Benchmarking HLA genotyping and clarifying HLA impact on survival in tumor immunotherapy

Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunothera...

Full description

Saved in:
Bibliographic Details
Published inMolecular oncology Vol. 15; no. 7; pp. 1764 - 1782
Main Authors Li, Xiangyong, Zhou, Chi, Chen, Ke, Huang, Bingding, Liu, Qi, Ye, Hao
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.07.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a ‘Gun‐Bullet’ model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA‐HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top‐3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the ‘Gun‐Bullet’ model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone. Human leucocyte antigen (HLA) genotyping can provide important insights for tumor prognosis and cancer immunotherapy. We performed comprehensive HLA benchmarking in TCGA cohorts, based on allele concordance results generated from eight in silico tools. Moreover, we investigated the impact of HLA alleles on tumor survival. Our proposed ‘Gun‐Bullet’ model considers immune cytotoxicity to interpret the survival impact of HLA alleles and tumor mutation burden.
AbstractList Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a ‘Gun‐Bullet’ model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA‐HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top‐3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the ‘Gun‐Bullet’ model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone.
Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a ‘Gun‐Bullet’ model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA‐HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top‐3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the ‘Gun‐Bullet’ model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone.
Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a 'Gun-Bullet' model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA-HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top-3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the 'Gun-Bullet' model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone.Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a 'Gun-Bullet' model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA-HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top-3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the 'Gun-Bullet' model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone.
Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a ‘Gun‐Bullet’ model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA‐HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top‐3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the ‘Gun‐Bullet’ model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone. Human leucocyte antigen (HLA) genotyping can provide important insights for tumor prognosis and cancer immunotherapy. We performed comprehensive HLA benchmarking in TCGA cohorts, based on allele concordance results generated from eight in silico tools. Moreover, we investigated the impact of HLA alleles on tumor survival. Our proposed ‘Gun‐Bullet’ model considers immune cytotoxicity to interpret the survival impact of HLA alleles and tumor mutation burden.
Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to generate reliable HLA genotyping results through in silico tools. In addition, the survival impact of HLA alleles in tumor prognosis and immunotherapy remains controversial. In this study, the benchmarking of HLA genotyping on TCGA is performed and a ‘Gun‐Bullet’ model which helps to clarify the survival impact of HLA allele is presented. The performance of HLA class I genotyping is generally better than class II. POLYSOLVER, OptiType, and xHLA perform generally better at HLA class I calling with an accuracy of 0.954, 0.949, and 0.937, respectively. HLA‐HD obtained the highest accuracy of 0.904 on HLA class II alleles calling. Each HLA genotyping tool displayed specific error patterns. The ensemble HLA calling from the top‐3 tools is superior to any individual one. HLA alleles show distinct survival impact among cancers. Cytolytic activity (CYT) was proposed as the underlying mechanism to interpret the survival impact of HLA alleles in the ‘Gun‐Bullet’ model for fighting cancer. A strong HLA allele plus a high tumor mutation burden (TMB) could stimulate intensive immune CYT, leading to extended survival. We established an up to now most reliable TCGA HLA benchmark dataset, composing of concordance alleles generated from eight prevalently used HLA genotyping tools. Our findings indicate that reliable HLA genotyping should be performed based on concordance alleles integrating multiple tools and incorporating TMB background with HLA genotype, which helps to improve the survival prediction compared to HLA genotyping alone. Human leucocyte antigen (HLA) genotyping can provide important insights for tumor prognosis and cancer immunotherapy. We performed comprehensive HLA benchmarking in TCGA cohorts, based on allele concordance results generated from eight in silico tools. Moreover, we investigated the impact of HLA alleles on tumor survival. Our proposed ‘Gun‐Bullet’ model considers immune cytotoxicity to interpret the survival impact of HLA alleles and tumor mutation burden.
Audience Academic
Author Li, Xiangyong
Ye, Hao
Zhou, Chi
Huang, Bingding
Chen, Ke
Liu, Qi
AuthorAffiliation 3 College of Big Data and Internet Shenzhen Technology University Shenzhen China
2 Sinotech Genomics Shenzhen China
1 Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University) Ministry of Education Orthopaedic Department of Tongji Hospital Bioinformatics Department School of Life Sciences and Technology Tongji University Shanghai China
4 CStone Pharmaceuticals Co., Ltd. Suzhou China
AuthorAffiliation_xml – name: 1 Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University) Ministry of Education Orthopaedic Department of Tongji Hospital Bioinformatics Department School of Life Sciences and Technology Tongji University Shanghai China
– name: 2 Sinotech Genomics Shenzhen China
– name: 3 College of Big Data and Internet Shenzhen Technology University Shenzhen China
– name: 4 CStone Pharmaceuticals Co., Ltd. Suzhou China
Author_xml – sequence: 1
  givenname: Xiangyong
  orcidid: 0000-0001-6914-9290
  surname: Li
  fullname: Li, Xiangyong
  organization: Sinotech Genomics
– sequence: 2
  givenname: Chi
  orcidid: 0000-0002-2417-6663
  surname: Zhou
  fullname: Zhou, Chi
  organization: Tongji University
– sequence: 3
  givenname: Ke
  orcidid: 0000-0003-0878-0171
  surname: Chen
  fullname: Chen, Ke
  organization: Tongji University
– sequence: 4
  givenname: Bingding
  orcidid: 0000-0002-4748-2882
  surname: Huang
  fullname: Huang, Bingding
  organization: Shenzhen Technology University
– sequence: 5
  givenname: Qi
  orcidid: 0000-0003-2578-1221
  surname: Liu
  fullname: Liu, Qi
  email: qiliu@tongji.edu.cn
  organization: Tongji University
– sequence: 6
  givenname: Hao
  orcidid: 0000-0003-3565-0372
  surname: Ye
  fullname: Ye, Hao
  email: haoye.ecust@gmail.com
  organization: CStone Pharmaceuticals Co., Ltd
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33411982$$D View this record in MEDLINE/PubMed
BookMark eNqFks1v0zAYxiM0xD7gzA1F4sKlnV9_54LUTcAmFe0CEjfLdezWJbGLkxT1v8dZ10EnEMoh8fv-nid5oue8OAkx2KJ4DWgKCOFLkEJOEOYwBSwr9qw4e5yc5Gcm6ETICk6L865bI8R4xasXxSkhFKCS-Kz4dmWDWbU6ffdhWd7MZ-XShtjvNuNRh7o0jU7e7Q5b32606csYym5IW7_VTelD2Q9tTHnXDlm7sklvdi-L5043nX31cL8ovn788OX6ZjK_-3R7PZtPDEfAJmCMdULUtdPUVoIwwik4a3FNKuBC64otiKFMECAIFgITJy0SlFvJidNALorbvW8d9Vptks9Zdipqr-4HMS2VTr03jVUgHAYsgOHaUkzrxUJy4ShjhEqsQWSv93uvzbBobW1s6JNujkyPN8Gv1DJulcSMACLZ4N2DQYo_Btv1qvWdsU2jg41DpzAVnHHJ6Ii-fYKu45BC_lUKMyoYxoji39RS5wA-uJjfa0ZTNRMEI84ynKnpX6h81bb1JjfG-Tw_Erz5M-hjwkMvMsD2gEmx65J1yvhe9z6OuX2jAKmxf2psmxrbpu77l3WXT3QH638r-F7xM3_j7n-4-nw3x3vhLwUl6AY
CitedBy_id crossref_primary_10_1016_j_phrs_2023_106674
crossref_primary_10_1007_s43657_022_00084_9
crossref_primary_10_1016_j_transproceed_2024_08_028
crossref_primary_10_1093_neuonc_noaf040
crossref_primary_10_1136_jitc_2023_007268
crossref_primary_10_3390_cancers14153828
crossref_primary_10_1136_jitc_2023_008306
crossref_primary_10_1016_j_mcpro_2024_100743
crossref_primary_10_3389_fonc_2021_677826
crossref_primary_10_1038_s43018_021_00226_4
crossref_primary_10_1093_bib_bbad116
crossref_primary_10_1186_s12864_023_09351_z
crossref_primary_10_1016_j_ccell_2022_10_013
crossref_primary_10_1158_0008_5472_CAN_21_3717
crossref_primary_10_1002_lary_30761
crossref_primary_10_3389_fimmu_2024_1394003
Cites_doi 10.1093/bioinformatics/bts635
10.1038/nbt.3344
10.1016/j.immuni.2007.08.014
10.1200/JCO.2018.78.1963
10.1016/j.cell.2017.09.050
10.1007/978-1-4939-8546-3_13
10.1073/pnas.1707945114
10.1038/s12276-020-00493-8
10.1093/bioinformatics/btu548
10.1186/1471-2172-9-1
10.1186/s12859-017-1671-3
10.1146/annurev.immunol.20.100301.064828
10.1016/j.ccell.2019.01.003
10.1016/j.cell.2014.12.033
10.1038/nature12477
10.1186/s13073-017-0424-2
10.1186/s13059-018-1388-2
10.3389/fonc.2018.00027
10.1038/s41568-019-0116-x
10.1093/nar/gku1161
10.1126/science.aad0095
10.1186/s13073-019-0679-x
10.1038/nm.4333
10.1186/1471-2105-12-323
10.1158/2326-6066.CIR-15-0225
10.1073/pnas.2010274117
10.1056/NEJMc1713444
10.1245/s10434-018-6506-6
10.21037/tlcr.2018.08.02
10.1016/j.cell.2018.08.048
10.1038/nmeth.3337
10.1002/humu.23230
10.18632/aging.103516
10.1016/j.jtho.2019.02.008
10.1186/1471-2164-16-S2-S7
10.1016/j.cell.2017.10.001
10.1126/science.aao4572
10.1186/s13148-020-00907-4
10.1007/978-1-4939-8546-3_17
10.1093/bioinformatics/btz235
10.1016/j.isci.2019.10.028
ContentType Journal Article
Copyright 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
COPYRIGHT 2021 John Wiley & Sons, Inc.
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1002/1878-0261.12895
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological science database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic


Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Benchmarking HLA genotyping
EISSN 1878-0261
EndPage 1782
ExternalDocumentID oai_doaj_org_article_17f2127152de424dbb867f4553482a17
PMC8253103
A732065254
33411982
10_1002_1878_0261_12895
MOL212895
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Shanghai Artificial Intelligence Technology Standard Project
  funderid: 19DZ2200900
– fundername: Project of Educational Commission of Guangdong Province of China
  funderid: 2020KZDXZ1215
– fundername: Fundamental Research Funds for the Central Universities, International Postdoctoral Exchange Fellowship Program
  funderid: 2020043
– fundername: National Natural Science Foundation of China
  funderid: 31970638; 61572361
– fundername: National Key Research and Development Program of China
  funderid: 2017YFC0908500; 2016YFC1303205
– fundername: Guangzhou Science and Technology Plan projects of China
  funderid: 201802020004
– fundername: Shanghai Natural Science Foundation Program
  funderid: 17ZR1449400
– fundername: National Key Research and Development Program of China
  grantid: 2017YFC0908500; 2016YFC1303205
– fundername: Shanghai Artificial Intelligence Technology Standard Project
  grantid: 19DZ2200900
– fundername: Guangzhou Science and Technology Plan projects of China
  grantid: 201802020004
– fundername: Fundamental Research Funds for the Central Universities, International Postdoctoral Exchange Fellowship Program
  grantid: 2020043
– fundername: ;
  grantid: 31970638; 61572361
– fundername: Project of Educational Commission of Guangdong Province of China
  grantid: 2020KZDXZ1215
– fundername: Shanghai Natural Science Foundation Program
  grantid: 17ZR1449400
GroupedDBID ---
--K
.~1
0R~
0SF
123
1B1
1OC
1~.
24P
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8FE
8FH
8P~
AACTN
AAEDW
AAFTH
AAFWJ
AAHHS
AAIKJ
AALRI
AAQFI
AAXUO
ABBQC
ABFRF
ABGSF
ABMAC
ABVKL
ABWVN
ACCFJ
ACCMX
ACGFO
ACGFS
ACRPL
ACXQS
ADBBV
ADEZE
ADMUD
ADNMO
ADPDF
ADUVX
ADVLN
AEEZP
AEFWE
AEKER
AENEX
AEQDE
AEXQZ
AFKRA
AFPKN
AGHFR
AGYEJ
AITUG
AIWBW
AJBDE
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMRAJ
AOIJS
AVUZU
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BLXMC
CCPQU
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
GBLVA
GROUPED_DOAJ
HCIFZ
HVGLF
HYE
HZ~
IAO
IHE
IHR
ITC
IXB
J1W
LK8
M41
M7P
MO0
N9A
NCXOZ
O-L
OAUVE
OK1
OVD
OVEED
OZT
P-8
P-9
P2P
PC.
PIMPY
PROAC
Q38
RIG
ROL
RPM
RPZ
SDF
SDG
SEL
SES
SSZ
TEORI
TR2
UNMZH
WIN
7X7
88E
8FI
8FJ
AAYWO
AAYXX
ABUWG
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
FYUFA
HMCUK
M1P
PHGZM
PHGZT
PSQYO
UKHRP
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
PMFND
3V.
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c6015-1ccef77ddfa4e97353641fee2d39167aa95b3c45731301b723f8e0746e863fa13
IEDL.DBID 7X7
ISSN 1574-7891
1878-0261
IngestDate Wed Aug 27 01:23:44 EDT 2025
Thu Aug 21 18:01:48 EDT 2025
Thu Jul 10 23:20:37 EDT 2025
Wed Aug 13 08:02:44 EDT 2025
Tue Jun 17 21:43:17 EDT 2025
Tue Jun 10 20:27:51 EDT 2025
Mon Jul 21 05:59:03 EDT 2025
Tue Jul 01 01:24:13 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
Wed Jan 22 16:28:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords HLA genotyping
tumor mutation burden
immune cytolytic activity
tumor immunotherapy
Language English
License Attribution
2021 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6015-1ccef77ddfa4e97353641fee2d39167aa95b3c45731301b723f8e0746e863fa13
Notes Xiangyong Li, Chi Zhou and Ke Chen contributed equally
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0878-0171
0000-0003-2578-1221
0000-0002-2417-6663
0000-0003-3565-0372
0000-0001-6914-9290
0000-0002-4748-2882
OpenAccessLink https://www.proquest.com/docview/2547522042?pq-origsite=%requestingapplication%
PMID 33411982
PQID 2547522042
PQPubID 4370298
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_17f2127152de424dbb867f4553482a17
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8253103
proquest_miscellaneous_2476568543
proquest_journals_2547522042
gale_infotracmisc_A732065254
gale_infotracacademiconefile_A732065254
pubmed_primary_33411982
crossref_citationtrail_10_1002_1878_0261_12895
crossref_primary_10_1002_1878_0261_12895
wiley_primary_10_1002_1878_0261_12895_MOL212895
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2021
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Molecular oncology
PublicationTitleAlternate Mol Oncol
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2013; 29
2015; 12
2015; 160
2015; 16
2019; 11
2019; 35
2013; 500
2015; 33
2019; 14
2017; 23
2008; 9
2017; 171
2019; 19
2020; 12
2011; 12
2017; 377
2017; 114
2017; 9
2018; 25
2018; 175
2018; 7
2015; 350
2016; 4
2018; 19
2018; 8
2018; 359
2020; 52
2002; 20
2017; 38
2019; 21
2015; 43
2020; 117
2017; 18
2014; 30
2018; 1802
2018; 36
2007; 27
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
Bauer DC (e_1_2_11_3_1) 2018; 19
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_2_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – volume: 27
  start-page: 635
  year: 2007
  end-page: 646
  article-title: Granzyme B and perforin are important for regulatory T cell‐mediated suppression of tumor clearance
  publication-title: Immunity
– volume: 43
  start-page: D423
  year: 2015
  end-page: D431
  article-title: The IPD and IMGT/HLA database: allele variant databases
  publication-title: Nucleic Acids Res
– volume: 359
  start-page: 582
  year: 2018
  end-page: 587
  article-title: Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy
  publication-title: Science
– volume: 19
  start-page: 16
  year: 2018
  article-title: Kourami: graph‐guided assembly for novel human leukocyte antigen allele discovery
  publication-title: Genome Biol
– volume: 30
  start-page: 3310
  year: 2014
  end-page: 3316
  article-title: OptiType: precision HLA typing from next‐generation sequencing data
  publication-title: Bioinformatics
– volume: 1802
  start-page: 235
  year: 2018
  end-page: 247
  article-title: Accurate assembly and typing of HLA using a Graph‐Guided Assembler Kourami
  publication-title: Methods Mol Biol
– volume: 171
  start-page: 1259
  year: 2017
  end-page: 1271
  article-title: Allele‐specific HLA loss and immune escape in lung cancer evolution
  publication-title: Cell
– volume: 52
  start-page: 1550
  year: 2020
  end-page: 1563
  article-title: Genome‐wide identification of differentially methylated promoters and enhancers associated with response to anti‐PD‐1 therapy in non‐small cell lung cancer
  publication-title: Exp Mol Med
– volume: 175
  start-page: 416
  year: 2018
  end-page: 428
  article-title: Evolutionary pressure against MHC Class II binding cancer mutations
  publication-title: Cell
– volume: 12
  start-page: 453
  year: 2015
  end-page: 457
  article-title: Robust enumeration of cell subsets from tissue expression profiles
  publication-title: Nat Methods
– volume: 35
  start-page: 4394
  year: 2019
  end-page: 4396
  article-title: HLA*LA‐HLA typing from linearly projected graph alignments
  publication-title: Bioinformatics
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  article-title: STAR: ultrafast universal RNA‐seq aligner
  publication-title: Bioinformatics
– volume: 36
  start-page: 2995
  year: 2018
  end-page: 3006
  article-title: Tumor mutation burden as a biomarker in resected non‐small‐cell lung cancer
  publication-title: J Clin Oncol
– volume: 4
  start-page: 463
  year: 2016
  end-page: 471
  article-title: Neoantigen load, antigen presentation machinery, and immune signatures determine prognosis in clear cell renal cell carcinoma
  publication-title: Cancer Immunol Res
– volume: 25
  start-page: 2323
  year: 2018
  end-page: 2331
  article-title: Cytolytic activity score to assess anticancer immunity in colorectal cancer
  publication-title: Ann Surg Oncol
– volume: 19
  start-page: 133
  year: 2019
  end-page: 150
  article-title: The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy
  publication-title: Nat Rev Cancer
– volume: 11
  start-page: 67
  year: 2019
  article-title: pTuneos: prioritizing tumor neoantigens from next‐generation sequencing data
  publication-title: Genome Med
– volume: 19
  start-page: 179
  year: 2018
  end-page: 187
  article-title: Evaluation of computational programs to predict HLA genotypes from genomic sequencing data
  publication-title: Brief Bioinform
– volume: 114
  start-page: 8059
  year: 2017
  end-page: 8064
  article-title: Fast and accurate HLA typing from short‐read next‐generation sequence data with xHLA
  publication-title: Proc Natl Acad Sci USA
– volume: 21
  start-page: 249
  year: 2019
  end-page: 260
  article-title: The landscape of tumor fusion neoantigens: a pan‐cancer analysis
  publication-title: iScience
– volume: 23
  start-page: 703
  year: 2017
  end-page: 713
  article-title: Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients
  publication-title: Nat Med
– volume: 117
  start-page: 23717
  year: 2020
  end-page: 23720
  article-title: Synaptic secretion from human natural killer cells is diverse and includes supramolecular attack particles
  publication-title: Proc Natl Acad Sci USA
– volume: 35
  start-page: 238
  year: 2019
  end-page: 255
  article-title: Distinct immune cell populations define response to anti‐PD‐1 monotherapy and anti‐PD‐1/anti‐CTLA‐4 combined therapy
  publication-title: Cancer Cell
– volume: 350
  start-page: 207
  year: 2015
  end-page: 211
  article-title: Genomic correlates of response to CTLA‐4 blockade in metastatic melanoma
  publication-title: Science
– volume: 18
  start-page: 258
  year: 2017
  article-title: HLAscan: genotyping of the HLA region using next‐generation sequencing data
  publication-title: BMC Bioinformatics
– volume: 33
  start-page: 1152
  year: 2015
  end-page: 1158
  article-title: Comprehensive analysis of cancer‐associated somatic mutations in class I HLA genes
  publication-title: Nat Biotechnol
– volume: 171
  start-page: 1272
  year: 2017
  end-page: 1283
  article-title: MHC‐I genotype restricts the oncogenic mutational landscape
  publication-title: Cell
– volume: 12
  start-page: 323
  year: 2011
  article-title: RSEM: accurate transcript quantification from RNA‐Seq data with or without a reference genome
  publication-title: BMC Bioinformatics
– volume: 7
  start-page: 661
  year: 2018
  end-page: 667
  article-title: Methods of measurement for tumor mutational burden in tumor tissue
  publication-title: Transl Lung Cancer Res
– volume: 12
  start-page: 14633
  year: 2020
  end-page: 14648
  article-title: ASNEO: identification of personalized alternative splicing based neoantigens with RNA‐seq
  publication-title: Aging
– volume: 377
  start-page: 2500
  year: 2017
  end-page: 2501
  article-title: Tumor mutational burden and response rate to PD‐1 inhibition
  publication-title: N Engl J Med
– volume: 500
  start-page: 415
  year: 2013
  end-page: 421
  article-title: Signatures of mutational processes in human cancer
  publication-title: Nature
– volume: 20
  start-page: 621
  year: 2002
  end-page: 667
  article-title: Antigen presentation and T cell stimulation by dendritic cells
  publication-title: Annu Rev Immunol
– volume: 14
  start-page: 1021
  year: 2019
  end-page: 1031
  article-title: PD‐L1 expression, tumor mutational burden and cancer gene mutations are stronger predictors of benefit from immune checkpoint blockade than HLA class I genotype in non‐small cell lung cancer
  publication-title: J Thorac Oncol
– volume: 9
  start-page: 1
  year: 2008
  article-title: HLA class I supertypes: a revised and updated classification
  publication-title: BMC Immunol
– volume: 160
  start-page: 48
  year: 2015
  end-page: 61
  article-title: Molecular and genetic properties of tumors associated with local immune cytolytic activity
  publication-title: Cell
– volume: 16
  start-page: S7
  issue: Suppl 2
  year: 2015
  article-title: HLA‐VBSeq: accurate HLA typing at full resolution from whole‐genome sequencing data
  publication-title: BMC Genom
– volume: 1802
  start-page: 193
  year: 2018
  end-page: 201
  article-title: PHLAT: inference of high‐resolution HLA types from RNA and whole exome sequencing
  publication-title: Methods Mol Biol
– volume: 38
  start-page: 788
  year: 2017
  end-page: 797
  article-title: HLA‐HD: an accurate HLA typing algorithm for next‐generation sequencing data
  publication-title: Human Mutat
– volume: 12
  start-page: 119
  year: 2020
  article-title: Genome‐wide methylation patterns predict clinical benefit of immunotherapy in lung cancer
  publication-title: Clin Epigenetics
– volume: 9
  start-page: 34
  year: 2017
  article-title: Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden
  publication-title: Genome Med
– volume: 8
  year: 2018
  article-title: The expression and prognostic impact of immune cytolytic activity‐related markers in human malignancies: a comprehensive meta‐analysis
  publication-title: Front Oncol
– ident: e_1_2_11_31_1
  doi: 10.1093/bioinformatics/bts635
– ident: e_1_2_11_4_1
  doi: 10.1038/nbt.3344
– ident: e_1_2_11_19_1
  doi: 10.1016/j.immuni.2007.08.014
– ident: e_1_2_11_22_1
  doi: 10.1200/JCO.2018.78.1963
– ident: e_1_2_11_8_1
  doi: 10.1016/j.cell.2017.09.050
– ident: e_1_2_11_42_1
  doi: 10.1007/978-1-4939-8546-3_13
– ident: e_1_2_11_14_1
  doi: 10.1073/pnas.1707945114
– ident: e_1_2_11_29_1
  doi: 10.1038/s12276-020-00493-8
– ident: e_1_2_11_5_1
  doi: 10.1093/bioinformatics/btu548
– ident: e_1_2_11_17_1
  doi: 10.1186/1471-2172-9-1
– ident: e_1_2_11_41_1
  doi: 10.1186/s12859-017-1671-3
– ident: e_1_2_11_33_1
  doi: 10.1146/annurev.immunol.20.100301.064828
– ident: e_1_2_11_36_1
  doi: 10.1016/j.ccell.2019.01.003
– ident: e_1_2_11_12_1
  doi: 10.1016/j.cell.2014.12.033
– ident: e_1_2_11_38_1
  doi: 10.1038/nature12477
– ident: e_1_2_11_37_1
  doi: 10.1186/s13073-017-0424-2
– ident: e_1_2_11_16_1
  doi: 10.1186/s13059-018-1388-2
– ident: e_1_2_11_21_1
  doi: 10.3389/fonc.2018.00027
– ident: e_1_2_11_35_1
  doi: 10.1038/s41568-019-0116-x
– ident: e_1_2_11_2_1
  doi: 10.1093/nar/gku1161
– ident: e_1_2_11_24_1
  doi: 10.1126/science.aad0095
– ident: e_1_2_11_28_1
  doi: 10.1186/s13073-019-0679-x
– ident: e_1_2_11_39_1
  doi: 10.1038/nm.4333
– ident: e_1_2_11_32_1
  doi: 10.1186/1471-2105-12-323
– ident: e_1_2_11_34_1
  doi: 10.1158/2326-6066.CIR-15-0225
– ident: e_1_2_11_18_1
  doi: 10.1073/pnas.2010274117
– ident: e_1_2_11_40_1
  doi: 10.1056/NEJMc1713444
– volume: 19
  start-page: 179
  year: 2018
  ident: e_1_2_11_3_1
  article-title: Evaluation of computational programs to predict HLA genotypes from genomic sequencing data
  publication-title: Brief Bioinform
– ident: e_1_2_11_20_1
  doi: 10.1245/s10434-018-6506-6
– ident: e_1_2_11_23_1
  doi: 10.21037/tlcr.2018.08.02
– ident: e_1_2_11_7_1
  doi: 10.1016/j.cell.2018.08.048
– ident: e_1_2_11_44_1
  doi: 10.1038/nmeth.3337
– ident: e_1_2_11_13_1
  doi: 10.1002/humu.23230
– ident: e_1_2_11_27_1
  doi: 10.18632/aging.103516
– ident: e_1_2_11_11_1
  doi: 10.1016/j.jtho.2019.02.008
– ident: e_1_2_11_15_1
  doi: 10.1186/1471-2164-16-S2-S7
– ident: e_1_2_11_9_1
  doi: 10.1016/j.cell.2017.10.001
– ident: e_1_2_11_10_1
  doi: 10.1126/science.aao4572
– ident: e_1_2_11_25_1
  doi: 10.1016/j.ccell.2019.01.003
– ident: e_1_2_11_30_1
  doi: 10.1186/s13148-020-00907-4
– ident: e_1_2_11_6_1
  doi: 10.1007/978-1-4939-8546-3_17
– ident: e_1_2_11_43_1
  doi: 10.1093/bioinformatics/btz235
– ident: e_1_2_11_26_1
  doi: 10.1016/j.isci.2019.10.028
SSID ssj0056969
Score 2.3898125
Snippet Human leukocyte antigen (HLA) genotyping gains intensive attention due to its critical role in cancer immunotherapy. It is still a challenging issue to...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1764
SubjectTerms Accuracy
Alleles
Analysis
Antigens
Benchmarking
Benchmarks
Cancer
Cancer immunotherapy
Care and treatment
Chromosomes
Cytolytic activity
Datasets
Drug therapy
Genotype
Genotypes
Genotyping
Histocompatibility antigen HLA
Histocompatibility antigens
HLA Antigens - genetics
HLA genotyping
HLA histocompatibility antigens
Humans
immune cytolytic activity
Immune system
Immunotherapy
Laboratories
Linear programming
Lung cancer
Melanoma
Mutation
Neoplasms - genetics
Neoplasms - therapy
Polymorphism
tumor immunotherapy
tumor mutation burden
Tumors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gLgvIKtMhISHBJd_2KneMWUa1QFy5U2ptlO7a6Eput2s2h_54ZJ7vagFAv3KKMHcWe8TySmW8I-cijq42rTBkDM6XkTpbeK1Ei2lfQDRiJiH90F9-r-ZX8tlTLg1ZfmBPWwwP3GzdhOiEIOZiZJkouG-9NpZNUClFZHMt15GDzdsFUr4NVVedmdkxhtqGp2Q7UZ8onzCCmLAQOZ6Casa3EgT3KsP1_K-cD6_Rn5uShR5tN0sUz8nTwJemsX8Nz8ii2x-TxYvhb_oIsz0EEr9cufw6n88sZRUTW7T2WSFHXNjRAWLvKhU6Z2ldM0k1L7zrQICCDdNXSbbfe3AJt3bVDtdb9S3J18fXnl3k5dFIoAwRcqmQhxKR10yQnY62FEpVkKUbeYN2tdq5WXgSptACTxrzmIpmInUiiqURyTLwiR-2mjW8IrRstgvFJqDCVofbOTAM8F6IUrSufeEHOdvtpwwAzjt0uftkeIJlbZIBFBtjMgIJ83k-46RE2_j30HBm0H4bQ2PkGCIwdBMY-JDAF-YTstXiA4cWCG-oQYHkIhWVnWnDwyyBwLsjJaCQcvDAm7wTEDgf_zsJ9DS4tqMKCfNiTcSYms7Vx08EYqcGLNkqKgrzu5Wm_JAFeBasNzNYjSRuteUxpV9cZFhxifWwaV5BJlsmHNtMuflzyfPX2f2zrO_KEY7pPzmQ-IUfb2y6egr-29e_z0fwNxaQznQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgL4k1KQUFCgku661fsHLeIaoW6wIFKvVm249CV2ATtbg79951xHjRFCHFbZexonXknM98Q8o4FW2ib6yx4qjPBrMickzxDtC-vSnASAb_orr7ky3Px-UIO1YTYC9PhQ4wv3FAzor1GBbduN_sNGko1YsNCAnAMJraQd8k9bLBF-Hwmvg3GWOZFnGpHJZYd6oIO6D5zNrt1g4ljivj9f1rpG27qdgnlzdA2-qbTR-RhH1Smi04KHpM7oX5C7q_6z-ZPycUJyOLlxsb34unybJEiNOv-CnulUluXqYf8dh07niK1a51MmzrdtWBKQBjTdZ3u202zBdqmrfu2ratn5Pz00_ePy6wfqZB5yLxkRr0PlVJlWVkRCsUlzwWtQmAlNuAqawvpuBdScfBt1CnGKx1wJEnQOa8s5c_JQd3U4SVJi1Jxr13FpZ8LXzir5x7uC-mKUrmrWEKOh-dpfI83jmMvfpoOKZkZZIBBBpjIgIR8GDf86qA2_r70BBk0LkOM7Hih2f4wvcoZqiqEr4cApQyCidI5natKSIl4PpaqhLxH9hrUZPhj3vYNCXA8xMQyC8UZBGiQQSfkaLISNNBPyYOAmN4C7AxcVxDbgk1MyNuRjDuxqq0OTQtrhIJwWkvBE_Kik6fxSBzCC1po2K0mkjY585RSry8jPjgk_Tg9LiGzKJP_ephm9fWMxV-H_73jFXnAsMgn1i8fkYP9tg2vIUrbuzdRD68BRG0uQA
  priority: 102
  providerName: Wiley-Blackwell
Title Benchmarking HLA genotyping and clarifying HLA impact on survival in tumor immunotherapy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1878-0261.12895
https://www.ncbi.nlm.nih.gov/pubmed/33411982
https://www.proquest.com/docview/2547522042
https://www.proquest.com/docview/2476568543
https://pubmed.ncbi.nlm.nih.gov/PMC8253103
https://doaj.org/article/17f2127152de424dbb867f4553482a17
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxELZoKyEuiDcLJVokJLhsE7_W3hNKUKsINaVCBEVcLK_X20YiuyWPQ_89M44TEhBwSpSxo_XOwzP2zDeEvGHeFtrmOvOO6kwwK7KylDxDtC-nKtgkPN7oji7y4Vh8nMhJPHBbxLTKjU0MhrpqHZ6RdyGQUeArgIy9v_mRYdcovF2NLTQOyBFCl2FKl5psAy6ZF6GlHZWYc6gLuoH26bEu1YgsC-HDCRhobC6xsysF8P4_TfTOHvV7_uSuXxs2prMH5H70KNP-WgQekju-eUTujuKd-WMyGYAgXs9sOBRPh-f9FHFZl7dYKJXapkodBLfTUO4UqOu6ybRt0sUK7AhIYjpt0uVq1s6BNls1sWbr9gkZn51--TDMYj-FzEHYJTPqnK-VqqraCl8oLnkuaO09q7D6VllbyJI7IRWHjY2WivFae-xH4nXOa0v5U3LYtI1_TtKiUtzpsubS9YQrSqt7Dv4XYhWl8rJmCTnZvE_jItg49rz4btYwycwgAwwywAQGJOTddsLNGmfj70MHyKDtMATIDj-08ysT9c1QVSN2PXgnlRdMVGWpc1ULKRHMx1KVkLfIXoNqDA_mbKxGgOUhIJbpK87AOwOpS8jx3khQP7dP3giIieq_ML-ENSGvt2SciSltjW9XMEYo8KW1FDwhz9bytF0SB9-CFhpmqz1J21vzPqWZXgdwcIj4sXVcQrpBJv_3Ms3o0zkL3178eyEvyT2G6TwhU_mYHC7nK_8K_LFl2SEHTFx2gup1yFH_6_jbGD4HpxeXnzvhjOMnuBQxng
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWrgRcEG8CCwQJBJdsGz9i54BQC7vqsu2C0K7Um3Ech61E06UPof4pfiMzTlJaEHDaWxQ_FHvG84hnviHkOXUmVSZRkbOxijg1PMoywSJE-7IyByXh8EZ3eJL0z_j7kRjtkB9NLgyGVTYy0QvqfGrxH3kbHBkJtgLw2JuLbxFWjcLb1aaERsUWx271HVy2-eujd0DfF5QeHpy-7Ud1VYHIgvMhothaV0iZ54XhLpVMsITHhXM0xxxUaUwqMma5kAzEe5xJygrlsCqHUwkrTMxg3itklzOYrUV2ewcnHz81sl8kqS-iFwuMclRp3IAJdWg7VohlCw7LPqgELGexoQd9uYA_lcKGVvw9YnPTkvaq8PAmuVHbsGG3YrpbZMeVt8nVYX1Lf4eMesD65xPjf8OH_UE3RCTYxQpTs0JT5qEFd3rsE6x8a5WpGU7LcL4EyQW8H47LcLGcTGfQNlmWdZbY6i45u5S9vkda5bR0D0iY5pJZlRVM2A63aWZUx8K84B1JmWQFDch-s5_a1vDmWGXjq66AmalGAmgkgPYECMir9YCLCtnj7117SKB1N4Tk9i-msy-6PuE6lgWi5YM9lDtOeZ5lKpEFFwLhg0wsA_ISyatRcMCHWVPnP8DyEIJLdyWjYA8Cnwdkb6snHHi73dwwiK4Fzlz_Oh4BebZuxpEYRFe66RL6cAnWuxKcBeR-xU_rJTGwZuJUwWi5xWlba95uKcfnHo5cUYHF6gLS9jz5v83Uww8D6p8e_nshT8m1_ulwoAdHJ8ePyHWKwUQ-TnqPtBazpXsM1uAie1IfwZB8vuxT_xM-S2mp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkCZeEHcCA4IEgpesjS-x84BQx6g61g4emNQ3z3EcVokmoxeh_jV-Hec4SWlBwNPeqtiOap97fM53CHlBnUmVSVTkbKwiTg2PskywCNG-rMzBSDi80R2dJoMz_mEsxjvkR1sLg2mVrU70ijqvLH4j70AgI8FXAB7rFE1axKej_tvLbxF2kMKb1radRs0iJ271HcK3-ZvjI6D1S0r77z-_G0RNh4HIQiAiothaV0iZ54XhLpVMsITHhXM0x3pUaUwqMma5kAxUfZxJygrlsEOHUwkrTMzgvdfIdVgYo4zJ8TrYE0nq2-nFAvMdVRq3sEJd2okVotpC6HIAxgEbW2xYRN844E_zsGEff8_d3PSpvVHs3yI3G2827NXsd5vsuPIO2Rs19_V3yfgQhOBiavwH-XAw7IWICbtYYZFWaMo8tBBYT3yplR-tazbDqgznS9BhIAXhpAwXy2k1g7HpsmzqxVb3yNmVnPR9sltWpXtIwjSXzKqsYMJ2uU0zo7oW3gtxkpRJVtCAHLTnqW0DdI79Nr7qGqKZaiSARgJoT4CAvF4vuKwxPv4-9RAJtJ6G4Nz-QTX7ohtZ17EsEDcfPKPcccrzLFOJLLgQCCRkYhmQV0hejSoE_pg1TSUEbA_BuHRPMgqeIXB8QPa3ZoLo2-3hlkF0o3rm-pegBOT5ehhXYjpd6aolzOES_HglOAvIg5qf1lti4NfEqYLVcovTtva8PVJOLjwwuaIC29YFpON58n-HqUcfh9T_evTvjTwjeyDrenh8evKY3KCYVeQTpvfJ7mK2dE_ALVxkT738heT8qgX-J2MFbHk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+HLA+genotyping+and+clarifying+HLA+impact+on+survival+in+tumor+immunotherapy&rft.jtitle=Molecular+oncology&rft.au=Li%2C+Xiangyong&rft.au=Zhou%2C+Chi&rft.au=Chen%2C+Ke&rft.au=Huang%2C+Bingding&rft.date=2021-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1574-7891&rft.volume=15&rft.issue=7&rft.spage=1764&rft_id=info:doi/10.1002%2F1878-0261.12895&rft.externalDocID=A732065254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-7891&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-7891&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-7891&client=summon