_2_6_93_1
  doi: 10.1046/j.0016-8025.2001.00799.x
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1399-3054.2006.00718.x
– ident: e_1_2_6_17_1
  doi: 10.1111/j.1461-0248.2009.01285.x
– ident: e_1_2_6_51_1
  doi: 10.1890/05-1879
– ident: e_1_2_6_42_1
  doi: 10.1078/1433-8319-00049
– ident: e_1_2_6_105_1
  doi: 10.1007/978-3-662-04931-0
– ident: e_1_2_6_28_1
  doi: 10.1071/BT96018
– ident: e_1_2_6_68_1
  doi: 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2
– ident: e_1_2_6_23_1
  doi: 10.1890/08-1482.1
– ident: e_1_2_6_36_1
  doi: 10.1007/s00468-004-0393-0
– volume: 46
  start-page: 488s
  year: 1989
  ident: e_1_2_6_39_1
  article-title: Gas exchange and water relations of evergreen and deciduous tropical savanna trees
  publication-title: Annals of Forest Science
– ident: e_1_2_6_21_1
  doi: 10.1890/0012-9658(1999)080[2662:EFATLS]2.0.CO;2
– ident: e_1_2_6_75_1
  doi: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
– ident: e_1_2_6_47_1
  doi: 10.1034/j.1600-0706.2000.900107.x
– ident: e_1_2_6_103_1
  doi: 10.1093/jxb/erf078
– volume-title: Tropical dry forest recovery: processes and causes of change
  year: 2009
  ident: e_1_2_6_57_1
– ident: e_1_2_6_41_1
  doi: 10.1111/j.1469-185X.1977.tb01347.x
– ident: e_1_2_6_60_1
  article-title: Plant functional traits and the distribution of West African rain forest trees along the rainfall gradient
  publication-title: Biotropica
– ident: e_1_2_6_30_1
  doi: 10.1016/S0065-2504(01)32012-3
– ident: e_1_2_6_3_1
  doi: 10.1111/j.1365-2435.2007.01320.x
– ident: e_1_2_6_88_1
  doi: 10.1007/s00442-004-1624-1
– ident: e_1_2_6_4_1
  doi: 10.1046/j.1466-822X.2003.00026.x
– ident: e_1_2_6_7_1
  doi: 10.1111/j.1461-0248.2010.01517.x
– ident: e_1_2_6_44_1
  doi: 10.1007/s004420100628
– ident: e_1_2_6_73_1
  doi: 10.1093/aob/mcn103
– volume-title: Plant strategies and the dynamics and structure of plant communities
  year: 1988
  ident: e_1_2_6_98_1
– ident: e_1_2_6_81_1
  doi: 10.1111/j.1469-8137.2006.01713.x
– ident: e_1_2_6_49_1
– ident: e_1_2_6_18_1
  doi: 10.1007/s11284-008-0482-4
– ident: e_1_2_6_61_1
  doi: 10.1890/02-0538
– ident: e_1_2_6_110_1
  doi: 10.2307/1940195
– ident: e_1_2_6_66_1
  doi: 10.1007/s004680000071
– ident: e_1_2_6_22_1
– ident: e_1_2_6_63_1
  doi: 10.1111/j.1365-2745.2008.01466.x
– ident: e_1_2_6_92_1
  doi: 10.1111/j.1365-3040.1988.tb01774.x
– ident: e_1_2_6_2_1
  doi: 10.1890/03-4022
– volume-title: Guía de los árboles y arbustos del bosque seco Chiquitano, Bolivia
  year: 2003
  ident: e_1_2_6_52_1
– ident: e_1_2_6_64_1
  doi: 10.1111/j.1365-3040.2010.02231.x
– ident: e_1_2_6_33_1
  doi: 10.1038/nature05747
– ident: e_1_2_6_101_1
  doi: 10.1111/j.1469-8137.1991.tb00035.x
– ident: e_1_2_6_53_1
  doi: 10.1017/S0266467498000583
– ident: e_1_2_6_69_1
  doi: 10.1111/j.1744-7429.2003.tb00586.x
– volume-title: Geografía ecológica de Bolivia: Vegetación y ambientes acuáticos
  year: 2002
  ident: e_1_2_6_67_1
– ident: e_1_2_6_111_1
  doi: 10.2307/1940675
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1469-8137.2007.02137.x
– ident: e_1_2_6_32_1
  doi: 10.1139/b00-095
– ident: e_1_2_6_9_1
  doi: 10.1079/9780851997346.0041
– ident: e_1_2_6_24_1
  doi: 10.1046/j.1469-8137.2000.00763.x
– ident: e_1_2_6_38_1
  doi: 10.1890/0012-9658(2006)87[1281:LHTITT]2.0.CO;2
– ident: e_1_2_6_85_1
  doi: 10.1023/A:1024423820136
– ident: e_1_2_6_43_1
  doi: 10.1078/1433-8319-00017
– ident: e_1_2_6_87_1
  doi: 10.1093/oxfordjournals.aob.a087848
– ident: e_1_2_6_115_1
  doi: 10.1126/science.1057175
– volume-title: Resource competition and community structure
  year: 1982
  ident: e_1_2_6_97_1
– ident: e_1_2_6_112_1
  doi: 10.1890/02-0038
– ident: e_1_2_6_108_1
  doi: 10.1046/j.1469-8137.1999.00425.x
– ident: e_1_2_6_70_1
  doi: 10.1111/j.1365-3040.2006.01539.x
– ident: e_1_2_6_29_1
  doi: 10.1016/S0169-5347(98)01532-8
– ident: e_1_2_6_74_1
  doi: 10.1111/j.1469-8137.2008.02715.x
– ident: e_1_2_6_76_1
  doi: 10.1890/06-0984
– volume-title: Zeigerwerte von Pflanzen in Mitteleuropa
  year: 1991
  ident: e_1_2_6_31_1
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1365-2435.2007.01374.x
– ident: e_1_2_6_27_1
  doi: 10.1146/annurev.es.18.110187.002243
– ident: e_1_2_6_99_1
  doi: 10.1163/22941932-90001369
– ident: e_1_2_6_40_1
  doi: 10.1086/283244
– ident: e_1_2_6_80_1
  doi: 10.1111/j.1469-8137.2006.01712.x
– ident: e_1_2_6_83_1
  doi: 10.1111/j.0030-1299.2004.13184.x
– ident: e_1_2_6_77_1
  doi: 10.1111/j.1744-7429.2007.00380.x
– volume-title: An introduction to population ecology
  year: 1978
  ident: e_1_2_6_48_1
– ident: e_1_2_6_46_1
  doi: 10.1007/s11258-009-9668-2
– ident: e_1_2_6_79_1
  doi: 10.1017/S0266467400005137
– ident: e_1_2_6_59_1
  doi: 10.1111/j.1469-8137.2007.02264.x
– ident: e_1_2_6_15_1
  doi: 10.1525/9780520320567
– ident: e_1_2_6_16_1
  doi: 10.1086/285524
– ident: e_1_2_6_95_1
– ident: e_1_2_6_35_1
  doi: 10.1007/s00442-003-1290-8
– ident: e_1_2_6_13_1
  doi: 10.1046/j.1365-3040.2002.00919.x
– ident: e_1_2_6_19_1
  doi: 10.1007/s00468-004-0392-1
– ident: e_1_2_6_89_1
  doi: 10.1007/BF00031680
SSID ssj0009562
Score 2.4771466
Snippet Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such...
Summary • Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species’ life history...
Summary * Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history...
times Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies,...
• Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such...
Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species’ life history strategies, such...
SourceID wageningen
proquest
pubmed
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 480
SubjectTerms Adaptation, Physiological
biomass allocation
Bolivia
cavitation resistance
correlation
Deciduous trees
desiccation-tolerance
Drought
Drought resistance
drought tolerance
Droughts
Dry forests
Dry matter
dry matter content
Ecosystem
Evergreen trees
fluid mechanics
Forest ecology
Forest trees
hydraulic conductivity
Hydraulic properties
Hydraulics
juvenile crown exposure
leaf traits
leaf water potential
Leaves
Life history
life‐history strategies
midday dry season leaf water potential
photosynthetic traits
physiology
plant architecture
Plant ecology
Plant Leaves
Plant Leaves - physiology
Plant species
Plant Stems
Plant Stems - physiology
Plant Transpiration
Plant Vascular Bundle
Plant Vascular Bundle - physiology
Plants
regeneration niche
sapwood
Seasons
Shade tolerance
Species
stems
Stress, Physiological
Sunlight
trade-off
trade‐offs
Trees
Trees - physiology
Tropical Climate
tropical dry forest
Tropical forests
Water
Water potential
water potentials
Water transport
Wood
wood density
woody-plants
xylem cavitation
Title Hydraulics and life history of tropical dry forest tree species: coordination of species' drought and shade tolerance
URI https://www.jstor.org/stable/20869182
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1469-8137.2011.03708.x
https://www.ncbi.nlm.nih.gov/pubmed/21477008
https://www.proquest.com/docview/1817100618
https://www.proquest.com/docview/1022564412
https://www.proquest.com/docview/1400127673
https://www.proquest.com/docview/884124357
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F406124
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB6hikM58F9qKGiRuDqK187umhsgqohDhRCVclvtn0XUyK5iWyE99TV4PZ6EGdtJSVVQhTglkXdW3s3M7De7s98AvOGCarinNraJ43FmbYiNlSEmLnRhvKPL15RtcSKmp9mn2WQ25D_RXZieH2K74UaW0flrMnBj6-tGTltYqRyYOFM5ViPCk5S6RfjoC_-Nf1fwDSGzyMRsN6nnxo52Vqo-WfEmGHoP9ldo-mV3F2oX4nZr1PEDONuMrk9NORu1jR25i2vEj_9n-A_h_gBl2bte9x7BnVA-hrvvK4Sb6yewmq790rSLuauZKT1bzIvAenbjNasK1iyrc1IQ5vE3ImccLKMTckZ3PzF8f8tchYHxvN-tJInhwc_LHyhDxYWaruP6m_GBNdUiUI2Q8BROjz9-_TCNhyoPscNgUMXo4FSBMC0xiB5EnoSicFbg2q0seZvMqNybjGigc18IhZBoksk8OC8VnbKa9AD2yqoMh8CEw1h_Mg55wS0CUW-5SXMveeoKb5VQEcjNP6rdQIFOlTgWeicUyjXNqqZZ1d2s6u8RJFvJ854G5BYyB53SbAX4mManeARHGy3Sg8eoNSItIloSCb7l6-1jtHU6wDFlqFpsg4BrQgCW_6VN1mUTCJlGwP7QRimqOZ5OZATPeiW-esckkxJxYQTplVbrkupa1ZqoyAfd1Kt2qcsFfWAPtSZcyLMIRKezt54jffJ5St-e_6vgC9jvd_kpgfoI9pplG14iTGzsq84B_AJ0WFmN
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELfQQGI88H8QGGAkXlM1Tmo7vAFiCjAqhDapb5b_RauIkqlJVMoTX4OvxyfhLkk7Og00IZ7aKj4rdu_Ov7PPvyPkBeNYwz02oYksCxNjfKiN8CFyoXPtLF6-xmyLKc-Ok_ezyWwoB4R3YXp-iM2GG1pG56_RwHFD-ryV4x5WLAYqzliM5QgA5VUs8N3FV5_Zbwy8nK0pmXnCZ9tpPRf2tLVW9emKFwHRG2R3CcZfdrehtkFut0od3CLFenx9csqXUduYkf12jvrxP03AbXJzQLP0Va9-d8gVX94l115XgDhX98gyW7mFbou5rakuHS3muac9wfGKVjltFtUp6gh18BvAM4yW4iE5xeufEMG_pLaC2Hjeb1iixPDg5_cfIIP1hZqu4_pEO0-bqvBYJsTfJ8cHb4_eZOFQ6CG0EA_KEHyczAGpRRoABE8jn-fWcFi-pUGHk2iZOp0gE3Tqci4BFU0SkXrrhMSDVh3vkZ2yKv1DQrmFcH8y9mnODGBRZ5iOUydYbHNnJJcBEeu_VNmBBR2LcRRqKxpKFc6qwllV3ayqrwGJNpKnPRPIJWT2Oq3ZCLAxjk-ygOyv1UgNTqNWALaQa4lH8JbPN4_B3PEMR5e-aqENYK4JYlj2lzZJl1DARRwQ-oc2UmLZ8XgiAvKg1-Kzd4wSIQAaBiQ-U2tVYmmrWiEb-aCcatkuVFngB_RQK4SGLAkI75T20nOkpp8y_PboXwWfkevZ0cdDdfhu-uEx2e03_TGfep_sNIvWPwHU2JinnTf4BfFEXag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQgtBy4L0QWMBIXFM1Tmo73IClKg9VK8RKvVl-RVQbJVWTqJQTf4O_xy9hJkm7dLWgFeLUVvFYsTsz_sYef0PIC8axhntsQhNZFibG-FAb4UPkQufaWbx8jdkWUz45Sd7PRrM-_wnvwnT8ENsNN7SM1l-jgS9cdt7IcQsrFj0TZyyGcgB48mrChxI1_OgT-42Al7MNIzNP-Gw3q-fCnnaWqi5b8SIceoPsr8D2i_Yy1C7GbRep8S1yuhlel5tyOmhqM7DfzjE__p_x3yY3eyxLX3XKd4dc8cVdcu11CXhzfY-sJmu31E0-txXVhaP5PPO0ozde0zKj9bJcoIZQB78BOsNgKR6RU7z8CfH7S2pLiIzn3XYlSvQPfn7_ATJYXahuO66-aOdpXeYei4T4--Rk_Pbzm0nYl3kILUSDMgQPJzPAaZEG-MDTyGeZNRwWb2nQ3SRapk4nyAOduoxLwESjRKTeOiHxmFXHB2SvKAv_kFBuIdgfDX2aMQNI1Bmm49QJFtvMGcllQMTmH1W250DHUhy52omFUoWzqnBWVTur6mtAoq3kouMBuYTMQas0WwE2xPFJFpDDjRap3mVUCqAWMi3xCN7y-fYxGDue4OjClw20AcQ1QgTL_tImadMJuIgDQv_QRkosOh6PREAedEp89o5RIgQAw4DEZ1qtCixsVSnkIu91U62apSpy_IAeKoXAkCUB4a3OXnqO1PR4gt8e_avgM3L9-GisPr6bfnhM9rsdf0ymPiR79bLxTwAy1uZp6wt-AaGiXGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydraulics+and+life+history+of+tropical+dry+forest+tree+species%3A+coordination+of+species%E2%80%99+drought+and+shade+tolerance&rft.jtitle=The+New+phytologist&rft.au=Markesteijn%2C+Lars&rft.au=Poorter%2C+Lourens&rft.au=Bongers%2C+Frans&rft.au=Paz%2C+Horacio&rft.date=2011-07-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=191&rft.issue=2&rft.spage=480&rft.epage=495&rft_id=info:doi/10.1111%2Fj.1469-8137.2011.03708.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1469_8137_2011_03708_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon