基于自然最近邻居的社团检测算法

针对传统社团检测算法无法判断网络中特殊节点和SCAN算法对于参数依赖性太大的缺点,提出了一种基于自然最近邻居概念的社团检测算法CD3N。算法利用自然最近邻居无参的特性,首先以结构相似度为基准,计算出网络节点的自然最近邻居,并依此构造小值最近邻域图;然后取邻域图中邻居数最多的节点为核心节点,根据可达关系,构造关于核心节点的社团;重复选取核心节点并构造社团的过程,直到没有可归入社团的节点。将算法应用到空手道俱乐部网络和海豚网络中,并与SCAN算法进行对比。实验结果表明,CD3N算法有效解决了参数敏感性问题,能够很好地进行社团检测。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 31; no. 12; pp. 3560 - 3563
Main Author 朱庆生 蒋天弘 周明强
Format Journal Article
LanguageChinese
Published 重庆大学计算机学院软件理论与技术重庆市重点实验室,重庆,400044 2014
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2014.12.011

Cover

Abstract 针对传统社团检测算法无法判断网络中特殊节点和SCAN算法对于参数依赖性太大的缺点,提出了一种基于自然最近邻居概念的社团检测算法CD3N。算法利用自然最近邻居无参的特性,首先以结构相似度为基准,计算出网络节点的自然最近邻居,并依此构造小值最近邻域图;然后取邻域图中邻居数最多的节点为核心节点,根据可达关系,构造关于核心节点的社团;重复选取核心节点并构造社团的过程,直到没有可归入社团的节点。将算法应用到空手道俱乐部网络和海豚网络中,并与SCAN算法进行对比。实验结果表明,CD3N算法有效解决了参数敏感性问题,能够很好地进行社团检测。
AbstractList 针对传统社团检测算法无法判断网络中特殊节点和SCAN算法对于参数依赖性太大的缺点,提出了一种基于自然最近邻居概念的社团检测算法CD3N。算法利用自然最近邻居无参的特性,首先以结构相似度为基准,计算出网络节点的自然最近邻居,并依此构造小值最近邻域图;然后取邻域图中邻居数最多的节点为核心节点,根据可达关系,构造关于核心节点的社团;重复选取核心节点并构造社团的过程,直到没有可归入社团的节点。将算法应用到空手道俱乐部网络和海豚网络中,并与SCAN算法进行对比。实验结果表明,CD3N算法有效解决了参数敏感性问题,能够很好地进行社团检测。
TP301.6; 针对传统社团检测算法无法判断网络中特殊节点和SCAN算法对于参数依赖性太大的缺点,提出了一种基于自然最近邻居概念的社团检测算法CD3N.算法利用自然最近邻居无参的特性,首先以结构相似度为基准,计算出网络节点的自然最近邻居,并依此构造小值最近邻域图;然后取邻域图中邻居数最多的节点为核心节点,根据可达关系,构造关于核心节点的社团;重复选取核心节点并构造社团的过程,直到没有可归入社团的节点.将算法应用到空手道俱乐部网络和海豚网络中,并与SCAN算法进行对比.实验结果表明,CD3N算法有效解决了参数敏感性问题,能够很好地进行社团检测.
Author 朱庆生 蒋天弘 周明强
AuthorAffiliation 重庆大学计算机学院软件理论与技术重庆市重点实验室,重庆400044
AuthorAffiliation_xml – name: 重庆大学计算机学院软件理论与技术重庆市重点实验室,重庆,400044
Author_FL ZHOU Ming-qiang
JIANG Tian-hong
ZHU Qing-sheng
Author_FL_xml – sequence: 1
  fullname: ZHU Qing-sheng
– sequence: 2
  fullname: JIANG Tian-hong
– sequence: 3
  fullname: ZHOU Ming-qiang
Author_xml – sequence: 1
  fullname: 朱庆生 蒋天弘 周明强
BookMark eNo9j81Kw0AcxPdQwbb6EuLBS9b971eyRyl-QcFL7yXZJDVBN5ogkluRigdB8CCCCoJ68iCI6KGCvoxJ6lsYqXiZgeHHDNNCDZOYAKFFIJgpqZZjHGWZwUAIWEwqgSkBjoFiAtBAzf98FrWyLCaEU1Ckiazidvw1PpucPFajt_JmOPk8_z56L56Pq6tR9fBRXN-V98Py9bR6uixfLubQTOjuZMH8n7dRb22119mwulvrm52VrqVlPaN8AVoIx5c2eIoFPlCm7NCTkji2oMzm1HOFF4JyCAdPeBy0z5l2ncCxtWCsjZamtYeuCV0z6MfJQWrqwX6cxXmex7_foBao0YUpqrcTM9iPangvjXbdNO9LSRVlnHL2A_YLYp4
ClassificationCodes TP301.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2014.12.011
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Community detection algorithm based on natural nearest neighbor
DocumentTitle_FL Community detection algorithm based on natural nearest neighbor
EndPage 3563
ExternalDocumentID jsjyyyj201412011
662923424
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 重庆市自然科学基金资助项目; 中央高校基本科研业务费资助项目
  funderid: (61272194); (cstc2013jcyjA40046); (CDJZR11180003)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c601-9d51c558d671b93ed12397fb66087523742ba5bf198041b5b41cd43ca8e87c533
ISSN 1001-3695
IngestDate Thu May 29 03:54:50 EDT 2025
Wed Feb 14 10:33:56 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords 结构相似度
自然最近邻居
complex network
structural similarity
natural nearest neighbors
community detection
复杂网络
社团检测
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c601-9d51c558d671b93ed12397fb66087523742ba5bf198041b5b41cd43ca8e87c533
Notes ZHU Qing-sheng,JIANG Tian-hong,ZHOU Ming-qiang(Chongqing Key Laboratory of Software Theory & Technology, College of Computer Science, Chongqing University, Chongqing 400044, China )
51-1196/TP
community detection;complex network;natural nearest neighbors;structural similarity
To void the problem that the traditional detection algorithm can’t determine special nodes in the network and the SCAN algorithm’s parameter sensitivity,this paper proposed a community detection algorithm based on natural nearest neighbor( CD3N). According to structure similarity,it calculated natural nearest neighbor of each nodes,constructed neighborhood graph. Then it chose node which had maximum number of neighbors as core node,constructed community on this core node. It repeated the process to select a core node and construct community until no nodes left,and applied this algorithm in the Zachary’s Karate Club network and Dolphin network,and compared with SCAN algorithm. The results of experiment show that the CD3 N algorithm is able t
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201412011
chongqing_primary_662923424
PublicationCentury 2000
PublicationDate 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2014
Publisher 重庆大学计算机学院软件理论与技术重庆市重点实验室,重庆,400044
Publisher_xml – name: 重庆大学计算机学院软件理论与技术重庆市重点实验室,重庆,400044
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 1.9399898
Snippet ...
TP301.6;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 3560
SubjectTerms 复杂网络
社团检测
结构相似度
自然最近邻居
Title 基于自然最近邻居的社团检测算法
URI http://lib.cqvip.com/qk/93231X/201412/662923424.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201412011
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxUxMNQWxIvfYq1KheZUtr58bnLcrfsogp4q9PbY7O5r6eG12vbQnopUPAiCBxFUENSLHgQRPVTQP2Pfq__CmWze6yuUol7C7mQmmc1kZyYhmSFkqnC2zWNuoqrR1pFUZRG5Km5EyjireUPk2sfuvHNXz92TtxfUwsjIh6FTSxvrbqbYOvJeyf9IFWAgV7wl-w-SHTQKAHgG-UIJEobyr2RMM0Vtk6YJzSSWJqOZobC8TwASUwNATTNN7SweaICqtEkto5mlhtM0RfKUUaMQ2SaIDw8JUGW-5ZQmHMkT4ck1TRU1qcfJqI09RNA6e2XfwcVeoDZhh9CAAWRSYWl9L1AmxuM0AiSxwG1f_n0iFoiMDkS2OY1dWO45UcgtECLSLLVm2vPNfNPQgPEj4uvCfkTY36hvlAZljMe9hA6fEbR1sBlhVvIh3StUnZkg2HF4FUfZCGG19TYC-5gZ9IGn_KTfGQ7K_3AUbq05uMKSyxNkjMcxU6NkLElvpc0D3xNcteFYhBzD_Bys9TBQvx5Srpg9EKzFQLkqJmLlUxHUboSEyjqURmDwJJkK3N88jneMEbK00lm8D56Pv4jWaeedxSGfaf4sOR0WO5NJPXPPkZGtpfPkTD-RyGSwKxdItPdm99fu0_3HH3s737qvt_d_Pvv98Pve50e9lzu99z_2Xr3tvtvufn3S-_Si--X5RTLfzOZn56KQxyMqYLkf2VKxQilT6pg5K6oSnCUbt53WmE2Bi1hylyvXZhZjYTnlJCtKKYrcVCYuYDlyiYx2VjrVZTIpBWe5067KKyZVO3dClrFplA1TgaG0apxMDD6-tVqHa2kNRDdOboThaIWfeK21vLa8ubm5jAPI0Be-cmwLE-QUYtZbcFfJ6PqDjeoaOKXr7nqYDn8AmZRnWg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%87%AA%E7%84%B6%E6%9C%80%E8%BF%91%E9%82%BB%E5%B1%85%E7%9A%84%E7%A4%BE%E5%9B%A2%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E6%9C%B1%E5%BA%86%E7%94%9F+%E8%92%8B%E5%A4%A9%E5%BC%98+%E5%91%A8%E6%98%8E%E5%BC%BA&rft.date=2014&rft.issn=1001-3695&rft.volume=31&rft.issue=12&rft.spage=3560&rft.epage=3563&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2014.12.011&rft.externalDocID=662923424
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg