基于可变形部件模型的台标识别方法
背景变化复杂、部分台标相似度高、拉伸变形等因素增加了台标识别的难度,降低了识别的准确率。为此,提出了一种鲁棒的基于可变形部件模型的台标识别方法。依据台标特性,利用合适的颜色特征对可变形部件模型的特征进行了改进和增强;利用隐式支持向量机和隐式线性判别分析技术加速台标识别模型训练。为了弥补可变形部件模型的不足,设计了一种基于加权部件的计算方法,提出一种新的可靠机制进行准确率评价。实验结果表明,与基于方向梯度直方图和支持向量机的识别方法相比,该方法具有更高的识别准确率,性能更加稳定。...
Saved in:
Published in | 计算机应用研究 Vol. 34; no. 7; pp. 2202 - 2206 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
中国劳动关系学院 计算机应用教研室,北京,100048%青岛农业大学 理学与信息学院,山东 青岛,266109
2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 背景变化复杂、部分台标相似度高、拉伸变形等因素增加了台标识别的难度,降低了识别的准确率。为此,提出了一种鲁棒的基于可变形部件模型的台标识别方法。依据台标特性,利用合适的颜色特征对可变形部件模型的特征进行了改进和增强;利用隐式支持向量机和隐式线性判别分析技术加速台标识别模型训练。为了弥补可变形部件模型的不足,设计了一种基于加权部件的计算方法,提出一种新的可靠机制进行准确率评价。实验结果表明,与基于方向梯度直方图和支持向量机的识别方法相比,该方法具有更高的识别准确率,性能更加稳定。 |
---|---|
AbstractList | TP391.41; 背景变化复杂、部分台标相似度高、拉伸变形等因素增加了台标识别的难度,降低了识别的准确率.为此,提出了一种鲁棒的基于可变形部件模型的台标识别方法.依据台标特性,利用合适的颜色特征对可变形部件模型的特征进行了改进和增强;利用隐式支持向量机和隐式线性判别分析技术加速台标识别模型训练.为了弥补可变形部件模型的不足,设计了一种基于加权部件的计算方法,提出一种新的可靠机制进行准确率评价.实验结果表明,与基于方向梯度直方图和支持向量机的识别方法相比,该方法具有更高的识别准确率,性能更加稳定. 背景变化复杂、部分台标相似度高、拉伸变形等因素增加了台标识别的难度,降低了识别的准确率。为此,提出了一种鲁棒的基于可变形部件模型的台标识别方法。依据台标特性,利用合适的颜色特征对可变形部件模型的特征进行了改进和增强;利用隐式支持向量机和隐式线性判别分析技术加速台标识别模型训练。为了弥补可变形部件模型的不足,设计了一种基于加权部件的计算方法,提出一种新的可靠机制进行准确率评价。实验结果表明,与基于方向梯度直方图和支持向量机的识别方法相比,该方法具有更高的识别准确率,性能更加稳定。 |
Abstract_FL | Because of the complexity of the background,the high similarity of partial TV logo and the change of the shape of TV logo,it increases the difficulty of TV logo recognition and reduces the accuracy of recognition.Therefore,this paper proposed a robust TV logo recognition method based on the deformable part model (DPM).First of all,based on the TV logo features,it used the appropriate color features to improve and enhance the features of the deformable part model.Secondly,it used the latent support vector machine (LSVM) and latent linear discriminant analysis (LLDA) technology to accelerate the train of the TV logo recognition model.Then,in order to make up the deficiency of the deformable parts model,it designed a calculation method based on the weighted parts.Finally,it proposed a new reliable mechanism to evaluate the accuracy of the TV logo recognition.Experimental results show that the proposed method has higher recognition accuracy and more stable performance compared with the recognition method based on histogram of oriented gradients (HOG) and support vector machine (SVM). |
Author | 张伟 许海洋 |
AuthorAffiliation | 中国劳动关系学院计算机应用教研室,北京100048 青岛农业大学理学与信息学院,山东青岛266109 |
AuthorAffiliation_xml | – name: 中国劳动关系学院 计算机应用教研室,北京,100048%青岛农业大学 理学与信息学院,山东 青岛,266109 |
Author_FL | Xu Haiyang Zhang Wei |
Author_FL_xml | – sequence: 1 fullname: Zhang Wei – sequence: 2 fullname: Xu Haiyang |
Author_xml | – sequence: 1 fullname: 张伟 许海洋 |
BookMark | eNo9j0tLw0AAhPdQwbb6J8SDl8R9ZdM9SvEFBS-9h81uUhN0owkiOSsqCOakiAdfp4KHCoJgxX_TjfovXKkIAwPDxwzTAg2d6QiARQRdwhlfTt2kKLSLIEQOYdxzMUS-C60YaoDmfz4LWkWRQkgx4rAJoLkbT8YXphqZ6tp8PH4fDSfvr_Xwwdyef94cm-q5vj_9Gp2Ys6f66q1-uZwDM7HYKaL5P2-D_tpqv7vh9LbWN7srPUcyu8QwV5JIyTGWGPLYU2GosFIxDYWnsPQJFdhGBEVIECIo7cRM8EhRJaNQQNIGS9PaQ6FjoQdBmh3k2g4GaZGWZZn-3oO-PWfRhSkqtzM92E8svJcnuyIvA-ZjilmHcvIDM7tnQg |
ClassificationCodes | TP391.41 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1001-3695.2017.07.061 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | TV logo recognition method based on deformable part model |
DocumentTitle_FL | TV logo recognition method based on deformable part model |
EndPage | 2206 |
ExternalDocumentID | jsjyyyj201707061 672426849 |
GrantInformation_xml | – fundername: 国家自然科学基金青年科学基金资助项目; 中央高校基本科研业务费专项基金资助项目 funderid: (61403223); (13YQ010) |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c601-629dc3cc922c209f5dbbd2ddf4ba5d2c734a2bbd31e1a33a448f6a9ed4dceba03 |
ISSN | 1001-3695 |
IngestDate | Thu May 29 03:54:51 EDT 2025 Wed Feb 14 10:00:21 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Keywords | 颜色直方图 台标识别 隐式支持向量机 color histogram 方向梯度直方图 TV logo recognition 加权部件 histogram of oriented gradients(HOG) latent support vector machine(LSVM) latent linear discriminant analysis(LLDA) deformable part model(DPM) 可变形部件模型 隐式线性判别分析 weighted-part |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c601-629dc3cc922c209f5dbbd2ddf4ba5d2c734a2bbd31e1a33a448f6a9ed4dceba03 |
Notes | Because of the complexity of the background, the high similarity of partial TV logo and the change of the shape of TV logo, it increases the difficulty of TV logo recognition and reduces the accuracy of recognition.Therefore, this paper proposed a robust TV logo recognition method based on the deformable part model (DPM).First of all, based on the TV logo features, it used the appropriate color features to improve and enhance the features of the deformable part model.Secondly, it used the latent support vector machine (LSVM) and latent linear discriminant analysis (LLDA) technology to accelerate the train of the TV logo recognition model.Then, in order to make up the deficiency of the deformable parts model, it designed a calculation method based on the weighted parts.Finally, it proposed a new reliable mechanism to evaluate the accuracy of the TV logo recognition.Experimental results show that the proposed method has higher recognition accuracy and more stable performance compared with the recognition method |
PageCount | 5 |
ParticipantIDs | wanfang_journals_jsjyyyj201707061 chongqing_primary_672426849 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 计算机应用研究 |
PublicationTitleAlternate | Application Research of Computers |
PublicationTitle_FL | Application Research of Computers |
PublicationYear | 2017 |
Publisher | 中国劳动关系学院 计算机应用教研室,北京,100048%青岛农业大学 理学与信息学院,山东 青岛,266109 |
Publisher_xml | – name: 中国劳动关系学院 计算机应用教研室,北京,100048%青岛农业大学 理学与信息学院,山东 青岛,266109 |
SSID | ssj0042190 ssib001102940 ssib002263599 ssib023646305 ssib051375744 ssib025702191 |
Score | 2.0612798 |
Snippet | ... TP391.41;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 2202 |
SubjectTerms | 加权部件 可变形部件模型 台标识别 方向梯度直方图 隐式支持向量机 隐式线性判别分析 颜色直方图 |
Title | 基于可变形部件模型的台标识别方法 |
URI | http://lib.cqvip.com/qk/93231X/201707/672426849.html https://d.wanfangdata.com.cn/periodical/jsjyyyj201707061 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxUxMNQWxIvfYq3KE5qTbN1NstnkuHndRxH09ITeHrub3ZYeXtW-Hl6vigqK76SIB79OBQ8VBMGK_6b71H_hJJu-LlKKegmzyexkspOdmYRkBqF5ndJcF4Hw4NeJPFZq4qWFYF4qmM58lpPSbg3cus2X7rCby-Hy1NSzxqmlzUG2kG8deq_kf6QKdSBXc0v2HyQ7IQoVAIN8oQQJQ_lXMsZJiGUHqxgnzJQiMTWig-OOA6QwgFrEMcGJxILiWFhkhRXHCTePcWDpJFgonERYAh3mXle-xfGxiHAiDFnBbRPAyjRJjpU0gKK4TmO57-la_MQSjwwgI4vfttyGppTMdscsS5Hppa6JJfC2PxEsbts0Gq7bMNzrjrIStl9otpQVOMWquYdRX9Z0Ctcc6aLcceg0stverGde1FSvxCcNUw2P_DAzQCWX1gyYLhYmXZiDfJEN1VrHf_8j0DaPjLsimDyGZggsOkDNz8RqUXUO3EvwxprhBomJ5HOwnDOx-HlDf5oEgWAQJvozDGgU2mwDtafAoLGOluEYPI7mHfc3juLdhAFZXe-v3APnxt4165dpf6XhFnVPo5NuPdOK68l5Bk1trZ5Fp_ZzhbSc6TiH_Ort7t7u82q0U41eVd8__Hqwvffty3j7ffXm6Y_XD6vRp_G7xz93HlVPPo5ffh1_fnEedTtJt73kuWwdXg6Leo8TqXOa55KQnPiyDHWWaaJ1ybI01CSPKEsJVNGgCFJKU8ZEyVNZaKbzIkt9egFN99f7xUXUokHJBRiSSMoSfCyd6pIEdeoOP_VlNovmJuPv3a2DsvQm0ptF19wX6blfdaO3trE2HA7XzDcEE8eDS0dSmEMnDGa90XYZTQ_ubxZXwPUcZFfdjPgNjxpnJQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%8F%AF%E5%8F%98%E5%BD%A2%E9%83%A8%E4%BB%B6%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%8F%B0%E6%A0%87%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E5%BC%A0%E4%BC%9F+%E8%AE%B8%E6%B5%B7%E6%B4%8B&rft.date=2017&rft.issn=1001-3695&rft.volume=34&rft.issue=7&rft.spage=2202&rft.epage=2206&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.07.061&rft.externalDocID=672426849 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg |