Benchmarking HLA genotyping and clarifying HLA impact on survival in tumor immunotherapy
Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunothera...
Saved in:
Published in | Molecular oncology Vol. 15; no. 7; pp. 1764 - 1782 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.07.2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a ‘Gun‐Bullet’ model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA‐HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top‐3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the ‘Gun‐Bullet’ model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone.
Human leucocyte antigen (HLA) genotyping can provide important insights for tumor prognosis and cancer immunotherapy. We performed comprehensive HLA benchmarking in TCGA cohorts, based on allele concordance results generated from eight in silico tools. Moreover, we investigated the impact of HLA alleles on tumor survival. Our proposed ‘Gun‐Bullet’ model considers immune cytotoxicity to interpret the survival impact of HLA alleles and tumor mutation burden. |
---|---|
AbstractList | Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through
in silico
tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a ‘Gun‐Bullet’ model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA‐HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top‐3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the ‘Gun‐Bullet’ model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone. Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a ‘Gun‐Bullet’ model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA‐HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top‐3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the ‘Gun‐Bullet’ model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone. Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a 'Gun-Bullet' model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA-HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top-3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the 'Gun-Bullet' model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone.Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a 'Gun-Bullet' model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA-HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top-3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the 'Gun-Bullet' model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone. Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a ‘Gun‐Bullet’ model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA‐HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top‐3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the ‘Gun‐Bullet’ model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone. Human leucocyte antigen (HLA) genotyping can provide important insights for tumor prognosis and cancer immunotherapy. We performed comprehensive HLA benchmarking in TCGA cohorts, based on allele concordance results generated from eight in silico tools. Moreover, we investigated the impact of HLA alleles on tumor survival. Our proposed ‘Gun‐Bullet’ model considers immune cytotoxicity to interpret the survival impact of HLA alleles and tumor mutation burden. Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a ‘Gun‐Bullet’ model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA‐HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top‐3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the ‘Gun‐Bullet’ model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone. Human leucocyte antigen (HLA) genotyping can provide important insights for tumor prognosis and cancer immunotherapy. We performed comprehensive HLA benchmarking in TCGA cohorts, based on allele concordance results generated from eight in silico tools. Moreover, we investigated the impact of HLA alleles on tumor survival. Our proposed ‘Gun‐Bullet’ model considers immune cytotoxicity to interpret the survival impact of HLA alleles and tumor mutation burden. |
Audience | Academic |
Author | Li, Xiangyong Ye, Hao Zhou, Chi Huang, Bingding Chen, Ke Liu, Qi |
AuthorAffiliation | 3 College of Big Data and Internet Shenzhen Technology University Shenzhen China 2 Sinotech Genomics Shenzhen China 1 Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University) Ministry of Education Orthopaedic Department of Tongji Hospital Bioinformatics Department School of Life Sciences and Technology Tongji University Shanghai China 4 CStone Pharmaceuticals Co., Ltd. Suzhou China |
AuthorAffiliation_xml | – name: 1 Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University) Ministry of Education Orthopaedic Department of Tongji Hospital Bioinformatics Department School of Life Sciences and Technology Tongji University Shanghai China – name: 2 Sinotech Genomics Shenzhen China – name: 3 College of Big Data and Internet Shenzhen Technology University Shenzhen China – name: 4 CStone Pharmaceuticals Co., Ltd. Suzhou China |
Author_xml | – sequence: 1 givenname: Xiangyong orcidid: 0000-0001-6914-9290 surname: Li fullname: Li, Xiangyong organization: Sinotech Genomics – sequence: 2 givenname: Chi orcidid: 0000-0002-2417-6663 surname: Zhou fullname: Zhou, Chi organization: Tongji University – sequence: 3 givenname: Ke orcidid: 0000-0003-0878-0171 surname: Chen fullname: Chen, Ke organization: Tongji University – sequence: 4 givenname: Bingding orcidid: 0000-0002-4748-2882 surname: Huang fullname: Huang, Bingding organization: Shenzhen Technology University – sequence: 5 givenname: Qi orcidid: 0000-0003-2578-1221 surname: Liu fullname: Liu, Qi email: qiliu@tongji.edu.cn organization: Tongji University – sequence: 6 givenname: Hao orcidid: 0000-0003-3565-0372 surname: Ye fullname: Ye, Hao email: haoye.ecust@gmail.com organization: CStone Pharmaceuticals Co., Ltd |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33411982$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v0zAYxiM0xD7gzA1F4sKlnV9_54LUTcAmFe0CEjfLdezWJbGLkxT1v8dZ10EnEMoh8fv-nid5oue8OAkx2KJ4DWgKCOFLkEJOEOYwBSwr9qw4e5yc5Gcm6ETICk6L865bI8R4xasXxSkhFKCS-Kz4dmWDWbU6ffdhWd7MZ-XShtjvNuNRh7o0jU7e7Q5b32606csYym5IW7_VTelD2Q9tTHnXDlm7sklvdi-L5043nX31cL8ovn788OX6ZjK_-3R7PZtPDEfAJmCMdULUtdPUVoIwwik4a3FNKuBC64otiKFMECAIFgITJy0SlFvJidNALorbvW8d9Vptks9Zdipqr-4HMS2VTr03jVUgHAYsgOHaUkzrxUJy4ShjhEqsQWSv93uvzbBobW1s6JNujkyPN8Gv1DJulcSMACLZ4N2DQYo_Btv1qvWdsU2jg41DpzAVnHHJ6Ii-fYKu45BC_lUKMyoYxoji39RS5wA-uJjfa0ZTNRMEI84ynKnpX6h81bb1JjfG-Tw_Erz5M-hjwkMvMsD2gEmx65J1yvhe9z6OuX2jAKmxf2psmxrbpu77l3WXT3QH638r-F7xM3_j7n-4-nw3x3vhLwUl6AY |
CitedBy_id | crossref_primary_10_1016_j_phrs_2023_106674 crossref_primary_10_1007_s43657_022_00084_9 crossref_primary_10_1016_j_transproceed_2024_08_028 crossref_primary_10_1093_neuonc_noaf040 crossref_primary_10_1136_jitc_2023_007268 crossref_primary_10_3390_cancers14153828 crossref_primary_10_1136_jitc_2023_008306 crossref_primary_10_1016_j_mcpro_2024_100743 crossref_primary_10_3389_fonc_2021_677826 crossref_primary_10_1038_s43018_021_00226_4 crossref_primary_10_1093_bib_bbad116 crossref_primary_10_1186_s12864_023_09351_z crossref_primary_10_1016_j_ccell_2022_10_013 crossref_primary_10_1158_0008_5472_CAN_21_3717 crossref_primary_10_1002_lary_30761 crossref_primary_10_3389_fimmu_2024_1394003 |
Cites_doi | 10.1093/bioinformatics/bts635 10.1038/nbt.3344 10.1016/j.immuni.2007.08.014 10.1200/JCO.2018.78.1963 10.1016/j.cell.2017.09.050 10.1007/978-1-4939-8546-3_13 10.1073/pnas.1707945114 10.1038/s12276-020-00493-8 10.1093/bioinformatics/btu548 10.1186/1471-2172-9-1 10.1186/s12859-017-1671-3 10.1146/annurev.immunol.20.100301.064828 10.1016/j.ccell.2019.01.003 10.1016/j.cell.2014.12.033 10.1038/nature12477 10.1186/s13073-017-0424-2 10.1186/s13059-018-1388-2 10.3389/fonc.2018.00027 10.1038/s41568-019-0116-x 10.1093/nar/gku1161 10.1126/science.aad0095 10.1186/s13073-019-0679-x 10.1038/nm.4333 10.1186/1471-2105-12-323 10.1158/2326-6066.CIR-15-0225 10.1073/pnas.2010274117 10.1056/NEJMc1713444 10.1245/s10434-018-6506-6 10.21037/tlcr.2018.08.02 10.1016/j.cell.2018.08.048 10.1038/nmeth.3337 10.1002/humu.23230 10.18632/aging.103516 10.1016/j.jtho.2019.02.008 10.1186/1471-2164-16-S2-S7 10.1016/j.cell.2017.10.001 10.1126/science.aao4572 10.1186/s13148-020-00907-4 10.1007/978-1-4939-8546-3_17 10.1093/bioinformatics/btz235 10.1016/j.isci.2019.10.028 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. COPYRIGHT 2021 John Wiley & Sons, Inc. 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1002/1878-0261.12895 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological science database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Benchmarking HLA genotyping |
EISSN | 1878-0261 |
EndPage | 1782 |
ExternalDocumentID | oai_doaj_org_article_17f2127152de424dbb867f4553482a17 PMC8253103 A732065254 33411982 10_1002_1878_0261_12895 MOL212895 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Shanghai Artificial Intelligence Technology Standard Project funderid: 19DZ2200900 – fundername: Project of Educational Commission of Guangdong Province of China funderid: 2020KZDXZ1215 – fundername: Fundamental Research Funds for the Central Universities, International Postdoctoral Exchange Fellowship Program funderid: 2020043 – fundername: National Natural Science Foundation of China funderid: 31970638; 61572361 – fundername: National Key Research and Development Program of China funderid: 2017YFC0908500; 2016YFC1303205 – fundername: Guangzhou Science and Technology Plan projects of China funderid: 201802020004 – fundername: Shanghai Natural Science Foundation Program funderid: 17ZR1449400 – fundername: National Key Research and Development Program of China grantid: 2017YFC0908500; 2016YFC1303205 – fundername: Shanghai Artificial Intelligence Technology Standard Project grantid: 19DZ2200900 – fundername: Guangzhou Science and Technology Plan projects of China grantid: 201802020004 – fundername: Fundamental Research Funds for the Central Universities, International Postdoctoral Exchange Fellowship Program grantid: 2020043 – fundername: ; grantid: 31970638; 61572361 – fundername: Project of Educational Commission of Guangdong Province of China grantid: 2020KZDXZ1215 – fundername: Shanghai Natural Science Foundation Program grantid: 17ZR1449400 |
GroupedDBID | --- --K .~1 0R~ 0SF 123 1B1 1OC 1~. 24P 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8FE 8FH 8P~ AACTN AAEDW AAFTH AAFWJ AAHHS AAIKJ AALRI AAQFI AAXUO ABBQC ABFRF ABGSF ABMAC ABVKL ABWVN ACCFJ ACCMX ACGFO ACGFS ACRPL ACXQS ADBBV ADEZE ADMUD ADNMO ADPDF ADUVX ADVLN AEEZP AEFWE AEKER AENEX AEQDE AEXQZ AFKRA AFPKN AGHFR AGYEJ AITUG AIWBW AJBDE AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMRAJ AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BLXMC CCPQU CS3 DIK DU5 E3Z EBS EJD EMOBN EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU GBLVA GROUPED_DOAJ HCIFZ HVGLF HYE HZ~ IAO IHE IHR ITC IXB J1W LK8 M41 M7P MO0 N9A NCXOZ O-L OAUVE OK1 OVD OVEED OZT P-8 P-9 P2P PC. PIMPY PROAC Q38 RIG ROL RPM RPZ SDF SDG SEL SES SSZ TEORI TR2 UNMZH WIN 7X7 88E 8FI 8FJ AAYWO AAYXX ABUWG ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION FYUFA HMCUK M1P PHGZM PHGZT PSQYO UKHRP AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c6015-1ccef77ddfa4e97353641fee2d39167aa95b3c45731301b723f8e0746e863fa13 |
IEDL.DBID | 7X7 |
ISSN | 1574-7891 1878-0261 |
IngestDate | Wed Aug 27 01:23:44 EDT 2025 Thu Aug 21 18:01:48 EDT 2025 Thu Jul 10 23:20:37 EDT 2025 Wed Aug 13 08:02:44 EDT 2025 Tue Jun 17 21:43:17 EDT 2025 Tue Jun 10 20:27:51 EDT 2025 Mon Jul 21 05:59:03 EDT 2025 Tue Jul 01 01:24:13 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 Wed Jan 22 16:28:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | HLA genotyping tumor mutation burden immune cytolytic activity tumor immunotherapy |
Language | English |
License | Attribution 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6015-1ccef77ddfa4e97353641fee2d39167aa95b3c45731301b723f8e0746e863fa13 |
Notes | Xiangyong Li, Chi Zhou and Ke Chen contributed equally ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0878-0171 0000-0003-2578-1221 0000-0002-2417-6663 0000-0003-3565-0372 0000-0001-6914-9290 0000-0002-4748-2882 |
OpenAccessLink | https://www.proquest.com/docview/2547522042?pq-origsite=%requestingapplication% |
PMID | 33411982 |
PQID | 2547522042 |
PQPubID | 4370298 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_17f2127152de424dbb867f4553482a17 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8253103 proquest_miscellaneous_2476568543 proquest_journals_2547522042 gale_infotracmisc_A732065254 gale_infotracacademiconefile_A732065254 pubmed_primary_33411982 crossref_citationtrail_10_1002_1878_0261_12895 crossref_primary_10_1002_1878_0261_12895 wiley_primary_10_1002_1878_0261_12895_MOL212895 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2021 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Molecular oncology |
PublicationTitleAlternate | Mol Oncol |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2013; 29 2015; 12 2015; 160 2015; 16 2019; 11 2019; 35 2013; 500 2015; 33 2019; 14 2017; 23 2008; 9 2017; 171 2019; 19 2020; 12 2011; 12 2017; 377 2017; 114 2017; 9 2018; 25 2018; 175 2018; 7 2015; 350 2016; 4 2018; 19 2018; 8 2018; 359 2020; 52 2002; 20 2017; 38 2019; 21 2015; 43 2020; 117 2017; 18 2014; 30 2018; 1802 2018; 36 2007; 27 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 Bauer DC (e_1_2_11_3_1) 2018; 19 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_2_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_20_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 |
References_xml | – volume: 27 start-page: 635 year: 2007 end-page: 646 article-title: Granzyme B and perforin are important for regulatory T cell‐mediated suppression of tumor clearance publication-title: Immunity – volume: 43 start-page: D423 year: 2015 end-page: D431 article-title: The IPD and IMGT/HLA database: allele variant databases publication-title: Nucleic Acids Res – volume: 359 start-page: 582 year: 2018 end-page: 587 article-title: Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy publication-title: Science – volume: 19 start-page: 16 year: 2018 article-title: Kourami: graph‐guided assembly for novel human leukocyte antigen allele discovery publication-title: Genome Biol – volume: 30 start-page: 3310 year: 2014 end-page: 3316 article-title: OptiType: precision HLA typing from next‐generation sequencing data publication-title: Bioinformatics – volume: 1802 start-page: 235 year: 2018 end-page: 247 article-title: Accurate assembly and typing of HLA using a Graph‐Guided Assembler Kourami publication-title: Methods Mol Biol – volume: 171 start-page: 1259 year: 2017 end-page: 1271 article-title: Allele‐specific HLA loss and immune escape in lung cancer evolution publication-title: Cell – volume: 52 start-page: 1550 year: 2020 end-page: 1563 article-title: Genome‐wide identification of differentially methylated promoters and enhancers associated with response to anti‐PD‐1 therapy in non‐small cell lung cancer publication-title: Exp Mol Med – volume: 175 start-page: 416 year: 2018 end-page: 428 article-title: Evolutionary pressure against MHC Class II binding cancer mutations publication-title: Cell – volume: 12 start-page: 453 year: 2015 end-page: 457 article-title: Robust enumeration of cell subsets from tissue expression profiles publication-title: Nat Methods – volume: 35 start-page: 4394 year: 2019 end-page: 4396 article-title: HLA*LA‐HLA typing from linearly projected graph alignments publication-title: Bioinformatics – volume: 29 start-page: 15 year: 2013 end-page: 21 article-title: STAR: ultrafast universal RNA‐seq aligner publication-title: Bioinformatics – volume: 36 start-page: 2995 year: 2018 end-page: 3006 article-title: Tumor mutation burden as a biomarker in resected non‐small‐cell lung cancer publication-title: J Clin Oncol – volume: 4 start-page: 463 year: 2016 end-page: 471 article-title: Neoantigen load, antigen presentation machinery, and immune signatures determine prognosis in clear cell renal cell carcinoma publication-title: Cancer Immunol Res – volume: 25 start-page: 2323 year: 2018 end-page: 2331 article-title: Cytolytic activity score to assess anticancer immunity in colorectal cancer publication-title: Ann Surg Oncol – volume: 19 start-page: 133 year: 2019 end-page: 150 article-title: The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy publication-title: Nat Rev Cancer – volume: 11 start-page: 67 year: 2019 article-title: pTuneos: prioritizing tumor neoantigens from next‐generation sequencing data publication-title: Genome Med – volume: 19 start-page: 179 year: 2018 end-page: 187 article-title: Evaluation of computational programs to predict HLA genotypes from genomic sequencing data publication-title: Brief Bioinform – volume: 114 start-page: 8059 year: 2017 end-page: 8064 article-title: Fast and accurate HLA typing from short‐read next‐generation sequence data with xHLA publication-title: Proc Natl Acad Sci USA – volume: 21 start-page: 249 year: 2019 end-page: 260 article-title: The landscape of tumor fusion neoantigens: a pan‐cancer analysis publication-title: iScience – volume: 23 start-page: 703 year: 2017 end-page: 713 article-title: Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients publication-title: Nat Med – volume: 117 start-page: 23717 year: 2020 end-page: 23720 article-title: Synaptic secretion from human natural killer cells is diverse and includes supramolecular attack particles publication-title: Proc Natl Acad Sci USA – volume: 35 start-page: 238 year: 2019 end-page: 255 article-title: Distinct immune cell populations define response to anti‐PD‐1 monotherapy and anti‐PD‐1/anti‐CTLA‐4 combined therapy publication-title: Cancer Cell – volume: 350 start-page: 207 year: 2015 end-page: 211 article-title: Genomic correlates of response to CTLA‐4 blockade in metastatic melanoma publication-title: Science – volume: 18 start-page: 258 year: 2017 article-title: HLAscan: genotyping of the HLA region using next‐generation sequencing data publication-title: BMC Bioinformatics – volume: 33 start-page: 1152 year: 2015 end-page: 1158 article-title: Comprehensive analysis of cancer‐associated somatic mutations in class I HLA genes publication-title: Nat Biotechnol – volume: 171 start-page: 1272 year: 2017 end-page: 1283 article-title: MHC‐I genotype restricts the oncogenic mutational landscape publication-title: Cell – volume: 12 start-page: 323 year: 2011 article-title: RSEM: accurate transcript quantification from RNA‐Seq data with or without a reference genome publication-title: BMC Bioinformatics – volume: 7 start-page: 661 year: 2018 end-page: 667 article-title: Methods of measurement for tumor mutational burden in tumor tissue publication-title: Transl Lung Cancer Res – volume: 12 start-page: 14633 year: 2020 end-page: 14648 article-title: ASNEO: identification of personalized alternative splicing based neoantigens with RNA‐seq publication-title: Aging – volume: 377 start-page: 2500 year: 2017 end-page: 2501 article-title: Tumor mutational burden and response rate to PD‐1 inhibition publication-title: N Engl J Med – volume: 500 start-page: 415 year: 2013 end-page: 421 article-title: Signatures of mutational processes in human cancer publication-title: Nature – volume: 20 start-page: 621 year: 2002 end-page: 667 article-title: Antigen presentation and T cell stimulation by dendritic cells publication-title: Annu Rev Immunol – volume: 14 start-page: 1021 year: 2019 end-page: 1031 article-title: PD‐L1 expression, tumor mutational burden and cancer gene mutations are stronger predictors of benefit from immune checkpoint blockade than HLA class I genotype in non‐small cell lung cancer publication-title: J Thorac Oncol – volume: 9 start-page: 1 year: 2008 article-title: HLA class I supertypes: a revised and updated classification publication-title: BMC Immunol – volume: 160 start-page: 48 year: 2015 end-page: 61 article-title: Molecular and genetic properties of tumors associated with local immune cytolytic activity publication-title: Cell – volume: 16 start-page: S7 issue: Suppl 2 year: 2015 article-title: HLA‐VBSeq: accurate HLA typing at full resolution from whole‐genome sequencing data publication-title: BMC Genom – volume: 1802 start-page: 193 year: 2018 end-page: 201 article-title: PHLAT: inference of high‐resolution HLA types from RNA and whole exome sequencing publication-title: Methods Mol Biol – volume: 38 start-page: 788 year: 2017 end-page: 797 article-title: HLA‐HD: an accurate HLA typing algorithm for next‐generation sequencing data publication-title: Human Mutat – volume: 12 start-page: 119 year: 2020 article-title: Genome‐wide methylation patterns predict clinical benefit of immunotherapy in lung cancer publication-title: Clin Epigenetics – volume: 9 start-page: 34 year: 2017 article-title: Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden publication-title: Genome Med – volume: 8 year: 2018 article-title: The expression and prognostic impact of immune cytolytic activity‐related markers in human malignancies: a comprehensive meta‐analysis publication-title: Front Oncol – ident: e_1_2_11_31_1 doi: 10.1093/bioinformatics/bts635 – ident: e_1_2_11_4_1 doi: 10.1038/nbt.3344 – ident: e_1_2_11_19_1 doi: 10.1016/j.immuni.2007.08.014 – ident: e_1_2_11_22_1 doi: 10.1200/JCO.2018.78.1963 – ident: e_1_2_11_8_1 doi: 10.1016/j.cell.2017.09.050 – ident: e_1_2_11_42_1 doi: 10.1007/978-1-4939-8546-3_13 – ident: e_1_2_11_14_1 doi: 10.1073/pnas.1707945114 – ident: e_1_2_11_29_1 doi: 10.1038/s12276-020-00493-8 – ident: e_1_2_11_5_1 doi: 10.1093/bioinformatics/btu548 – ident: e_1_2_11_17_1 doi: 10.1186/1471-2172-9-1 – ident: e_1_2_11_41_1 doi: 10.1186/s12859-017-1671-3 – ident: e_1_2_11_33_1 doi: 10.1146/annurev.immunol.20.100301.064828 – ident: e_1_2_11_36_1 doi: 10.1016/j.ccell.2019.01.003 – ident: e_1_2_11_12_1 doi: 10.1016/j.cell.2014.12.033 – ident: e_1_2_11_38_1 doi: 10.1038/nature12477 – ident: e_1_2_11_37_1 doi: 10.1186/s13073-017-0424-2 – ident: e_1_2_11_16_1 doi: 10.1186/s13059-018-1388-2 – ident: e_1_2_11_21_1 doi: 10.3389/fonc.2018.00027 – ident: e_1_2_11_35_1 doi: 10.1038/s41568-019-0116-x – ident: e_1_2_11_2_1 doi: 10.1093/nar/gku1161 – ident: e_1_2_11_24_1 doi: 10.1126/science.aad0095 – ident: e_1_2_11_28_1 doi: 10.1186/s13073-019-0679-x – ident: e_1_2_11_39_1 doi: 10.1038/nm.4333 – ident: e_1_2_11_32_1 doi: 10.1186/1471-2105-12-323 – ident: e_1_2_11_34_1 doi: 10.1158/2326-6066.CIR-15-0225 – ident: e_1_2_11_18_1 doi: 10.1073/pnas.2010274117 – ident: e_1_2_11_40_1 doi: 10.1056/NEJMc1713444 – volume: 19 start-page: 179 year: 2018 ident: e_1_2_11_3_1 article-title: Evaluation of computational programs to predict HLA genotypes from genomic sequencing data publication-title: Brief Bioinform – ident: e_1_2_11_20_1 doi: 10.1245/s10434-018-6506-6 – ident: e_1_2_11_23_1 doi: 10.21037/tlcr.2018.08.02 – ident: e_1_2_11_7_1 doi: 10.1016/j.cell.2018.08.048 – ident: e_1_2_11_44_1 doi: 10.1038/nmeth.3337 – ident: e_1_2_11_13_1 doi: 10.1002/humu.23230 – ident: e_1_2_11_27_1 doi: 10.18632/aging.103516 – ident: e_1_2_11_11_1 doi: 10.1016/j.jtho.2019.02.008 – ident: e_1_2_11_15_1 doi: 10.1186/1471-2164-16-S2-S7 – ident: e_1_2_11_9_1 doi: 10.1016/j.cell.2017.10.001 – ident: e_1_2_11_10_1 doi: 10.1126/science.aao4572 – ident: e_1_2_11_25_1 doi: 10.1016/j.ccell.2019.01.003 – ident: e_1_2_11_30_1 doi: 10.1186/s13148-020-00907-4 – ident: e_1_2_11_6_1 doi: 10.1007/978-1-4939-8546-3_17 – ident: e_1_2_11_43_1 doi: 10.1093/bioinformatics/btz235 – ident: e_1_2_11_26_1 doi: 10.1016/j.isci.2019.10.028 |
SSID | ssj0056969 |
Score | 2.3898125 |
Snippet | Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1764 |
SubjectTerms | Accuracy Alleles Analysis Antigens Benchmarking Benchmarks Cancer Cancer immunotherapy Care and treatment Chromosomes Cytolytic activity Datasets Drug therapy Genotype Genotypes Genotyping Histocompatibility antigen HLA Histocompatibility antigens HLA Antigens - genetics HLA genotyping HLA histocompatibility antigens Humans immune cytolytic activity Immune system Immunotherapy Laboratories Linear programming Lung cancer Melanoma Mutation Neoplasms - genetics Neoplasms - therapy Polymorphism tumor immunotherapy tumor mutation burden Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLgvIKtMhISHBJd_2KneMWUa1QFy5U2ptlO7a6Eput2s2h_54ZJ7vagFAv3KKMHcWe8TySmW8I-cijq42rTBkDM6XkTpbeK1Ei2lfQDRiJiH90F9-r-ZX8tlTLg1ZfmBPWwwP3GzdhOiEIOZiZJkouG-9NpZNUClFZHMt15GDzdsFUr4NVVedmdkxhtqGp2Q7UZ8onzCCmLAQOZ6Casa3EgT3KsP1_K-cD6_Rn5uShR5tN0sUz8nTwJemsX8Nz8ii2x-TxYvhb_oIsz0EEr9cufw6n88sZRUTW7T2WSFHXNjRAWLvKhU6Z2ldM0k1L7zrQICCDdNXSbbfe3AJt3bVDtdb9S3J18fXnl3k5dFIoAwRcqmQhxKR10yQnY62FEpVkKUbeYN2tdq5WXgSptACTxrzmIpmInUiiqURyTLwiR-2mjW8IrRstgvFJqDCVofbOTAM8F6IUrSufeEHOdvtpwwAzjt0uftkeIJlbZIBFBtjMgIJ83k-46RE2_j30HBm0H4bQ2PkGCIwdBMY-JDAF-YTstXiA4cWCG-oQYHkIhWVnWnDwyyBwLsjJaCQcvDAm7wTEDgf_zsJ9DS4tqMKCfNiTcSYms7Vx08EYqcGLNkqKgrzu5Wm_JAFeBasNzNYjSRuteUxpV9cZFhxifWwaV5BJlsmHNtMuflzyfPX2f2zrO_KEY7pPzmQ-IUfb2y6egr-29e_z0fwNxaQznQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgL4k1KQUFCgku661fsHLeIaoW6wIFKvVm249CV2ATtbg79951xHjRFCHFbZexonXknM98Q8o4FW2ib6yx4qjPBrMickzxDtC-vSnASAb_orr7ky3Px-UIO1YTYC9PhQ4wv3FAzor1GBbduN_sNGko1YsNCAnAMJraQd8k9bLBF-Hwmvg3GWOZFnGpHJZYd6oIO6D5zNrt1g4ljivj9f1rpG27qdgnlzdA2-qbTR-RhH1Smi04KHpM7oX5C7q_6z-ZPycUJyOLlxsb34unybJEiNOv-CnulUluXqYf8dh07niK1a51MmzrdtWBKQBjTdZ3u202zBdqmrfu2ratn5Pz00_ePy6wfqZB5yLxkRr0PlVJlWVkRCsUlzwWtQmAlNuAqawvpuBdScfBt1CnGKx1wJEnQOa8s5c_JQd3U4SVJi1Jxr13FpZ8LXzir5x7uC-mKUrmrWEKOh-dpfI83jmMvfpoOKZkZZIBBBpjIgIR8GDf86qA2_r70BBk0LkOM7Hih2f4wvcoZqiqEr4cApQyCidI5natKSIl4PpaqhLxH9hrUZPhj3vYNCXA8xMQyC8UZBGiQQSfkaLISNNBPyYOAmN4C7AxcVxDbgk1MyNuRjDuxqq0OTQtrhIJwWkvBE_Kik6fxSBzCC1po2K0mkjY585RSry8jPjgk_Tg9LiGzKJP_ephm9fWMxV-H_73jFXnAsMgn1i8fkYP9tg2vIUrbuzdRD68BRG0uQA priority: 102 providerName: Wiley-Blackwell |
Title | Benchmarking HLA genotyping and clarifying HLA impact on survival in tumor immunotherapy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1878-0261.12895 https://www.ncbi.nlm.nih.gov/pubmed/33411982 https://www.proquest.com/docview/2547522042 https://www.proquest.com/docview/2476568543 https://pubmed.ncbi.nlm.nih.gov/PMC8253103 https://doaj.org/article/17f2127152de424dbb867f4553482a17 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZoKyEuiDcLJVokJLhsE7_W3hNKUKsINaVCBEVcLK_X20YiuyWPQ_89M44TEhBwSpSxo_XOwzP2zDeEvGHeFtrmOvOO6kwwK7KylDxDtC-nKtgkPN7oji7y4Vh8nMhJPHBbxLTKjU0MhrpqHZ6RdyGQUeArgIy9v_mRYdcovF2NLTQOyBFCl2FKl5psAy6ZF6GlHZWYc6gLuoH26bEu1YgsC-HDCRhobC6xsysF8P4_TfTOHvV7_uSuXxs2prMH5H70KNP-WgQekju-eUTujuKd-WMyGYAgXs9sOBRPh-f9FHFZl7dYKJXapkodBLfTUO4UqOu6ybRt0sUK7AhIYjpt0uVq1s6BNls1sWbr9gkZn51--TDMYj-FzEHYJTPqnK-VqqraCl8oLnkuaO09q7D6VllbyJI7IRWHjY2WivFae-xH4nXOa0v5U3LYtI1_TtKiUtzpsubS9YQrSqt7Dv4XYhWl8rJmCTnZvE_jItg49rz4btYwycwgAwwywAQGJOTddsLNGmfj70MHyKDtMATIDj-08ysT9c1QVSN2PXgnlRdMVGWpc1ULKRHMx1KVkLfIXoNqDA_mbKxGgOUhIJbpK87AOwOpS8jx3khQP7dP3giIieq_ML-ENSGvt2SciSltjW9XMEYo8KW1FDwhz9bytF0SB9-CFhpmqz1J21vzPqWZXgdwcIj4sXVcQrpBJv_3Ms3o0zkL3178eyEvyT2G6TwhU_mYHC7nK_8K_LFl2SEHTFx2gup1yFH_6_jbGD4HpxeXnzvhjOMnuBQxng |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWrgRcEG8CCwQJBJdsGz9i54BQC7vqsu2C0K7Um3Ech61E06UPof4pfiMzTlJaEHDaWxQ_FHvG84hnviHkOXUmVSZRkbOxijg1PMoywSJE-7IyByXh8EZ3eJL0z_j7kRjtkB9NLgyGVTYy0QvqfGrxH3kbHBkJtgLw2JuLbxFWjcLb1aaERsUWx271HVy2-eujd0DfF5QeHpy-7Ud1VYHIgvMhothaV0iZ54XhLpVMsITHhXM0xxxUaUwqMma5kAzEe5xJygrlsCqHUwkrTMxg3itklzOYrUV2ewcnHz81sl8kqS-iFwuMclRp3IAJdWg7VohlCw7LPqgELGexoQd9uYA_lcKGVvw9YnPTkvaq8PAmuVHbsGG3YrpbZMeVt8nVYX1Lf4eMesD65xPjf8OH_UE3RCTYxQpTs0JT5qEFd3rsE6x8a5WpGU7LcL4EyQW8H47LcLGcTGfQNlmWdZbY6i45u5S9vkda5bR0D0iY5pJZlRVM2A63aWZUx8K84B1JmWQFDch-s5_a1vDmWGXjq66AmalGAmgkgPYECMir9YCLCtnj7117SKB1N4Tk9i-msy-6PuE6lgWi5YM9lDtOeZ5lKpEFFwLhg0wsA_ISyatRcMCHWVPnP8DyEIJLdyWjYA8Cnwdkb6snHHi73dwwiK4Fzlz_Oh4BebZuxpEYRFe66RL6cAnWuxKcBeR-xU_rJTGwZuJUwWi5xWlba95uKcfnHo5cUYHF6gLS9jz5v83Uww8D6p8e_nshT8m1_ulwoAdHJ8ePyHWKwUQ-TnqPtBazpXsM1uAie1IfwZB8vuxT_xM-S2mp |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZeEHcCA4IEgpesjS-x84BQx6g61g4emNQ3z3EcVokmoxeh_jV-Hec4SWlBwNPeqtiOap97fM53CHlBnUmVSVTkbKwiTg2PskywCNG-rMzBSDi80R2dJoMz_mEsxjvkR1sLg2mVrU70ijqvLH4j70AgI8FXAB7rFE1axKej_tvLbxF2kMKb1radRs0iJ271HcK3-ZvjI6D1S0r77z-_G0RNh4HIQiAiothaV0iZ54XhLpVMsITHhXM0x3pUaUwqMma5kAxUfZxJygrlsEOHUwkrTMzgvdfIdVgYo4zJ8TrYE0nq2-nFAvMdVRq3sEJd2okVotpC6HIAxgEbW2xYRN844E_zsGEff8_d3PSpvVHs3yI3G2827NXsd5vsuPIO2Rs19_V3yfgQhOBiavwH-XAw7IWICbtYYZFWaMo8tBBYT3yplR-tazbDqgznS9BhIAXhpAwXy2k1g7HpsmzqxVb3yNmVnPR9sltWpXtIwjSXzKqsYMJ2uU0zo7oW3gtxkpRJVtCAHLTnqW0DdI79Nr7qGqKZaiSARgJoT4CAvF4vuKwxPv4-9RAJtJ6G4Nz-QTX7ohtZ17EsEDcfPKPcccrzLFOJLLgQCCRkYhmQV0hejSoE_pg1TSUEbA_BuHRPMgqeIXB8QPa3ZoLo2-3hlkF0o3rm-pegBOT5ehhXYjpd6aolzOES_HglOAvIg5qf1lti4NfEqYLVcovTtva8PVJOLjwwuaIC29YFpON58n-HqUcfh9T_evTvjTwjeyDrenh8evKY3KCYVeQTpvfJ7mK2dE_ALVxkT738heT8qgX-J2MFbHk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+HLA+genotyping+and+clarifying+HLA+impact+on+survival+in+tumor+immunotherapy&rft.jtitle=Molecular+oncology&rft.au=Li%2C+Xiangyong&rft.au=Zhou%2C+Chi&rft.au=Chen%2C+Ke&rft.au=Huang%2C+Bingding&rft.date=2021-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1574-7891&rft.volume=15&rft.issue=7&rft.spage=1764&rft_id=info:doi/10.1002%2F1878-0261.12895&rft.externalDocID=A732065254 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-7891&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-7891&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-7891&client=summon |