Exploring the genetic space of the DNA damage response for cancer therapy through CRISPR‐based screens
The concepts of synthetic lethality and viability have emerged as powerful approaches to identify vulnerabilities and resistances within the DNA damage response for the treatment of cancer. Historically, interactions between two genes have had a longstanding presence in genetics and have been identi...
Saved in:
Published in | Molecular oncology Vol. 16; no. 21; pp. 3778 - 3791 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.11.2022
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The concepts of synthetic lethality and viability have emerged as powerful approaches to identify vulnerabilities and resistances within the DNA damage response for the treatment of cancer. Historically, interactions between two genes have had a longstanding presence in genetics and have been identified through forward genetic screens that rely on the molecular basis of the characterized phenotypes, typically caused by mutations in single genes. While such complex genetic interactions between genes have been studied extensively in model organisms, they have only recently been prioritized as therapeutic strategies due to technological advancements in genetic screens. Here, we discuss synthetic lethal and viable interactions within the DNA damage response and present how CRISPR‐based genetic screens and chemical compounds have allowed for the systematic identification and targeting of such interactions for the treatment of cancer.
The combination of CRISPR gene editing and drug treatments in a pooled screening format allows for the discovery of novel gene‐drug interactions. These interactions can potentially provide biomarkers for drug sensitivity and resistance in a clinical setting. |
---|---|
AbstractList | The concepts of synthetic lethality and viability have emerged as powerful approaches to identify vulnerabilities and resistances within the DNA damage response for the treatment of cancer. Historically, interactions between two genes have had a longstanding presence in genetics and have been identified through forward genetic screens that rely on the molecular basis of the characterized phenotypes, typically caused by mutations in single genes. While such complex genetic interactions between genes have been studied extensively in model organisms, they have only recently been prioritized as therapeutic strategies due to technological advancements in genetic screens. Here, we discuss synthetic lethal and viable interactions within the DNA damage response and present how CRISPR-based genetic screens and chemical compounds have allowed for the systematic identification and targeting of such interactions for the treatment of cancer.The concepts of synthetic lethality and viability have emerged as powerful approaches to identify vulnerabilities and resistances within the DNA damage response for the treatment of cancer. Historically, interactions between two genes have had a longstanding presence in genetics and have been identified through forward genetic screens that rely on the molecular basis of the characterized phenotypes, typically caused by mutations in single genes. While such complex genetic interactions between genes have been studied extensively in model organisms, they have only recently been prioritized as therapeutic strategies due to technological advancements in genetic screens. Here, we discuss synthetic lethal and viable interactions within the DNA damage response and present how CRISPR-based genetic screens and chemical compounds have allowed for the systematic identification and targeting of such interactions for the treatment of cancer. The concepts of synthetic lethality and viability have emerged as powerful approaches to identify vulnerabilities and resistances within the DNA damage response for the treatment of cancer. Historically, interactions between two genes have had a longstanding presence in genetics and have been identified through forward genetic screens that rely on the molecular basis of the characterized phenotypes, typically caused by mutations in single genes. While such complex genetic interactions between genes have been studied extensively in model organisms, they have only recently been prioritized as therapeutic strategies due to technological advancements in genetic screens. Here, we discuss synthetic lethal and viable interactions within the DNA damage response and present how CRISPR‐based genetic screens and chemical compounds have allowed for the systematic identification and targeting of such interactions for the treatment of cancer. The concepts of synthetic lethality and viability have emerged as powerful approaches to identify vulnerabilities and resistances within the DNA damage response for the treatment of cancer. Historically, interactions between two genes have had a longstanding presence in genetics and have been identified through forward genetic screens that rely on the molecular basis of the characterized phenotypes, typically caused by mutations in single genes. While such complex genetic interactions between genes have been studied extensively in model organisms, they have only recently been prioritized as therapeutic strategies due to technological advancements in genetic screens. Here, we discuss synthetic lethal and viable interactions within the DNA damage response and present how CRISPR‐based genetic screens and chemical compounds have allowed for the systematic identification and targeting of such interactions for the treatment of cancer. The combination of CRISPR gene editing and drug treatments in a pooled screening format allows for the discovery of novel gene‐drug interactions. These interactions can potentially provide biomarkers for drug sensitivity and resistance in a clinical setting. |
Audience | Academic |
Author | Wilson, Jordan Loizou, Joanna I. |
AuthorAffiliation | 1 Center for Cancer Research, Comprehensive Cancer Centre Medical University of Vienna Austria 2 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria |
AuthorAffiliation_xml | – name: 1 Center for Cancer Research, Comprehensive Cancer Centre Medical University of Vienna Austria – name: 2 CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria |
Author_xml | – sequence: 1 givenname: Jordan orcidid: 0000-0001-7765-8597 surname: Wilson fullname: Wilson, Jordan organization: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences – sequence: 2 givenname: Joanna I. orcidid: 0000-0003-1853-0424 surname: Loizou fullname: Loizou, Joanna I. email: joanna.loizou@meduniwien.ac.at organization: CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35708734$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksuO0zAUhiM0iLnAmh2KxIZNO7473iBVZYBKhUHD7C3HPklTtXawW2B2PALPyJPgtEOhCAll4ej4O591jv7z4sQHD0XxFKMxRohc4kpWI0QEHmNKJHlQnB0qJ_mfSzaSlcKnxXlKS4S4UEI9Kk4pl6iSlJ0Vi6uv_SrEzrflZgFlCx42nS1TbyyUodkVX72flM6sTQtlhNQHn6BsQiyt8RbigETT3-Uzhm27KKc3s48fbn58-16bBK5MNgL49Lh42JhVgif350Vx-_rqdvp2NL9-M5tO5iMrECYjiQihRjWWOom5Q9Kh2lbCEUcdYlDXyjDGLEaUctQ0jW2crJGgnAmGjaAXxWyvdcEsdR-7tYl3OphO7wohttrEPOEKNKsNZRXh3CpgrgIjsVFUNERJCZVE2fVy7-q39RqcBb-JZnUkPb7x3UK34bNWgsi89ix4cS-I4dMW0kavu2RhtTIewjZpIqTkknBVZfT5X-gybKPPm9JEUqQUZ4T_plqTB-h8E_K7dpDqiWSKCVrhgRr_g8qfg3Vnc4CaLtePGi73DTaGlCI0hxkx0kPO9JAqPaRK73KWO579uZoD_ytYGRB74Et-6-5_Pv3uek725p-eYN14 |
CitedBy_id | crossref_primary_10_1016_j_biopha_2024_116288 crossref_primary_10_3389_fgene_2022_993889 crossref_primary_10_1038_s41416_023_02404_w crossref_primary_10_3390_ijms24010319 |
Cites_doi | 10.1038/s41467-020-20314-w 10.1002/ijc.11666 10.1038/nrg.2017.97 10.1038/nbt.3834 10.1038/s41467-021-23463-8 10.1002/j.1460-2075.1995.tb07180.x 10.1101/gr.209643.116 10.1038/s43018-021-00203-x 10.1073/pnas.141230798 10.1016/j.molcel.2020.12.006 10.1038/nature14136 10.1038/s41598-020-59074-4 10.1038/ncomms4216 10.1016/j.bmcl.2022.128636 10.1038/nsmb.2189 10.7554/eLife.40958 10.1073/pnas.2016806118 10.1126/science.278.5340.1064 10.1158/2159-8290.CD-20-1508 10.1038/nature26155 10.1080/17460441.2019.1583643 10.1038/nmeth.4177 10.1038/s41467-022-28442-1 10.1038/s41467-021-23316-4 10.1016/j.tranon.2016.10.003 10.1182/blood-2014-03-560557 10.1016/j.cell.2016.11.038 10.1016/j.celrep.2021.110261 10.1038/nature14184 10.1016/j.cllc.2015.05.010 10.1172/JCI70196 10.1016/j.molcel.2016.03.006 10.1016/j.pharmthera.2019.03.003 10.1158/0008-5472.CAN-12-2753 10.1016/j.ejmech.2021.114012 10.1038/s41586-021-03776-w 10.1038/s41586-018-0362-1 10.1126/sciadv.aat1719 10.1101/2021.04.08.438361 10.1038/s41586-019-1102-x 10.1038/nature24644 10.1038/nature03445 10.1038/s41576-018-0059-1 10.1038/s41467-018-03917-2 10.1038/s41586-021-04274-9 10.1016/j.molcel.2018.12.008 10.1038/s43018-020-0054-2 10.1038/s41388-022-02219-8 10.1038/258427a0 10.1002/j.1460-2075.1993.tb06017.x 10.1016/j.cell.2011.02.013 10.1016/j.annonc.2020.02.008 10.1093/nar/gkv1222 10.1016/j.ccell.2018.05.008 10.1038/s41589-019-0379-2 10.1038/s43018-021-00266-w 10.1126/sciadv.aao4774 10.1016/j.molcel.2018.10.045 10.1016/j.stem.2020.02.007 10.7554/eLife.43333 10.1038/s41467-019-13508-4 10.1038/s41556-018-0140-1 10.1016/j.molcel.2017.03.007 10.1053/srao.2001.26030 10.1038/nrm2450 10.1016/j.cell.2021.01.012 10.1200/JCO.20.03167 10.1038/nbt.3803 10.1016/S1470-2045(18)30009-3 10.1038/s41592-020-0966-x 10.1038/s41587-019-0387-5 10.1016/j.molcel.2020.05.021 10.1016/j.molcel.2015.10.013 10.1038/nature13011 10.1126/sciadv.aav4340 10.1016/j.ccell.2015.09.015 10.1038/s41586-018-0340-7 10.1016/j.cell.2020.05.037 10.1016/j.cell.2010.03.012 10.1038/s41467-018-08034-8 10.1158/0008-5472.CAN-18-2480 10.1007/s00280-014-2380-5 10.1093/annonc/mdy076 10.1093/nar/gkab628 10.1073/pnas.0910759107 10.1038/s41589-021-00765-y 10.1126/science.abb4542 10.1371/journal.pgen.1009176 10.1038/bjc.2016.203 10.1038/nsmb.2993 10.1021/acs.jmedchem.1c00895 10.1016/j.cell.2022.05.013 10.1038/s41467-020-19961-w 10.1038/s41586-019-1103-9 10.1016/j.cell.2020.05.040 10.1158/1535-7163.MCT-13-0803 10.1038/ncb1378 10.1038/s41586-018-0291-z 10.1016/j.molcel.2017.05.015 10.1016/j.cell.2021.01.041 10.1016/j.isci.2019.02.006 10.1016/j.semcdb.2020.08.010 10.1038/nmeth.3312 10.1038/nsmb1252 10.1016/j.cell.2016.11.039 10.1016/j.str.2015.10.014 10.1038/s41594-022-00747-1 10.1038/s41587-021-01172-3 10.1016/j.cell.2014.09.039 10.1038/ncb3626 10.1016/j.cell.2019.01.023 10.1016/j.cell.2021.03.025 10.1146/annurev-cancerbio-030518-055914 10.1126/science.aba8853 10.1038/s41589-020-0594-x 10.1038/nature03443 10.1016/j.cell.2007.03.009 10.1016/j.chembiol.2017.09.010 10.1038/s41598-019-54796-6 10.1038/s41467-021-21898-7 10.15252/embr.201847560 10.1016/j.cell.2021.09.018 10.1038/s41586-019-1711-4 10.1038/nature18325 10.1016/j.molcel.2019.07.013 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. COPYRIGHT 2022 John Wiley & Sons, Inc. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. – notice: 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PIMPY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1002/1878-0261.13272 |
DatabaseName | Wiley Online Library Open Access Wiley-Blackwell Open Access Backfiles Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest One Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | CRISPR screens for interactions in the DDR |
EISSN | 1878-0261 |
EndPage | 3791 |
ExternalDocumentID | oai_doaj_org_article_4ba348255c9e4d8ea71a936f2977e870 A749463815 10_1002_1878_0261_13272 35708734 MOL213272 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: Austrian Academy of Sciences – fundername: European Research Council funderid: ERC Synergy Grant DDREAMM 855741 – fundername: ; – fundername: ; grantid: ERC Synergy Grant DDREAMM 855741 |
GroupedDBID | --- --K .~1 0R~ 0SF 123 1B1 1OC 1~. 24P 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8FE 8FH 8P~ AACTN AAEDW AAFTH AAFWJ AAHHS AAIKJ AALRI AAQFI AAXUO ABBQC ABFRF ABGSF ABMAC ABVKL ACCFJ ACGFO ACGFS ACXQS ADBBV ADEZE ADMUD ADPDF ADUVX ADVLN AEEZP AEFWE AEKER AENEX AEQDE AEXQZ AFKRA AFPKN AGHFR AGYEJ AITUG AIWBW AJBDE AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMRAJ AOIJS AVUZU BAWUL BBNVY BCNDV BENPR BHPHI BLXMC CCPQU CS3 DIK DU5 E3Z EBS EJD EMOBN EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU GBLVA GROUPED_DOAJ HCIFZ HVGLF HYE HZ~ IAO IHE IXB J1W LK8 M41 M7P MO0 N9A NCXOZ O-L OAUVE OK1 OVD OVEED OZT P-8 P-9 P2P PC. PIMPY PROAC Q38 RIG ROL RPM RPZ SDF SDG SEL SES SSZ TEORI TR2 UNMZH WIN CGR CUY CVF ECM EIF ITC NPM AAYXX CITATION ABUWG AZQEC DWQXO GNUQQ PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c6012-70223a9fc3d715d07d0bc86d2d3d04ebb9a444c103350fffcfd7b06354641a63 |
IEDL.DBID | RPM |
ISSN | 1574-7891 1878-0261 |
IngestDate | Tue Oct 22 15:16:34 EDT 2024 Tue Sep 17 21:30:53 EDT 2024 Sat Oct 26 04:12:31 EDT 2024 Thu Oct 10 18:35:31 EDT 2024 Thu Feb 22 23:55:07 EST 2024 Sat Dec 16 00:24:19 EST 2023 Thu Sep 26 18:31:30 EDT 2024 Thu Oct 24 10:01:48 EDT 2024 Sat Aug 24 00:57:16 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | cancer therapy CRISPR-Cas9 screens drug discovery DNA damage response synthetic viability synthetic lethality |
Language | English |
License | Attribution 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6012-70223a9fc3d715d07d0bc86d2d3d04ebb9a444c103350fffcfd7b06354641a63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7765-8597 0000-0003-1853-0424 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9627789/ |
PMID | 35708734 |
PQID | 2730995425 |
PQPubID | 4370298 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4ba348255c9e4d8ea71a936f2977e870 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9627789 proquest_miscellaneous_2677572598 proquest_journals_2730995425 gale_infotracmisc_A749463815 gale_infotracacademiconefile_A749463815 crossref_primary_10_1002_1878_0261_13272 pubmed_primary_35708734 wiley_primary_10_1002_1878_0261_13272_MOL213272 |
PublicationCentury | 2000 |
PublicationDate | November 2022 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Molecular oncology |
PublicationTitleAlternate | Mol Oncol |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 1997; 278 2018; 560 2021; 64 2010; 107 2019; 10 2019; 13 2019; 15 2019; 14 2020; 17 2020; 16 2020; 11 2019; 568 2020; 10 2017; 551 2022; 29 2018; 7 2018; 9 2018; 4 2019; 20 2022; 40 2014; 13 2018; 33 2022; 601 2022; 38 2021; 81 2016; 44 2014; 124 2019; 8 2021; 49 2018; 29 2019; 9 2019; 3 2019; 5 2017; 66 2020; 38 2016; 167 2018; 20 2014; 159 2007; 14 2018; 25 2018; 19 2015; 60 2020; 31 2022; 13 2015; 518 2020; 26 2015; 517 2019; 576 2021; 372 2011; 141 2016; 26 2022; 228 2011; 144 2019; 176 2017; 3 2008; 9 2020; 368 2022; 64 2011; 18 2012; 72 2014; 5 2020; 1 2021; 113 2021; 596 2021; 39 2017; 35 2021; 118 2016; 115 2018; 72 2001; 11 2019; 199 2001; 98 2015; 12 2007; 129 2015; 16 2019; 73 2021; 2 2019; 75 1995; 14 2019; 79 2005; 434 2020; 182 2006; 8 2021; 184 2022; 41 2020; 78 2016; 126 1975; 258 2004; 109 2015; 23 1993; 12 2014; 507 2015; 28 2021; 12 2021; 11 2017; 14 2022 2018; 556 2021 2018; 559 2017; 10 2021; 17 2015; 22 2016; 62 2016; 535 2017; 19 2014; 73 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_82_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_124_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_91_1 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_80_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_126_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 1 start-page: 410 year: 2020 end-page: 22 article-title: An in vivo genome‐wide CRISPR screen identifies the RNA‐binding protein Staufen2 as a key regulator of myeloid leukemia publication-title: Nat Cancer – volume: 13 start-page: 488 year: 2019 end-page: 97 article-title: Werner syndrome helicase is required for the survival of cancer cells with microsatellite instability publication-title: iScience – volume: 19 start-page: 67 year: 2018 end-page: 80 article-title: Am i ready for CRISPR? A user's guide to genetic screens publication-title: Nat Rev Genet – volume: 126 start-page: 2903 year: 2016 end-page: 18 article-title: BRCA1185delAG tumors may acquire therapy resistance through expression of RING‐less BRCA1 publication-title: J Clin Invest – volume: 78 start-page: 1152 year: 2020 end-page: 1165.e8 article-title: Endogenous DNA 3′ blocks are vulnerabilities for BRCA1 and BRCA2 deficiency and are reversed by the APE2 nuclease publication-title: Mol Cell – volume: 184 start-page: 2503 year: 2021 end-page: 2519.e17 article-title: Genome‐wide programmable transcriptional memory by CRISPR‐based epigenome editing publication-title: Cell – volume: 16 start-page: 1199 year: 2020 end-page: 207 article-title: Rational discovery of molecular glue degraders via scalable chemical profiling publication-title: Nat Chem Biol – volume: 23 start-page: 2319 year: 2015 end-page: 30 article-title: Structure of the helicase domain of DNA polymerase theta reveals a possible role in the microhomology‐mediated end‐joining pathway publication-title: Structure – volume: 2 start-page: 598 year: 2021 end-page: 610 article-title: A first‐in‐class polymerase theta inhibitor selectively targets homologous‐recombination‐deficient tumors publication-title: Nat Cancer – volume: 98 start-page: 8554 year: 2001 end-page: 9 article-title: Protacs: chimeric molecules that target proteins to the Skp1‐Cullin‐F box complex for ubiquitination and degradation publication-title: Proc Natl Acad Sci USA – volume: 167 start-page: 1853 year: 2016 end-page: 1866.e17 article-title: Perturb‐seq: dissecting molecular circuits with scalable single‐cell RNA profiling of pooled genetic screens publication-title: Cell – volume: 11 start-page: 316 year: 2001 end-page: 27 article-title: ATM as a target for novel radiosensitizers publication-title: Semin Radiat Oncol – volume: 3 start-page: 131 year: 2019 end-page: 50 article-title: PARP trapping beyond homologous recombination and platinum sensitivity in cancers publication-title: Annu Rev Cancer Biol – volume: 14 start-page: 1878 year: 1995 end-page: 91 article-title: Regulation of the human WEE1Hu CDK tyrosine 15‐kinase during the cell cycle publication-title: EMBO J – volume: 14 start-page: 413 year: 2019 end-page: 6 article-title: A bright future for fragment‐based drug discovery: what does it hold? publication-title: Expert Opin Drug Discov – volume: 118 start-page: 1 year: 2021 end-page: 12 article-title: A genome‐scale CRISPR screen reveals factors regulating Wnt‐dependent renewal of mouse gastric epithelial cells publication-title: Proc Natl Acad Sci USA – volume: 113 start-page: 38 year: 2021 end-page: 46 article-title: RAD51: beyond the break publication-title: Semin Cell Dev Biol – volume: 184 start-page: 5635 year: 2021 end-page: 5652.e29 article-title: Enhanced prime editing systems by manipulating cellular determinants of editing outcomes publication-title: Cell – volume: 535 start-page: 382 year: 2016 end-page: 7 article-title: Replication fork stability confers chemoresistance in BRCA‐deficient cells publication-title: Nature – volume: 182 start-page: 463 year: 2020 end-page: 480.e30 article-title: Determinants of base editing outcomes from target library analysis and machine learning publication-title: Cell – volume: 12 start-page: 3636 year: 2021 article-title: Polθ inhibitors elicit BRCA‐gene synthetic lethality and target PARP inhibitor resistance publication-title: Nat Commun – volume: 22 start-page: 304 year: 2015 end-page: 11 article-title: Human DNA polymerase θ grasps the primer terminus to mediate DNA repair publication-title: Nat Struct Mol Biol – volume: 124 start-page: 1426 year: 2014 end-page: 33 article-title: Randomized, phase 2 trial of low‐dose cytarabine with or without volasertib in AML patients not suitable for induction therapy publication-title: Blood – volume: 12 start-page: 1 year: 2021 end-page: 14 article-title: Integrated cross‐study datasets of genetic dependencies in cancer publication-title: Nat Commun – volume: 10 start-page: 22 year: 2017 end-page: 32 article-title: PLK1, a potential target for cancer therapy publication-title: Transl Oncol – volume: 38 start-page: 355 year: 2020 end-page: 64 article-title: Titrating gene expression using libraries of systematically attenuated CRISPR guide RNAs publication-title: Nat Biotechnol – volume: 66 start-page: 285 year: 2017 end-page: 299.e5 article-title: Multiplexed engineering and analysis of combinatorial enhancer activity in single cells publication-title: Mol Cell – volume: 25 start-page: 78 year: 2018 end-page: 87.e5 article-title: Lessons in PROTAC design from selective degradation with a promiscuous warhead publication-title: Cell Chem Biol – start-page: 2021.11.28.470116 year: 2021 – volume: 434 start-page: 917 year: 2005 end-page: 21 article-title: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy publication-title: Nature – volume: 12 start-page: 326 year: 2015 end-page: 8 article-title: Highly efficient Cas9‐mediated transcriptional programming publication-title: Nat Methods – volume: 11 start-page: 1923 year: 2021 end-page: 37 article-title: Werner helicase is a synthetic‐lethal vulnerability in mismatch repair– deficient colorectal cancer refractory to targeted therapies, chemotherapy, and immunotherapy publication-title: Cancer Discov – volume: 7 year: 2018 article-title: UBE2G1 governs the destruction of cereblon neomorphic substrates publication-title: Elife – volume: 33 start-page: 1078 year: 2018 end-page: 1093.e12 article-title: Selective loss of PARG restores PARylation and counteracts PARP inhibitor‐mediated synthetic lethality publication-title: Cancer Cell – volume: 16 start-page: 457 year: 2015 end-page: 65 article-title: A randomized, open‐label phase II trial of volasertib as monotherapy and in combination with standard‐dose pemetrexed compared with pemetrexed monotherapy in second‐line treatment for non–small‐cell lung cancer publication-title: Clin Lung Cancer – volume: 19 start-page: 770 year: 2018 end-page: 88 article-title: Base editing: precision chemistry on the genome and transcriptome of living cells publication-title: Nat Rev Genet – volume: 35 start-page: 371 year: 2017 end-page: 6 article-title: Increasing the genome‐targeting scope and precision of base editing with engineered Cas9‐cytidine deaminase fusions publication-title: Nat Biotechnol – volume: 20 start-page: 1 year: 2019 end-page: 11 article-title: Shieldin – the protector of DNA ends publication-title: EMBO Rep – volume: 66 start-page: 801 year: 2017 end-page: 17 article-title: ATM, ATR, and DNA‐PK: the trinity at the heart of the DNA damage response publication-title: Mol Cell – volume: 159 start-page: 635 year: 2014 end-page: 46 article-title: A protein‐tagging system for signal amplification in gene expression and fluorescence imaging publication-title: Cell – volume: 176 start-page: 1295 year: 2019 end-page: 1309.e15 article-title: Error‐prone replication through UV lesions by DNA polymerase θ protects against skin cancers publication-title: Cell – volume: 434 start-page: 913 year: 2005 end-page: 7 article-title: Specific killing of BRCA2‐deficient tumours with inhibitors of poly(ADP‐ribose) polymerase.[erratum appears in nature. 2007 may 17;447(7142):346] publication-title: Nature – volume: 73 start-page: 539 year: 2014 end-page: 49 article-title: Phase I dose‐escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors publication-title: Cancer Chemother Pharmacol – volume: 576 start-page: 149 year: 2019 end-page: 57 article-title: Search‐and‐replace genome editing without double‐strand breaks or donor DNA publication-title: Nature – volume: 39 start-page: 1531 year: 2021 end-page: 9 article-title: Phase II study of the WEE1 inhibitor Adavosertib in recurrent uterine serous carcinoma publication-title: J Clin Oncol – volume: 9 start-page: 616 year: 2008 end-page: 27 article-title: ATR: An essential regulator of genome integrity publication-title: Nat Rev Mol Cell Biol – volume: 568 start-page: 551 year: 2019 end-page: 6 article-title: WRN helicase is a synthetic lethal target in microsatellite unstable cancers publication-title: Nature – volume: 9 start-page: 1 year: 2019 end-page: 7 article-title: Activity of M3814, an Oral DNA‐PK inhibitor, in combination with topoisomerase II inhibitors in ovarian cancer models publication-title: Sci Rep – volume: 20 start-page: 954 year: 2018 end-page: 65 article-title: Shieldin complex promotes DNA end‐joining and counters homologous recombination in BRCA1‐null cells publication-title: Nat Cell Biol – volume: 8 year: 2019 article-title: Werner syndrome helicase is a selective vulnerability of microsatellite instability‐high tumor cells publication-title: Elife – volume: 10 start-page: 1 year: 2020 end-page: 14 article-title: The kinase polypharmacology landscape of clinical PARP inhibitors publication-title: Sci Rep – volume: 10 start-page: 5654 year: 2019 article-title: Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death publication-title: Nat Commun – volume: 15 start-page: 1223 year: 2019 end-page: 31 article-title: Uncoupling of PARP1 trapping and inhibition using selective PARP1 degradation publication-title: Nat Chem Biol – volume: 81 start-page: 767 year: 2021 end-page: 783.e11 article-title: Defective ALC1 nucleosome remodeling confers PARPi sensitization and synthetic lethality with HRD publication-title: Mol Cell – volume: 3 start-page: 1 year: 2017 end-page: 10 article-title: Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G‐to‐T:A base editors with higher efficiency and product purity publication-title: Sci Adv – volume: 13 start-page: 1 year: 2022 end-page: 11 article-title: Prime editing efficiency and fidelity are enhanced in the absence of mismatch repair publication-title: Nat Commun – volume: 596 start-page: 433 year: 2021 end-page: 7 article-title: BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination publication-title: Nature – volume: 10 start-page: 439 year: 2019 article-title: Engineering of high‐precision base editors for site‐specific single nucleotide replacement publication-title: Nat Commun – volume: 107 start-page: 13390 year: 2010 end-page: 5 article-title: DNA polymerase θ up‐regulation is associated with poor survival in breast cancer, perturbs DNA replication, and promotes genetic instability publication-title: Proc Natl Acad Sci USA – volume: 38 year: 2022 article-title: WEE1 kinase protects the stability of stalled DNA replication forks by limiting CDK2 activity publication-title: Cell Rep – volume: 5 start-page: 3216 year: 2014 article-title: A polymerase theta‐dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites publication-title: Nat Commun – year: 2022 article-title: Mapping information‐rich genotype‐phenotype landscapes with genome‐scale Perturb‐seq publication-title: Cell – volume: 41 start-page: 1986 year: 2022 end-page: 2002 article-title: PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production publication-title: Oncogene – volume: 228 year: 2022 article-title: Noncovalent CDK12/13 dual inhibitors‐based PROTACs degrade CDK12‐cyclin K complex and induce synthetic lethality with PARP inhibitor publication-title: Eur J Med Chem – volume: 4 year: 2018 article-title: The brain‐penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models publication-title: Sci Adv – volume: 29 start-page: 1304 year: 2018 end-page: 11 article-title: Phase I study of the checkpoint kinase 1 inhibitor GDC‐0575 in combination with gemcitabine in patients with refractory solid tumors publication-title: Ann Oncol – volume: 31 start-page: 590 year: 2020 end-page: 8 article-title: Reversion and non‐reversion mechanisms of resistance to PARP inhibitor or platinum chemotherapy in BRCA1/2‐mutant metastatic breast cancer publication-title: Ann Oncol – volume: 64 start-page: 10606 year: 2021 end-page: 20 article-title: Molecular glues for targeted protein degradation: from serendipity to rational discovery publication-title: J Med Chem – volume: 109 start-page: 9 year: 2004 end-page: 16 article-title: DNA polymerase θ is preferentially expressed in lymphoid tissues and upregulated in human cancers publication-title: Int J Cancer – volume: 144 start-page: 646 year: 2011 end-page: 74 article-title: Hallmarks of cancer: the next generation publication-title: Cell – volume: 16 year: 2020 article-title: Dual genome‐wide CRISPR knockout and CRISPR activation screens identify mechanisms that regulate the resistance to multiple ATR inhibitors publication-title: PLoS Genet – volume: 26 start-page: 1742 year: 2016 end-page: 52 article-title: Multiparameter functional diversity of human C2H2 zinc finger proteins publication-title: Genome Res – year: 2021 – volume: 551 start-page: 464 year: 2017 end-page: 71 article-title: Programmable base editing of T to G C in genomic DNA without DNA cleavage publication-title: Nature – volume: 258 start-page: 427 year: 1975 end-page: 9 article-title: Ataxia telangiectasia: a human mutation with abnormal radiation sensitivity publication-title: Nature – volume: 72 start-page: 925 year: 2018 end-page: 941.e4 article-title: USP1 is required for replication fork protection in BRCA1‐deficient tumors publication-title: Mol Cell – volume: 507 start-page: 62 year: 2014 end-page: 7 article-title: DNA interrogation by the CRISPR RNA‐guided endonuclease Cas9 publication-title: Nature – volume: 14 start-page: 564 year: 2007 end-page: 7 article-title: FANCI is a second monoubiquitinated member of the Fanconi anemia pathway publication-title: Nat Struct Mol Biol – volume: 560 start-page: 117 year: 2018 end-page: 21 article-title: The shieldin complex mediates 53BP1‐dependent DNA repair publication-title: Nature – volume: 167 start-page: 1883 year: 2016 end-page: 1896.e15 article-title: Dissecting immune circuits by linking CRISPR‐pooled screens with single‐cell RNA‐seq publication-title: Cell – volume: 5 year: 2019 article-title: Targeting dePARylation selectively suppresses DNA repair–defective and PARP inhibitor–resistant malignancies publication-title: Sci Adv – volume: 560 start-page: 122 year: 2018 end-page: 7 article-title: 53BP1 cooperation with the REV7‐Shieldin complex underpins DNA structure‐specific NHEJ Shieldin is essential for REV7‐dependent DNA end‐protection and NHEJ during CSR, and supports toxic NHEJ in BRCA1‐deficient cells, yet is dispensable for REV7‐dependent publication-title: Nature – volume: 8 start-page: 339 year: 2006 end-page: 47 article-title: Regulation of monoubiquitinated PCNA by DUB autocleavage publication-title: Nat Cell Biol – volume: 2 start-page: 1357 year: 2021 end-page: 71 article-title: The CIP2A–TOPBP1 axis safeguards chromosome stability and is a synthetic lethal target for BRCA‐mutated cancer publication-title: Nat Cancer – volume: 556 start-page: 57 year: 2018 end-page: 63 article-title: Evolved Cas9 variants with broad PAM compatibility and high DNA specificity publication-title: Nature – volume: 12 start-page: 1 year: 2021 end-page: 12 article-title: Therapeutic targeting of the PLK1‐PRC1‐axis triggers cell death in genomically silent childhood cancer publication-title: Nat Commun – volume: 19 start-page: 1371 year: 2017 end-page: 8 article-title: EZH2 promotes degradation of stalled replication forks by recruiting MUS81 through histone H3 trimethylation publication-title: Nat Cell Biol – volume: 49 start-page: 8665 year: 2021 end-page: 83 article-title: Loss of cyclin C or CDK8 provides ATR inhibitor resistance by suppressing transcription‐associated replication stress publication-title: Nucleic Acids Res – volume: 368 start-page: 290 year: 2020 end-page: 6 article-title: Unconstrained genome targeting with near‐PAMless engineered CRISPR‐Cas9 variants publication-title: Science – volume: 12 start-page: 3427 year: 1993 end-page: 36 article-title: Two distinct mechanisms for negative regulation of the Wee1 protein kinase publication-title: EMBO J – volume: 75 start-page: 849 year: 2019 end-page: 858.e8 article-title: Plasticity of the Cullin‐RING ligase repertoire shapes sensitivity to ligand‐induced protein degradation publication-title: Mol Cell – volume: 184 start-page: 1081 year: 2021 end-page: 1097.e19 article-title: Functional interrogation of DNA damage response variants with base editing screens publication-title: Cell – volume: 17 start-page: 675 year: 2021 end-page: 83 article-title: Discovery and resistance mechanism of a selective CDK12 degrader publication-title: Nat Chem Biol – volume: 35 start-page: 463 year: 2017 end-page: 74 article-title: Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions publication-title: Nat Biotechnol – volume: 12 start-page: 3055 year: 2021 article-title: In vivo genome‐wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/hippo targeted combination therapy publication-title: Nat Commun – volume: 14 start-page: 297 year: 2017 end-page: 301 article-title: Pooled CRISPR screening with single‐cell transcriptome readout publication-title: Nat Methods – volume: 517 start-page: 583 year: 2015 end-page: 8 article-title: Genome‐scale transcriptional activation by an engineered CRISPR‐Cas9 complex publication-title: Nature – volume: 44 start-page: D862 year: 2016 end-page: 8 article-title: ClinVar: public archive of interpretations of clinically relevant variants publication-title: Nucleic Acids Res – volume: 141 start-page: 243 year: 2011 end-page: 54 article-title: 53BP1 inhibits homologous recombination in Brca1‐deficient cells by blocking resection of DNA breaks publication-title: Cell – volume: 18 start-page: 1331 year: 2011 end-page: 5 article-title: Exploiting oncogene‐induced replicative stress for the selective killing of Myc‐driven tumors publication-title: Nat Struct Mol Biol – volume: 518 start-page: 258 year: 2015 end-page: 62 article-title: Homologous‐recombination‐deficient tumours are dependent on Polθ ‐mediated repair publication-title: Nature – volume: 559 start-page: 285 year: 2018 end-page: 9 article-title: CRISPR screens identify genomic ribonucleotides as a source of PARP‐trapping lesions publication-title: Nature – volume: 19 start-page: 207 year: 2018 end-page: 15 article-title: Prexasertib, a cell cycle checkpoint kinase 1 and 2 inhibitor, in BRCA wild‐type recurrent high‐grade serous ovarian cancer: a first‐in‐class proof‐of‐concept phase 2 study publication-title: Lancet Oncol – volume: 115 start-page: 431 year: 2016 end-page: 41 article-title: ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel‐ and olaparib‐resistant ovarian cancer cells publication-title: Br J Cancer – volume: 40 start-page: 862 year: 2022 end-page: 73 article-title: Base editing sensor libraries for high‐throughput engineering and functional analysis of cancer‐associated single nucleotide variants publication-title: Nat Biotechnol – volume: 62 start-page: 307 year: 2016 end-page: 13 article-title: A genome‐wide CRISPR screen identifies CDC25A as a determinant of sensitivity to ATR inhibitors publication-title: Mol Cell – volume: 64 year: 2022 article-title: Selective Wee1 degradation by PROTAC degraders recruiting VHL and CRBN E3 ubiquitin ligases publication-title: Bioorg Med Chem Lett – volume: 28 start-page: 557 year: 2015 end-page: 68 article-title: Inhibiting WEE1 selectively kills histone H3K36me3‐deficient cancers by dNTP starvation publication-title: Cancer Cell – volume: 11 start-page: 6118 year: 2020 article-title: Identification of regulators of poly‐ADP‐ribose polymerase inhibitor response through complementary CRISPR knockout and activation screens publication-title: Nat Commun – volume: 17 start-page: 1093 year: 2020 end-page: 6 article-title: An efficient KRAB domain for CRISPRi applications in human cells publication-title: Nat Methods – volume: 79 start-page: 3762 year: 2019 end-page: 75 article-title: Differential activity of ATR and Wee1 inhibitors in a highly sensitive subpopulation of DLBCL linked to replication stress publication-title: Cancer Res – volume: 601 start-page: 643 year: 2022 end-page: 8 article-title: Structural insights into inhibitor regulation of the DNA repair protein DNA‐PKcs publication-title: Nature – volume: 60 start-page: 755 year: 2015 end-page: 68 article-title: PARP‐1 activation requires local unfolding of an autoinhibitory domain publication-title: Mol Cell – volume: 73 start-page: 885 year: 2019 end-page: 899.e6 article-title: Genetic screens reveal FEN1 and APEX2 as BRCA2 synthetic lethal targets publication-title: Mol Cell – volume: 9 start-page: 1849 year: 2018 article-title: Genome‐wide and high‐density CRISPR‐Cas9 screens identify point mutations in PARP1 causing PARP inhibitor resistance publication-title: Nat Commun – volume: 72 start-page: 5588 year: 2012 end-page: 99 article-title: Trapping of PARP1 and PARP2 by clinical PARP inhibitors publication-title: Cancer Res – volume: 13 start-page: 433 year: 2014 end-page: 43 article-title: Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib publication-title: Mol Cancer Ther – volume: 129 start-page: 289 year: 2007 end-page: 301 article-title: Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair publication-title: Cell – volume: 372 start-page: 156 year: 2021 end-page: 65 article-title: Targeting the nucleotide salvage factor DNPH1 sensitizes ‐deficient cells to PARP inhibitors publication-title: Science – volume: 278 start-page: 1064 year: 1997 end-page: 8 article-title: Integrating genetic approaches into the discovery of anticancer drugs publication-title: Science – volume: 29 start-page: 329 year: 2022 end-page: 38 article-title: PARP inhibition impedes the maturation of nascent DNA strands during DNA replication publication-title: Nat Struct Mol Biol – volume: 568 start-page: 511 year: 2019 end-page: 6 article-title: Prioritization of cancer therapeutic targets using CRISPR–Cas9 screens publication-title: Nature – volume: 199 start-page: 139 year: 2019 end-page: 54 article-title: Emerging drug development technologies targeting ubiquitination for cancer therapeutics publication-title: Pharmacol Ther – volume: 182 start-page: 481 year: 2020 end-page: 496.e21 article-title: A genetic map of the response to DNA damage in human cells publication-title: Cell – volume: 184 start-page: 1064 year: 2021 end-page: 1080.e20 article-title: Massively parallel assessment of human variants with base editor screens publication-title: Cell – volume: 26 start-page: 431 year: 2020 end-page: 440.e8 article-title: Genome‐scale CRISPR screening in human intestinal organoids identifies drivers of TGF‐β resistance publication-title: Cell Stem Cell – ident: e_1_2_10_90_1 doi: 10.1038/s41467-020-20314-w – ident: e_1_2_10_91_1 doi: 10.1002/ijc.11666 – ident: e_1_2_10_13_1 doi: 10.1038/nrg.2017.97 – ident: e_1_2_10_18_1 doi: 10.1038/nbt.3834 – ident: e_1_2_10_96_1 doi: 10.1038/s41467-021-23463-8 – ident: e_1_2_10_82_1 doi: 10.1002/j.1460-2075.1995.tb07180.x – ident: e_1_2_10_20_1 doi: 10.1101/gr.209643.116 – ident: e_1_2_10_99_1 doi: 10.1038/s43018-021-00203-x – ident: e_1_2_10_109_1 doi: 10.1073/pnas.141230798 – ident: e_1_2_10_59_1 doi: 10.1016/j.molcel.2020.12.006 – ident: e_1_2_10_31_1 doi: 10.1038/nature14136 – ident: e_1_2_10_56_1 doi: 10.1038/s41598-020-59074-4 – ident: e_1_2_10_93_1 doi: 10.1038/ncomms4216 – ident: e_1_2_10_113_1 doi: 10.1016/j.bmcl.2022.128636 – ident: e_1_2_10_38_1 doi: 10.1038/nsmb.2189 – ident: e_1_2_10_120_1 doi: 10.7554/eLife.40958 – ident: e_1_2_10_125_1 doi: 10.1073/pnas.2016806118 – ident: e_1_2_10_2_1 doi: 10.1126/science.278.5340.1064 – ident: e_1_2_10_105_1 doi: 10.1158/2159-8290.CD-20-1508 – ident: e_1_2_10_46_1 doi: 10.1038/nature26155 – ident: e_1_2_10_118_1 doi: 10.1080/17460441.2019.1583643 – ident: e_1_2_10_25_1 doi: 10.1038/nmeth.4177 – ident: e_1_2_10_123_1 doi: 10.1038/s41467-022-28442-1 – ident: e_1_2_10_126_1 doi: 10.1038/s41467-021-23316-4 – ident: e_1_2_10_86_1 doi: 10.1016/j.tranon.2016.10.003 – ident: e_1_2_10_87_1 doi: 10.1182/blood-2014-03-560557 – ident: e_1_2_10_26_1 doi: 10.1016/j.cell.2016.11.038 – ident: e_1_2_10_83_1 doi: 10.1016/j.celrep.2021.110261 – ident: e_1_2_10_95_1 doi: 10.1038/nature14184 – ident: e_1_2_10_88_1 doi: 10.1016/j.cllc.2015.05.010 – ident: e_1_2_10_61_1 doi: 10.1172/JCI70196 – ident: e_1_2_10_71_1 doi: 10.1016/j.molcel.2016.03.006 – ident: e_1_2_10_117_1 doi: 10.1016/j.pharmthera.2019.03.003 – ident: e_1_2_10_53_1 doi: 10.1158/0008-5472.CAN-12-2753 – ident: e_1_2_10_115_1 doi: 10.1016/j.ejmech.2021.114012 – ident: e_1_2_10_62_1 doi: 10.1038/s41586-021-03776-w – ident: e_1_2_10_9_1 doi: 10.1038/s41586-018-0362-1 – ident: e_1_2_10_73_1 doi: 10.1126/sciadv.aat1719 – ident: e_1_2_10_39_1 doi: 10.1101/2021.04.08.438361 – ident: e_1_2_10_104_1 doi: 10.1038/s41586-019-1102-x – ident: e_1_2_10_40_1 doi: 10.1038/nature24644 – ident: e_1_2_10_4_1 doi: 10.1038/nature03445 – ident: e_1_2_10_42_1 doi: 10.1038/s41576-018-0059-1 – ident: e_1_2_10_65_1 doi: 10.1038/s41467-018-03917-2 – ident: e_1_2_10_77_1 doi: 10.1038/s41586-021-04274-9 – ident: e_1_2_10_58_1 doi: 10.1016/j.molcel.2018.12.008 – ident: e_1_2_10_127_1 doi: 10.1038/s43018-020-0054-2 – ident: e_1_2_10_89_1 doi: 10.1038/s41388-022-02219-8 – ident: e_1_2_10_75_1 doi: 10.1038/258427a0 – ident: e_1_2_10_81_1 doi: 10.1002/j.1460-2075.1993.tb06017.x – ident: e_1_2_10_3_1 doi: 10.1016/j.cell.2011.02.013 – ident: e_1_2_10_60_1 doi: 10.1016/j.annonc.2020.02.008 – ident: e_1_2_10_43_1 doi: 10.1093/nar/gkv1222 – ident: e_1_2_10_66_1 doi: 10.1016/j.ccell.2018.05.008 – ident: e_1_2_10_14_1 – ident: e_1_2_10_112_1 doi: 10.1038/s41589-019-0379-2 – ident: e_1_2_10_16_1 doi: 10.1038/s43018-021-00266-w – ident: e_1_2_10_41_1 doi: 10.1126/sciadv.aao4774 – ident: e_1_2_10_103_1 doi: 10.1016/j.molcel.2018.10.045 – ident: e_1_2_10_124_1 doi: 10.1016/j.stem.2020.02.007 – ident: e_1_2_10_106_1 doi: 10.7554/eLife.43333 – ident: e_1_2_10_67_1 doi: 10.1038/s41467-019-13508-4 – ident: e_1_2_10_8_1 doi: 10.1038/s41556-018-0140-1 – ident: e_1_2_10_28_1 doi: 10.1016/j.molcel.2017.03.007 – ident: e_1_2_10_74_1 doi: 10.1053/srao.2001.26030 – ident: e_1_2_10_23_1 doi: 10.1038/nrm2450 – ident: e_1_2_10_51_1 doi: 10.1016/j.cell.2021.01.012 – ident: e_1_2_10_85_1 doi: 10.1200/JCO.20.03167 – ident: e_1_2_10_45_1 doi: 10.1038/nbt.3803 – ident: e_1_2_10_80_1 doi: 10.1016/S1470-2045(18)30009-3 – ident: e_1_2_10_21_1 doi: 10.1038/s41592-020-0966-x – ident: e_1_2_10_22_1 doi: 10.1038/s41587-019-0387-5 – ident: e_1_2_10_57_1 doi: 10.1016/j.molcel.2020.05.021 – ident: e_1_2_10_52_1 doi: 10.1016/j.molcel.2015.10.013 – ident: e_1_2_10_12_1 doi: 10.1038/nature13011 – ident: e_1_2_10_68_1 doi: 10.1126/sciadv.aav4340 – ident: e_1_2_10_84_1 doi: 10.1016/j.ccell.2015.09.015 – ident: e_1_2_10_10_1 doi: 10.1038/s41586-018-0340-7 – ident: e_1_2_10_48_1 doi: 10.1016/j.cell.2020.05.037 – ident: e_1_2_10_7_1 doi: 10.1016/j.cell.2010.03.012 – ident: e_1_2_10_44_1 doi: 10.1038/s41467-018-08034-8 – ident: e_1_2_10_37_1 doi: 10.1158/0008-5472.CAN-18-2480 – ident: e_1_2_10_78_1 doi: 10.1007/s00280-014-2380-5 – ident: e_1_2_10_79_1 doi: 10.1093/annonc/mdy076 – ident: e_1_2_10_72_1 doi: 10.1093/nar/gkab628 – ident: e_1_2_10_92_1 doi: 10.1073/pnas.0910759107 – ident: e_1_2_10_116_1 doi: 10.1038/s41589-021-00765-y – ident: e_1_2_10_69_1 doi: 10.1126/science.abb4542 – ident: e_1_2_10_36_1 doi: 10.1371/journal.pgen.1009176 – ident: e_1_2_10_35_1 doi: 10.1038/bjc.2016.203 – ident: e_1_2_10_97_1 doi: 10.1038/nsmb.2993 – ident: e_1_2_10_111_1 doi: 10.1021/acs.jmedchem.1c00895 – ident: e_1_2_10_29_1 doi: 10.1016/j.cell.2022.05.013 – ident: e_1_2_10_34_1 doi: 10.1038/s41467-020-19961-w – ident: e_1_2_10_107_1 doi: 10.1038/s41586-019-1103-9 – ident: e_1_2_10_17_1 doi: 10.1016/j.cell.2020.05.040 – ident: e_1_2_10_55_1 doi: 10.1158/1535-7163.MCT-13-0803 – ident: e_1_2_10_100_1 doi: 10.1038/ncb1378 – ident: e_1_2_10_15_1 doi: 10.1038/s41586-018-0291-z – ident: e_1_2_10_70_1 doi: 10.1016/j.molcel.2017.05.015 – ident: e_1_2_10_50_1 doi: 10.1016/j.cell.2021.01.041 – ident: e_1_2_10_108_1 doi: 10.1016/j.isci.2019.02.006 – ident: e_1_2_10_24_1 doi: 10.1016/j.semcdb.2020.08.010 – ident: e_1_2_10_33_1 doi: 10.1038/nmeth.3312 – ident: e_1_2_10_101_1 doi: 10.1038/nsmb1252 – ident: e_1_2_10_27_1 doi: 10.1016/j.cell.2016.11.039 – ident: e_1_2_10_98_1 doi: 10.1016/j.str.2015.10.014 – ident: e_1_2_10_6_1 doi: 10.1038/s41594-022-00747-1 – ident: e_1_2_10_49_1 doi: 10.1038/s41587-021-01172-3 – ident: e_1_2_10_32_1 doi: 10.1016/j.cell.2014.09.039 – ident: e_1_2_10_64_1 doi: 10.1038/ncb3626 – ident: e_1_2_10_94_1 doi: 10.1016/j.cell.2019.01.023 – ident: e_1_2_10_30_1 doi: 10.1016/j.cell.2021.03.025 – ident: e_1_2_10_54_1 doi: 10.1146/annurev-cancerbio-030518-055914 – ident: e_1_2_10_47_1 doi: 10.1126/science.aba8853 – ident: e_1_2_10_114_1 doi: 10.1038/s41589-020-0594-x – ident: e_1_2_10_5_1 doi: 10.1038/nature03443 – ident: e_1_2_10_102_1 doi: 10.1016/j.cell.2007.03.009 – ident: e_1_2_10_110_1 doi: 10.1016/j.chembiol.2017.09.010 – ident: e_1_2_10_76_1 doi: 10.1038/s41598-019-54796-6 – ident: e_1_2_10_19_1 doi: 10.1038/s41467-021-21898-7 – ident: e_1_2_10_63_1 doi: 10.15252/embr.201847560 – ident: e_1_2_10_122_1 doi: 10.1016/j.cell.2021.09.018 – ident: e_1_2_10_121_1 doi: 10.1038/s41586-019-1711-4 – ident: e_1_2_10_11_1 doi: 10.1038/nature18325 – ident: e_1_2_10_119_1 doi: 10.1016/j.molcel.2019.07.013 |
SSID | ssj0056969 |
Score | 2.403529 |
SecondaryResourceType | review_article |
Snippet | The concepts of synthetic lethality and viability have emerged as powerful approaches to identify vulnerabilities and resistances within the DNA damage... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3778 |
SubjectTerms | Antimitotic agents Antineoplastic agents Apoptosis Cancer Cancer therapies cancer therapy Care and treatment CRISPR CRISPR-Cas Systems CRISPR‐Cas9 screens Deoxyribonucleic acid DNA DNA Damage DNA damage response DNA repair drug discovery Gene expression Genes Genetic aspects Genetic screening Genetic Testing Genomes Health aspects Humans Lethality Microscopy Mutation Neoplasms - genetics Phenotypes Review Reviews synthetic lethality synthetic viability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELZQD4gL4s1CQUZCgssSvx_HUKgKogWVIvVm-an2QIJCe-DGT-A38ksYezdRFg69cIvWTrSe-TwPZeYbhJ4bbURmnvQ5aduD9aN98Er0wYoSgjJW-VZtcaQOvoj3p_J0a9RXrQkb6IEHwc1E8JV_Rcpos0gme0295aowCFwygK1ZX2LXydRgg6WybZgdlbXa0Fi6JvUhbEZN5ZSFxOEVJGKaTfxRo-3_1zhveae_Kye3I9rmkvZvoZtjLInnwxluo2t5cQddPxz_Lb-LzjYFdhjCPAxQqR2LGGxIzHhZ2sM3R3Oc_FewKng1lMtmDHEsjhUNKzy0Z_3A4zgfvHf87vOn498_f1XvlzDYnJoH30Mn-29P9g76cbJCHyEBg5AaPDf3tkSeNJWJ6ERCNCqxxBMROQTrhRCREs4lKaXEknSAYEYKJahX_D7aWSwX-SHCGn7BFpNNYlbAbsuTl4Z6w0WJJsoOvVyL130b-DPcwJTMXNWEq5pwTRMdel3Fv9lWia_bA4CDG-HgroJDh15U5bl6PUFD0Y9dBvC2lejKzbWwAmwOhTfbneyEaxWny2v1u_Faf3cQ65FKoMdg-dlmuX6zlqot8vIS9iitpYas0nTowYCWzZG41MRoLjqkJzianHm6sjg_a6TfdUgSILlDs4a4q4TpDj9-YO3To_8h1sfoBqt9H60JcxftXKwu8xOIxi7C03bx_gDdxysO priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELZgKyEuFf8ECjISElzCJv6J7RPallYF0aVaitSb5dgO5cBuu20P3HgEnpEnYcbxLg1IcFvFzir2jL-ZSWa-IeS5VlpE5qoyBmVKQL-6bF0jytaIrm0bbRqXsi2mzf4n8e5YHucXbuc5rXKFiQmow8LjO_IxmNkKucuYfH16VmLXKPy6mltoXCcbDCIFNiIb27vTw9kKi2VjUlO7WmLWoTb1itynYuNaI7csBBCvICBTbGCXEn3_3yB9xUr9mUF51bNNpmnvFtnMPiWd9Epwm1yL8zvkxkH-an6XnKwT7Si4exRUBisXKWCJj3TRpYtvphMa3FdAF7rs02YjBX-WetSKJe3LtL7R3NaH7szefjyc_fz-A61goIA9GA_fI0d7u0c7-2XusFB6CMTAtQYLzp3pPA-qlqFSoWq9bgILPFQitq1xQghfV5zLqus63wXVglMjRSNq1_D7ZDRfzONDQhX8g-l01IEZAbMND07q2mkuOq-9LMjL1fba055Hw_aMycyiJCxKwiZJFGQbt389DQmw04XF8rPN58mK1iEtj5TeRBF0dKp2hjcdA382AgYV5AUKz-IxBQl5l6sN4GmR8MpOlDACsKeGJ9sazITj5YfDK_HbfLzP7W9lLMiz9TDeiSlr87i4hDmNUlJBdKkL8qDXlvWSuFSVVlwURA30aLDm4cj8y0ki_8ZmSaDJBRknjfvfZtqDD-9Z-vXo3wt5TG4yrOxIZZZbZHSxvIxPwN-6aJ_mQ_ULgQ0kbg priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtUwELVQkRAbVN4pBRkJCTbhJn7E9vJSqAqipSpFYmf5lZYFuei2XbDjE_hGvoQZ50FTFohdFDtR4pk5M5PMHBPyTCstEnNVmaIyJaBfXXrXiNIb0XrfaNO4XG1x0Ox9Eu8-y7GaEHthen6I6YMbWkbGazRw588Wf0hDa43csJAAvISESgEKX0feGFRyJg5HMJaNybvawYgolTb1yO5TscWVG8wcU-bv_xulL7mpqyWUl0Pb7Jt2N8mtIaiky14LbpNrqbtDbuwPv83vktOp0o5CvEdBZ7B1kQKYhERXbT75-mBJo_sK8ELXfd1sohDQ0oBqsaZ9n9Z3OuzrQ3eO3n48PPr14ye6wUgBfDAhvkeOd98c7-yVwxYLZYBMDGJrcOHcmTbwqGoZKxUrH3QTWeSxEsl744QQoa44l1XbtqGNykNUI0Ujatfw-2SjW3XpIaEK7mBanXRkRsBsw6OTunaaizboIAvyYlxe-60n0rA9ZTKzKAmLkrBZEgV5hcs_TUMG7HxitT6xg0FZ4R3y8kgZTBJRJ6dqZ3jTMghoE4BQQZ6j8CzaKUgouKHdAJ4WGa_sUgkjAHxqeLLt2UywrzAfHsVvB_s-sxD0Vcikx2D46TSMV2LNWpdWFzCnUUoqSC91QR702jK9Epeq0oqLgqiZHs3eeT7SfTnN7N-4WxJockEWWeP-tZh2_8N7lo-2_vuKR-Qmw26P3Hq5TTbO1xfpMcRg5_5JtrLfzRYkqQ priority: 102 providerName: Wiley-Blackwell |
Title | Exploring the genetic space of the DNA damage response for cancer therapy through CRISPR‐based screens |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1878-0261.13272 https://www.ncbi.nlm.nih.gov/pubmed/35708734 https://www.proquest.com/docview/2730995425 https://www.proquest.com/docview/2677572598 https://pubmed.ncbi.nlm.nih.gov/PMC9627789 https://doaj.org/article/4ba348255c9e4d8ea71a936f2977e870 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa6RUJcEG8CZWUkJLhk87Ad28ft0qogdlktRerN8iu0EputlvbAjZ_Ab-SXMHaSVQMHJG5R7CSO553MfIPQK8EF9aXOU--4TEH7FanRFU2NpLUxlZCVjtkWi-rkM31_xs72EOtrYWLSvjUXk-bretJcnMfcysu1zfo8sWw5n4WGMVzIbIRGwKB9iN6qX1bJ2MeuYCHRUMiix_PJy6wQAU4WYoYJxGA8NLIhjOeCEzqwShG8_28VfcNG_Zk_edOvjYbp-B6623mUeNqu_D7a880DdHve_TN_iM53aXYYnD0MDBPqFjFoEuvxpo4n3y6m2Ok16Ba8bZNmPQZvFtvAE1vcFml9x11THzxbvfu0XP368TPYQIdB84Ro-BE6PT46nZ2kXX-F1EIYBo412G-iZW2J4wVzOXe5saJypSMup94YqSmltsgJYXld17Z23IBLw2hFC12Rx2i_2TT-KcIc7iBr4YUrJYXZkjjNRKEFobUVliXoTb-96rJF0VAtXnKpAlFUIIqKREnQYdj-3bQAfx1PbLZfVMcEihodQHkYs9JTJ7zmhZakqkvwZj1ooAS9DsRTQUiBQlZ3tQaw2gB3paacSgqap4CVHQxmgnDZ4XBPftUJ9zcFHl8eYPRKGH65Gw5XhoS1xm-uYU7FOeMQW4oEPWm5ZfdKPdMliA_4aPDOwxGQhAj93XF-grLIcf_aTDX_-KGMR8_--1nP0Z0ylHzE-ssDtH-1vfYvwBG7MmM0KulyjG4dHi2Wq3H8nDGOwvgb82UviA |
link.rule.ids | 230,315,730,783,787,867,888,2109,11576,21402,27938,27939,33758,33759,43819,46066,46490,50828,50937,53806,53808,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwELaglYAL4rcEChgJCS5hk9iO7RPallYt7C7Vski9WY7tUA7slm174MYj8Iw8CTOOd2lAgtsqdlaxZ_zNTDLzDSHPlVQ8VLbIg5c6B_Qr88bWPG80b5umVrq2MdtiUh985G-PxXF64XaW0ipXmBiB2i8cviMfgJktkLusEq9Pv-bYNQq_rqYWGlfJJlJVgVZv7uxNjqYrLBa1jk3tSoFZh0qXK3KfohqUCrllIYB4BQGZrHp2KdL3_w3Sl6zUnxmUlz3baJr2b5Gbyaekw04JbpMrYX6HXBunr-Z3yck60Y6Cu0dBZbBykQKWuEAXbbz4ZjKk3n4BdKHLLm02UPBnqUOtWNKuTOsbTW196O708MPR9Of3H2gFPQXswXj4Hpnt7812D_LUYSF3EIiBaw0WnFndOuZlKXwhfdE4VfvKM1_w0DTacs5dWTAmirZtXetlA06N4DUvbc3uk435Yh4eECrhH3SrgvKV5jBbM2-FKq1ivHXKiYy8XG2vOe14NEzHmFwZlIRBSZgoiYzs4PavpyEBdrywWH4y6TwZ3lik5RHC6cC9ClaWVrO6rcCfDYBBGXmBwjN4TEFCzqZqA3haJLwyQ8k1B-wp4cm2ezPheLn-8Er8Jh3vM_NbGTPybD2Md2LK2jwsLmBOLaWQEF2qjGx12rJeEhOyUJLxjMieHvXW3B-Zfz6J5N_YLAk0OSODqHH_20wzfj-q4q-H_17IU3L9YDYemdHh5N0jcqPCKo9YcrlNNs6XF-Ex-F7nzZN0wH4BjKgnaA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZgK1VcEG8CBYyEBJewSWzH9gltH6sW2mW1FKk3y7EdyoHdsm0P3PgJ_EZ-CTOOd2lAglsUe6PY881rM_6GkBdKKh4qW-TBS52D9SvzxtY8bzRvm6ZWurax2mJS73_kb0_ESap_Ok9llSubGA21Xzj8j3wIbrZA7rJKDNtUFjHdHb85-5pjByn80praaVwnG5IDqgZkY3tvMp2t7LKodWxwVwqsQFS6XBH9FNWwVMgzC8nEa0jOZNXzUZHK_2-DfcVj_VlNeTXKjW5qfIvcTPElHXWAuE2uhfkdsnmUvqDfJafrojsKoR8F-OApRgp2xQW6aOPN3cmIevsFLA1ddiW0gUJsSx0iZEm7I1vfaGrxQ3dmBx-ms5_ff6BH9BTsEObG98jxeO94Zz9P3RZyB0kZhNngzZnVrWNelsIX0heNU7WvPPMFD02jLefclQVjomjb1rVeNhDgCF7z0tbsPhnMF_PwkFAJT9CtCspXmsNszbwVqrSK8dYpJzLyarW95qzj1DAde3JlUBIGJWGiJDKyjdu_noZk2PHGYvnJJN0yvLFI0SOE04F7FawsrWZ1W0FsG8AeZeQlCs-gyoKEnE0nD-BtkfzKjCTXiJgS3myrNxNUzfWHV-I3SdXPzW9gZuT5ehh_ieVr87C4hDm1lEJCpqky8qBDy3pJTMhCScYzIns46q25PzL_fBqJwLFxEiA5I8OIuP9tpjl6f1jFq0f_Xsgzsgm6ZQ4PJu8ekxsVHviIpy-3yOBieRmeQBh20TxN-vULzVErnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+genetic+space+of+the+DNA+damage+response+for+cancer+therapy+through+CRISPR-based+screens&rft.jtitle=Molecular+oncology&rft.au=Wilson%2C+Jordan&rft.au=Loizou%2C+Joanna+I&rft.date=2022-11-01&rft.eissn=1878-0261&rft.volume=16&rft.issue=21&rft.spage=3778&rft_id=info:doi/10.1002%2F1878-0261.13272&rft_id=info%3Apmid%2F35708734&rft.externalDocID=35708734 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-7891&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-7891&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-7891&client=summon |