基于CP分解的MIMO-OFDM系统接收信号盲检测

多输入多输出-正交频分复用(MIMO-OFDM)无线通信系统中接收信号从空间、时间、频率的维度形成多因素的阵列信号,传统的矢量或者矩阵代数的建模方法在处理多因素信号问题上显得不足,无法利用多因素间的关系,而张量分析在解决多维阵列信号处理的问题上具有优势.针对MIMO无线通信系统,结合OFDM技术,研究了张量信号的建模及分解方法,并充分利用张量信号的分解唯一性提高无线接收信号的检测能力.提出了基于CP(CANDECOMP/PARAFAC)张量分解方法对未知信道状态(CSI)的MIMO-OFDM系统进行接收端的张量信号建模和盲检测,并通过仿真分析验证了模型的可行性.仿真结果表明,在接收天线数目大于...

Full description

Saved in:
Bibliographic Details
Published in电讯技术 Vol. 55; no. 2; pp. 119 - 123
Main Author 易伟明 王佐 王晶
Format Journal Article
LanguageChinese
Published 北京理工大学 管理与经济学院,北京,100081%中国联通 北京分公司,北京,100038%北京理工大学 信息与电子学院,北京,100081 2015
Subjects
Online AccessGet full text
ISSN1001-893X
DOI10.3969/j.issn.1001-893x.2015.02.001

Cover

Abstract 多输入多输出-正交频分复用(MIMO-OFDM)无线通信系统中接收信号从空间、时间、频率的维度形成多因素的阵列信号,传统的矢量或者矩阵代数的建模方法在处理多因素信号问题上显得不足,无法利用多因素间的关系,而张量分析在解决多维阵列信号处理的问题上具有优势.针对MIMO无线通信系统,结合OFDM技术,研究了张量信号的建模及分解方法,并充分利用张量信号的分解唯一性提高无线接收信号的检测能力.提出了基于CP(CANDECOMP/PARAFAC)张量分解方法对未知信道状态(CSI)的MIMO-OFDM系统进行接收端的张量信号建模和盲检测,并通过仿真分析验证了模型的可行性.仿真结果表明,在接收天线数目大于发送天线数目且各径信道独立情况下,基于CP分解的接收信号盲检测算法在误码率为10^-4时,随着接收天线数目增加,信噪比可获得约5dB的增益.
AbstractList TN911.23; 多输入多输出-正交频分复用( MIMO-OFDM)无线通信系统中接收信号从空间、时间、频率的维度形成多因素的阵列信号,传统的矢量或者矩阵代数的建模方法在处理多因素信号问题上显得不足,无法利用多因素间的关系,而张量分析在解决多维阵列信号处理的问题上具有优势。针对MIMO无线通信系统,结合OFDM技术,研究了张量信号的建模及分解方法,并充分利用张量信号的分解唯一性提高无线接收信号的检测能力。提出了基于CP( CANDECOMP/PARAFAC)张量分解方法对未知信道状态( CSI)的MIMO-OFDM系统进行接收端的张量信号建模和盲检测,并通过仿真分析验证了模型的可行性。仿真结果表明,在接收天线数目大于发送天线数目且各径信道独立情况下,基于CP分解的接收信号盲检测算法在误码率为10-4时,随着接收天线数目增加,信噪比可获得约5 dB的增益。
多输入多输出-正交频分复用(MIMO-OFDM)无线通信系统中接收信号从空间、时间、频率的维度形成多因素的阵列信号,传统的矢量或者矩阵代数的建模方法在处理多因素信号问题上显得不足,无法利用多因素间的关系,而张量分析在解决多维阵列信号处理的问题上具有优势.针对MIMO无线通信系统,结合OFDM技术,研究了张量信号的建模及分解方法,并充分利用张量信号的分解唯一性提高无线接收信号的检测能力.提出了基于CP(CANDECOMP/PARAFAC)张量分解方法对未知信道状态(CSI)的MIMO-OFDM系统进行接收端的张量信号建模和盲检测,并通过仿真分析验证了模型的可行性.仿真结果表明,在接收天线数目大于发送天线数目且各径信道独立情况下,基于CP分解的接收信号盲检测算法在误码率为10^-4时,随着接收天线数目增加,信噪比可获得约5dB的增益.
Abstract_FL The received signal of multiple input multiple output-orthogonal frequency division multiplexing ( MIMO-OFDM) wireless communication system forms a multi-factor array signal from the view of space, time and frequency dimension. The traditional vector or matrix algebraic methods cannot perform well when processing multi-factor signals and cannot make use of the relationship among factors. Tensor analysis has an advantage in processing multi-dimension array signal. Considering the MIMO wireless communication system with OFDM technique,this paper researches on the tensor modeling and decomposition methods and aims to increase the detection ability of wireless received signal by use of the uniqueness of tensor decom﹣position. The received tensor signal with unknown channel state information( CSI) in MIMO-OFDM system is modelled and detected blindly based on the CANDECOMP/PARAFAC( CP) decomposition method. Sim﹣ulation results verify the feasibility of the modeling. When the number of receiving antennas is larger than that of the transmitting antennas and the multi-path signals are independent,the blind detection algorithm based on CP decomposition can obtain about 5 dB gain in terms of signal-to-noise ratio( SNR) for bit error rate( BER) 10-4 with the number of receiving antennas increasing.
Author 易伟明 王佐 王晶
AuthorAffiliation 北京理工大学管理与经济学院,北京100081 中国联通北京分公司,北京100038 北京理工大学信息与电子学院,北京100081
AuthorAffiliation_xml – name: 北京理工大学 管理与经济学院,北京,100081%中国联通 北京分公司,北京,100038%北京理工大学 信息与电子学院,北京,100081
Author_FL WANG Zuo
YI Weiming
WANG Jing
Author_FL_xml – sequence: 1
  fullname: YI Weiming
– sequence: 2
  fullname: WANG Zuo
– sequence: 3
  fullname: WANG Jing
Author_xml – sequence: 1
  fullname: 易伟明 王佐 王晶
BookMark eNo1jz1Lw1AYhe9QwVr7J8TBJfF-JPfmjhKtFhri0MEt3HzVBL3RBLFuDiKCUBcnHYoUcVdUaAf_TJP4M7xS5QwvHB7ec84KaMhMRgCsI6gTTvlmqidFIXUEIdIsToY6hsjUIdaV0QDNf_9gGbSLIvEhJtSghoWawCzH0_l0ZO-XN9ffL5P64crpOq7mdrad-m1Wz8bV6Lm6_5h_PZV3n_XjazW5rN5vV8FSLI6KqP13W6Df2enbe1rP3e3aWz0toCoRBwH3qR8FGEEzjuKQhZZqCxmmMECCMoNzQkISU0GQzwREliFMRRmCUSXSAhuLt-dCxkIOvDQ7y6UK9MJEyGFa_M6EWK1T6NoCDQ4zOThNFHySJ8civ_AoJYxxzjD5AXqzZXM
ClassificationCodes TN911.23
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-893x.2015.02.001
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate Blind Detection of Received Signal Based on CP Decompositionin MIMO-OFDM System
DocumentTitle_FL Blind Detection of Received Signal Based on CP Decomposition in MIMO-OFDM System
EndPage 123
ExternalDocumentID dianxjs201502001
663779972
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 北京市高等学校青年英才计划资助项目; 北京理工大学基础研究基金项目(20120542011)Foundation Item:The National Natural Science Foundation of China; Beijing Higher Education Young Elite Teacher Pro﹣ject; The Fund for Basic Research from Beijing Institute of Technology
  funderid: (11161140319); (YETP1202); (11161140319); (YETP1202); (20120542011)
GroupedDBID 2RA
92L
ALMA_UNASSIGNED_HOLDINGS
CDYEO
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c601-2cc9b6bec2105fefd7d896907260c1a6749933d3f6a31b7a0184a5d7d4a767673
ISSN 1001-893X
IngestDate Thu May 29 03:55:21 EDT 2025
Wed Feb 14 10:34:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 多输入多输出
频率分集
tensor analysis
接收信号盲检测
张量分析
OFDM
正交频分复用
MIMO
blind detection of received signal
frequency diversity
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c601-2cc9b6bec2105fefd7d896907260c1a6749933d3f6a31b7a0184a5d7d4a767673
Notes MIMO;OFDM;blind detection of received signal;tensor analysis;frequency diversity
The received signal of multiple input multiple output-orthogonal frequency division multiplexing(MIMO-OFDM) wireless communication system forms a multi-factor array signal from the view of space,time and frequency dimension. The traditional vector or matrix algebraic methods cannot perform well whenprocessing multi-factor signals and cannot make use of the relationship among factors. Tensor analysis hasan advantage in processing multi-dimension array signal. Considering the MIMO wireless communicationsystem with OFDM technique,this paper researches on the tensor modeling and decomposition methods andaims to increase the detection ability of wireless received signal by use of the uniqueness of tensor decom-position. The received tensor signal with unknown channel state information(CSI) in MIMO-OFDM systemis modelled and detected blindly based on the CANDECOMP/ PARAFAC(CP) decomposition method. Sim-ulation results verify the feasibi
PageCount 5
ParticipantIDs wanfang_journals_dianxjs201502001
chongqing_primary_663779972
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle 电讯技术
PublicationTitleAlternate Telecommunication Engineering
PublicationTitle_FL Telecommunication Engineering
PublicationYear 2015
Publisher 北京理工大学 管理与经济学院,北京,100081%中国联通 北京分公司,北京,100038%北京理工大学 信息与电子学院,北京,100081
Publisher_xml – name: 北京理工大学 管理与经济学院,北京,100081%中国联通 北京分公司,北京,100038%北京理工大学 信息与电子学院,北京,100081
SSID ssib023646481
ssib001102885
ssib036437028
ssib051374628
ssib000459929
ssib009282364
ssib006568479
ssib018830122
Score 1.9800471
Snippet ...
TN911.23; 多输入多输出-正交频分复用(...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 119
SubjectTerms 多输入多输出
张量分析
接收信号盲检测
正交频分复用
频率分集
Title 基于CP分解的MIMO-OFDM系统接收信号盲检测
URI http://lib.cqvip.com/qk/91166X/201502/663779972.html
https://d.wanfangdata.com.cn/periodical/dianxjs201502001
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pa9RAFB_qFsSLKCrWqlToHKRszSSZf8ckm6WKawtW6G3JZrMtPWzVbqH05EFEEOrFkx6KFPGuqNAe_DLtrh_D9yaz2VCW0vYSJm_e_ObNe2HmvWTehJBZcLnbqeNl1USkGgIU5VRV2mHVzJfgy7V8NzV_UWg8Ewsv_CcrfGWi8rC0a2mr15pPd8bmlVzEqkADu2KW7DksW4ACAcpgX7iCheF6JhvTmFNdp2FAYx-vKo6WkKYUVYLGigaSBh6NJdVQ6TceNxari_VaAymhR8PQFELEiAW0pgHHggYwYSDrNGAGEDqRBiekoYs8AKscLIRQG5ZdXMPmIx0FAMwcPLD8OgLK0MyGoKj2TG-RFQQoKh6xSJRMhYalRrUzpgbaaJC5_AojT980j5sZAYBLq6YgMjI6RkkcR4bj5jTwUWFYqNFAzCETys9K3NAehbN6U_WhBuKiGY01ChO48PCO6diNmHGQqMstGrRCM4Y4ONAYVIH2AAS3oARz42QvDAwFPqTUEeuULvGAen5hTRTPgkAB0aQlTVhrG27AOqcmSssibrwDz3alNCO4pWWP2WUv96BYnkF-cnH2tNBmcUbI-SHkNm6v5Pm5uWzklBRbRXGW3F7fRCYH9_9dIpOulIxXyGRQazx9Xo5NdNnXZ-g6lw5mgsAFPLFRvXYV_jxheM-U8vAz8_Ae60QpSd3DL9zOKFbnzJOY1212U1jtXCazdpyPThslHuOyttFdfQXOqckV7HaS7mrJrV2-Rq7aeHQmyCeX62RiZ-0G4cd7B0cHu9HS8ft3_77vDz6_LaaOwc_DweFef_db_9Pvo79fjz_-GXz50d9_0__14SZZrsfL0ULV_l-lmgoQy01T3RIwh7sQY3WyTlu2lcaXZa5wUpYI6UPs4rW9jkg81pIJqMhPOHD5icRjHr1bpNLd6Ga3yUzGEtdX7U4qlQ86FolsJWnSdjIlsizhaopMFyNuvsyP0WlCrCMl5u1PkQdWB007uW42T5r9zhl4pskVLOcvSO-SSu_1VnYPQoZe6759WP4DrsbA2A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8ECP%E5%88%86%E8%A7%A3%E7%9A%84MIMO-OFDM%E7%B3%BB%E7%BB%9F%E6%8E%A5%E6%94%B6%E4%BF%A1%E5%8F%B7%E7%9B%B2%E6%A3%80%E6%B5%8B&rft.jtitle=%E7%94%B5%E8%AE%AF%E6%8A%80%E6%9C%AF&rft.au=%E6%98%93%E4%BC%9F%E6%98%8E&rft.au=%E7%8E%8B%E4%BD%90&rft.au=%E7%8E%8B%E6%99%B6&rft.date=2015&rft.pub=%E5%8C%97%E4%BA%AC%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E7%AE%A1%E7%90%86%E4%B8%8E%E7%BB%8F%E6%B5%8E%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC%2C100081%25%E4%B8%AD%E5%9B%BD%E8%81%94%E9%80%9A+%E5%8C%97%E4%BA%AC%E5%88%86%E5%85%AC%E5%8F%B8%2C%E5%8C%97%E4%BA%AC%2C100038%25%E5%8C%97%E4%BA%AC%E7%90%86%E5%B7%A5%E5%A4%A7%E5%AD%A6+%E4%BF%A1%E6%81%AF%E4%B8%8E%E7%94%B5%E5%AD%90%E5%AD%A6%E9%99%A2%2C%E5%8C%97%E4%BA%AC%2C100081&rft.issn=1001-893X&rft.issue=2&rft.spage=119&rft.epage=123&rft_id=info:doi/10.3969%2Fj.issn.1001-893x.2015.02.001&rft.externalDocID=dianxjs201502001
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F91166X%2F91166X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdianxjs%2Fdianxjs.jpg