基于可变形部件模型的台标识别方法

背景变化复杂、部分台标相似度高、拉伸变形等因素增加了台标识别的难度,降低了识别的准确率。为此,提出了一种鲁棒的基于可变形部件模型的台标识别方法。依据台标特性,利用合适的颜色特征对可变形部件模型的特征进行了改进和增强;利用隐式支持向量机和隐式线性判别分析技术加速台标识别模型训练。为了弥补可变形部件模型的不足,设计了一种基于加权部件的计算方法,提出一种新的可靠机制进行准确率评价。实验结果表明,与基于方向梯度直方图和支持向量机的识别方法相比,该方法具有更高的识别准确率,性能更加稳定。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 7; pp. 2202 - 2206
Main Author 张伟 许海洋
Format Journal Article
LanguageChinese
Published 中国劳动关系学院 计算机应用教研室,北京,100048%青岛农业大学 理学与信息学院,山东 青岛,266109 2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 背景变化复杂、部分台标相似度高、拉伸变形等因素增加了台标识别的难度,降低了识别的准确率。为此,提出了一种鲁棒的基于可变形部件模型的台标识别方法。依据台标特性,利用合适的颜色特征对可变形部件模型的特征进行了改进和增强;利用隐式支持向量机和隐式线性判别分析技术加速台标识别模型训练。为了弥补可变形部件模型的不足,设计了一种基于加权部件的计算方法,提出一种新的可靠机制进行准确率评价。实验结果表明,与基于方向梯度直方图和支持向量机的识别方法相比,该方法具有更高的识别准确率,性能更加稳定。
AbstractList TP391.41; 背景变化复杂、部分台标相似度高、拉伸变形等因素增加了台标识别的难度,降低了识别的准确率.为此,提出了一种鲁棒的基于可变形部件模型的台标识别方法.依据台标特性,利用合适的颜色特征对可变形部件模型的特征进行了改进和增强;利用隐式支持向量机和隐式线性判别分析技术加速台标识别模型训练.为了弥补可变形部件模型的不足,设计了一种基于加权部件的计算方法,提出一种新的可靠机制进行准确率评价.实验结果表明,与基于方向梯度直方图和支持向量机的识别方法相比,该方法具有更高的识别准确率,性能更加稳定.
背景变化复杂、部分台标相似度高、拉伸变形等因素增加了台标识别的难度,降低了识别的准确率。为此,提出了一种鲁棒的基于可变形部件模型的台标识别方法。依据台标特性,利用合适的颜色特征对可变形部件模型的特征进行了改进和增强;利用隐式支持向量机和隐式线性判别分析技术加速台标识别模型训练。为了弥补可变形部件模型的不足,设计了一种基于加权部件的计算方法,提出一种新的可靠机制进行准确率评价。实验结果表明,与基于方向梯度直方图和支持向量机的识别方法相比,该方法具有更高的识别准确率,性能更加稳定。
Abstract_FL Because of the complexity of the background,the high similarity of partial TV logo and the change of the shape of TV logo,it increases the difficulty of TV logo recognition and reduces the accuracy of recognition.Therefore,this paper proposed a robust TV logo recognition method based on the deformable part model (DPM).First of all,based on the TV logo features,it used the appropriate color features to improve and enhance the features of the deformable part model.Secondly,it used the latent support vector machine (LSVM) and latent linear discriminant analysis (LLDA) technology to accelerate the train of the TV logo recognition model.Then,in order to make up the deficiency of the deformable parts model,it designed a calculation method based on the weighted parts.Finally,it proposed a new reliable mechanism to evaluate the accuracy of the TV logo recognition.Experimental results show that the proposed method has higher recognition accuracy and more stable performance compared with the recognition method based on histogram of oriented gradients (HOG) and support vector machine (SVM).
Author 张伟 许海洋
AuthorAffiliation 中国劳动关系学院计算机应用教研室,北京100048 青岛农业大学理学与信息学院,山东青岛266109
AuthorAffiliation_xml – name: 中国劳动关系学院 计算机应用教研室,北京,100048%青岛农业大学 理学与信息学院,山东 青岛,266109
Author_FL Xu Haiyang
Zhang Wei
Author_FL_xml – sequence: 1
  fullname: Zhang Wei
– sequence: 2
  fullname: Xu Haiyang
Author_xml – sequence: 1
  fullname: 张伟 许海洋
BookMark eNo9j0tLw0AAhPdQwbb6J8SDl8R9ZdM9SvEFBS-9h81uUhN0owkiOSsqCOakiAdfp4KHCoJgxX_TjfovXKkIAwPDxwzTAg2d6QiARQRdwhlfTt2kKLSLIEQOYdxzMUS-C60YaoDmfz4LWkWRQkgx4rAJoLkbT8YXphqZ6tp8PH4fDSfvr_Xwwdyef94cm-q5vj_9Gp2Ys6f66q1-uZwDM7HYKaL5P2-D_tpqv7vh9LbWN7srPUcyu8QwV5JIyTGWGPLYU2GosFIxDYWnsPQJFdhGBEVIECIo7cRM8EhRJaNQQNIGS9PaQ6FjoQdBmh3k2g4GaZGWZZn-3oO-PWfRhSkqtzM92E8svJcnuyIvA-ZjilmHcvIDM7tnQg
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.07.061
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate TV logo recognition method based on deformable part model
DocumentTitle_FL TV logo recognition method based on deformable part model
EndPage 2206
ExternalDocumentID jsjyyyj201707061
672426849
GrantInformation_xml – fundername: 国家自然科学基金青年科学基金资助项目; 中央高校基本科研业务费专项基金资助项目
  funderid: (61403223); (13YQ010)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c601-629dc3cc922c209f5dbbd2ddf4ba5d2c734a2bbd31e1a33a448f6a9ed4dceba03
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 10:00:21 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords 颜色直方图
台标识别
隐式支持向量机
color histogram
方向梯度直方图
TV logo recognition
加权部件
histogram of oriented gradients(HOG)
latent support vector machine(LSVM)
latent linear discriminant analysis(LLDA)
deformable part model(DPM)
可变形部件模型
隐式线性判别分析
weighted-part
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c601-629dc3cc922c209f5dbbd2ddf4ba5d2c734a2bbd31e1a33a448f6a9ed4dceba03
Notes Because of the complexity of the background, the high similarity of partial TV logo and the change of the shape of TV logo, it increases the difficulty of TV logo recognition and reduces the accuracy of recognition.Therefore, this paper proposed a robust TV logo recognition method based on the deformable part model (DPM).First of all, based on the TV logo features, it used the appropriate color features to improve and enhance the features of the deformable part model.Secondly, it used the latent support vector machine (LSVM) and latent linear discriminant analysis (LLDA) technology to accelerate the train of the TV logo recognition model.Then, in order to make up the deficiency of the deformable parts model, it designed a calculation method based on the weighted parts.Finally, it proposed a new reliable mechanism to evaluate the accuracy of the TV logo recognition.Experimental results show that the proposed method has higher recognition accuracy and more stable performance compared with the recognition method
PageCount 5
ParticipantIDs wanfang_journals_jsjyyyj201707061
chongqing_primary_672426849
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 中国劳动关系学院 计算机应用教研室,北京,100048%青岛农业大学 理学与信息学院,山东 青岛,266109
Publisher_xml – name: 中国劳动关系学院 计算机应用教研室,北京,100048%青岛农业大学 理学与信息学院,山东 青岛,266109
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.0612798
Snippet ...
TP391.41;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 2202
SubjectTerms 加权部件
可变形部件模型
台标识别
方向梯度直方图
隐式支持向量机
隐式线性判别分析
颜色直方图
Title 基于可变形部件模型的台标识别方法
URI http://lib.cqvip.com/qk/93231X/201707/672426849.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201707061
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxUxMNQWxIvfYq3KE5qTbN1NstnkuHndRxH09ITeHrub3ZYeXtW-Hl6vigqK76SIB79OBQ8VBMGK_6b71H_hJJu-LlKKegmzyexkspOdmYRkBqF5ndJcF4Hw4NeJPFZq4qWFYF4qmM58lpPSbg3cus2X7rCby-Hy1NSzxqmlzUG2kG8deq_kf6QKdSBXc0v2HyQ7IQoVAIN8oQQJQ_lXMsZJiGUHqxgnzJQiMTWig-OOA6QwgFrEMcGJxILiWFhkhRXHCTePcWDpJFgonERYAh3mXle-xfGxiHAiDFnBbRPAyjRJjpU0gKK4TmO57-la_MQSjwwgI4vfttyGppTMdscsS5Hppa6JJfC2PxEsbts0Gq7bMNzrjrIStl9otpQVOMWquYdRX9Z0Ctcc6aLcceg0stverGde1FSvxCcNUw2P_DAzQCWX1gyYLhYmXZiDfJEN1VrHf_8j0DaPjLsimDyGZggsOkDNz8RqUXUO3EvwxprhBomJ5HOwnDOx-HlDf5oEgWAQJvozDGgU2mwDtafAoLGOluEYPI7mHfc3juLdhAFZXe-v3APnxt4165dpf6XhFnVPo5NuPdOK68l5Bk1trZ5Fp_ZzhbSc6TiH_Ort7t7u82q0U41eVd8__Hqwvffty3j7ffXm6Y_XD6vRp_G7xz93HlVPPo5ffh1_fnEedTtJt73kuWwdXg6Leo8TqXOa55KQnPiyDHWWaaJ1ybI01CSPKEsJVNGgCFJKU8ZEyVNZaKbzIkt9egFN99f7xUXUokHJBRiSSMoSfCyd6pIEdeoOP_VlNovmJuPv3a2DsvQm0ptF19wX6blfdaO3trE2HA7XzDcEE8eDS0dSmEMnDGa90XYZTQ_ubxZXwPUcZFfdjPgNjxpnJQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%8F%AF%E5%8F%98%E5%BD%A2%E9%83%A8%E4%BB%B6%E6%A8%A1%E5%9E%8B%E7%9A%84%E5%8F%B0%E6%A0%87%E8%AF%86%E5%88%AB%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E5%BC%A0%E4%BC%9F+%E8%AE%B8%E6%B5%B7%E6%B4%8B&rft.date=2017&rft.issn=1001-3695&rft.volume=34&rft.issue=7&rft.spage=2202&rft.epage=2206&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.07.061&rft.externalDocID=672426849
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg