The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis

Summary By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al., ) this bacterium was considered a potential agent for environmental bioremediation of industrial waste and a good colonizer of the rhizosphere. However, neither the...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 18; no. 10; pp. 3403 - 3424
Main Authors Belda, Eugeni, van Heck, Ruben G. A., José Lopez-Sanchez, Maria, Cruveiller, Stéphane, Barbe, Valérie, Fraser, Claire, Klenk, Hans-Peter, Petersen, Jörn, Morgat, Anne, Nikel, Pablo I., Vallenet, David, Rouy, Zoé, Sekowska, Agnieszka, Martins dos Santos, Vitor A. P., de Lorenzo, Víctor, Danchin, Antoine, Médigue, Claudine
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.10.2016
Wiley Subscription Services, Inc
Society for Applied Microbiology and Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al., ) this bacterium was considered a potential agent for environmental bioremediation of industrial waste and a good colonizer of the rhizosphere. However, neither the annotation tools available at that time nor the scarcely available omics data—let alone metabolic modeling and other nowadays common systems biology approaches—allowed them to anticipate the astonishing capacities that are encoded in the genetic complement of this unique microorganism. In this work we have adopted a suite of state‐of‐the‐art genomic analysis tools to revisit the functional and metabolic information encoded in the chromosomal sequence of strain KT2440. We identified 242 new protein‐coding genes and re‐annotated the functions of 1548 genes, which are linked to almost 4900 PubMed references. Catabolic pathways for 92 compounds (carbon, nitrogen and phosphorus sources) that could not be accommodated by the previously constructed metabolic models were also predicted. The resulting examination not only accounts for some of the known stress tolerance traits known in P. putida but also recognizes the capacity of this bacterium to perform difficult redox reactions, thereby multiplying its value as a platform microorganism for industrial biotechnology.
AbstractList Summary By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al., ) this bacterium was considered a potential agent for environmental bioremediation of industrial waste and a good colonizer of the rhizosphere. However, neither the annotation tools available at that time nor the scarcely available omics data—let alone metabolic modeling and other nowadays common systems biology approaches—allowed them to anticipate the astonishing capacities that are encoded in the genetic complement of this unique microorganism. In this work we have adopted a suite of state‐of‐the‐art genomic analysis tools to revisit the functional and metabolic information encoded in the chromosomal sequence of strain KT2440. We identified 242 new protein‐coding genes and re‐annotated the functions of 1548 genes, which are linked to almost 4900 PubMed references. Catabolic pathways for 92 compounds (carbon, nitrogen and phosphorus sources) that could not be accommodated by the previously constructed metabolic models were also predicted. The resulting examination not only accounts for some of the known stress tolerance traits known in P. putida but also recognizes the capacity of this bacterium to perform difficult redox reactions, thereby multiplying its value as a platform microorganism for industrial biotechnology.
By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al., ) this bacterium was considered a potential agent for environmental bioremediation of industrial waste and a good colonizer of the rhizosphere. However, neither the annotation tools available at that time nor the scarcely available omics data-let alone metabolic modeling and other nowadays common systems biology approaches-allowed them to anticipate the astonishing capacities that are encoded in the genetic complement of this unique microorganism. In this work we have adopted a suite of state-of-the-art genomic analysis tools to revisit the functional and metabolic information encoded in the chromosomal sequence of strain KT2440. We identified 242 new protein-coding genes and re-annotated the functions of 1548 genes, which are linked to almost 4900 PubMed references. Catabolic pathways for 92 compounds (carbon, nitrogen and phosphorus sources) that could not be accommodated by the previously constructed metabolic models were also predicted. The resulting examination not only accounts for some of the known stress tolerance traits known in P. putida but also recognizes the capacity of this bacterium to perform difficult redox reactions, thereby multiplying its value as a platform microorganism for industrial biotechnology.
By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al ., ) this bacterium was considered a potential agent for environmental bioremediation of industrial waste and a good colonizer of the rhizosphere. However, neither the annotation tools available at that time nor the scarcely available omics data—let alone metabolic modeling and other nowadays common systems biology approaches—allowed them to anticipate the astonishing capacities that are encoded in the genetic complement of this unique microorganism. In this work we have adopted a suite of state‐of‐the‐art genomic analysis tools to revisit the functional and metabolic information encoded in the chromosomal sequence of strain KT2440. We identified 242 new protein‐coding genes and re‐annotated the functions of 1548 genes, which are linked to almost 4900 PubMed references. Catabolic pathways for 92 compounds (carbon, nitrogen and phosphorus sources) that could not be accommodated by the previously constructed metabolic models were also predicted. The resulting examination not only accounts for some of the known stress tolerance traits known in P. putida but also recognizes the capacity of this bacterium to perform difficult redox reactions, thereby multiplying its value as a platform microorganism for industrial biotechnology.
By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al., 2002) this bacterium was considered a potential agent for environmental bioremediation of industrial waste and a good colonizer of the rhizosphere. However, neither the annotation tools available at that time nor the scarcely available omics data—let alone metabolic modeling and other nowadays common systems biology approaches—allowed them to anticipate the astonishing capacities that are encoded in the genetic complement of this unique microorganism. In this work we have adopted a suite of state-of-the-art genomic analysis tools to revisit the functional and metabolic information encoded in the chromosomal sequence of strain KT2440. We identified 242 new protein-coding genes and re-annotated the functions of 1548 genes, which are linked to almost 4900 PubMed references. Catabolic pathways for 92 compounds (carbon, nitrogen and phosphorus sources) that could not be accommodated by the previously constructed metabolic models were also predicted. The resulting examination not only accounts for some of the known stress tolerance traits known in P. putida but also recognizes the capacity of this bacterium to perform difficult redox reactions, thereby multiplying its value as a platform microorganism for industrial biotechnology.
Summary By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al., ) this bacterium was considered a potential agent for environmental bioremediation of industrial waste and a good colonizer of the rhizosphere. However, neither the annotation tools available at that time nor the scarcely available omics data--let alone metabolic modeling and other nowadays common systems biology approaches--allowed them to anticipate the astonishing capacities that are encoded in the genetic complement of this unique microorganism. In this work we have adopted a suite of state-of-the-art genomic analysis tools to revisit the functional and metabolic information encoded in the chromosomal sequence of strain KT2440. We identified 242 new protein-coding genes and re-annotated the functions of 1548 genes, which are linked to almost 4900 PubMed references. Catabolic pathways for 92 compounds (carbon, nitrogen and phosphorus sources) that could not be accommodated by the previously constructed metabolic models were also predicted. The resulting examination not only accounts for some of the known stress tolerance traits known in P. putida but also recognizes the capacity of this bacterium to perform difficult redox reactions, thereby multiplying its value as a platform microorganism for industrial biotechnology.
Author Klenk, Hans-Peter
Petersen, Jörn
Rouy, Zoé
Martins dos Santos, Vitor A. P.
Danchin, Antoine
Barbe, Valérie
de Lorenzo, Víctor
Médigue, Claudine
Fraser, Claire
Belda, Eugeni
Sekowska, Agnieszka
José Lopez-Sanchez, Maria
Morgat, Anne
Nikel, Pablo I.
Cruveiller, Stéphane
van Heck, Ruben G. A.
Vallenet, David
Author_xml – sequence: 1
  givenname: Eugeni
  surname: Belda
  fullname: Belda, Eugeni
  email: eugeni.belda-cuesta@pasteur.fr, eugeni.belda-cuesta@pasteur.fr
  organization: Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism, 2 rue Gaston Crémieux, 91057, Evry, France
– sequence: 2
  givenname: Ruben G. A.
  surname: van Heck
  fullname: van Heck, Ruben G. A.
  organization: Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, Building number 316, HB, 6703, Wageningen, The Netherlands
– sequence: 3
  givenname: Maria
  surname: José Lopez-Sanchez
  fullname: José Lopez-Sanchez, Maria
  organization: Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism, 2 rue Gaston Crémieux, 91057, Evry, France
– sequence: 4
  givenname: Stéphane
  surname: Cruveiller
  fullname: Cruveiller, Stéphane
  organization: Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism, 2 rue Gaston Crémieux, 91057, Evry, France
– sequence: 5
  givenname: Valérie
  surname: Barbe
  fullname: Barbe, Valérie
  organization: Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute, National Sequencing Center, 2 rue Gaston Crémieux, 91057, Evry, France
– sequence: 6
  givenname: Claire
  surname: Fraser
  fullname: Fraser, Claire
  organization: Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, MD, Baltimore, USA
– sequence: 7
  givenname: Hans-Peter
  surname: Klenk
  fullname: Klenk, Hans-Peter
  organization: Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
– sequence: 8
  givenname: Jörn
  surname: Petersen
  fullname: Petersen, Jörn
  organization: Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
– sequence: 9
  givenname: Anne
  surname: Morgat
  fullname: Morgat, Anne
  organization: Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, CH-1206, Geneva, Switzerland
– sequence: 10
  givenname: Pablo I.
  surname: Nikel
  fullname: Nikel, Pablo I.
  organization: Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/Darwin 3, 28049, Madrid, Spain
– sequence: 11
  givenname: David
  surname: Vallenet
  fullname: Vallenet, David
  organization: Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism, 2 rue Gaston Crémieux, 91057, Evry, France
– sequence: 12
  givenname: Zoé
  surname: Rouy
  fullname: Rouy, Zoé
  organization: Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism, 2 rue Gaston Crémieux, 91057, Evry, France
– sequence: 13
  givenname: Agnieszka
  surname: Sekowska
  fullname: Sekowska, Agnieszka
  organization: AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
– sequence: 14
  givenname: Vitor A. P.
  surname: Martins dos Santos
  fullname: Martins dos Santos, Vitor A. P.
  organization: Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenplein 10, Building number 316, HB, 6703, Wageningen, The Netherlands
– sequence: 15
  givenname: Víctor
  surname: de Lorenzo
  fullname: de Lorenzo, Víctor
  organization: Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), C/Darwin 3, 28049, Madrid, Spain
– sequence: 16
  givenname: Antoine
  surname: Danchin
  fullname: Danchin, Antoine
  organization: AMAbiotics SAS, Institut du Cerveau et de la Moëlle Épinière, Hôpital de la Pitié-Salpêtrière, Paris, France
– sequence: 17
  givenname: Claudine
  surname: Médigue
  fullname: Médigue, Claudine
  organization: Alternative Energies and Atomic Energy Commission (CEA), Genomic Institute & CNRS-UMR8030 & Evry University, Laboratory of Bioinformatics Analysis in Genomics and Metabolism, 2 rue Gaston Crémieux, 91057, Evry, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26913973$$D View this record in MEDLINE/PubMed
https://cea.hal.science/cea-04541789$$DView record in HAL
BookMark eNqNkktv1DAURiNURB-wZocssYHFUL_jsKuq0ladli4GIbGxHOdOxyWxBzuZ0n-PwzwWlVDxwi-dcy3b32Gx54OHonhL8CeS2zHhkk5oRfOSUYZfFAe7nb3dnND94jCle4xJyUr8qtinsiKsKtlB0cwWgCKsXHI9NOgOfOgAhTm6TTA0oQveJLQcetcYdDWjnGMEvnV3ix58Qq5PaGXaAVCmDIqhHlKPOuhNHVpnkV2YlFx6XbycmzbBm814VHz7cjY7vZhMv55fnp5MJ1ZigiecqEbZiuMKKmgAREMVt2xOlbQGlBWUgK2Bl6YWjSSsMUo1QgmhmFWyZuyo-Lyu-2DyRZzPnfYmWpd0ME63ro4mPuqHIWrfjsNyqJMWuMIYZ_njWl6YVi-j60Z01C5OptqC0ZgLTkpVrUhmP6zZZQy_Bki97lyy0LbGQxiSpphiJVWF6bMoUaxkXJbif1AqpSwxVhl9_wS9D0P0-XFHquKEMcIz9W5DDXUHze5W2-_PgFgDNoaUIsy1db3pXfB9NK7VBOsxZnoMkh5Dpf_GLHvHT7xt6X8bm5MeXAuPz-H67Ppy603Wnks9_N55Jv7UModZ6O835_r25rr6cSW4luwPERTvMg
CitedBy_id crossref_primary_10_1016_j_mec_2019_e00098
crossref_primary_10_34133_bdr_0016
crossref_primary_10_1186_s13213_020_01596_3
crossref_primary_10_1111_1462_2920_15291
crossref_primary_10_1016_j_eti_2019_100567
crossref_primary_10_1016_j_ymben_2022_10_008
crossref_primary_10_1016_j_ymben_2021_12_010
crossref_primary_10_1128_mSystems_00154_16
crossref_primary_10_1016_j_jhazmat_2025_137417
crossref_primary_10_1186_s12934_020_01329_w
crossref_primary_10_1016_j_checat_2021_09_002
crossref_primary_10_1016_j_biombioe_2021_106295
crossref_primary_10_1128_AEM_01665_20
crossref_primary_10_1080_09583157_2019_1645304
crossref_primary_10_3389_fmicb_2020_00382
crossref_primary_10_1111_1462_2920_15854
crossref_primary_10_1038_s41598_019_43405_1
crossref_primary_10_1111_1462_2920_13434
crossref_primary_10_1099_jmm_0_001137
crossref_primary_10_1002_cbic_202000091
crossref_primary_10_1080_07388551_2018_1500997
crossref_primary_10_1007_s10658_017_1401_8
crossref_primary_10_1016_j_ymben_2022_09_004
crossref_primary_10_1038_s41598_017_07435_x
crossref_primary_10_1111_1751_7915_13400
crossref_primary_10_1186_s12934_018_0887_x
crossref_primary_10_1016_j_ymben_2023_04_007
crossref_primary_10_3390_microorganisms9020393
crossref_primary_10_1016_j_copbio_2023_103025
crossref_primary_10_1093_bib_bbx113
crossref_primary_10_1042_EBC20160015
crossref_primary_10_3390_biology13060404
crossref_primary_10_1111_1462_2920_13326
crossref_primary_10_3390_microorganisms9010025
crossref_primary_10_1038_s41467_022_30780_z
crossref_primary_10_1111_1751_7915_13292
crossref_primary_10_1016_j_ymben_2021_07_005
crossref_primary_10_1002_cssc_202000268
crossref_primary_10_1016_j_ecoenv_2019_109826
crossref_primary_10_1111_1462_2920_70012
crossref_primary_10_1016_j_tim_2020_02_015
crossref_primary_10_1111_1462_2920_14622
crossref_primary_10_3389_fbioe_2022_1023325
crossref_primary_10_1016_j_ijbiomac_2021_09_142
crossref_primary_10_1186_s12934_019_1146_5
crossref_primary_10_1016_j_ymben_2021_07_014
crossref_primary_10_1186_s12864_023_09940_y
crossref_primary_10_1039_D0GC02885A
crossref_primary_10_1016_j_resmic_2023_104133
crossref_primary_10_1093_synbio_ysab024
crossref_primary_10_1111_1751_7915_13862
crossref_primary_10_1021_acssynbio_0c00272
crossref_primary_10_1016_j_copbio_2021_11_009
crossref_primary_10_1074_jbc_RA119_007885
crossref_primary_10_1002_biot_201600720
crossref_primary_10_1016_j_jhazmat_2024_133466
crossref_primary_10_1111_1758_2229_12704
crossref_primary_10_1002_elsc_201800133
crossref_primary_10_3389_fmicb_2018_01343
crossref_primary_10_3389_fbioe_2019_00480
crossref_primary_10_3390_microorganisms12040753
crossref_primary_10_3389_fbioe_2020_00899
crossref_primary_10_1186_s13068_021_02066_x
crossref_primary_10_1111_1751_7915_13396
crossref_primary_10_1016_j_bioelechem_2020_107690
crossref_primary_10_1093_synbio_ysab010
crossref_primary_10_1128_jb_00136_24
crossref_primary_10_1074_jbc_RA118_005296
crossref_primary_10_1016_j_cej_2024_153375
crossref_primary_10_1111_1751_7915_13712
crossref_primary_10_1016_j_ymben_2025_01_001
crossref_primary_10_1007_s11084_024_09652_7
crossref_primary_10_59717_j_xinn_life_2023_100011
crossref_primary_10_1007_s00253_020_10619_7
crossref_primary_10_1007_s11356_021_15310_6
crossref_primary_10_1002_bit_27662
crossref_primary_10_1111_1462_2920_15422
crossref_primary_10_1111_1751_7915_13043
crossref_primary_10_1128_mBio_02334_18
crossref_primary_10_1111_1751_7915_14255
crossref_primary_10_1016_j_oneear_2023_10_015
crossref_primary_10_3389_fbioe_2019_00130
crossref_primary_10_1016_j_ymben_2018_03_003
crossref_primary_10_1186_s13068_020_01861_2
crossref_primary_10_1016_j_heliyon_2021_e07122
crossref_primary_10_1128_AEM_02442_19
crossref_primary_10_1038_s41396_020_00884_9
crossref_primary_10_1093_nar_gkab672
crossref_primary_10_1111_1462_2920_16511
crossref_primary_10_1016_j_celrep_2023_112847
crossref_primary_10_3390_ijms22010152
crossref_primary_10_1002_elsc_201900151
crossref_primary_10_1016_j_ymben_2023_07_004
crossref_primary_10_1016_j_enzmictec_2024_110529
crossref_primary_10_2166_ws_2022_011
crossref_primary_10_1021_acssynbio_2c00325
crossref_primary_10_1128_spectrum_03176_23
crossref_primary_10_1186_s13059_019_1769_1
crossref_primary_10_1016_j_ymben_2019_01_008
crossref_primary_10_1111_1751_7915_13937
crossref_primary_10_1016_j_enzmictec_2019_02_007
crossref_primary_10_1002_jobm_201800595
crossref_primary_10_1128_msphere_00685_24
crossref_primary_10_1186_s12934_022_01883_5
crossref_primary_10_1186_s12934_024_02509_8
crossref_primary_10_3389_fchem_2020_587456
crossref_primary_10_1016_j_copbio_2025_103270
crossref_primary_10_1111_1462_2920_13585
crossref_primary_10_1128_aem_02430_21
crossref_primary_10_1016_j_ymben_2022_05_008
crossref_primary_10_1093_bioinformatics_btz866
crossref_primary_10_3389_fmicb_2017_00990
crossref_primary_10_1016_j_ymben_2022_05_001
crossref_primary_10_1128_mbio_01081_23
crossref_primary_10_3390_catal9050468
crossref_primary_10_1371_journal_pone_0200940
crossref_primary_10_1111_1462_2920_16304
crossref_primary_10_3389_fgeed_2022_957289
crossref_primary_10_1016_j_nbt_2023_01_002
crossref_primary_10_3389_fbioe_2020_622226
crossref_primary_10_1038_s41467_020_18813_x
crossref_primary_10_1016_j_mec_2020_e00143
crossref_primary_10_3389_fmicb_2022_846677
crossref_primary_10_1016_j_biotechadv_2022_107952
crossref_primary_10_3390_microorganisms9020321
crossref_primary_10_1128_msystems_00942_23
crossref_primary_10_1021_acssynbio_1c00297
crossref_primary_10_1016_j_scitotenv_2023_163140
crossref_primary_10_3389_fmicb_2023_1151882
crossref_primary_10_1016_j_synbio_2018_12_001
crossref_primary_10_1093_nar_gkw1101
crossref_primary_10_1016_j_biortech_2023_130014
crossref_primary_10_1016_j_ijbiomac_2022_04_004
crossref_primary_10_1111_1758_2229_13097
crossref_primary_10_1128_AEM_03236_16
crossref_primary_10_1128_msystems_00014_21
crossref_primary_10_1016_j_scitotenv_2020_143239
crossref_primary_10_1111_1751_7915_14215
crossref_primary_10_3390_ijms25115761
crossref_primary_10_1016_j_scitotenv_2018_02_143
crossref_primary_10_1002_biot_201700161
crossref_primary_10_1111_1751_7915_13804
crossref_primary_10_1016_j_jhazmat_2021_127672
crossref_primary_10_1111_1462_2920_14812
crossref_primary_10_1111_1462_2920_13495
crossref_primary_10_1099_mic_0_001002
crossref_primary_10_1002_mbo3_473
crossref_primary_10_1126_sciadv_aaz6153
crossref_primary_10_1016_j_mec_2020_e00126
crossref_primary_10_1111_1751_7915_13574
crossref_primary_10_1016_j_cbpa_2016_05_011
crossref_primary_10_1016_j_ymben_2018_03_011
crossref_primary_10_1093_femsre_fuae025
crossref_primary_10_1111_1751_7915_14423
crossref_primary_10_1038_s41598_020_62337_9
crossref_primary_10_1021_acssynbio_2c00364
crossref_primary_10_3389_fmicb_2019_02494
crossref_primary_10_3389_fmicb_2019_00078
crossref_primary_10_1002_biot_202000165
crossref_primary_10_3390_microorganisms9071388
crossref_primary_10_1002_bit_26433
crossref_primary_10_1111_1751_7915_70059
crossref_primary_10_1111_1462_2920_14471
crossref_primary_10_1039_D4GC03876B
crossref_primary_10_1016_j_copbio_2020_03_007
crossref_primary_10_1111_1751_7915_14312
crossref_primary_10_1186_s12866_020_02058_1
crossref_primary_10_1016_j_scitotenv_2023_167832
crossref_primary_10_1021_acssynbio_6b00230
crossref_primary_10_3390_polym11050748
crossref_primary_10_1016_j_ymben_2019_04_005
crossref_primary_10_1038_s41467_024_46574_4
crossref_primary_10_3389_fmicb_2017_00548
crossref_primary_10_1128_mBio_01894_18
crossref_primary_10_1139_cjm_2019_0548
crossref_primary_10_1002_adbi_201800111
crossref_primary_10_1111_1758_2229_12999
crossref_primary_10_1111_1751_7915_12461
crossref_primary_10_1128_mbio_03259_21
crossref_primary_10_1016_j_xpro_2023_102060
crossref_primary_10_1016_j_copbio_2016_09_001
crossref_primary_10_1111_1751_7915_13439
crossref_primary_10_1007_s00253_017_8211_y
crossref_primary_10_1111_1462_2920_14843
crossref_primary_10_1111_1462_2920_16114
crossref_primary_10_1007_s00284_022_02804_w
crossref_primary_10_1111_1462_2920_15384
crossref_primary_10_1111_1462_2920_16110
crossref_primary_10_1016_j_ymben_2018_05_005
crossref_primary_10_3390_biom9120796
crossref_primary_10_1016_j_copbio_2017_06_013
crossref_primary_10_1111_1751_7915_13443
crossref_primary_10_1021_acssuschemeng_1c03765
crossref_primary_10_1016_j_ymben_2023_01_011
crossref_primary_10_1016_j_indcrop_2024_118956
crossref_primary_10_1007_s10295_018_2042_4
crossref_primary_10_1128_msystems_00004_23
crossref_primary_10_1021_acssynbio_8b00465
crossref_primary_10_1038_s41467_024_52755_y
crossref_primary_10_1038_s41467_018_03187_y
crossref_primary_10_1093_femsmc_xtac030
crossref_primary_10_1021_acssuschemeng_1c02682
crossref_primary_10_1186_s12934_020_01325_0
crossref_primary_10_1128_mra_01150_22
crossref_primary_10_1007_s10295_019_02159_5
crossref_primary_10_1111_1462_2920_14263
crossref_primary_10_1016_j_biotechadv_2017_08_001
crossref_primary_10_1128_aem_00852_23
crossref_primary_10_1080_17435390_2017_1342010
crossref_primary_10_1128_msystems_00770_24
crossref_primary_10_1016_j_rser_2021_111674
crossref_primary_10_1128_AEM_01438_19
crossref_primary_10_1111_1751_7915_13533
crossref_primary_10_3762_bjoc_14_204
crossref_primary_10_1016_j_biotechadv_2021_107732
crossref_primary_10_1111_1751_7915_13418
crossref_primary_10_1111_1751_7915_13419
crossref_primary_10_1002_1873_3468_14159
crossref_primary_10_1016_j_biotechadv_2019_02_016
crossref_primary_10_1111_1462_2920_14703
crossref_primary_10_1016_j_nbt_2020_08_004
crossref_primary_10_1016_j_tibtech_2018_04_007
crossref_primary_10_1099_mic_0_000982
crossref_primary_10_1016_j_meteno_2016_04_002
crossref_primary_10_1073_pnas_1921073117
crossref_primary_10_1186_s12934_019_1227_5
crossref_primary_10_3389_fbioe_2019_00312
crossref_primary_10_1099_mgen_0_000168
crossref_primary_10_1016_j_checat_2024_101148
crossref_primary_10_1021_acssynbio_4c00700
crossref_primary_10_1128_mBio_01512_18
crossref_primary_10_1007_s00253_020_10811_9
crossref_primary_10_1007_s00294_016_0646_7
crossref_primary_10_1016_j_copbio_2020_02_004
crossref_primary_10_1128_mbio_01794_21
Cites_doi 10.1111/j.1574-6976.2010.00249.x
10.1111/j.1365-2958.2009.06962.x
10.1111/1462-2920.12270
10.1074/jbc.M502585200
10.1111/j.1462-2920.2010.02331.x
10.1128/JB.01585-07
10.1139/cjm-46-1-59
10.1186/1472-6750-13-93
10.1093/emboj/16.19.5922
10.1093/nar/gks1193
10.1074/jbc.M801195200
10.1128/jb.170.7.3142-3149.1988
10.1093/nar/gku961
10.1046/j.1462-2920.2002.00370.x
10.1073/pnas.1501384112
10.1111/1758-2229.12223
10.1007/s12038-007-0055-7
10.1371/journal.pone.0098367
10.1128/AEM.65.11.4837-4847.1999
10.1111/j.1462-2920.2007.01464.x
10.1093/nar/gku1223
10.1016/B978-0-12-800143-1.00002-6
10.1111/1751-7915.12029
10.1038/sj.emboj.7601041
10.1093/nar/gks1194
10.1093/nar/gku1002
10.1073/pnas.062526999
10.1271/bbb.60.1720
10.1371/journal.pcbi.1001116
10.1128/JB.01393-07
10.1128/AEM.03565-12
10.1038/nature08480
10.15252/msb.20145697
10.1007/s00253-004-1862-5
10.1371/journal.pcbi.1000210
10.1007/s00203-005-0054-8
10.1074/jbc.274.53.37901
10.3389/fphar.2014.00231
10.1529/biophysj.106.084343
10.1002/biot.201000124
10.1038/nchembio768
10.1038/nprot.2011.308
10.1128/jb.178.10.2804-2812.1996
10.1186/1471-2164-13-69
10.1016/S0021-9258(19)50037-0
10.1074/jbc.M300815200
10.1006/jmbi.2000.4315
10.1111/1462-2920.12812
10.1093/nar/gku989
10.1111/1462-2920.13015
10.1093/nar/gkm160
10.1093/nar/25.5.955
10.1093/nar/gkp698
10.1371/journal.pgen.1000344
10.1128/jb.178.11.3362-3364.1996
10.1111/j.1462-2920.2004.00734.x
10.1074/jbc.M115.687749
10.1093/nar/gks1146
10.1002/pmic.200500329
10.1093/bioinformatics/btp352
10.1128/JB.180.13.3421-3431.1998
10.1038/nrmicro1021
10.1128/JB.184.10.2837-2840.2002
10.1073/pnas.0405375101
10.1093/nar/gkq1093
10.1093/bioinformatics/btt036
10.1038/nmeth.1701
10.1186/gb-2010-11-10-r106
10.1371/journal.pcbi.1003118
10.1128/JB.185.14.4233-4242.2003
10.1016/S0005-2736(99)00085-1
10.1016/j.tig.2012.11.001
10.1093/nar/gks1027
10.1016/j.bbamem.2005.09.010
10.1128/jb.178.6.1663-1670.1996
10.1093/nar/gkt900
10.1099/00221287-146-1-199
10.1023/A:1012275512136
10.1111/1758-2229.12090
10.1371/journal.pcbi.1000308
10.1046/j.1462-2920.2002.00368.x
10.1093/nar/gks1005
10.1046/j.1462-2920.2002.00366.x
10.1186/1471-2105-11-119
10.1093/database/bat059
10.1093/nar/gkt1103
10.1038/nchembio.1387
10.1016/0022-2836(81)90087-5
10.1128/JB.01178-10
10.1073/pnas.0601119103
10.1111/j.1462-2920.2010.02166.x
10.1128/jb.172.8.4339-4347.1990
10.1016/j.bbapap.2008.01.005
10.1007/978-1-61779-412-4_15
10.1101/gr.194201
10.1128/JB.183.2.644-653.2001
10.1046/j.1365-2958.2003.03547.x
10.1099/mic.0.028787-0
10.1016/S0021-9258(18)53913-2
10.1038/339157a0
10.1016/S0167-4781(97)00097-3
10.1111/j.1462-2920.2011.02430.x
10.4056/sigs.1794338
10.1093/oxfordjournals.molbev.a026410
10.1038/nrmicro3253
10.1111/j.1574-6976.2011.00269.x
10.1093/nar/gkq869
10.1093/nar/gkg847
10.1093/genetics/54.1.61
10.1371/journal.pcbi.1002540
10.1101/gr.186501
10.1016/S1369-5274(99)80030-7
10.1111/j.1365-2958.2010.07332.x
10.1111/1574-6976.12076
10.1152/ajpcell.00360.2004
10.1099/mic.0.044263-0
10.1128/JB.00968-07
10.1111/j.1365-2958.2010.07448.x
10.1371/journal.pone.0110038
10.1093/nar/gku1068
10.1128/JB.184.15.4246-4258.2002
10.1128/jb.174.3.889-898.1992
10.1016/j.pep.2003.07.006
10.1073/pnas.0802273105
10.1186/1752-0509-2-79
10.1016/S0167-4838(00)00214-4
10.1128/JB.00666-12
10.1093/bib/bbs058
10.1093/nar/gku1243
10.1093/nar/gkg590
10.1074/jbc.M109.033944
ContentType Journal Article
Copyright 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd
2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
2016 Society for Applied Microbiology and John Wiley & Sons Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Wageningen University & Research
Copyright_xml – notice: 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd
– notice: 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: 2016 Society for Applied Microbiology and John Wiley & Sons Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Wageningen University & Research
DBID BSCLL
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
1XC
QVL
DOI 10.1111/1462-2920.13230
DatabaseName Istex
Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
NARCIS:Publications
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE
CrossRef


AGRICOLA
MEDLINE - Academic
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1462-2920
EndPage 3424
ExternalDocumentID oai_library_wur_nl_wurpubs_509000
oai_HAL_cea_04541789v1
4216550641
26913973
10_1111_1462_2920_13230
EMI13230
ark_67375_WNG_PNM9ZK54_6
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
24P
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
1XC
-
02
0R
31
3N
AAPBV
ABHUG
ABPTK
ABWRO
ACXME
ADAWD
ADDAD
AGJLS
GA
HZ
IA
KM
NF
P4A
QVL
RIG
UNR
WT
XFK
Y3
ID FETCH-LOGICAL-c6010-418d8c9409e9edee5d284c3f286cae8c521ecbe47ab5d613da88d585583c86b33
IEDL.DBID DR2
ISSN 1462-2912
IngestDate Fri Feb 05 18:08:27 EST 2021
Fri May 09 12:15:50 EDT 2025
Fri Jul 11 18:30:54 EDT 2025
Fri Jul 11 16:39:08 EDT 2025
Fri Jul 11 09:34:01 EDT 2025
Sun Jul 13 03:54:22 EDT 2025
Wed Feb 19 02:42:32 EST 2025
Tue Jul 01 04:00:36 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Wed Jan 22 16:20:03 EST 2025
Wed Oct 30 09:54:47 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution-NonCommercial
2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6010-418d8c9409e9edee5d284c3f286cae8c521ecbe47ab5d613da88d585583c86b33
Notes ArticleID:EMI13230
ark:/67375/WNG-PNM9ZK54-6
istex:4EC21B58AA5486D9C24E168A1E15384F93243841
Eugeni Belda and Ruben G. A. van Heck have contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2342-9729
0000-0001-6648-0332
0000-0003-4300-8873
0000-0003-4307-5072
0000-0002-8162-3343
0000-0002-1216-2969
0000-0002-3905-1054
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.13230
PMID 26913973
PQID 1829413314
PQPubID 1066360
PageCount 22
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_509000
hal_primary_oai_HAL_cea_04541789v1
proquest_miscellaneous_2020868902
proquest_miscellaneous_1837346752
proquest_miscellaneous_1826667008
proquest_journals_1829413314
pubmed_primary_26913973
crossref_citationtrail_10_1111_1462_2920_13230
crossref_primary_10_1111_1462_2920_13230
wiley_primary_10_1111_1462_2920_13230_EMI13230
istex_primary_ark_67375_WNG_PNM9ZK54_6
ProviderPackageCode CITATION
AAYXX
QVL
PublicationCentury 2000
PublicationDate October 2016
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: October 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Society for Applied Microbiology and Wiley-Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
– name: Society for Applied Microbiology and Wiley-Blackwell
References Parschat, K., Canne, C., Hüttermann, J., Kappl, R., and Fetzner, S. (2001) Xanthine dehydrogenase from Pseudomonas putida 86: specificity, oxidation-reduction potentials of its redox-active centers, and first EPR characterization. Biochim Biophys Acta 1544: 151-165.
Lee, J.-H., Lee, K.-H., Kim, C.-G., Lee, S.-Y., Kim, G.-J., Park, Y.-H., and Chung, S.-O. (2005) Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Appl Microbiol Biotechnol 68: 213-219.
Sudom, A., Walters, R., Pastushok, L., Goldie, D., Prasad, L., Delbaere, L.T.J., and Goldie, H. (2003) Mechanisms of activation of phosphoenolpyruvate carboxykinase from Escherichia coli by Ca2+ and of desensitization by trypsin. J Bacteriol 185: 4233-4242.
Scovill, W.H., Schreier, H.J., and Bayles, K.W. (1996) Identification and characterization of the pckA gene from Staphylococcus aureus. J Bacteriol 178: 3362-3364.
Karp, P.D., Latendresse, M., and Caspi, R. (2011) The pathway tools pathway prediction algorithm. Stand Genom Sci 5: 424-429.
Puchałka, J., Oberhardt, M.A., Godinho, M., Bielecka, A., Regenhardt, D., Timmis, K.N., et al. (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4: e1000210.
Wargo, M.J., and Hogan, D.A. (2009) Identification of genes required for Pseudomonas aeruginosa carnitine catabolism. Microbiology 155: 2411-2419.
Smith, A.A.T., Belda, E., Viari, A., Medigue, C., and Vallenet, D. (2012) The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes. PLoS Comput Biol 8: e1002540.
Kobayashi, K., Kato, M., Miura, Y., Kettoku, M., Komeda, T., and Iwamatsu, A. (1996) Gene analysis of trehalose-producing enzymes from hyperthermophilic archaea in Sulfolobales. Biosci Biotechnol Biochem 60: 1720-1723.
Bocs, S., Cruveiller, S., Vallenet, D., Nuel, G., and Médigue, C. (2003) AMIGene: annotation of MIcrobial Genes. Nucleic Acids Res 31: 3723-3726.
Carmel, O., Rahav-Manor, O., Dover, N., Shaanan, B., and Padan, E. (1997) The Na+-specific interaction between the LysR-type regulator, NhaR, and the nhaA gene encoding the Na+/H+ antiporter of Escherichia coli. EMBO J 16: 5922-5929.
De Lorenzo, V. (2015) It's the metabolism, stupid! Environ Microbiol Rep 7: 18-19.
Mitchell, A., Chang, H.-Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., et al. (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43: D213-D221.
Oberhardt, M.A., Puchałka, J., Martins dos Santos, V.A.P., and Papin, J.A. (2011) Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis. PLoS Comput Biol 7: e1001116.
Venturi, V. (2003) Control of rpoS transcription in Escherichia coli and Pseudomonas: why so different? Mol Microbiol 49: 1-9.
Bastard, K., Smith, A.A.T., Vergne-Vaxelaire, C., Perret, A., Zaparucha, A., De Melo-Minardi, R., et al. (2014) Revealing the hidden functional diversity of an enzyme family. Nat Chem Biol 10: 42-49.
Molina-Henares, M.A., de la Torre, J., García-Salamanca, A., Molina-Henares, A.J., Herrera, M.C., Ramos, J.L., and Duque, E. (2010) Identification of conditionally essential genes for growth of Pseudomonas putida KT2440 on minimal medium through the screening of a genome-wide mutant library. Environ Microbiol 12: 1468-1485.
Udaondo, Z., Molina, L., Segura, A., Duque, E., and Ramos, J.L. (2015) Analysis of the core genome and pangenome of Pseudomonas putida. Environ Microbiol, In press, DOI: 10.1111/1462-2920.13015.
Kumar, V.S., and Maranas, C.D. (2009) GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 5: e1000308.
Arias, S., Olivera, E.R., Arcos, M., Naharro, G., and Luengo, J.M. (2008) Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U. Environ Microbiol 10: 413-432.
Silby, M.W., Winstanley, C., Godfrey, S.A.C., Levy, S.B., and Jackson, R.W. (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35: 652-680.
Dos Santos, V.A.P.M., Heim, S., Moore, E.R.B., Strätz, M., and Timmis, K.N. (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6: 1264-1286.
Pedruzzi, I., Rivoire, C., Auchincloss, A.H., Coudert, E., Keller, G., de Castro, E., et al. (2015) HAMAP in 2015: updates to the protein family classification and annotation system. Nucleic Acids Res 43: D1064-D1070.
Hidese, R., Mihara, H., Kurihara, T., and Esaki, N. (2011) Escherichia coli dihydropyrimidine dehydrogenase is a novel NAD-dependent heterotetramer essential for the production of 5,6-dihydrouracil. J Bacteriol 193: 989-993.
Hui, S., Silverman, J.M., Chen, S.S., Erickson, D.W., Basan, M., Wang, J., et al. (2015) Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol Syst Biol 11: e784.
Schnackerz, K.D., and Dobritzsch, D. (2008) Amidohydrolases of the reductive pyrimidine catabolic pathway purification, characterization, structure, reaction mechanisms and enzyme deficiency. Biochim Biophys Acta 1784: 431-444.
De Smet, K.A., Weston, A., Brown, I.N., Young, D.B., and Robertson, B.D. (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146: 199-208.
Morgat, A., Axelsen, K.B., Lombardot, T., Alcántara, R., Aimo, L., Zerara, M., et al. (2015) Updates in Rhea-a manually curated resource of biochemical reactions. Nucleic Acids Res 43: D459-D464.
Golovan, S., Wang, G., Zhang, J., and Forsberg, C.W. (2000) Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol 46: 59-71.
Smith, L.T., Pocard, J.A., Bernard, T., and Le Rudulier, D. (1988) Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J Bacteriol 170: 3142-3149.
Tormo, A., Almirón, M., and Kolter, R. (1990) surA, an Escherichia coli gene essential for survival in stationary phase. J Bacteriol 172: 4339-4347.
Kaushik, J.K., and Bhat, R. (2003) Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem 278: 26458-26465.
Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., et al. (2013) The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res 41: D456-D463.
Foster, J.W. (1999) When protons attack: microbial strategies of acid adaptation. Curr Opin Microbiol 2: 170-174.
Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C.A., et al. (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 42: D459-D471.
Brett, C.L., Donowitz, M., and Rao, R. (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288: C223-C239.
Gralla, J.D., and Vargas, D.R. (2006) Potassium glutamate as a transcriptional inhibitor during bacterial osmoregulation. EMBO J 25: 1515-1521.
Ramos-González, M.I., and Molin, S. (1998) Cloning, sequencing, and phenotypic characterization of the rpoS gene from Pseudomonas putida KT2440. J Bacteriol 180: 3421-3431.
Winsor, G.L., Lam, D.K.W., Fleming, L., Lo, R., Whiteside, M.D., Yu, N.Y., et al. (2011) Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 39: D596-D600.
Nogales, J., Canales, A., Jiménez-Barbero, J., Serra, B., Pingarrón, J.M., García, J.L., and Díaz, E. (2011) Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida. Mol Microbiol 79: 359-374.
Osterman, A. (2006) A hidden metabolic pathway exposed. Proc Natl Acad Sci U S A 103: 5637-5638.
Smith, T.F., and Waterman, M.S. (1981) Identification of common molecular subsequences. J Mol Biol 147: 195-197.
Anders, S., and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106.
Acevedo-Rocha, C.G., Fang, G., Schmidt, M., Ussery, D.W., and Danchin, A. (2013) From essential to persistent genes: a functional approach to constructing synthetic life. Trends Genet 29: 273-279.
La Rosa, R., Nogales, J., and Rojo, F. (2015) The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in Pseudomonas putida. Environ Microbiol 17: 3362-3378.
Mikoulinskaia, G.V., Zimin, A.A., Feofanov, S.A., and Miroshnikov, A.I. (2004) Identification, cloning, and expression of bacteriophage T5 dnk gene encoding a broad specificity deoxyribonucleoside monophosphate kinase (EC 2.7.4.13). Protein Expr Purif 33: 166-175.
West, T.P. (2001) Pyrimidine base catabolism in Pseudomonas putida biotype B. Antonie van Leeuwenhoek 80: 163-167.
Bochner, B.R. (1989) Sleuthing out bacterial identities. Nature 339: 157-158.
Médigue, C., Wong, B.C.-Y., Lin, M.C.-M., Bocs, S., and Danchin, A. (2002) The secE gene of Helicobacter pylori. J Bacteriol 184: 2837-2840.
Pinner, E., Kotler, Y., Padan, E., and Schuldiner, S. (1993) Physiological role of nhaB, a specific Na+/H+ antiporter in Escherichia coli. J Biol Chem 268: 1729-1734.
Nikel, P.I., Martínez-García, E., and de Lorenzo, V. (2014) Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12: 368-379.
Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., et al. (2013) NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 41: D991-D995.
Frank, S., Klockgether, J., Hagendorf, P., Geffers, R., Schöck, U., Pohl, T., et al. (2011) Pseudomonas putida KT2440 genome update by cDNA sequencing and microarray
2010; 12
2010; 11
2008; 190
2007; 189
1981; 147
2002; 99
2004; 6
2008; 105
2004; 2
2001; 1544
2012; 13
2001; 305
1966; 54
2003; 278
2013; 5
2011; 193
2013; 6
2013; 9
2005; 68
2004; 33
2000; 17
2013; 2013
2006; 25
2014; 16
2014; 15
1996; 60
2003; 49
2010; 5
2014; 12
2014; 10
2012; 813
1990; 172
1988; 170
1997; 25
1992; 267
2010; 285
2002; 4
2011; 79
2011; 6
2011; 5
2003; 31
2011; 8
2011; 7
2014; 43
2014; 42
2012; 194
2013; 79
1984; 1
2015; 112
2014; 38
2006; 185
2009; 461
2006; 103
2003; 185
2013; 29
2011; 157
2005; 1717
2001; 183
2000; 46
2009; 155
2011; 13
1999; 1420
2008; 4
2007; 32
2008; 2
2007; 35
2014; 64
2014; 5
2015; 290
2002; 184
2013; 13
2015; 43
1997; 16
2014; 9
2001; 11
1996; 178
2004; 101
1998; 180
2010; 78
2009; 25
2006; 90
2010; 75
2015; 17
1989; 339
2015; 11
2013; 41
2006; 6
1999; 65
2008; 10
2011; 35
1999; 2
2006; 2
1993; 268
2011; 39
1998; 1395
2015; 7
2008; 283
2001; 80
2005; 280
2008; 1784
2000; 146
1992; 174
2005; 288
1999; 274
2015
2009; 5
2009; 37
2012; 8
e_1_2_6_114_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
Rahav‐Manor O. (e_1_2_6_96_1) 1992; 267
e_1_2_6_106_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_121_1
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_117_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
Palleroni N.J. (e_1_2_6_90_1) 1984
e_1_2_6_132_1
e_1_2_6_113_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_112_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
e_1_2_6_100_1
e_1_2_6_123_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_130_1
e_1_2_6_111_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
Overhage J. (e_1_2_6_88_1) 1999; 65
e_1_2_6_122_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – reference: Silby, M.W., Winstanley, C., Godfrey, S.A.C., Levy, S.B., and Jackson, R.W. (2011) Pseudomonas genomes: diverse and adaptable. FEMS Microbiol Rev 35: 652-680.
– reference: Anders, S., and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol 11: R106.
– reference: Van Duuren, J.B.J.H., Puchałka, J., Mars, A.E., Bücker, R., Eggink, G., Wittmann, C., and dos Santos, V.A.P.M. (2013) Reconciling in vivo and in silico key biological parameters of Pseudomonas putida KT2440 during growth on glucose under carbon-limited condition. BMC Biotechnol 13: 93.
– reference: Wu, X., Monchy, S., Taghavi, S., Zhu, W., Ramos, J., and van der Lelie, D. (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35: 299-323.
– reference: Bastard, K., Smith, A.A.T., Vergne-Vaxelaire, C., Perret, A., Zaparucha, A., De Melo-Minardi, R., et al. (2014) Revealing the hidden functional diversity of an enzyme family. Nat Chem Biol 10: 42-49.
– reference: Nikel, P.I., Chavarría, M., Fuhrer, T., Sauer, U., and de Lorenzo, V. (2015) Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J Biol Chem 290: 25920-25932.
– reference: Claudel-Renard, C., Chevalet, C., Faraut, T., and Kahn, D. (2003) Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res 31: 6633-6639.
– reference: Schnackerz, K.D., and Dobritzsch, D. (2008) Amidohydrolases of the reductive pyrimidine catabolic pathway purification, characterization, structure, reaction mechanisms and enzyme deficiency. Biochim Biophys Acta 1784: 431-444.
– reference: Ramazzina, I., Cendron, L., Folli, C., Berni, R., Monteverdi, D., Zanotti, G., and Percudani, R. (2008) Logical identification of an allantoinase analog (puuE) recruited from polysaccharide deacetylases. J Biol Chem 283: 23295-23304.
– reference: Ruhal, R., Kataria, R., and Choudhury, B. (2013) Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation. Microb Biotechnol 6: 493-502.
– reference: Bertin, Y., Deval, C., de la Foye, A., Masson, L., Gannon, V., Harel, J., et al. (2014) The gluconeogenesis pathway is involved in maintenance of enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal content. PLoS One 9: e98367.
– reference: Keseler, I.M., Mackie, A., Peralta-Gil, M., Santos-Zavaleta, A., Gama-Castro, S., Bonavides-Martínez, C., et al. (2013) EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res 41: D605-D612.
– reference: Kim, J., Oliveros, J.C., Nikel, P.I., de Lorenzo, V., and Silva-Rocha, R. (2013) Transcriptomic fingerprinting of Pseudomonas putida under alternative physiological regimes. Environ Microbiol Rep 5: 883-891.
– reference: Jiménez, J.I., Miñambres, B., García, J.L., and Díaz, E. (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4: 824-841.
– reference: De Lorenzo, V. (2015) It's the metabolism, stupid! Environ Microbiol Rep 7: 18-19.
– reference: Lee, J.-H., Lee, K.-H., Kim, C.-G., Lee, S.-Y., Kim, G.-J., Park, Y.-H., and Chung, S.-O. (2005) Cloning and expression of a trehalose synthase from Pseudomonas stutzeri CJ38 in Escherichia coli for the production of trehalose. Appl Microbiol Biotechnol 68: 213-219.
– reference: Lagesen, K., Hallin, P., Rødland, E.A., Staerfeldt, H.-H., Rognes, T., and Ussery, D.W. (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35: 3100-3108.
– reference: Vallenet, D., Belda, E., Calteau, A., Cruveiller, S., Engelen, S., Lajus, A., et al. (2013) MicroScope-an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 41: D636-D647.
– reference: Ballal, A., Basu, B., and Apte, S.K. (2007) The Kdp-ATPase system and its regulation. J Biosci 32: 559-568.
– reference: Karp, P.D., Latendresse, M., and Caspi, R. (2011) The pathway tools pathway prediction algorithm. Stand Genom Sci 5: 424-429.
– reference: Médigue, C., Wong, B.C.-Y., Lin, M.C.-M., Bocs, S., and Danchin, A. (2002) The secE gene of Helicobacter pylori. J Bacteriol 184: 2837-2840.
– reference: Jiménez, J.I., Canales, A., Jiménez-Barbero, J., Ginalski, K., Rychlewski, L., García, J.L., and Díaz, E. (2008) Deciphering the genetic determinants for aerobic nicotinic acid degradation: the nic cluster from Pseudomonas putida KT2440. Proc Natl Acad Sci U S A 105: 11329-11334.
– reference: Venturi, V. (2003) Control of rpoS transcription in Escherichia coli and Pseudomonas: why so different? Mol Microbiol 49: 1-9.
– reference: Kaasen, I., Falkenberg, P., Styrvold, O.B., and Strøm, A.R. (1992) Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by katF (AppR). J Bacteriol 174: 889-898.
– reference: Kell, D.B., and Oliver, S.G. (2014) How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol 5: 231.
– reference: Wargo, M.J., and Hogan, D.A. (2009) Identification of genes required for Pseudomonas aeruginosa carnitine catabolism. Microbiology 155: 2411-2419.
– reference: Rkenes, T.P., Lamark, T., and Strøm, A.R. (1996) DNA-binding properties of the BetI repressor protein of Escherichia coli: the inducer choline stimulates BetI-DNA complex formation. J Bacteriol 178: 1663-1670.
– reference: Ning, Z., Cox, A.J., and Mullikin, J.C. (2001) SSAHA: a fast search method for large DNA databases. Genome Res 11: 1725-1729.
– reference: Nogales, J., Canales, A., Jiménez-Barbero, J., Serra, B., Pingarrón, J.M., García, J.L., and Díaz, E. (2011) Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida. Mol Microbiol 79: 359-374.
– reference: Tormo, A., Almirón, M., and Kolter, R. (1990) surA, an Escherichia coli gene essential for survival in stationary phase. J Bacteriol 172: 4339-4347.
– reference: Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785-786.
– reference: Kaushik, J.K., and Bhat, R. (2003) Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. J Biol Chem 278: 26458-26465.
– reference: Arias, S., Olivera, E.R., Arcos, M., Naharro, G., and Luengo, J.M. (2008) Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U. Environ Microbiol 10: 413-432.
– reference: Schellenberger, J., Que, R., Fleming, R.M.T., Thiele, I., Orth, J.D., Feist, A.M., et al. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6: 1290-1307.
– reference: Ziegler, C., Bremer, E., and Krämer, R. (2010) The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol 78: 13-34.
– reference: Pedruzzi, I., Rivoire, C., Auchincloss, A.H., Coudert, E., Keller, G., de Castro, E., et al. (2015) HAMAP in 2015: updates to the protein family classification and annotation system. Nucleic Acids Res 43: D1064-D1070.
– reference: Nogales, J., Canales, A., Jiménez-Barbero, J., García, J.L., and Díaz, E. (2005) Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases. J Biol Chem 280: 35382-35390.
– reference: Sudom, A., Walters, R., Pastushok, L., Goldie, D., Prasad, L., Delbaere, L.T.J., and Goldie, H. (2003) Mechanisms of activation of phosphoenolpyruvate carboxykinase from Escherichia coli by Ca2+ and of desensitization by trypsin. J Bacteriol 185: 4233-4242.
– reference: Puchałka, J., Oberhardt, M.A., Godinho, M., Bielecka, A., Regenhardt, D., Timmis, K.N., et al. (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4: e1000210.
– reference: Sohn, S.B., Kim, T.Y., Park, J.M., and Lee, S.Y. (2010) In silico genome-scale metabolic analysis of Pseudomonas putida KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival. Biotechnol J 5: 739-750.
– reference: Nogales, J., Palsson, B.Ø., and Thiele, I. (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2: 79.
– reference: Dover, N., and Padan, E. (2001) Transcription of nhaA, the main Na+/H+ antiporter of Escherichia coli, is regulated by Na+ and growth phase. J Bacteriol 183: 644-653.
– reference: Yu, N.Y., Laird, M.R., Spencer, C., and Brinkman, F.S.L. (2011) PSORTdb-an expanded, auto-updated, user-friendly protein subcellular localization database for Bacteria and Archaea. Nucleic Acids Res 39: D241-D244.
– reference: Nikel, P.I., Martínez-García, E., and de Lorenzo, V. (2014) Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12: 368-379.
– reference: MacMillan, S.V., Alexander, D.A., Culham, D.E., Kunte, H.J., Marshall, E.V., Rochon, D., and Wood, J.M. (1999) The ion coupling and organic substrate specificities of osmoregulatory transporter ProP in Escherichia coli. Biochim Biophys Acta 1420: 30-44.
– reference: Yang, L., Tan, J., O'Brien, E.J., Monk, J.M., Kim, D., Li, H.J., et al. (2015) Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data. Proc Natl Acad Sci 112: 201501384.
– reference: Mitchell, A., Chang, H.-Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., et al. (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43: D213-D221.
– reference: Smith, T.F., and Waterman, M.S. (1981) Identification of common molecular subsequences. J Mol Biol 147: 195-197.
– reference: Rahav-Manor, O., Carmel, O., Karpel, R., Taglicht, D., Glaser, G., Schuldiner, S., and Padan, E. (1992) NhaR, a protein homologous to a family of bacterial regulatory proteins (LysR), regulates nhaA, the sodium proton antiporter gene in Escherichia coli. J Biol Chem 267: 10433-10438.
– reference: Chen, C., Malek, A.A., Wargo, M.J., Hogan, D.A., and Beattie, G.A. (2010) The ATP-binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate-binding proteins with strong specificity for distinct quaternary ammonium compounds. Mol Microbiol 75: 29-45.
– reference: Overhage, J., Priefert, H., and Steinbüchel, A. (1999) Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199. Appl Environ Microbiol 65: 4837-4847.
– reference: Acevedo-Rocha, C.G., Fang, G., Schmidt, M., Ussery, D.W., and Danchin, A. (2013) From essential to persistent genes: a functional approach to constructing synthetic life. Trends Genet 29: 273-279.
– reference: The UniProt Consortium (2014) UniProt: a hub for protein information. Nucleic Acids Res 43: D204-D212.
– reference: Lewinson, O., Padan, E., and Bibi, E. (2004) Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis. Proc Natl Acad Sci U S A 101: 14073-14078.
– reference: Ye, L., Hildebrand, F., Dingemans, J., Ballet, S., Laus, G., Matthijs, S., et al. (2014) Draft genome sequence analysis of a Pseudomonas putida W15Oct28 strain with antagonistic activity to Gram-positive and Pseudomonas sp. pathogens. PLoS One 9: e110038.
– reference: Danchin, A., and Sekowska, A. (2014) The logic of metabolism and its fuzzy consequences. Environ Microbiol 16: 19-28.
– reference: Saparov, S.M., Antonenko, Y.N., and Pohl, P. (2006) A new model of weak acid permeation through membranes revisited: does Overton still rule? Biophys J 90: L86-L88.
– reference: Stancik, L.M., Stancik, D.M., Schmidt, B., Barnhart, D.M., Yoncheva, Y.N., and Slonczewski, J.L. (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol 184: 4246-4258.
– reference: Kumar, V.S., and Maranas, C.D. (2009) GrowMatch: an automated method for reconciling in silico/in vivo growth predictions. PLoS Comput Biol 5: e1000308.
– reference: Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25: 2078-2079.
– reference: Elbein, A.D., Pastuszak, I., Tackett, A.J., Wilson, T., and Pan, Y.T. (2010) Last step in the conversion of trehalose to glycogen: a mycobacterial enzyme that transfers maltose from maltose 1-phosphate to glycogen. J Biol Chem 285: 9803-9812.
– reference: Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567-580.
– reference: Lund, P., Tramonti, A., and De Biase, D. (2014) Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiol Rev 38: 1091-1125.
– reference: Barrick, J.E., Yu, D.S., Yoon, S.H., Jeong, H., Oh, T.K., Schneider, D., et al. (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461: 1243-1247.
– reference: Golovan, S., Wang, G., Zhang, J., and Forsberg, C.W. (2000) Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Can J Microbiol 46: 59-71.
– reference: Morgat, A., Axelsen, K.B., Lombardot, T., Alcántara, R., Aimo, L., Zerara, M., et al. (2015) Updates in Rhea-a manually curated resource of biochemical reactions. Nucleic Acids Res 43: D459-D464.
– reference: Ramazzina, I., Folli, C., Secchi, A., Berni, R., and Percudani, R. (2006) Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nat Chem Biol 2: 144-148.
– reference: Burge, S.W., Daub, J., Eberhardt, R., Tate, J., Barquist, L., Nawrocki, E.P., et al. (2013) Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 41: D226-D232.
– reference: Chang, A., Schomburg, I., Placzek, S., Jeske, L., Ulbrich, M., Xiao, M., et al. (2015) BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res 43: D439-D446.
– reference: La Rosa, R., Nogales, J., and Rojo, F. (2015) The Crc/CrcZ-CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in Pseudomonas putida. Environ Microbiol 17: 3362-3378.
– reference: Nelson, K.E., Weinel, C., Paulsen, I.T., Dodson, R.J., Hilbert, H., Martins dos Santos, V. A. P., et al. (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4: 799-808.
– reference: Timinskas, K., Balvočiūtė, M., Timinskas, A., and Venclovas, Č. (2014) Comprehensive analysis of DNA polymerase III α subunits and their homologs in bacterial genomes. Nucleic Acids Res 42: 1393-1413.
– reference: Akashi, H., and Gojobori, T. (2002) Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc Natl Acad Sci U S A 99: 3695-3700.
– reference: Foster, J.W. (1999) When protons attack: microbial strategies of acid adaptation. Curr Opin Microbiol 2: 170-174.
– reference: Caspi, R., Altman, T., Billington, R., Dreher, K., Foerster, H., Fulcher, C.A., et al. (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res 42: D459-D471.
– reference: Carmel, O., Rahav-Manor, O., Dover, N., Shaanan, B., and Padan, E. (1997) The Na+-specific interaction between the LysR-type regulator, NhaR, and the nhaA gene encoding the Na+/H+ antiporter of Escherichia coli. EMBO J 16: 5922-5929.
– reference: Chen, C., and Beattie, G.A. (2008) Pseudomonas syringae BetT is a low-affinity choline transporter that is responsible for superior osmoprotection by choline over glycine betaine. J Bacteriol 190: 2717-2725.
– reference: Kim, Y.H., Cho, K., Yun, S.-H., Kim, J.Y., Kwon, K.-H., Yoo, J.S., and Kim, S.I. (2006) Analysis of aromatic catabolic pathways in Pseudomonas putida KT2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 6: 1301-1318.
– reference: Kobayashi, K., Kato, M., Miura, Y., Kettoku, M., Komeda, T., and Iwamatsu, A. (1996) Gene analysis of trehalose-producing enzymes from hyperthermophilic archaea in Sulfolobales. Biosci Biotechnol Biochem 60: 1720-1723.
– reference: Bay, D.C., and Turner, R.J. (2012) Small multidrug resistance protein EmrE reduces host pH and osmotic tolerance to metabolic quaternary cation osmoprotectants. J Bacteriol 194: 5941-5948.
– reference: Osterman, A. (2006) A hidden metabolic pathway exposed. Proc Natl Acad Sci U S A 103: 5637-5638.
– reference: Leprince, A., Janus, D., de Lorenzo, V., and dos Santos, V.M. (2012) Streamlining of a Pseudomonas putida genome using a combinatorial deletion method based on minitransposon insertion and the Flp-FRT recombination system. Methods Mol Biol 813: 249-266.
– reference: Galperin, M.Y., Makarova, K.S., Wolf, Y.I., and Koonin, E. V (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43: D261-D269.
– reference: Smith, L.T., Pocard, J.A., Bernard, T., and Le Rudulier, D. (1988) Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J Bacteriol 170: 3142-3149.
– reference: Parschat, K., Canne, C., Hüttermann, J., Kappl, R., and Fetzner, S. (2001) Xanthine dehydrogenase from Pseudomonas putida 86: specificity, oxidation-reduction potentials of its redox-active centers, and first EPR characterization. Biochim Biophys Acta 1544: 151-165.
– reference: Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., et al. (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9: e1003118.
– reference: Molina-Henares, M.A., de la Torre, J., García-Salamanca, A., Molina-Henares, A.J., Herrera, M.C., Ramos, J.L., and Duque, E. (2010) Identification of conditionally essential genes for growth of Pseudomonas putida KT2440 on minimal medium through the screening of a genome-wide mutant library. Environ Microbiol 12: 1468-1485.
– reference: Hidese, R., Mihara, H., Kurihara, T., and Esaki, N. (2011) Escherichia coli dihydropyrimidine dehydrogenase is a novel NAD-dependent heterotetramer essential for the production of 5,6-dihydrouracil. J Bacteriol 193: 989-993.
– reference: Ramos-González, M.I., and Molin, S. (1998) Cloning, sequencing, and phenotypic characterization of the rpoS gene from Pseudomonas putida KT2440. J Bacteriol 180: 3421-3431.
– reference: Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B., Kale, N., et al. (2013) The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res 41: D456-D463.
– reference: Mikoulinskaia, G.V., Zimin, A.A., Feofanov, S.A., and Miroshnikov, A.I. (2004) Identification, cloning, and expression of bacteriophage T5 dnk gene encoding a broad specificity deoxyribonucleoside monophosphate kinase (EC 2.7.4.13). Protein Expr Purif 33: 166-175.
– reference: Wargo, M.J., Szwergold, B.S., and Hogan, D.A. (2008) Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism. J Bacteriol 190: 2690-2699.
– reference: Hyatt, D., Chen, G.-L., Locascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119.
– reference: West, T.P. (2001) Pyrimidine base catabolism in Pseudomonas putida biotype B. Antonie van Leeuwenhoek 80: 163-167.
– reference: Bochner, B.R. (1989) Sleuthing out bacterial identities. Nature 339: 157-158.
– reference: Milanesio, P., Arce-Rodríguez, A., Muñoz, A., Calles, B., and de Lorenzo, V. (2011) Regulatory exaptation of the catabolite repression protein (Crp)-cAMP system in Pseudomonas putida. Environ Microbiol 13: 324-339.
– reference: Bocs, S., Cruveiller, S., Vallenet, D., Nuel, G., and Médigue, C. (2003) AMIGene: annotation of MIcrobial Genes. Nucleic Acids Res 31: 3723-3726.
– reference: Gralla, J.D., and Vargas, D.R. (2006) Potassium glutamate as a transcriptional inhibitor during bacterial osmoregulation. EMBO J 25: 1515-1521.
– reference: Brett, C.L., Donowitz, M., and Rao, R. (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288: C223-C239.
– reference: Bernard, T., Bridge, A., Morgat, A., Moretti, S., Xenarios, I., and Pagni, M. (2014) Reconciliation of metabolites and biochemical reactions for metabolic networks. Brief Bioinform 15: 123-135.
– reference: De Smet, K.A., Weston, A., Brown, I.N., Young, D.B., and Robertson, B.D. (2000) Three pathways for trehalose biosynthesis in mycobacteria. Microbiology 146: 199-208.
– reference: Dos Santos, V.A.P.M., Heim, S., Moore, E.R.B., Strätz, M., and Timmis, K.N. (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6: 1264-1286.
– reference: Achaz, G., Coissac, E., Viari, A., and Netter, P. (2000) Analysis of intrachromosomal duplications in yeast Saccharomyces cerevisiae: a possible model for their origin. Mol Biol Evol 17: 1268-1275.
– reference: Bochner, B.R., Gadzinski, P., and Panomitros, E. (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11: 1246-1255.
– reference: Gassel, M., Möllenkamp, T., Puppe, W., and Altendorf, K. (1999) The KdpF subunit is part of the K+-translocating Kdp complex of Escherichia coli and is responsible for stabilization of the complex in vitro. J Biol Chem 274: 37901-37907.
– reference: Udaondo, Z., Molina, L., Segura, A., Duque, E., and Ramos, J.L. (2015) Analysis of the core genome and pangenome of Pseudomonas putida. Environ Microbiol, In press, DOI: 10.1111/1462-2920.13015.
– reference: Wargo, M.J. (2013) Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa. Appl Environ Microbiol 79: 2112-2120.
– reference: Engelen, S., Vallenet, D., Médigue, C., and Danchin, A. (2012) Distinct co-evolution patterns of genes associated to DNA polymerase III DnaE and PolC. BMC Genom 13: 69.
– reference: Touchon, M., Hoede, C., Tenaillon, O., Barbe, V., Baeriswyl, S., Bidet, P., et al. (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5: e1000344.
– reference: Winsor, G.L., Lam, D.K.W., Fleming, L., Lo, R., Whiteside, M.D., Yu, N.Y., et al. (2011) Pseudomonas Genome Database: improved comparative analysis and population genomics capability for Pseudomonas genomes. Nucleic Acids Res 39: D596-D600.
– reference: Demerec, M., Adelberg, E.A., Clark, A.J., and Hartman, P.E. (1966) A proposal for a uniform nomenclature in bacterial genetics. Genetics 54: 61-76.
– reference: Velasco-García, R., Villalobos, M.A., Ramírez-Romero, M.A., Mújica-Jiménez, C., Iturriaga, G., and Muñoz-Clares, R.A. (2006) Betaine aldehyde dehydrogenase from Pseudomonas aeruginosa: cloning, over-expression in Escherichia coli, and regulation by choline and salt. Arch Microbiol 185: 14-22.
– reference: Smith, A.A.T., Belda, E., Viari, A., Medigue, C., and Vallenet, D. (2012) The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes. PLoS Comput Biol 8: e1002540.
– reference: Pinner, E., Kotler, Y., Padan, E., and Schuldiner, S. (1993) Physiological role of nhaB, a specific Na+/H+ antiporter in Escherichia coli. J Biol Chem 268: 1729-1734.
– reference: Foster, J.W. (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2: 898-907.
– reference: Ganter, M., Bernard, T., Moretti, S., Stelling, J., and Pagni, M. (2013) MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics 29: 815-816.
– reference: Heavner, B.D., Smallbone, K., Price, N.D., and Walker, L.P. (2013) Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database (Oxford) 2013: bat059.
– reference: Chandra, G., Chater, K.F., and Bornemann, S. (2011) Unexpected and widespread connections between bacterial glycogen and trehalose metabolism. Microbiology 157: 1565-1572.
– reference: Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., et al. (2013) NCBI GEO: archive for functional genomics data sets-update. Nucleic Acids Res 41: D991-D995.
– reference: Lowe, T.M., and Eddy, S.R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955-964.
– reference: Scovill, W.H., Schreier, H.J., and Bayles, K.W. (1996) Identification and characterization of the pckA gene from Staphylococcus aureus. J Bacteriol 178: 3362-3364.
– reference: Frank, S., Klockgether, J., Hagendorf, P., Geffers, R., Schöck, U., Pohl, T., et al. (2011) Pseudomonas putida KT2440 genome update by cDNA sequencing and microarray transcriptomics. Environ Microbiol 13: 1309-1326.
– reference: Padan, E., Bibi, E., Ito, M., and Krulwich, T.A. (2005) Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717: 67-88.
– reference: Bettenbrock, K., Bai, H., Ederer, M., Green, J., Hellingwerf, K.J., Holcombe, M., et al. (2014) Towards a systems level understanding of the oxygen response of Escherichia coli. Adv Microb Physiol 64: 65-114.
– reference: Kajiyama, Y., Otagiri, M., Sekiguchi, J., Kosono, S., and Kudo, T. (2007) Complex formation by the mrpABCDEFG gene products, which constitute a principal Na+/H+ antiporter in Bacillus subtilis. J Bacteriol 189: 7511-7514.
– reference: Meyer, F., Overbeek, R., and Rodriguez, A. (2009) FIGfams: yet another set of protein families. Nucleic Acids Res 37: 6643-6654.
– reference: Reynes, J.P., Tiraby, M., Baron, M., Drocourt, D., and Tiraby, G. (1996) Escherichia coli thymidylate kinase: molecular cloning, nucleotide sequence, and genetic organization of the corresponding tmk locus. J Bacteriol 178: 2804-2812.
– reference: Chien, H.R., Jih, Y.L., Yang, W.Y., and Hsu, W.H. (1998) Identification of the open reading frame for the Pseudomonas putida D-hydantoinase gene and expression of the gene in Escherichia coli. Biochim Biophys Acta 1395: 68-77.
– reference: Oberhardt, M.A., Puchałka, J., Martins dos Santos, V.A.P., and Papin, J.A. (2011) Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis. PLoS Comput Biol 7: e1001116.
– reference: Hui, S., Silverman, J.M., Chen, S.S., Erickson, D.W., Basan, M., Wang, J., et al. (2015) Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol Syst Biol 11: e784.
– reference: Regenhardt, D., Heuer, H., Heim, S., Fernandez, D.U., Strömpl, C., Moore, E.R.B., and Timmis, K.N. (2002) Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440. Environ Microbiol 4: 912-915.
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  article-title: The Sequence Alignment/Map format and SAMtools
  publication-title: Bioinformatics
– volume: 6
  start-page: 1264
  year: 2004
  end-page: 1286
  article-title: Insights into the genomic basis of niche specificity of KT2440
  publication-title: Environ Microbiol
– volume: 193
  start-page: 989
  year: 2011
  end-page: 993
  article-title: dihydropyrimidine dehydrogenase is a novel NAD‐dependent heterotetramer essential for the production of 5,6‐dihydrouracil
  publication-title: J Bacteriol
– volume: 11
  start-page: 1725
  year: 2001
  end-page: 1729
  article-title: SSAHA: a fast search method for large DNA databases
  publication-title: Genome Res
– volume: 103
  start-page: 5637
  year: 2006
  end-page: 5638
  article-title: A hidden metabolic pathway exposed
  publication-title: Proc Natl Acad Sci U S A
– volume: 54
  start-page: 61
  year: 1966
  end-page: 76
  article-title: A proposal for a uniform nomenclature in bacterial genetics
  publication-title: Genetics
– volume: 39
  start-page: D241
  year: 2011
  end-page: D244
  article-title: PSORTdb–an expanded, auto‐updated, user‐friendly protein subcellular localization database for Bacteria and Archaea
  publication-title: Nucleic Acids Res
– volume: 112
  start-page: 201501384
  year: 2015
  article-title: Systems biology definition of the core proteome of metabolism and expression is consistent with high‐throughput data
  publication-title: Proc Natl Acad Sci
– volume: 16
  start-page: 19
  year: 2014
  end-page: 28
  article-title: The logic of metabolism and its fuzzy consequences
  publication-title: Environ Microbiol
– volume: 283
  start-page: 23295
  year: 2008
  end-page: 23304
  article-title: Logical identification of an allantoinase analog ( ) recruited from polysaccharide deacetylases
  publication-title: J Biol Chem
– volume: 5
  start-page: e1000344
  year: 2009
  article-title: Organised genome dynamics in the species results in highly diverse adaptive paths
  publication-title: PLoS Genet
– volume: 189
  start-page: 7511
  year: 2007
  end-page: 7514
  article-title: Complex formation by the gene products, which constitute a principal Na /H antiporter in
  publication-title: J Bacteriol
– volume: 1717
  start-page: 67
  year: 2005
  end-page: 88
  article-title: Alkaline pH homeostasis in bacteria: new insights
  publication-title: Biochim Biophys Acta
– volume: 183
  start-page: 644
  year: 2001
  end-page: 653
  article-title: Transcription of , the main Na /H antiporter of , is regulated by Na and growth phase
  publication-title: J Bacteriol
– volume: 2
  start-page: 79
  year: 2008
  article-title: A genome‐scale metabolic reconstruction of KT2440: JN746 as a cell factory
  publication-title: BMC Syst Biol
– volume: 17
  start-page: 3362
  year: 2015
  end-page: 3378
  article-title: The Crc/CrcZ‐CrcY global regulatory system helps the integration of gluconeogenic and glycolytic metabolism in
  publication-title: Environ Microbiol
– volume: 267
  start-page: 10433
  year: 1992
  end-page: 10438
  article-title: NhaR, a protein homologous to a family of bacterial regulatory proteins (LysR), regulates , the sodium proton antiporter gene in
  publication-title: J Biol Chem
– volume: 39
  start-page: D596
  year: 2011
  end-page: D600
  article-title: Genome Database: improved comparative analysis and population genomics capability for genomes
  publication-title: Nucleic Acids Res
– volume: 13
  start-page: 69
  year: 2012
  article-title: Distinct co‐evolution patterns of genes associated to DNA polymerase III DnaE and PolC
  publication-title: BMC Genom
– volume: 178
  start-page: 2804
  year: 1996
  end-page: 2812
  article-title: thymidylate kinase: molecular cloning, nucleotide sequence, and genetic organization of the corresponding locus
  publication-title: J Bacteriol
– volume: 49
  start-page: 1
  year: 2003
  end-page: 9
  article-title: Control of transcription in and : why so different?
  publication-title: Mol Microbiol
– volume: 41
  start-page: D605
  year: 2013
  end-page: D612
  article-title: EcoCyc: fusing model organism databases with systems biology
  publication-title: Nucleic Acids Res
– volume: 80
  start-page: 163
  year: 2001
  end-page: 167
  article-title: Pyrimidine base catabolism in biotype B
  publication-title: Antonie van Leeuwenhoek
– volume: 5
  start-page: e1000308
  year: 2009
  article-title: GrowMatch: an automated method for reconciling in silico/in vivo growth predictions
  publication-title: PLoS Comput Biol
– volume: 1784
  start-page: 431
  year: 2008
  end-page: 444
  article-title: Amidohydrolases of the reductive pyrimidine catabolic pathway purification, characterization, structure, reaction mechanisms and enzyme deficiency
  publication-title: Biochim Biophys Acta
– volume: 274
  start-page: 37901
  year: 1999
  end-page: 37907
  article-title: The KdpF subunit is part of the K ‐translocating Kdp complex of and is responsible for stabilization of the complex
  publication-title: J Biol Chem
– volume: 157
  start-page: 1565
  year: 2011
  end-page: 1572
  article-title: Unexpected and widespread connections between bacterial glycogen and trehalose metabolism
  publication-title: Microbiology
– volume: 190
  start-page: 2717
  year: 2008
  end-page: 2725
  article-title: BetT is a low‐affinity choline transporter that is responsible for superior osmoprotection by choline over glycine betaine
  publication-title: J Bacteriol
– volume: 178
  start-page: 1663
  year: 1996
  end-page: 1670
  article-title: DNA‐binding properties of the BetI repressor protein of : the inducer choline stimulates BetI‐DNA complex formation
  publication-title: J Bacteriol
– volume: 285
  start-page: 9803
  year: 2010
  end-page: 9812
  article-title: Last step in the conversion of trehalose to glycogen: a mycobacterial enzyme that transfers maltose from maltose 1‐phosphate to glycogen
  publication-title: J Biol Chem
– volume: 8
  start-page: 785
  year: 2011
  end-page: 786
  article-title: SignalP 4.0: discriminating signal peptides from transmembrane regions
  publication-title: Nat Methods
– volume: 12
  start-page: 1468
  year: 2010
  end-page: 1485
  article-title: Identification of conditionally essential genes for growth of KT2440 on minimal medium through the screening of a genome‐wide mutant library
  publication-title: Environ Microbiol
– volume: 101
  start-page: 14073
  year: 2004
  end-page: 14078
  article-title: Alkalitolerance: a biological function for a multidrug transporter in pH homeostasis
  publication-title: Proc Natl Acad Sci U S A
– volume: 64
  start-page: 65
  year: 2014
  end-page: 114
  article-title: Towards a systems level understanding of the oxygen response of
  publication-title: Adv Microb Physiol
– volume: 147
  start-page: 195
  year: 1981
  end-page: 197
  article-title: Identification of common molecular subsequences
  publication-title: J Mol Biol
– volume: 4
  start-page: 912
  year: 2002
  end-page: 915
  article-title: Pedigree and taxonomic credentials of strain KT2440
  publication-title: Environ Microbiol
– volume: 13
  start-page: 324
  year: 2011
  end-page: 339
  article-title: Regulatory exaptation of the catabolite repression protein (Crp)‐cAMP system in
  publication-title: Environ Microbiol
– volume: 5
  start-page: 883
  year: 2013
  end-page: 891
  article-title: Transcriptomic fingerprinting of under alternative physiological regimes
  publication-title: Environ Microbiol Rep
– volume: 13
  start-page: 1309
  year: 2011
  end-page: 1326
  article-title: KT2440 genome update by cDNA sequencing and microarray transcriptomics
  publication-title: Environ Microbiol
– volume: 290
  start-page: 25920
  year: 2015
  end-page: 25932
  article-title: KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner‐Doudoroff, Embden‐Meyerhof‐Parnas, and pentose phosphate pathways
  publication-title: J Biol Chem
– volume: 31
  start-page: 6633
  year: 2003
  end-page: 6639
  article-title: Enzyme‐specific profiles for genome annotation: PRIAM
  publication-title: Nucleic Acids Res
– volume: 38
  start-page: 1091
  year: 2014
  end-page: 1125
  article-title: Coping with low pH: molecular strategies in neutralophilic bacteria
  publication-title: FEMS Microbiol Rev
– volume: 5
  start-page: 739
  year: 2010
  end-page: 750
  article-title: genome‐scale metabolic analysis of KT2440 for polyhydroxyalkanoate synthesis, degradation of aromatics and anaerobic survival
  publication-title: Biotechnol J
– volume: 41
  start-page: D991
  year: 2013
  end-page: D995
  article-title: NCBI GEO: archive for functional genomics data sets–update
  publication-title: Nucleic Acids Res
– volume: 43
  start-page: D204
  year: 2014
  end-page: D212
  article-title: UniProt: a hub for protein information
  publication-title: Nucleic Acids Res
– volume: 43
  start-page: D213
  year: 2015
  end-page: D221
  article-title: The InterPro protein families database: the classification resource after 15 years
  publication-title: Nucleic Acids Res
– volume: 32
  start-page: 559
  year: 2007
  end-page: 568
  article-title: The Kdp‐ATPase system and its regulation
  publication-title: J Biosci
– volume: 25
  start-page: 1515
  year: 2006
  end-page: 1521
  article-title: Potassium glutamate as a transcriptional inhibitor during bacterial osmoregulation
  publication-title: EMBO J
– volume: 280
  start-page: 35382
  year: 2005
  end-page: 35390
  article-title: Molecular characterization of the gallate dioxygenase from KT2440. The prototype of a new subgroup of extradiol dioxygenases
  publication-title: J Biol Chem
– volume: 35
  start-page: 652
  year: 2011
  end-page: 680
  article-title: genomes: diverse and adaptable
  publication-title: FEMS Microbiol Rev
– volume: 2013
  start-page: bat059
  year: 2013
  article-title: Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance
  publication-title: Database (Oxford)
– volume: 68
  start-page: 213
  year: 2005
  end-page: 219
  article-title: Cloning and expression of a trehalose synthase from CJ38 in for the production of trehalose
  publication-title: Appl Microbiol Biotechnol
– volume: 155
  start-page: 2411
  year: 2009
  end-page: 2419
  article-title: Identification of genes required for carnitine catabolism
  publication-title: Microbiology
– volume: 1395
  start-page: 68
  year: 1998
  end-page: 77
  article-title: Identification of the open reading frame for the D‐hydantoinase gene and expression of the gene in
  publication-title: Biochim Biophys Acta
– volume: 7
  start-page: 18
  year: 2015
  end-page: 19
  article-title: It's the metabolism, stupid!
  publication-title: Environ Microbiol Rep
– volume: 172
  start-page: 4339
  year: 1990
  end-page: 4347
  article-title: , an gene essential for survival in stationary phase
  publication-title: J Bacteriol
– volume: 7
  start-page: e1001116
  year: 2011
  article-title: Reconciliation of genome‐scale metabolic reconstructions for comparative systems analysis
  publication-title: PLoS Comput Biol
– volume: 12
  start-page: 368
  year: 2014
  end-page: 379
  article-title: Biotechnological domestication of pseudomonads using synthetic biology
  publication-title: Nat Rev Microbiol
– volume: 6
  start-page: 1301
  year: 2006
  end-page: 1318
  article-title: Analysis of aromatic catabolic pathways in KT2440 using a combined proteomic approach: 2‐DE/MS and cleavable isotope‐coded affinity tag analysis
  publication-title: Proteomics
– volume: 37
  start-page: 6643
  year: 2009
  end-page: 6654
  article-title: FIGfams: yet another set of protein families
  publication-title: Nucleic Acids Res
– volume: 813
  start-page: 249
  year: 2012
  end-page: 266
  article-title: Streamlining of a genome using a combinatorial deletion method based on minitransposon insertion and the Flp‐FRT recombination system
  publication-title: Methods Mol Biol
– volume: 16
  start-page: 5922
  year: 1997
  end-page: 5929
  article-title: The Na ‐specific interaction between the LysR‐type regulator, NhaR, and the gene encoding the Na /H antiporter of
  publication-title: EMBO J
– volume: 105
  start-page: 11329
  year: 2008
  end-page: 11334
  article-title: Deciphering the genetic determinants for aerobic nicotinic acid degradation: the cluster from KT2440
  publication-title: Proc Natl Acad Sci U S A
– volume: 25
  start-page: 955
  year: 1997
  end-page: 964
  article-title: tRNAscan‐SE: a program for improved detection of transfer RNA genes in genomic sequence
  publication-title: Nucleic Acids Res
– volume: 11
  start-page: 119
  year: 2010
  article-title: Prodigal: prokaryotic gene recognition and translation initiation site identification
  publication-title: BMC Bioinformatics
– volume: 4
  start-page: 799
  year: 2002
  end-page: 808
  article-title: Complete genome sequence and comparative analysis of the metabolically versatile KT2440
  publication-title: Environ Microbiol
– volume: 15
  start-page: 123
  year: 2014
  end-page: 135
  article-title: Reconciliation of metabolites and biochemical reactions for metabolic networks
  publication-title: Brief Bioinform
– volume: 31
  start-page: 3723
  year: 2003
  end-page: 3726
  article-title: AMIGene: annotation of MIcrobial Genes
  publication-title: Nucleic Acids Res
– volume: 4
  start-page: e1000210
  year: 2008
  article-title: Genome‐scale reconstruction and analysis of the KT2440 metabolic network facilitates applications in biotechnology
  publication-title: PLoS Comput Biol
– volume: 6
  start-page: 1290
  year: 2011
  end-page: 1307
  article-title: Quantitative prediction of cellular metabolism with constraint‐based models: the COBRA Toolbox v2.0
  publication-title: Nat Protoc
– volume: 99
  start-page: 3695
  year: 2002
  end-page: 3700
  article-title: Metabolic efficiency and amino acid composition in the proteomes of and
  publication-title: Proc Natl Acad Sci U S A
– volume: 11
  start-page: R106
  year: 2010
  article-title: Differential expression analysis for sequence count data
  publication-title: Genome Biol
– volume: 42
  start-page: D459
  year: 2014
  end-page: D471
  article-title: The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases
  publication-title: Nucleic Acids Res
– volume: 65
  start-page: 4837
  year: 1999
  end-page: 4847
  article-title: Biochemical and genetic analyses of ferulic acid catabolism in sp. strain HR199
  publication-title: Appl Environ Microbiol
– volume: 29
  start-page: 273
  year: 2013
  end-page: 279
  article-title: From essential to persistent genes: a functional approach to constructing synthetic life
  publication-title: Trends Genet
– volume: 9
  start-page: e1003118
  year: 2013
  article-title: Software for computing and annotating genomic ranges
  publication-title: PLoS Comput Biol
– volume: 461
  start-page: 1243
  year: 2009
  end-page: 1247
  article-title: Genome evolution and adaptation in a long‐term experiment with
  publication-title: Nature
– volume: 174
  start-page: 889
  year: 1992
  end-page: 898
  article-title: Molecular cloning and physical mapping of the genes, which encode the osmoregulatory trehalose pathway of : evidence that transcription is activated by (AppR)
  publication-title: J Bacteriol
– volume: 2
  start-page: 898
  year: 2004
  end-page: 907
  article-title: acid resistance: tales of an amateur acidophile
  publication-title: Nat Rev Microbiol
– volume: 185
  start-page: 14
  year: 2006
  end-page: 22
  article-title: Betaine aldehyde dehydrogenase from : cloning, over‐expression in , and regulation by choline and salt
  publication-title: Arch Microbiol
– volume: 17
  start-page: 1268
  year: 2000
  end-page: 1275
  article-title: Analysis of intrachromosomal duplications in yeast : a possible model for their origin
  publication-title: Mol Biol Evol
– volume: 43
  start-page: D1064
  year: 2015
  end-page: D1070
  article-title: HAMAP in 2015: updates to the protein family classification and annotation system
  publication-title: Nucleic Acids Res
– volume: 178
  start-page: 3362
  year: 1996
  end-page: 3364
  article-title: Identification and characterization of the gene from
  publication-title: J Bacteriol
– volume: 41
  start-page: D636
  year: 2013
  end-page: D647
  article-title: MicroScope–an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data
  publication-title: Nucleic Acids Res
– year: 2015
  article-title: Analysis of the core genome and pangenome of
  publication-title: Environ Microbiol
– volume: 42
  start-page: 1393
  year: 2014
  end-page: 1413
  article-title: Comprehensive analysis of DNA polymerase III α subunits and their homologs in bacterial genomes
  publication-title: Nucleic Acids Res
– volume: 29
  start-page: 815
  year: 2013
  end-page: 816
  article-title: MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks
  publication-title: Bioinformatics
– volume: 4
  start-page: 824
  year: 2002
  end-page: 841
  article-title: Genomic analysis of the aromatic catabolic pathways from KT2440
  publication-title: Environ Microbiol
– volume: 35
  start-page: 299
  year: 2011
  end-page: 323
  article-title: Comparative genomics and functional analysis of niche‐specific adaptation in
  publication-title: FEMS Microbiol Rev
– volume: 2
  start-page: 170
  year: 1999
  end-page: 174
  article-title: When protons attack: microbial strategies of acid adaptation
  publication-title: Curr Opin Microbiol
– volume: 79
  start-page: 2112
  year: 2013
  end-page: 2120
  article-title: Homeostasis and catabolism of choline and glycine betaine: lessons from
  publication-title: Appl Environ Microbiol
– volume: 35
  start-page: 3100
  year: 2007
  end-page: 3108
  article-title: RNAmmer: consistent and rapid annotation of ribosomal RNA genes
  publication-title: Nucleic Acids Res
– volume: 268
  start-page: 1729
  year: 1993
  end-page: 1734
  article-title: Physiological role of , a specific Na /H antiporter in
  publication-title: J Biol Chem
– volume: 90
  start-page: L86
  year: 2006
  end-page: L88
  article-title: A new model of weak acid permeation through membranes revisited: does Overton still rule?
  publication-title: Biophys J
– volume: 13
  start-page: 93
  year: 2013
  article-title: Reconciling in vivo and in silico key biological parameters of KT2440 during growth on glucose under carbon‐limited condition
  publication-title: BMC Biotechnol
– volume: 33
  start-page: 166
  year: 2004
  end-page: 175
  article-title: Identification, cloning, and expression of bacteriophage T5 gene encoding a broad specificity deoxyribonucleoside monophosphate kinase (EC 2.7.4.13)
  publication-title: Protein Expr Purif
– volume: 41
  start-page: D226
  year: 2013
  end-page: D232
  article-title: Rfam 11.0: 10 years of RNA families
  publication-title: Nucleic Acids Res
– volume: 305
  start-page: 567
  year: 2001
  end-page: 580
  article-title: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes
  publication-title: J Mol Biol
– volume: 1544
  start-page: 151
  year: 2001
  end-page: 165
  article-title: Xanthine dehydrogenase from 86: specificity, oxidation‐reduction potentials of its redox‐active centers, and first EPR characterization
  publication-title: Biochim Biophys Acta
– volume: 170
  start-page: 3142
  year: 1988
  end-page: 3149
  article-title: Osmotic control of glycine betaine biosynthesis and degradation in
  publication-title: J Bacteriol
– volume: 194
  start-page: 5941
  year: 2012
  end-page: 5948
  article-title: Small multidrug resistance protein EmrE reduces host pH and osmotic tolerance to metabolic quaternary cation osmoprotectants
  publication-title: J Bacteriol
– volume: 1
  start-page: 141
  year: 1984
  end-page: 199
– volume: 11
  start-page: e784
  year: 2015
  article-title: Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria
  publication-title: Mol Syst Biol
– volume: 41
  start-page: D456
  year: 2013
  end-page: D463
  article-title: The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013
  publication-title: Nucleic Acids Res
– volume: 10
  start-page: 413
  year: 2008
  end-page: 432
  article-title: Genetic analyses and molecular characterization of the pathways involved in the conversion of 2‐phenylethylamine and 2‐phenylethanol into phenylacetic acid in U
  publication-title: Environ Microbiol
– volume: 288
  start-page: C223
  year: 2005
  end-page: C239
  article-title: Evolutionary origins of eukaryotic sodium/proton exchangers
  publication-title: Am J Physiol Cell Physiol
– volume: 10
  start-page: 42
  year: 2014
  end-page: 49
  article-title: Revealing the hidden functional diversity of an enzyme family
  publication-title: Nat Chem Biol
– volume: 75
  start-page: 29
  year: 2010
  end-page: 45
  article-title: The ATP‐binding cassette transporter Cbc (choline/betaine/carnitine) recruits multiple substrate‐binding proteins with strong specificity for distinct quaternary ammonium compounds
  publication-title: Mol Microbiol
– volume: 5
  start-page: 424
  year: 2011
  end-page: 429
  article-title: The pathway tools pathway prediction algorithm
  publication-title: Stand Genom Sci
– volume: 8
  start-page: e1002540
  year: 2012
  article-title: The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes
  publication-title: PLoS Comput Biol
– volume: 1420
  start-page: 30
  year: 1999
  end-page: 44
  article-title: The ion coupling and organic substrate specificities of osmoregulatory transporter ProP in
  publication-title: Biochim Biophys Acta
– volume: 79
  start-page: 359
  year: 2011
  end-page: 374
  article-title: Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from
  publication-title: Mol Microbiol
– volume: 60
  start-page: 1720
  year: 1996
  end-page: 1723
  article-title: Gene analysis of trehalose‐producing enzymes from hyperthermophilic archaea in Sulfolobales
  publication-title: Biosci Biotechnol Biochem
– volume: 6
  start-page: 493
  year: 2013
  end-page: 502
  article-title: Trends in bacterial trehalose metabolism and significant nodes of metabolic pathway in the direction of trehalose accumulation
  publication-title: Microb Biotechnol
– volume: 185
  start-page: 4233
  year: 2003
  end-page: 4242
  article-title: Mechanisms of activation of phosphoenolpyruvate carboxykinase from by Ca and of desensitization by trypsin
  publication-title: J Bacteriol
– volume: 180
  start-page: 3421
  year: 1998
  end-page: 3431
  article-title: Cloning, sequencing, and phenotypic characterization of the gene from KT2440
  publication-title: J Bacteriol
– volume: 43
  start-page: D439
  year: 2015
  end-page: D446
  article-title: BRENDA in 2015: exciting developments in its 25th year of existence
  publication-title: Nucleic Acids Res
– volume: 146
  start-page: 199
  year: 2000
  end-page: 208
  article-title: Three pathways for trehalose biosynthesis in mycobacteria
  publication-title: Microbiology
– volume: 2
  start-page: 144
  year: 2006
  end-page: 148
  article-title: Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes
  publication-title: Nat Chem Biol
– volume: 5
  start-page: 231
  year: 2014
  article-title: How drugs get into cells: tested and testable predictions to help discriminate between transporter‐mediated uptake and lipoidal bilayer diffusion
  publication-title: Front Pharmacol
– volume: 43
  start-page: D459
  year: 2015
  end-page: D464
  article-title: Updates in Rhea–a manually curated resource of biochemical reactions
  publication-title: Nucleic Acids Res
– volume: 46
  start-page: 59
  year: 2000
  end-page: 71
  article-title: Characterization and overproduction of the encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities
  publication-title: Can J Microbiol
– volume: 190
  start-page: 2690
  year: 2008
  end-page: 2699
  article-title: Identification of two gene clusters and a transcriptional regulator required for glycine betaine catabolism
  publication-title: J Bacteriol
– volume: 339
  start-page: 157
  year: 1989
  end-page: 158
  article-title: Sleuthing out bacterial identities
  publication-title: Nature
– volume: 11
  start-page: 1246
  year: 2001
  end-page: 1255
  article-title: Phenotype microarrays for high‐throughput phenotypic testing and assay of gene function
  publication-title: Genome Res
– volume: 184
  start-page: 4246
  year: 2002
  end-page: 4258
  article-title: pH‐dependent expression of periplasmic proteins and amino acid catabolism in
  publication-title: J Bacteriol
– volume: 78
  start-page: 13
  year: 2010
  end-page: 34
  article-title: The BCCT family of carriers: from physiology to crystal structure
  publication-title: Mol Microbiol
– volume: 184
  start-page: 2837
  year: 2002
  end-page: 2840
  article-title: The gene of
  publication-title: J Bacteriol
– volume: 9
  start-page: e110038
  year: 2014
  article-title: Draft genome sequence analysis of a W15Oct28 strain with antagonistic activity to Gram‐positive and sp. pathogens
  publication-title: PLoS One
– volume: 278
  start-page: 26458
  year: 2003
  end-page: 26465
  article-title: Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose
  publication-title: J Biol Chem
– volume: 43
  start-page: D261
  year: 2015
  end-page: D269
  article-title: Expanded microbial genome coverage and improved protein family annotation in the COG database
  publication-title: Nucleic Acids Res
– volume: 9
  start-page: e98367
  year: 2014
  article-title: The gluconeogenesis pathway is involved in maintenance of enterohaemorrhagic O157:H7 in bovine intestinal content
  publication-title: PLoS One
– ident: e_1_2_6_129_1
  doi: 10.1111/j.1574-6976.2010.00249.x
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1365-2958.2009.06962.x
– ident: e_1_2_6_28_1
  doi: 10.1111/1462-2920.12270
– ident: e_1_2_6_83_1
  doi: 10.1074/jbc.M502585200
– ident: e_1_2_6_75_1
  doi: 10.1111/j.1462-2920.2010.02331.x
– ident: e_1_2_6_24_1
  doi: 10.1128/JB.01585-07
– ident: e_1_2_6_42_1
  doi: 10.1139/cjm-46-1-59
– ident: e_1_2_6_121_1
  doi: 10.1186/1472-6750-13-93
– ident: e_1_2_6_20_1
  doi: 10.1093/emboj/16.19.5922
– ident: e_1_2_6_8_1
  doi: 10.1093/nar/gks1193
– ident: e_1_2_6_98_1
  doi: 10.1074/jbc.M801195200
– ident: e_1_2_6_110_1
  doi: 10.1128/jb.170.7.3142-3149.1988
– ident: e_1_2_6_78_1
  doi: 10.1093/nar/gku961
– ident: e_1_2_6_49_1
  doi: 10.1046/j.1462-2920.2002.00370.x
– ident: e_1_2_6_130_1
  doi: 10.1073/pnas.1501384112
– ident: e_1_2_6_29_1
  doi: 10.1111/1758-2229.12223
– ident: e_1_2_6_7_1
  doi: 10.1007/s12038-007-0055-7
– ident: e_1_2_6_13_1
  doi: 10.1371/journal.pone.0098367
– volume: 65
  start-page: 4837
  year: 1999
  ident: e_1_2_6_88_1
  article-title: Biochemical and genetic analyses of ferulic acid catabolism in Pseudomonas sp. strain HR199
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.65.11.4837-4847.1999
– ident: e_1_2_6_6_1
  doi: 10.1111/j.1462-2920.2007.01464.x
– ident: e_1_2_6_39_1
  doi: 10.1093/nar/gku1223
– ident: e_1_2_6_14_1
  doi: 10.1016/B978-0-12-800143-1.00002-6
– ident: e_1_2_6_103_1
  doi: 10.1111/1751-7915.12029
– ident: e_1_2_6_43_1
  doi: 10.1038/sj.emboj.7601041
– ident: e_1_2_6_120_1
  doi: 10.1093/nar/gks1194
– ident: e_1_2_6_92_1
  doi: 10.1093/nar/gku1002
– ident: e_1_2_6_4_1
  doi: 10.1073/pnas.062526999
– ident: e_1_2_6_59_1
  doi: 10.1271/bbb.60.1720
– ident: e_1_2_6_86_1
  doi: 10.1371/journal.pcbi.1001116
– ident: e_1_2_6_126_1
  doi: 10.1128/JB.01393-07
– ident: e_1_2_6_124_1
  doi: 10.1128/AEM.03565-12
– ident: e_1_2_6_9_1
  doi: 10.1038/nature08480
– ident: e_1_2_6_47_1
  doi: 10.15252/msb.20145697
– ident: e_1_2_6_65_1
  doi: 10.1007/s00253-004-1862-5
– ident: e_1_2_6_95_1
  doi: 10.1371/journal.pcbi.1000210
– ident: e_1_2_6_122_1
  doi: 10.1007/s00203-005-0054-8
– ident: e_1_2_6_41_1
  doi: 10.1074/jbc.274.53.37901
– ident: e_1_2_6_55_1
  doi: 10.3389/fphar.2014.00231
– ident: e_1_2_6_104_1
  doi: 10.1529/biophysj.106.084343
– ident: e_1_2_6_112_1
  doi: 10.1002/biot.201000124
– ident: e_1_2_6_97_1
  doi: 10.1038/nchembio768
– ident: e_1_2_6_105_1
  doi: 10.1038/nprot.2011.308
– ident: e_1_2_6_101_1
  doi: 10.1128/jb.178.10.2804-2812.1996
– ident: e_1_2_6_35_1
  doi: 10.1186/1471-2164-13-69
– volume: 267
  start-page: 10433
  year: 1992
  ident: e_1_2_6_96_1
  article-title: NhaR, a protein homologous to a family of bacterial regulatory proteins (LysR), regulates nhaA, the sodium proton antiporter gene in Escherichia coli
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)50037-0
– ident: e_1_2_6_54_1
  doi: 10.1074/jbc.M300815200
– ident: e_1_2_6_60_1
  doi: 10.1006/jmbi.2000.4315
– ident: e_1_2_6_62_1
  doi: 10.1111/1462-2920.12812
– ident: e_1_2_6_115_1
  doi: 10.1093/nar/gku989
– ident: e_1_2_6_119_1
  doi: 10.1111/1462-2920.13015
– ident: e_1_2_6_63_1
  doi: 10.1093/nar/gkm160
– ident: e_1_2_6_69_1
  doi: 10.1093/nar/25.5.955
– ident: e_1_2_6_73_1
  doi: 10.1093/nar/gkp698
– start-page: 141
  volume-title: Bergey's Manual of Systematic Bacteriology
  year: 1984
  ident: e_1_2_6_90_1
– ident: e_1_2_6_118_1
  doi: 10.1371/journal.pgen.1000344
– ident: e_1_2_6_107_1
  doi: 10.1128/jb.178.11.3362-3364.1996
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1462-2920.2004.00734.x
– ident: e_1_2_6_81_1
  doi: 10.1074/jbc.M115.687749
– ident: e_1_2_6_44_1
  doi: 10.1093/nar/gks1146
– ident: e_1_2_6_57_1
  doi: 10.1002/pmic.200500329
– ident: e_1_2_6_68_1
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_2_6_99_1
  doi: 10.1128/JB.180.13.3421-3431.1998
– ident: e_1_2_6_37_1
  doi: 10.1038/nrmicro1021
– ident: e_1_2_6_72_1
  doi: 10.1128/JB.184.10.2837-2840.2002
– ident: e_1_2_6_67_1
  doi: 10.1073/pnas.0405375101
– ident: e_1_2_6_132_1
  doi: 10.1093/nar/gkq1093
– ident: e_1_2_6_40_1
  doi: 10.1093/bioinformatics/btt036
– ident: e_1_2_6_93_1
  doi: 10.1038/nmeth.1701
– ident: e_1_2_6_5_1
  doi: 10.1186/gb-2010-11-10-r106
– ident: e_1_2_6_64_1
  doi: 10.1371/journal.pcbi.1003118
– ident: e_1_2_6_114_1
  doi: 10.1128/JB.185.14.4233-4242.2003
– ident: e_1_2_6_71_1
  doi: 10.1016/S0005-2736(99)00085-1
– ident: e_1_2_6_2_1
  doi: 10.1016/j.tig.2012.11.001
– ident: e_1_2_6_56_1
  doi: 10.1093/nar/gks1027
– ident: e_1_2_6_89_1
  doi: 10.1016/j.bbamem.2005.09.010
– ident: e_1_2_6_102_1
  doi: 10.1128/jb.178.6.1663-1670.1996
– ident: e_1_2_6_116_1
  doi: 10.1093/nar/gkt900
– ident: e_1_2_6_30_1
  doi: 10.1099/00221287-146-1-199
– ident: e_1_2_6_127_1
  doi: 10.1023/A:1012275512136
– ident: e_1_2_6_58_1
  doi: 10.1111/1758-2229.12090
– ident: e_1_2_6_61_1
  doi: 10.1371/journal.pcbi.1000308
– ident: e_1_2_6_100_1
  doi: 10.1046/j.1462-2920.2002.00368.x
– ident: e_1_2_6_19_1
  doi: 10.1093/nar/gks1005
– ident: e_1_2_6_79_1
  doi: 10.1046/j.1462-2920.2002.00366.x
– ident: e_1_2_6_48_1
  doi: 10.1186/1471-2105-11-119
– ident: e_1_2_6_45_1
  doi: 10.1093/database/bat059
– ident: e_1_2_6_21_1
  doi: 10.1093/nar/gkt1103
– ident: e_1_2_6_10_1
  doi: 10.1038/nchembio.1387
– ident: e_1_2_6_109_1
  doi: 10.1016/0022-2836(81)90087-5
– ident: e_1_2_6_46_1
  doi: 10.1128/JB.01178-10
– ident: e_1_2_6_87_1
  doi: 10.1073/pnas.0601119103
– ident: e_1_2_6_77_1
  doi: 10.1111/j.1462-2920.2010.02166.x
– ident: e_1_2_6_117_1
  doi: 10.1128/jb.172.8.4339-4347.1990
– ident: e_1_2_6_106_1
  doi: 10.1016/j.bbapap.2008.01.005
– ident: e_1_2_6_66_1
  doi: 10.1007/978-1-61779-412-4_15
– ident: e_1_2_6_82_1
  doi: 10.1101/gr.194201
– ident: e_1_2_6_33_1
  doi: 10.1128/JB.183.2.644-653.2001
– ident: e_1_2_6_123_1
  doi: 10.1046/j.1365-2958.2003.03547.x
– ident: e_1_2_6_125_1
  doi: 10.1099/mic.0.028787-0
– ident: e_1_2_6_94_1
  doi: 10.1016/S0021-9258(18)53913-2
– ident: e_1_2_6_15_1
  doi: 10.1038/339157a0
– ident: e_1_2_6_26_1
  doi: 10.1016/S0167-4781(97)00097-3
– ident: e_1_2_6_38_1
  doi: 10.1111/j.1462-2920.2011.02430.x
– ident: e_1_2_6_53_1
  doi: 10.4056/sigs.1794338
– ident: e_1_2_6_3_1
  doi: 10.1093/oxfordjournals.molbev.a026410
– ident: e_1_2_6_80_1
  doi: 10.1038/nrmicro3253
– ident: e_1_2_6_108_1
  doi: 10.1111/j.1574-6976.2011.00269.x
– ident: e_1_2_6_128_1
  doi: 10.1093/nar/gkq869
– ident: e_1_2_6_27_1
  doi: 10.1093/nar/gkg847
– ident: e_1_2_6_31_1
  doi: 10.1093/genetics/54.1.61
– ident: e_1_2_6_111_1
  doi: 10.1371/journal.pcbi.1002540
– ident: e_1_2_6_16_1
  doi: 10.1101/gr.186501
– ident: e_1_2_6_36_1
  doi: 10.1016/S1369-5274(99)80030-7
– ident: e_1_2_6_133_1
  doi: 10.1111/j.1365-2958.2010.07332.x
– ident: e_1_2_6_70_1
  doi: 10.1111/1574-6976.12076
– ident: e_1_2_6_18_1
  doi: 10.1152/ajpcell.00360.2004
– ident: e_1_2_6_22_1
  doi: 10.1099/mic.0.044263-0
– ident: e_1_2_6_52_1
  doi: 10.1128/JB.00968-07
– ident: e_1_2_6_85_1
  doi: 10.1111/j.1365-2958.2010.07448.x
– ident: e_1_2_6_131_1
  doi: 10.1371/journal.pone.0110038
– ident: e_1_2_6_23_1
  doi: 10.1093/nar/gku1068
– ident: e_1_2_6_113_1
  doi: 10.1128/JB.184.15.4246-4258.2002
– ident: e_1_2_6_51_1
  doi: 10.1128/jb.174.3.889-898.1992
– ident: e_1_2_6_74_1
  doi: 10.1016/j.pep.2003.07.006
– ident: e_1_2_6_50_1
  doi: 10.1073/pnas.0802273105
– ident: e_1_2_6_84_1
  doi: 10.1186/1752-0509-2-79
– ident: e_1_2_6_91_1
  doi: 10.1016/S0167-4838(00)00214-4
– ident: e_1_2_6_11_1
  doi: 10.1128/JB.00666-12
– ident: e_1_2_6_12_1
  doi: 10.1093/bib/bbs058
– ident: e_1_2_6_76_1
  doi: 10.1093/nar/gku1243
– ident: e_1_2_6_17_1
  doi: 10.1093/nar/gkg590
– ident: e_1_2_6_34_1
  doi: 10.1074/jbc.M109.033944
SSID ssj0017370
Score 2.6053066
Snippet Summary By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al., ) this bacterium was...
By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al ., ) this bacterium was considered...
By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al., ) this bacterium was considered...
Summary By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al., ) this bacterium was...
By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al.,) this bacterium was considered a...
By the time the complete genome sequence of the soil bacterium Pseudomonas putida KT2440 was published in 2002 (Nelson et al., 2002) this bacterium was...
SourceID wageningen
hal
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3403
SubjectTerms Bacterial Proteins - genetics
Bacterial Proteins - metabolism
biochemical pathways
Biochemistry, Molecular Biology
Bioremediation
Biotechnology
carbon
Carbon - metabolism
genes
Genetics
Genome, Bacterial
Genomes
Genomics
Industrial wastes
Life Sciences
Metabolism
nitrogen
Nitrogen - metabolism
nucleotide sequences
phosphorus
Pseudomonas putida
Pseudomonas putida - genetics
Pseudomonas putida - metabolism
Redox reactions
Rhizosphere
soil bacteria
stress tolerance
Systeem en Synthetische Biologie
Systems and Synthetic Biology
VLAG
Title The revisited genome of Pseudomonas putida KT2440 enlightens its value as a robust metabolic chassis
URI https://api.istex.fr/ark:/67375/WNG-PNM9ZK54-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.13230
https://www.ncbi.nlm.nih.gov/pubmed/26913973
https://www.proquest.com/docview/1829413314
https://www.proquest.com/docview/1826667008
https://www.proquest.com/docview/1837346752
https://www.proquest.com/docview/2020868902
https://cea.hal.science/cea-04541789
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F509000
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYENJ44PsjMCaDEOIlVRPn83FCjIqxqkKbQLxY9tmh1bpkahIG_PXcOWlgEwMhnhqp56q2f5f7XXL-HWPPx1AUuYgQvCC0HyGn9lUaaN-GMI6LEBBTdDj5YJpMjqK3H-N1NSGdhen0IYYHbuQZ7n5NDq50_YuTo4uHPvVaGmFCJShrp4otokXvBwGpIBWuXVxvG4S9uA_V8lwYfy4ubcypKvIqLfTX31HP62zrDN29dOefztNaF5f2bjK9nlFXjnI8ahs9gu8XxB7_a8q32I2etfLdDma32RVb3mHXuj6W3-4yg2DjK3dOHQksJ93XE8urgs9q25oKka5qfooQN4rvH2KoH3N6iPJ5TuXzfNHUnDTHLUcrxVeVbuuGn9gG8blcAIc5EvxFfY8d7b0-fDXx-_YNPlCW50dBZjLIMYG0uTXWxgZDIYgizBJQNgMkDha0jVKlY4OswqgsM5i9xJmALNFC3GebZVXah4xDOjaAMRZwP6PQgtKYdZk4F4XSNknAY6P15knotc2pxcZSrnMcWjpJSyfd0nns5TDgtJP1uNz0GaJhsCI57snuOwlWSZIvDNIs_xJ47IUDy2CmVsdUMpfG8sP0jZxND_JP-3EkE49tr9Ek-7tFLTHHy5FMiCDy2NPha_RzenmjSlu1zgbnnCJl-5ONSAVGvji83CakrqwJvV322IMOzcOfDhMSiU2Fx8RPeMuSmlrVbuI9SOVZu5Llkj7wF2qJpBMjK26CA-_fFlTiDcZdPPrXAY_ZFvLVpKul3Gabzaq1T5ATNnqHbYTRbMc5_w8R0lM6
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BK0Q58H4YCiwIoV4cxV4_jxWiBPJQhVJRcVmtZ9ckaupUsU2BX8_M2jFtRUGIUyJlbGXX3-x8s579hrFXfcjzVAQIXhCZGyCndlXsZa7xoR_mPiCm6HDyeBINDoIPh-HhmbMwjT5Et-FGnmHXa3Jw2pA-4-Xo475LzZZ6mFEJTNs3qa-3Tas-dhJSXixsw7jW2PNbeR-q5rlwg3OR6eqM6iI3aaq__Y583mBbp-jwhT0BdZ7Y2si0d4vBekxNQcpRr66yHvy4IPf4f4O-zW62xJXvNki7w66Y4i671rSy_H6PacQbX9mj6shhOUm_Hhu-zPl-aWq9RLCrkp8gyrXiwylG-z6nfZQvM6qg5_Oq5CQ7bjhaKb5aZnVZ8WNTIUQXc-AwQ44_L--zg7230zcDt-3g4AIlem7gJTqBFHNIkxptTKgxGoLI_SQCZRJA7mAgM0GsslAjsdAqSTQmMGEiIIkyIR6wjWJZmEeMQ9zXgGEW8IEGvgGVYeKlw1TkKjNRBA7rrZ-ehFbenLpsLOQ6zaGpkzR10k6dw3a6C04aZY_LTV8iHDorUuQe7I4kGCVJwdCLk_Sr57DXFi2dmVodUdVcHMpPk3dyfzJOPw_DQEYO217DSbYLRikxzUuRTwgvcNiL7md0dXp_owqzrK0NjjlG1vYnGxELDH6hf7mNT41ZI3rB7LCHDZy7P-1HpBMbC4eJX_iWBfW1Ku3AW5TK03oliwV94B1KibwTgys-BIvev02oxDXGfnn8rxc8Z9cH0_FIjt5Phk_YFtLXqCmt3GYb1ao2T5EiVtkzuwb8BDQOVn4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEF5BK1B54D4MBRaEEC-OYq_Px4oSAmmjCLUC9WW1l0nU1Il8UODXM7M-oBUFIZ4SKWMru_vNzjf27DeEvBiqLEtZAOBVTLoBcGpXxJ50ja-GYeYrwBQeTt6fRuPD4P2nsKsmxLMwjT5E_8ANPcPu1-jga5394uTg4r6LvZYGkFAxyNo3g2iYILB3P_QKUl7MbL-41tjzW3UfLOY5d4MzgenyHMsiN3Gmv_6Oe14jW6fg77k9AHWW19rANLpBZDekph7leFBXcqC-n1N7_K8x3yTXW9pKdxqc3SKXTH6bXGkaWX67QzSgjRb2oDowWIrCryeGrjI6K02tVwB1UdI1YFwLOjmAWD-k-BTl8xzr5-miKimKjhsKVoIWK1mXFT0xFQB0uVBUzYHhL8q75HD05uD12G37N7gK0zw38BKdqBQySJMabUyoIRYqlvlJpIRJFDAHo6QJYiFDDbRCiyTRkL6ECVNJJBm7RzbyVW4eEKrioVYQZBWsZ-AbJSSkXTpMWSakiSLlkEG3eFy14ubYY2PJuyQHp47j1HE7dQ551V-wbnQ9LjZ9DmjorVCPe7yzx5URHPULvThJv3gOeWnB0puJ4hhr5uKQf5y-5bPpfno0CQMeOWS7QxNvt4uSQ5KXAptgXuCQZ_3P4Oj49kbkZlVbGxhzDJztTzYsZhD6Qv9iGx_bskb4etkh9xs093_aj1AlNmYOYT_hzXPsalXagbcg5ad1wfMlfsAdSg6sE0IrLIIF798mlMMOY788_NcLnpKrs90R33s3nTwiW8Bdo6aucptsVEVtHgM_rOQTuwP8APsnVTY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+revisited+genome+of+Pseudomonas+putida+KT2440+enlightens+its+value+as+a+robust+metabolic+chassis&rft.jtitle=Environmental+microbiology&rft.au=Belda%2C+Eugeni&rft.au=van+Heck%2C+Ruben+G.+A.&rft.au=Jos%C3%A9+Lopez%E2%80%90Sanchez%2C+Maria&rft.au=Cruveiller%2C+St%C3%A9phane&rft.date=2016-10-01&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=18&rft.issue=10&rft.spage=3403&rft.epage=3424&rft_id=info:doi/10.1111%2F1462-2920.13230&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1462_2920_13230
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon