基于随机特征字典的纹理分类方法
为解决稀疏表示在提取全局纹理特征时受维数限制的问题,提出一种基于随机特征字典的特征提取及分类方法。方法利用稀疏系数中非零系数的分布特点,统计各图像块在稀疏分解过程中字典原子的使用频率,得到能突出纹理在稀疏域类别信息的直方图特征,进而实现分类。为提高分类准确率,通过随机投影将多尺度多方向的小波特征进行融合,并对其训练得到纹理描述能力更强的小波随机特征字典。在分类实验中,其分类准确率达94.79%,并能在噪声、光照条件影响下获得较好的鲁棒性,在分析全局纹理特征方面具有高效、稳定的特点。...
Saved in:
Published in | 计算机应用研究 Vol. 32; no. 1; pp. 303 - 306 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
合肥工业大学计算机与信息学院,合肥,230009
2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-3695 |
DOI | 10.3969/j.issn.1001-3695.2015.01.071 |
Cover
Abstract | 为解决稀疏表示在提取全局纹理特征时受维数限制的问题,提出一种基于随机特征字典的特征提取及分类方法。方法利用稀疏系数中非零系数的分布特点,统计各图像块在稀疏分解过程中字典原子的使用频率,得到能突出纹理在稀疏域类别信息的直方图特征,进而实现分类。为提高分类准确率,通过随机投影将多尺度多方向的小波特征进行融合,并对其训练得到纹理描述能力更强的小波随机特征字典。在分类实验中,其分类准确率达94.79%,并能在噪声、光照条件影响下获得较好的鲁棒性,在分析全局纹理特征方面具有高效、稳定的特点。 |
---|---|
AbstractList | TP391.41; 为解决稀疏表示在提取全局纹理特征时受维数限制的问题,提出一种基于随机特征字典的特征提取及分类方法.方法利用稀疏系数中非零系数的分布特点,统计各图像块在稀疏分解过程中字典原子的使用频率,得到能突出纹理在稀疏域类别信息的直方图特征,进而实现分类.为提高分类准确率,通过随机投影将多尺度多方向的小波特征进行融合,并对其训练得到纹理描述能力更强的小波随机特征字典.在分类实验中,其分类准确率达94.79%,并能在噪声、光照条件影响下获得较好的鲁棒性,在分析全局纹理特征方面具有高效、稳定的特点. 为解决稀疏表示在提取全局纹理特征时受维数限制的问题,提出一种基于随机特征字典的特征提取及分类方法。方法利用稀疏系数中非零系数的分布特点,统计各图像块在稀疏分解过程中字典原子的使用频率,得到能突出纹理在稀疏域类别信息的直方图特征,进而实现分类。为提高分类准确率,通过随机投影将多尺度多方向的小波特征进行融合,并对其训练得到纹理描述能力更强的小波随机特征字典。在分类实验中,其分类准确率达94.79%,并能在噪声、光照条件影响下获得较好的鲁棒性,在分析全局纹理特征方面具有高效、稳定的特点。 |
Author | 沈仁明 徐小红 王教余 廖重阳 |
AuthorAffiliation | 合肥工业大学计算机与信息学院,合肥230009 |
AuthorAffiliation_xml | – name: 合肥工业大学计算机与信息学院,合肥,230009 |
Author_FL | XU Xiao-hong WANG Jiao-yu LIAO Chong-yang SHEN Ren-ming |
Author_FL_xml | – sequence: 1 fullname: SHEN Ren-ming – sequence: 2 fullname: XU Xiao-hong – sequence: 3 fullname: WANG Jiao-yu – sequence: 4 fullname: LIAO Chong-yang |
Author_xml | – sequence: 1 fullname: 沈仁明 徐小红 王教余 廖重阳 |
BookMark | eNo9j81Kw0AUhWdRwbb6EuLCTeK9M5lJZinFPyi46b5MM9OaoFNNEMlS0KIbdaNCEXwCF-LGRvBpTIJvYUrF1YHDx_k4LdKwY2sIWUdwmRRyM3ajNLUuAqDDhOQuBeQuoAs-Nkjzv18mrTSNATyKEprEKV7y7_z2Z3pXPufVzaz4uihen4qrj2p6WeWz6n5SXE-qt8_ycVa-P6yQpaE6Ss3qX7ZJb2e719lzuge7-52trhOKuUYzaQQLQg7AuaRqaCRnYaAVMmEocmFUQHWojRJIQxp4PgfpgUY90GyArE02FrPnyg6VHfXj8Vlia2E_TuMsy-L5N8D6WY2uLdDwcGxHp1ENnyTRsUqyvhBU-oJ5nP0CY4xjaQ |
ClassificationCodes | TP391.41 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1001-3695.2015.01.071 |
DatabaseName | 中文期刊服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Texture classification method via random feature dictionary |
DocumentTitle_FL | Texture classification method via random feature dictionary |
EndPage | 306 |
ExternalDocumentID | jsjyyyj201501071 662976345 |
GrantInformation_xml | – fundername: 安徽省自然科学基金项目; 国家重大科研装备研制项目 funderid: (128085MF91); (ZDYZ2012-1) |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c601-3d39e638c5005592afe953c8da136e2156ea82dcdea612c284750940d1dbd3b13 |
ISSN | 1001-3695 |
IngestDate | Thu May 29 03:54:50 EDT 2025 Wed Feb 14 10:34:45 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | 纹理全局特征提取 字典学习 纹理分类 global texture feature extraction dictionary learning texture classification 稀疏表示 sparse representation |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c601-3d39e638c5005592afe953c8da136e2156ea82dcdea612c284750940d1dbd3b13 |
Notes | 51-1196/TP sparse representation; dictionary learning; texture classification; global texture feature extraction Extracting global texture feature through sparse representation faced some problems, which mainly caused by high dimension. In order to solve those problems, this paper proposed a feature extraction and classification method based on ran- dom feature dictionary. The proposed method utilized the distribution of non-zero coefficients, which were computed by sparse decomposition, to generate a statistics histogram feature. The acquired histogram could reflect the dictionary atoms' using fre- quency in sparse decomposition, and was able to reflect the class information, Thus, the classification could be realized. For the sake of improving classification accuracy, it fused multi-scale and multi-direction wavelet features through random projec- tion, and then trained a more descriptive dictionary by those fused features. In the classification experiments, it achieved 94.79% classification accuracy. Further |
PageCount | 4 |
ParticipantIDs | wanfang_journals_jsjyyyj201501071 chongqing_primary_662976345 |
PublicationCentury | 2000 |
PublicationDate | 2015 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015 |
PublicationDecade | 2010 |
PublicationTitle | 计算机应用研究 |
PublicationTitleAlternate | Application Research of Computers |
PublicationTitle_FL | Application Research of Computers |
PublicationYear | 2015 |
Publisher | 合肥工业大学计算机与信息学院,合肥,230009 |
Publisher_xml | – name: 合肥工业大学计算机与信息学院,合肥,230009 |
SSID | ssj0042190 ssib001102940 ssib002263599 ssib023646305 ssib051375744 ssib025702191 |
Score | 1.979751 |
Snippet | ... TP391.41;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 303 |
SubjectTerms | 字典学习 稀疏表示 纹理全局特征提取 纹理分类 |
Title | 基于随机特征字典的纹理分类方法 |
URI | http://lib.cqvip.com/qk/93231X/201501/662976345.html https://d.wanfangdata.com.cn/periodical/jsjyyyj201501071 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0AqphLjwRpQCClJ9qlLW612vfdxtNqqQ4BSk3qJ9eFvlkAJND-kNCSq4ABdAqpD4Ag6ICwkSB76FJOIvmPG6mwhQBVyskT32zHhsz9iyx4SsZhlXRQ4TMMhcDzYomjUTARPP0zzTuQKTq_G84-49sXnfu7Plb9Vq3xZuLe0P0vXs4I_vSv5Hq5AHesVXsv-g2apRyAAY9AspaBjSv9IxjX2q2jQKaexhKmMaK6oAaNNYULVhigIqFY0UIkcxeI4IhC2qAgQkZErEwVoeAlAFkSHHoVIYHGkAKGI0ikzLwuBAymn5e-Wxg0tjScOYhgzxAUAqFSc-pspQgTQ0dEPH5oTAZHVMaNp2kTJKFhmuoRlgJF6zggB7CDhGWMN26K4ZaUHIkkvoHWUaAGlVWS9C3qGTJOC1TG9JEGLx7KN892kXarwKxoUV0a7k85PSasSWyzJ3-IKF5ybGwW_GgyuhjPFAAusVAbz-V4Z2Lf-K-SU8txAueHTc80-RJTcImF8nS2HUitpzpxR8uMUghS7G_5lvAjGCv1hYdfFbQTAj1arrMx745o-C0r_woLCMsWEZPE1WLfe3T-Idg4fs7Pa3H4JLZF6o9Yukv73gTHXOk7N2F9QIyyF9gdQOdi6Sc8c_jDSswblEmpP34-_jFz-OXk7fjWfPR5Ovjycf3k6efp4dPZmNR7NXh5Nnh7OPX6ZvRtNPry-TTjvubGw27QcfzUwghzlXGtb_zMdIcMpNCq18nsk8YVxo8EWFTqSbZ7lOwA_P0JEy4R5zlqc5Txm_Qur93b6-ShpZpiRuP4okLzxfpgkThVMI10k10wmTy2SlEr77oIzj0q1Ut0xu2e7o2tm91-3t9YbDYQ870GHQfddObGGFnEHM8mzuOqkPHu3rG-CtDtKbdjj8BEjCbf0 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%9A%8F%E6%9C%BA%E7%89%B9%E5%BE%81%E5%AD%97%E5%85%B8%E7%9A%84%E7%BA%B9%E7%90%86%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E6%B2%88%E4%BB%81%E6%98%8E+%E5%BE%90%E5%B0%8F%E7%BA%A2+%E7%8E%8B%E6%95%99%E4%BD%99+%E5%BB%96%E9%87%8D%E9%98%B3&rft.date=2015&rft.issn=1001-3695&rft.volume=32&rft.issue=1&rft.spage=303&rft.epage=306&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2015.01.071&rft.externalDocID=662976345 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg |