基于随机特征字典的纹理分类方法

为解决稀疏表示在提取全局纹理特征时受维数限制的问题,提出一种基于随机特征字典的特征提取及分类方法。方法利用稀疏系数中非零系数的分布特点,统计各图像块在稀疏分解过程中字典原子的使用频率,得到能突出纹理在稀疏域类别信息的直方图特征,进而实现分类。为提高分类准确率,通过随机投影将多尺度多方向的小波特征进行融合,并对其训练得到纹理描述能力更强的小波随机特征字典。在分类实验中,其分类准确率达94.79%,并能在噪声、光照条件影响下获得较好的鲁棒性,在分析全局纹理特征方面具有高效、稳定的特点。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 32; no. 1; pp. 303 - 306
Main Author 沈仁明 徐小红 王教余 廖重阳
Format Journal Article
LanguageChinese
Published 合肥工业大学计算机与信息学院,合肥,230009 2015
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2015.01.071

Cover

Abstract 为解决稀疏表示在提取全局纹理特征时受维数限制的问题,提出一种基于随机特征字典的特征提取及分类方法。方法利用稀疏系数中非零系数的分布特点,统计各图像块在稀疏分解过程中字典原子的使用频率,得到能突出纹理在稀疏域类别信息的直方图特征,进而实现分类。为提高分类准确率,通过随机投影将多尺度多方向的小波特征进行融合,并对其训练得到纹理描述能力更强的小波随机特征字典。在分类实验中,其分类准确率达94.79%,并能在噪声、光照条件影响下获得较好的鲁棒性,在分析全局纹理特征方面具有高效、稳定的特点。
AbstractList TP391.41; 为解决稀疏表示在提取全局纹理特征时受维数限制的问题,提出一种基于随机特征字典的特征提取及分类方法.方法利用稀疏系数中非零系数的分布特点,统计各图像块在稀疏分解过程中字典原子的使用频率,得到能突出纹理在稀疏域类别信息的直方图特征,进而实现分类.为提高分类准确率,通过随机投影将多尺度多方向的小波特征进行融合,并对其训练得到纹理描述能力更强的小波随机特征字典.在分类实验中,其分类准确率达94.79%,并能在噪声、光照条件影响下获得较好的鲁棒性,在分析全局纹理特征方面具有高效、稳定的特点.
为解决稀疏表示在提取全局纹理特征时受维数限制的问题,提出一种基于随机特征字典的特征提取及分类方法。方法利用稀疏系数中非零系数的分布特点,统计各图像块在稀疏分解过程中字典原子的使用频率,得到能突出纹理在稀疏域类别信息的直方图特征,进而实现分类。为提高分类准确率,通过随机投影将多尺度多方向的小波特征进行融合,并对其训练得到纹理描述能力更强的小波随机特征字典。在分类实验中,其分类准确率达94.79%,并能在噪声、光照条件影响下获得较好的鲁棒性,在分析全局纹理特征方面具有高效、稳定的特点。
Author 沈仁明 徐小红 王教余 廖重阳
AuthorAffiliation 合肥工业大学计算机与信息学院,合肥230009
AuthorAffiliation_xml – name: 合肥工业大学计算机与信息学院,合肥,230009
Author_FL XU Xiao-hong
WANG Jiao-yu
LIAO Chong-yang
SHEN Ren-ming
Author_FL_xml – sequence: 1
  fullname: SHEN Ren-ming
– sequence: 2
  fullname: XU Xiao-hong
– sequence: 3
  fullname: WANG Jiao-yu
– sequence: 4
  fullname: LIAO Chong-yang
Author_xml – sequence: 1
  fullname: 沈仁明 徐小红 王教余 廖重阳
BookMark eNo9j81Kw0AUhWdRwbb6EuLCTeK9M5lJZinFPyi46b5MM9OaoFNNEMlS0KIbdaNCEXwCF-LGRvBpTIJvYUrF1YHDx_k4LdKwY2sIWUdwmRRyM3ajNLUuAqDDhOQuBeQuoAs-Nkjzv18mrTSNATyKEprEKV7y7_z2Z3pXPufVzaz4uihen4qrj2p6WeWz6n5SXE-qt8_ycVa-P6yQpaE6Ss3qX7ZJb2e719lzuge7-52trhOKuUYzaQQLQg7AuaRqaCRnYaAVMmEocmFUQHWojRJIQxp4PgfpgUY90GyArE02FrPnyg6VHfXj8Vlia2E_TuMsy-L5N8D6WY2uLdDwcGxHp1ENnyTRsUqyvhBU-oJ5nP0CY4xjaQ
ClassificationCodes TP391.41
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2015.01.071
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Texture classification method via random feature dictionary
DocumentTitle_FL Texture classification method via random feature dictionary
EndPage 306
ExternalDocumentID jsjyyyj201501071
662976345
GrantInformation_xml – fundername: 安徽省自然科学基金项目; 国家重大科研装备研制项目
  funderid: (128085MF91); (ZDYZ2012-1)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c601-3d39e638c5005592afe953c8da136e2156ea82dcdea612c284750940d1dbd3b13
ISSN 1001-3695
IngestDate Thu May 29 03:54:50 EDT 2025
Wed Feb 14 10:34:45 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords 纹理全局特征提取
字典学习
纹理分类
global texture feature extraction
dictionary learning
texture classification
稀疏表示
sparse representation
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c601-3d39e638c5005592afe953c8da136e2156ea82dcdea612c284750940d1dbd3b13
Notes 51-1196/TP
sparse representation; dictionary learning; texture classification; global texture feature extraction
Extracting global texture feature through sparse representation faced some problems, which mainly caused by high dimension. In order to solve those problems, this paper proposed a feature extraction and classification method based on ran- dom feature dictionary. The proposed method utilized the distribution of non-zero coefficients, which were computed by sparse decomposition, to generate a statistics histogram feature. The acquired histogram could reflect the dictionary atoms' using fre- quency in sparse decomposition, and was able to reflect the class information, Thus, the classification could be realized. For the sake of improving classification accuracy, it fused multi-scale and multi-direction wavelet features through random projec- tion, and then trained a more descriptive dictionary by those fused features. In the classification experiments, it achieved 94.79% classification accuracy. Further
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201501071
chongqing_primary_662976345
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2015
Publisher 合肥工业大学计算机与信息学院,合肥,230009
Publisher_xml – name: 合肥工业大学计算机与信息学院,合肥,230009
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 1.979751
Snippet ...
TP391.41;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 303
SubjectTerms 字典学习
稀疏表示
纹理全局特征提取
纹理分类
Title 基于随机特征字典的纹理分类方法
URI http://lib.cqvip.com/qk/93231X/201501/662976345.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201501071
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbhMx0AqphLjwRpQCClJ9qlLW612vfdxtNqqQ4BSk3qJ9eFvlkAJND-kNCSq4ABdAqpD4Ag6ICwkSB76FJOIvmPG6mwhQBVyskT32zHhsz9iyx4SsZhlXRQ4TMMhcDzYomjUTARPP0zzTuQKTq_G84-49sXnfu7Plb9Vq3xZuLe0P0vXs4I_vSv5Hq5AHesVXsv-g2apRyAAY9AspaBjSv9IxjX2q2jQKaexhKmMaK6oAaNNYULVhigIqFY0UIkcxeI4IhC2qAgQkZErEwVoeAlAFkSHHoVIYHGkAKGI0ikzLwuBAymn5e-Wxg0tjScOYhgzxAUAqFSc-pspQgTQ0dEPH5oTAZHVMaNp2kTJKFhmuoRlgJF6zggB7CDhGWMN26K4ZaUHIkkvoHWUaAGlVWS9C3qGTJOC1TG9JEGLx7KN892kXarwKxoUV0a7k85PSasSWyzJ3-IKF5ybGwW_GgyuhjPFAAusVAbz-V4Z2Lf-K-SU8txAueHTc80-RJTcImF8nS2HUitpzpxR8uMUghS7G_5lvAjGCv1hYdfFbQTAj1arrMx745o-C0r_woLCMsWEZPE1WLfe3T-Idg4fs7Pa3H4JLZF6o9Yukv73gTHXOk7N2F9QIyyF9gdQOdi6Sc8c_jDSswblEmpP34-_jFz-OXk7fjWfPR5Ovjycf3k6efp4dPZmNR7NXh5Nnh7OPX6ZvRtNPry-TTjvubGw27QcfzUwghzlXGtb_zMdIcMpNCq18nsk8YVxo8EWFTqSbZ7lOwA_P0JEy4R5zlqc5Txm_Qur93b6-ShpZpiRuP4okLzxfpgkThVMI10k10wmTy2SlEr77oIzj0q1Ut0xu2e7o2tm91-3t9YbDYQ870GHQfddObGGFnEHM8mzuOqkPHu3rG-CtDtKbdjj8BEjCbf0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E9%9A%8F%E6%9C%BA%E7%89%B9%E5%BE%81%E5%AD%97%E5%85%B8%E7%9A%84%E7%BA%B9%E7%90%86%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E6%B2%88%E4%BB%81%E6%98%8E+%E5%BE%90%E5%B0%8F%E7%BA%A2+%E7%8E%8B%E6%95%99%E4%BD%99+%E5%BB%96%E9%87%8D%E9%98%B3&rft.date=2015&rft.issn=1001-3695&rft.volume=32&rft.issue=1&rft.spage=303&rft.epage=306&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2015.01.071&rft.externalDocID=662976345
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg