基于PCNN和遗传算法相结合的新型混凝土桥梁裂缝检测方法

针对混凝土桥梁裂缝对比度低、裂缝图像噪声干扰强等难题,提出了基于脉冲耦合神经网络(PCNN)和遗传算法相结合的混凝土桥梁裂缝检测新算法(GA-PCNN)。该算法首先利用遗传算法优化裂缝PCNN模型参数;然后通过改进的最小对数误差适应度函数区分裂缝与背景,当适应度值大小几乎无变化时,停止分割图像;最后通过连通域去噪算法滤除残余噪声,实现裂缝的自动检测。比较GA-PCNN、PCNN和基于熵及动态阈值算法对裂缝图像的分割效果,并绘制PR和ROC曲线评价分割质量,经计算GA-PCNN算法的PR和ROC曲线下面积为90.6%和91.6%,分别高于PCNN算法10.1%和6.8%、基于熵和动态阈值6.5%...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 10; pp. 3197 - 3200
Main Author 王艳 沈晓宇 丁文胜 王健波 邹秀阳
Format Journal Article
LanguageChinese
Published 上海理工大学机械工程学院,上海,200093%上海应用技术大学城市建设与安全工程学院,上海,201418 2017
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.10.071

Cover

Abstract 针对混凝土桥梁裂缝对比度低、裂缝图像噪声干扰强等难题,提出了基于脉冲耦合神经网络(PCNN)和遗传算法相结合的混凝土桥梁裂缝检测新算法(GA-PCNN)。该算法首先利用遗传算法优化裂缝PCNN模型参数;然后通过改进的最小对数误差适应度函数区分裂缝与背景,当适应度值大小几乎无变化时,停止分割图像;最后通过连通域去噪算法滤除残余噪声,实现裂缝的自动检测。比较GA-PCNN、PCNN和基于熵及动态阈值算法对裂缝图像的分割效果,并绘制PR和ROC曲线评价分割质量,经计算GA-PCNN算法的PR和ROC曲线下面积为90.6%和91.6%,分别高于PCNN算法10.1%和6.8%、基于熵和动态阈值6.5%和6.7%。实验结果表明,GA-PCNN新算法分割效果好且去噪能力强,该算法能准确地提取混凝土桥梁裂缝特征。
AbstractList 针对混凝土桥梁裂缝对比度低、裂缝图像噪声干扰强等难题,提出了基于脉冲耦合神经网络(PCNN)和遗传算法相结合的混凝土桥梁裂缝检测新算法(GA-PCNN)。该算法首先利用遗传算法优化裂缝PCNN模型参数;然后通过改进的最小对数误差适应度函数区分裂缝与背景,当适应度值大小几乎无变化时,停止分割图像;最后通过连通域去噪算法滤除残余噪声,实现裂缝的自动检测。比较GA-PCNN、PCNN和基于熵及动态阈值算法对裂缝图像的分割效果,并绘制PR和ROC曲线评价分割质量,经计算GA-PCNN算法的PR和ROC曲线下面积为90.6%和91.6%,分别高于PCNN算法10.1%和6.8%、基于熵和动态阈值6.5%和6.7%。实验结果表明,GA-PCNN新算法分割效果好且去噪能力强,该算法能准确地提取混凝土桥梁裂缝特征。
TP391.41; 针对混凝土桥梁裂缝对比度低、裂缝图像噪声干扰强等难题,提出了基于脉冲耦合神经网络(PCNN)和遗传算法相结合的混凝土桥梁裂缝检测新算法(GA-PCNN).该算法首先利用遗传算法优化裂缝PCNN模型参数;然后通过改进的最小对数误差适应度函数区分裂缝与背景,当适应度值大小几乎无变化时,停止分割图像;最后通过连通域去噪算法滤除残余噪声,实现裂缝的自动检测.比较GA-PCNN、PCNN和基于熵及动态阈值算法对裂缝图像的分割效果,并绘制PR和ROC曲线评价分割质量,经计算GA-PCNN算法的PR和ROC曲线下面积为90.6%和91.6%,分别高于PCNN算法10.1%和6.8%、基于熵和动态闽值6.5%和6.7%.实验结果表明,GA-PCNN新算法分割效果好且去噪能力强,该算法能准确地提取混凝土桥梁裂缝特征.
Abstract_FL Aiming at low contrast and strong noise interference in the crack of concrete bridges,this paper presented a novel crack detection method for concrete bridges based on pulse coupled neural network (PCNN) and genetic algorithm (GA-PC-NN).Firstly,the algorithm used genetic algorithm to optimize parameters of the fracture PCNN model.Then it discriminated fractures and background by the improved minimum logarithmic error adaptation degree function.The algorithm stopped image segmentation when the fitness value was almost unchanged.Finally,it adopted the algorithm of connected domain filter to eliminate the residual noise.Thus,it achieved automatic crack detection.This paper compared segmentation results of crack images by GA-PCNN,PCNN and algorithm based on entropy and dynamic threshold,and drew the PR curve and ROC curve to evaluate the quality of segmentation.Through calculation,area under the PR curve and ROC curve of GA-PCNN algorithm was 90.6% and 91.6%,respectively higher than PCNN by 10.1% and 6.8%,and algorithm based on entropy and dynamic threshold by 6.5% and 6.7%.Results of the experiments indicate that the segmentation effect and the denoising capability of GA-PCNN is apparent,verify that the algorithm can accurately extract the crack characteristics of concrete bridges.
Author 王艳 沈晓宇 丁文胜 王健波 邹秀阳
AuthorAffiliation 上海理工大学机械工程学院,上海200093 上海应用技术大学城市建设与安全工程学院,上海201418
AuthorAffiliation_xml – name: 上海理工大学机械工程学院,上海,200093%上海应用技术大学城市建设与安全工程学院,上海,201418
Author_FL Zou Xiuyang
Shen Xiaoyu
Wang Yan
Ding Wensheng
Wang Jianbo
Author_FL_xml – sequence: 1
  fullname: Wang Yan
– sequence: 2
  fullname: Shen Xiaoyu
– sequence: 3
  fullname: Ding Wensheng
– sequence: 4
  fullname: Wang Jianbo
– sequence: 5
  fullname: Zou Xiuyang
Author_xml – sequence: 1
  fullname: 王艳 沈晓宇 丁文胜 王健波 邹秀阳
BookMark eNo9j81Kw0AUhWdRwbb6EuLCTeP8JDPJUop_UKqg-zBOk9qgU20Qyc6KoFARUWxBrVWLWxFEqrWP00z0LRypuLp8l3PuPScDUrIqPQCmETSIQ53ZwKiEoTQQhChHqGMZGCKm0YAMpUD6fz8OMmEYQGhi5MA0KMSd_rB_tpovFuOL0-96azi4T55b6vUquXlPPi_j85Pk-kg1X-K7hur14uN2fNtRD0_qsf7VPUwGbdU9UG8N1fzQlgkw5vOt0Jv8m1mwtjC_nl_KFVYWl_NzhZygOoWHLZ-b1LIJtUu2sEwPmR7EJnc0eJgLwUpc-CZCjHNoMR10g2mC2EG-oCQLZkZX97n0uSy7QXWvJvU_NwiDKIqC3-a6L0NaOjWSis2qLO9WtHinVtnmtciljCATExuTHw8Mdzo
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.10.071
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate New crack detection method of concrete bridge based on PCNN and genetic algorithm
DocumentTitle_FL New crack detection method of concrete bridge based on PCNN and genetic algorithm
EndPage 3200
ExternalDocumentID jsjyyyj201710071
673142382
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c601-e25fa4658368d8c54e14e024a98c5e2acc7dacf4117aa057219b74110291fc63
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 09:57:30 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 10
Keywords genetic algorithm
混凝土桥梁裂缝检测
遗传算法
脉冲耦合神经网络
PCNN
crack detection of concrete bridge
minimum logarithmic error
最小对数误差
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c601-e25fa4658368d8c54e14e024a98c5e2acc7dacf4117aa057219b74110291fc63
Notes 51-1196/TP
crack detection of concrete bridge; PCNN; genetic algorithm; minimum logarithmic error
Aiming at low contrast and strong noise interference in the crack of concrete bridges, this paper presented a novel crack detection method for concrete bridges based on pulse coupled neural network (PCNN) and genetic algorithm ( GA-PCNN). Firstly, the algorithm used genetic algorithm to optimize parameters of the fracture PCNN model. Then it discriminated fractures and background by the improved minimum logarithmic error adaptation degree function, The algorithm stopped image segmentation when the fitness value was almost unchanged. Finally, it adopted the algorithm of connected domain filter to eliminate the residual noise. Thus, it achieved automatic crack detection. This paper compared segmentation results of crack images by GA-PCNN, PCNN and algorithm based on entropy and dynamic threshold, and drew the PR curve and ROC curve to evaluate the quality of segmentation. Through calculation, area under the PR curve
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201710071
chongqing_primary_673142382
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 上海理工大学机械工程学院,上海,200093%上海应用技术大学城市建设与安全工程学院,上海,201418
Publisher_xml – name: 上海理工大学机械工程学院,上海,200093%上海应用技术大学城市建设与安全工程学院,上海,201418
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.0607386
Snippet ...
TP391.41;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 3197
SubjectTerms 最小对数误差
混凝土桥梁裂缝检测
脉冲耦合神经网络
遗传算法
Title 基于PCNN和遗传算法相结合的新型混凝土桥梁裂缝检测方法
URI http://lib.cqvip.com/qk/93231X/201710/673142382.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201710071
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxVBFB9MIXrpOzIrDJyny9p-zO7MPO6uKxIlQQa-XfbrKj5cK_VBnzKCAiOiSKEyK-k1ggjL_HO8e-u_6JzZaV0spILLsPfMzJnzsTvnN8N8EDKUthx4d5PUcHOvZbDUM42YZ6nBILa0ZGoBZsb5jmvj3thNdmXSnew5ZNRWLS3MJ8Pp0h_3lfyPV4EGfsVdsv_g2YopEOAZ_AspeBjSv_IxjVwqR2ng04hhKqLr4fi4otpUhDSSABSp5Co7pL5JI079SFE8GjhUukiRAQ0EPgQBlY6qblKhKBKYMiwsobypsiIqAlWd4w8oAoqNqKwQpYEs36K-qx5sFCAS1HeosFUToSrsKYqp-LiaITYhK8HqqFlxiJBtXX5oDjV3MZVMScuor8QGTUuKL2lQzT0iQZTiCyogx2mo5mylLDCUWn1oQvCGsppQCijhQE-sB8KFjRorF0uU6oLgvt1QZreVLiAAV2oCZwHZ9TmWcjOpDgi45MzxtNY6YujpV_1lmLX-Hzo0XsMSTnkM629xypGeVHEK2xiu2sCVhnwYFxuW19LsOwnc444F6FcA4uizObfcXtLnByPB6B7-BbhYPw_RxqOG9sabeFmAV-vg8QZDiFhVB-9aDnfVdQgllGGQWR7noQU8TIa09JcPkh3PKZmebU_dBvSlNsO1W3F7qobbJo6To3rANeiXX88J0rM0fZIc-3WZyaCObafI1c7G9u72Y_yAOk8f_Vhe29150_2wVnx63n35pfvtWefJw-6L-8Xqx87rlWJrq_NgvfNqo3j7vni3_H3zXndnvdi8W3xeKVa_QpXT5MZoNBGOGfqqEQN6J8vIbbcVMwDjjicykbost1gO6DWW8Ce34zTlWZy2mGXxOIYRDtglASiO1rZaqeecIb3t2XZ-lgyajGVWnmUAgzOWeGZiw4AgYQDM3cROnLyfDFSmad4qD5RpVo7tJ5e0sZq6m5lrzszNLC4uzqB5cUWTde5ADgPkCJYsJwnPk975Owv5BYDN88lF_bL8BEt-lj0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EPCNN%E5%92%8C%E9%81%97%E4%BC%A0%E7%AE%97%E6%B3%95%E7%9B%B8%E7%BB%93%E5%90%88%E7%9A%84%E6%96%B0%E5%9E%8B%E6%B7%B7%E5%87%9D%E5%9C%9F%E6%A1%A5%E6%A2%81%E8%A3%82%E7%BC%9D%E6%A3%80%E6%B5%8B%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E7%8E%8B%E8%89%B3+%E6%B2%88%E6%99%93%E5%AE%87+%E4%B8%81%E6%96%87%E8%83%9C+%E7%8E%8B%E5%81%A5%E6%B3%A2+%E9%82%B9%E7%A7%80%E9%98%B3&rft.date=2017&rft.issn=1001-3695&rft.volume=34&rft.issue=10&rft.spage=3197&rft.epage=3200&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.10.071&rft.externalDocID=673142382
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg