A biologically plausible learning rule for the Infomax on recurrent neural networks

A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural n...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in computational neuroscience Vol. 8; p. 143
Main Authors Hayakawa, Takashi, Kaneko, Takeshi, Aoyagi, Toshio
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 25.11.2014
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons.
AbstractList A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Recently, several characteristics of cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to self-organize and display such characteristic activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce several firing profiles observed in the cerebral cortex: cell-assembly-like repeats of precise firing sequences, neuronal avalanche, spontaneous replays of learned firing sequences and orientation selectivity in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons.
A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons.
A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons.A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons.
Author Hayakawa, Takashi
Kaneko, Takeshi
Aoyagi, Toshio
AuthorAffiliation 2 CREST, Japan Science and Technology Agency Kawaguchi, Japan
1 Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan
3 Department of Applied Analysis and Complex Dynamics, Graduate School of Informatics, Kyoto University Kyoto, Japan
AuthorAffiliation_xml – name: 2 CREST, Japan Science and Technology Agency Kawaguchi, Japan
– name: 3 Department of Applied Analysis and Complex Dynamics, Graduate School of Informatics, Kyoto University Kyoto, Japan
– name: 1 Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan
Author_xml – sequence: 1
  givenname: Takashi
  surname: Hayakawa
  fullname: Hayakawa, Takashi
– sequence: 2
  givenname: Takeshi
  surname: Kaneko
  fullname: Kaneko, Takeshi
– sequence: 3
  givenname: Toshio
  surname: Aoyagi
  fullname: Aoyagi, Toshio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25505404$$D View this record in MEDLINE/PubMed
BookMark eNp1kstvEzEQxleoiD7gzgmtxIVLgt9rX5CqCtpIlTjQuzXrtVMHrx3s3UL_e5ykVG0lLh4_fvNpxvOdNkcxRds07zFaUirVZxdNGpcEYbZEdaGvmhMsBFlwLOXRk_1xc1rKBiFBBEdvmmPCOeIMsZPmx3nb-xTS2hsI4b7dBpiL74Ntg4UcfVy3ea4nl3I73dp2FV0a4U-bYputmXO2cWqjnTOEGqbfKf8sb5vXDkKx7x7iWXPz7evNxdXi-vvl6uL8emEEQtPCGcu5pECldAAUiARMh95hoXqCkcEcBkKZQD1WjBknLHcYHJamcqijZ83qIDsk2Oht9iPke53A6_1FymsNefImWA2EEaQEU8r1bOBEQcdtby3hTjEsd1pfDlrbuR_tYGpXtaNnos9for_V63SnGWGUC14FPj0I5PRrtmXSoy_GhgDRprloLGjHhZIdrujHF-gmzTnWn9KESE46VSdWqQ9PK3os5d_oKoAOgMmplGzdI4KR3rlD792hd-7Qe3fUFPEixfgJJp92Pfnw_8S_FGHADg
CitedBy_id crossref_primary_10_3389_fncom_2019_00039
crossref_primary_10_3902_jnns_25_104
crossref_primary_10_1103_PhysRevE_92_052710
crossref_primary_10_1371_journal_pcbi_1004698
crossref_primary_10_1016_j_neucom_2020_03_008
Cites_doi 10.1162/neco.2008.03-08-727
10.1016/S0042-6989(97)00121-1
10.1103/PhysRevLett.75.4071
10.1016/j.neuron.2010.02.003
10.1016/S0893-6080(01)00091-0
10.1038/nn1895
10.1207/s15516709cog2802_2
10.1017/CBO9780511574566
10.1007/s10827-006-0014-6
10.1016/j.tins.2005.06.004
10.1162/neco.2007.19.6.1468
10.1523/JNEUROSCI.02-01-00032.1982
10.1371/journal.pcbi.1000757
10.1523/JNEUROSCI.23-35-11167.2003
10.1126/science.1179850
10.1146/annurev.neuro.31.060407.125639
10.1038/srep00485
10.1113/jphysiol.2001.012959
10.1016/S0896-6273(00)00070-2
10.1162/NECO_a_00341
10.1088/0954-898X/3/2/009
10.1016/S0042-6989(97)00169-7
10.1371/journal.pcbi.1003037
10.1016/S0893-6080(96)00110-4
10.1113/jphysiol.1959.sp006308
10.1371/journal.pcbi.1002250
10.1126/science.271.5257.1870
10.1109/2.36
10.1162/0899766053011555
10.1162/089976603321891774
10.1126/science.1093173
10.1371/journal.pcbi.1003024
10.1371/journal.pone.0025339
10.1214/aoms/1177729586
10.1162/089976601750264992
10.1038/nrn1519
10.1002/0471221317
10.1162/089976606775093882
10.1152/jn.2002.88.1.455
10.1073/pnas.0500495102
10.1523/JNEUROSCI.18-24-10464.1998
10.1186/1471-2202-11-3
10.1162/0899766053011474
10.1073/pnas.152343099
10.1371/journal.pcbi.1002584
10.1038/990101
10.1017/S0140525X01000024
10.1016/S0896-6273(02)01096-6
10.1162/neco.1995.7.6.1129
10.1016/j.cub.2007.04.024
10.1126/science.1135468
10.3389/fncir.2013.00075
10.1007/s11538-010-9564-x
10.1371/journal.pbio.0030068
ContentType Journal Article
Copyright 2014. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2014 Hayakawa, Kaneko and Aoyagi. 2014
Copyright_xml – notice: 2014. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2014 Hayakawa, Kaneko and Aoyagi. 2014
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fncom.2014.00143
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5188
ExternalDocumentID oai_doaj_org_article_a242096499fb4d529a75ebee25f94187
PMC4243565
25505404
10_3389_fncom_2014_00143
Genre Journal Article
GeographicLocations Japan
GeographicLocations_xml – name: Japan
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADMLS
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M7P
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
M48
NPM
PQGLB
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c600t-fce5583a388faa3a28a13dbf169b210c15ad23460b1944cf6e5f1af18ca13073
IEDL.DBID M48
ISSN 1662-5188
IngestDate Wed Aug 27 00:51:41 EDT 2025
Thu Aug 21 14:10:45 EDT 2025
Fri Jul 11 02:29:12 EDT 2025
Fri Jul 25 11:57:49 EDT 2025
Mon Jul 21 06:03:40 EDT 2025
Thu Apr 24 22:56:52 EDT 2025
Tue Jul 01 00:59:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords information maximization
recurrent neural network
biologically plausible learning rule
precise firing sequence
spike-timing-dependent plasticity
neuronal avalanche
orientation selectivity
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c600t-fce5583a388faa3a28a13dbf169b210c15ad23460b1944cf6e5f1af18ca13073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Markus Diesmann, Jülich Research Centre, Germany
This article was submitted to the journal Frontiers in Computational Neuroscience.
Reviewed by: Christian Leibold, Ludwig Maximilians University, Germany; Matthieu Gilson, Universitat Pompeu Fabra, Spain; J. Michael Herrmann, The University of Edinburgh, UK
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fncom.2014.00143
PMID 25505404
PQID 2285279188
PQPubID 4424409
ParticipantIDs doaj_primary_oai_doaj_org_article_a242096499fb4d529a75ebee25f94187
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4243565
proquest_miscellaneous_1637569871
proquest_journals_2285279188
pubmed_primary_25505404
crossref_primary_10_3389_fncom_2014_00143
crossref_citationtrail_10_3389_fncom_2014_00143
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-25
PublicationDateYYYYMMDD 2014-11-25
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-25
  day: 25
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in computational neuroscience
PublicationTitleAlternate Front Comput Neurosci
PublicationYear 2014
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Chechik (B11) 2003; 15
Stickgold (B49) 2005; 28
Tanaka (B50) 2012; 24
Lee (B33) 2002; 36
Izhikevich (B29) 2006; 18
Teramae (B53) 2012; 2
Han (B23) 2000; 27
Zylberberg (B58) 2011; 7
Cover (B13) 2012
Bienenstock (B9) 1982; 2
Florian (B19) 2007; 19
Zapperi (B57) 1995; 75
Deco (B14) 1997; 10
Olshausen (B39) 1997; 37
Toyoizumi (B54) 2005; 102
Skaggs (B47) 1996; 271
Baxter (B4) 1999
Gilson (B22) 2012; 8
Hebb (B24) 1949
Ren (B40) 2007; 316
Bi (B8) 1998; 18
Tanaka (B51) 2009; 21
Linsker (B34) 1988; 21
Markram (B35) 2004; 5
Okajima (B37) 2001; 14
Barlow (B3) 2001; 24
Savin (B45) 2010; 6
Caporale (B10) 2008; 31
Ikegaya (B28) 2004; 304
Ringach (B42) 2004; 28
Kay (B32) 2010; 73
Wörgötter (B55) 2005; 17
Yao (B56) 2007; 10
Nessler (B36) 2013; 9
Fiete (B18) 2010; 65
Robbins (B44) 1951; 22
Shouval (B46) 2002; 99
Frémaux (B20) 2013; 9
Hyvärinen (B26) 2001a; 13
Song (B48) 2005; 3
Abeles (B1) 1991
Bell (B7) 1997; 37
Diesmann (B15) 1999; 402
Beggs (B5) 2003; 23
Atick (B2) 1992; 3
Renart (B41) 2010; 327
Bell (B6) 1995; 7
Feldmeyer (B17) 2002; 538
Karklin (B31) 2005; 17
Gilson (B21) 2011; 6
Hubel (B25) 1959; 148
Douglas (B16) 2007; 17
Chen (B12) 2010; 11
Olshausen (B38) 2012
Kaneko (B30) 2013; 7
Teramae (B52) 2007; 22
Hyvärinen (B27) 2001b
Ringach (B43) 2002; 88
12816563 - Neural Comput. 2003 Jul;15(7):1481-510
17478724 - Science. 2007 May 4;316(5825):758-61
22046123 - PLoS Comput Biol. 2011 Oct;7(10):e1002250
22792056 - PLoS Comput Biol. 2012;8(7):e1002584
11718418 - Neural Netw. 2001 Nov;14(9):1173-80
7054394 - J Neurosci. 1982 Jan;2(1):32-48
23633941 - PLoS Comput Biol. 2013 Apr;9(4):e1003037
22845820 - Neural Comput. 2012 Oct;24(10):2700-25
15737062 - PLoS Biol. 2005 Mar;3(3):e68
14403679 - J Physiol. 1959 Oct;148:574-91
7584893 - Neural Comput. 1995 Nov;7(6):1129-59
20821064 - Bull Math Biol. 2011 Feb;73(2):344-72
18928369 - Neural Comput. 2009 Apr;21(4):1038-67
20110507 - Science. 2010 Jan 29;327(5965):587-90
11826166 - J Physiol. 2002 Feb 1;538(Pt 3):803-22
12136127 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10831-6
17610826 - Curr Biol. 2007 Jul 3;17(13):R496-500
17444757 - Neural Comput. 2007 Jun;19(6):1468-502
10591212 - Nature. 1999 Dec 2;402(6761):529-33
17468750 - Nat Neurosci. 2007 Jun;10(6):772-8
22003389 - PLoS One. 2011;6(10):e25339
17226088 - J Comput Neurosci. 2007 Jun;22(3):301-12
20053290 - BMC Neurosci. 2010 Jan 06;11:3
12662863 - Neural Netw. 1997 Jun;10(4):683-691
10059807 - Phys Rev Lett. 1995 Nov 27;75(22):4071-4074
22149669 - Network. 2011;22(1-4):4-44
12048943 - Behav Brain Sci. 2001 Aug;24(4):602-7; discussion 652-71
8596957 - Science. 1996 Mar 29;271(5257):1870-3
23754982 - Front Neural Circuits. 2013 May 28;7:75
18275283 - Annu Rev Neurosci. 2008;31:25-46
15105494 - Science. 2004 Apr 23;304(5670):559-64
15378039 - Nat Rev Neurosci. 2004 Oct;5(10):793-807
15720770 - Neural Comput. 2005 Feb;17(2):245-319
12495631 - Neuron. 2002 Dec 19;36(6):1183-94
15979164 - Trends Neurosci. 2005 Aug;28(8):408-15
20188660 - Neuron. 2010 Feb 25;65(4):563-76
9425546 - Vision Res. 1997 Dec;37(23):3311-25
11440596 - Neural Comput. 2001 Jul;13(7):1527-58
12091567 - J Neurophysiol. 2002 Jul;88(1):455-63
9425547 - Vision Res. 1997 Dec;37(23):3327-38
9852584 - J Neurosci. 1998 Dec 15;18(24):10464-72
20421937 - PLoS Comput Biol. 2010 Apr 22;6(4):e1000757
15720773 - Neural Comput. 2005 Feb;17(2):397-423
14657176 - J Neurosci. 2003 Dec 3;23(35):11167-77
16378515 - Neural Comput. 2006 Feb;18(2):245-82
23592970 - PLoS Comput Biol. 2013 Apr;9(4):e1003024
11055442 - Neuron. 2000 Sep;27(3):611-22
22761993 - Sci Rep. 2012;2:485
15795376 - Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5239-44
References_xml – volume: 21
  start-page: 1038
  year: 2009
  ident: B51
  article-title: Recurrent Infomax generates cell assemblies, neuronal avalanches, and simple cell-like selectivity
  publication-title: Neural Comput
  doi: 10.1162/neco.2008.03-08-727
– volume: 37
  start-page: 3327
  year: 1997
  ident: B7
  article-title: The “independent components” of natural scenes are edge filters
  publication-title: Vision Res
  doi: 10.1016/S0042-6989(97)00121-1
– volume: 75
  start-page: 4071
  year: 1995
  ident: B57
  article-title: Self-organized branching processes: mean-field theory for avalanches
  publication-title: Phys. Rev. Lett
  doi: 10.1103/PhysRevLett.75.4071
– volume: 65
  start-page: 563
  year: 2010
  ident: B18
  article-title: Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.02.003
– volume: 14
  start-page: 1173
  year: 2001
  ident: B37
  article-title: An Infomax-based learning rule that generates cells similar to visual cortical neurons
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(01)00091-0
– volume: 10
  start-page: 772
  year: 2007
  ident: B56
  article-title: Rapid learning in cortical coding of visual scenes
  publication-title: Nat. Neurosci
  doi: 10.1038/nn1895
– volume: 28
  start-page: 147
  year: 2004
  ident: B42
  article-title: Reverse correlation in neurophysiology
  publication-title: Cogn. Sci
  doi: 10.1207/s15516709cog2802_2
– volume-title: Corticonics: Neural Circuits of The Cerebral Cortex
  year: 1991
  ident: B1
  doi: 10.1017/CBO9780511574566
– volume: 22
  start-page: 301
  year: 2007
  ident: B52
  article-title: Local cortical circuit model inferred from power-law distributed neuronal avalanches
  publication-title: J. Comput. Neurosci
  doi: 10.1007/s10827-006-0014-6
– volume: 28
  start-page: 408
  year: 2005
  ident: B49
  article-title: Memory consolidation and reconsolidation: what is the role of sleep?
  publication-title: Trends Neurosci
  doi: 10.1016/j.tins.2005.06.004
– volume: 19
  start-page: 1468
  year: 2007
  ident: B19
  article-title: Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity
  publication-title: Neural Comput
  doi: 10.1162/neco.2007.19.6.1468
– volume: 2
  start-page: 32
  year: 1982
  ident: B9
  article-title: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.02-01-00032.1982
– volume-title: Elements of Information Theory
  year: 2012
  ident: B13
– volume: 6
  start-page: e1000757
  year: 2010
  ident: B45
  article-title: Independent component analysis in spiking neurons
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1000757
– volume: 23
  start-page: 11167
  year: 2003
  ident: B5
  article-title: Neuronal avalanches in neocortical circuits
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.23-35-11167.2003
– volume: 327
  start-page: 587
  year: 2010
  ident: B41
  article-title: The asynchronous state in cortical circuits
  publication-title: Science
  doi: 10.1126/science.1179850
– volume: 31
  start-page: 25
  year: 2008
  ident: B10
  article-title: Spike timing-dependent plasticity: a Hebbian learning rule
  publication-title: Annu. Rev. Neurosci
  doi: 10.1146/annurev.neuro.31.060407.125639
– volume-title: Direct Gradient-Based Reinforcement Learning: I. Gradient Estimation Algorithms
  year: 1999
  ident: B4
– volume: 2
  start-page: 485
  year: 2012
  ident: B53
  article-title: Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links
  publication-title: Sci. Rep
  doi: 10.1038/srep00485
– volume-title: The Organization of Behavior: A Neuropsychological Theory
  year: 1949
  ident: B24
– volume: 538
  start-page: 803
  year: 2002
  ident: B17
  article-title: Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column
  publication-title: J. Physiol
  doi: 10.1113/jphysiol.2001.012959
– volume: 27
  start-page: 611
  year: 2000
  ident: B23
  article-title: Reversible associative depression and nonassociative potentiation at a parallel fiber synapse
  publication-title: Neuron
  doi: 10.1016/S0896-6273(00)00070-2
– volume: 24
  start-page: 2700
  year: 2012
  ident: B50
  article-title: Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00341
– volume: 3
  start-page: 213
  year: 1992
  ident: B2
  article-title: Could information theory provide an ecological theory of sensory processing?
  publication-title: Network
  doi: 10.1088/0954-898X/3/2/009
– volume: 37
  start-page: 15
  year: 1997
  ident: B39
  article-title: Sparse coding with an overcomplete basis set: a strategy employed by V1?
  publication-title: Vision Res
  doi: 10.1016/S0042-6989(97)00169-7
– volume: 9
  start-page: e1003037
  year: 2013
  ident: B36
  article-title: Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1003037
– volume: 10
  start-page: 683
  year: 1997
  ident: B14
  article-title: Non-linear feature extraction by redundancy reduction in an unsupervised stochastic neural network
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(96)00110-4
– volume: 148
  start-page: 574
  year: 1959
  ident: B25
  article-title: Receptive fields of single neurones in the cat's striate cortex
  publication-title: J. Physiol
  doi: 10.1113/jphysiol.1959.sp006308
– volume: 7
  start-page: e1002250
  year: 2011
  ident: B58
  article-title: A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1002250
– volume: 271
  start-page: 1870
  year: 1996
  ident: B47
  article-title: Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience
  publication-title: Science
  doi: 10.1126/science.271.5257.1870
– volume: 21
  start-page: 105
  year: 1988
  ident: B34
  article-title: Self-organization in a perceptual network
  publication-title: Computer
  doi: 10.1109/2.36
– volume: 17
  start-page: 245
  year: 2005
  ident: B55
  article-title: Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms
  publication-title: Neural Comput
  doi: 10.1162/0899766053011555
– volume: 15
  start-page: 1481
  year: 2003
  ident: B11
  article-title: Spike-timing-dependent plasticity and relevant mutual information maximization
  publication-title: Neural Comput
  doi: 10.1162/089976603321891774
– volume: 304
  start-page: 559
  year: 2004
  ident: B28
  article-title: Synfire chains and cortical songs: temporal modules of cortical activity
  publication-title: Science
  doi: 10.1126/science.1093173
– volume: 9
  start-page: e1003024
  year: 2013
  ident: B20
  article-title: Reinforcement learning using a continuous time actor-critic framework with spiking neurons
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1003024
– volume: 6
  start-page: e25339
  year: 2011
  ident: B21
  article-title: Stability versus neuronal specialization for STDP: long-tail weight distributions solve the dilemma
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0025339
– volume: 22
  start-page: 400
  year: 1951
  ident: B44
  article-title: A stochastic approximation method
  publication-title: Ann. Math. Stat
  doi: 10.1214/aoms/1177729586
– volume: 13
  start-page: 1527
  year: 2001a
  ident: B26
  article-title: Topographic independent component analysis
  publication-title: Neural Comput
  doi: 10.1162/089976601750264992
– volume: 5
  start-page: 793
  year: 2004
  ident: B35
  article-title: Interneurons of the neocortical inhibitory system
  publication-title: Nat. Rev. Neurosci
  doi: 10.1038/nrn1519
– volume-title: Independent Component Analysis
  year: 2001b
  ident: B27
  doi: 10.1002/0471221317
– year: 2012
  ident: B38
  publication-title: Sparse Coding Simulation Software
– volume: 18
  start-page: 245
  year: 2006
  ident: B29
  article-title: Polychronization: computation with spikes
  publication-title: Neural Comput
  doi: 10.1162/089976606775093882
– volume: 88
  start-page: 455
  year: 2002
  ident: B43
  article-title: Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex
  publication-title: J. Neurophysiol
  doi: 10.1152/jn.2002.88.1.455
– volume: 102
  start-page: 5239
  year: 2005
  ident: B54
  article-title: Generalized Bienenstock–Cooper–Munro rule for spiking neurons that maximizes information transmission
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0500495102
– volume: 18
  start-page: 10464
  year: 1998
  ident: B8
  article-title: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.18-24-10464.1998
– volume: 11
  start-page: 3
  year: 2010
  ident: B12
  article-title: A few strong connections: optimizing information retention in neuronal avalanches
  publication-title: BMC Neurosci
  doi: 10.1186/1471-2202-11-3
– volume: 17
  start-page: 397
  year: 2005
  ident: B31
  article-title: A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals
  publication-title: Neural Comput
  doi: 10.1162/0899766053011474
– volume: 99
  start-page: 10831
  year: 2002
  ident: B46
  article-title: A unified model of NMDA receptor-dependent bidirectional synaptic plasticity
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.152343099
– volume: 8
  start-page: e1002584
  year: 2012
  ident: B22
  article-title: Spectral analysis of input spike trains by spike-timing-dependent plasticity
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1002584
– volume: 402
  start-page: 529
  year: 1999
  ident: B15
  article-title: Stable propagation of synchronous spiking in cortical neural networks
  publication-title: Nature
  doi: 10.1038/990101
– volume: 24
  start-page: 602
  year: 2001
  ident: B3
  article-title: The exploitation of regularities in the environment by the brain
  publication-title: Behav. Brain Sci
  doi: 10.1017/S0140525X01000024
– volume: 36
  start-page: 1183
  year: 2002
  ident: B33
  article-title: Memory of sequential experience in the hippocampus during slow wave sleep
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)01096-6
– volume: 7
  start-page: 1129
  year: 1995
  ident: B6
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Comput
  doi: 10.1162/neco.1995.7.6.1129
– volume: 17
  start-page: R496
  year: 2007
  ident: B16
  article-title: Recurrent neuronal circuits in the neocortex
  publication-title: Curr. Biol
  doi: 10.1016/j.cub.2007.04.024
– volume: 316
  start-page: 758
  year: 2007
  ident: B40
  article-title: Specialized inhibitory synaptic actions between nearby neocortical pyramidal neurons
  publication-title: Science
  doi: 10.1126/science.1135468
– volume: 7
  issue: 75
  year: 2013
  ident: B30
  article-title: Local connections of excitatory neurons in motor-associated cortical areas of the rat
  publication-title: Front. Neural Circuits
  doi: 10.3389/fncir.2013.00075
– volume: 73
  start-page: 344
  year: 2010
  ident: B32
  article-title: Coherent Infomax as a computational goal for neural systems
  publication-title: Bull. Math. Biol
  doi: 10.1007/s11538-010-9564-x
– volume: 3
  start-page: e68
  year: 2005
  ident: B48
  article-title: Highly nonrandom features of synaptic connectivity in local cortical circuits
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0030068
– reference: 14403679 - J Physiol. 1959 Oct;148:574-91
– reference: 22003389 - PLoS One. 2011;6(10):e25339
– reference: 20421937 - PLoS Comput Biol. 2010 Apr 22;6(4):e1000757
– reference: 8596957 - Science. 1996 Mar 29;271(5257):1870-3
– reference: 15979164 - Trends Neurosci. 2005 Aug;28(8):408-15
– reference: 17468750 - Nat Neurosci. 2007 Jun;10(6):772-8
– reference: 12091567 - J Neurophysiol. 2002 Jul;88(1):455-63
– reference: 12136127 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10831-6
– reference: 22149669 - Network. 2011;22(1-4):4-44
– reference: 14657176 - J Neurosci. 2003 Dec 3;23(35):11167-77
– reference: 9425546 - Vision Res. 1997 Dec;37(23):3311-25
– reference: 15737062 - PLoS Biol. 2005 Mar;3(3):e68
– reference: 11440596 - Neural Comput. 2001 Jul;13(7):1527-58
– reference: 12495631 - Neuron. 2002 Dec 19;36(6):1183-94
– reference: 22046123 - PLoS Comput Biol. 2011 Oct;7(10):e1002250
– reference: 15795376 - Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5239-44
– reference: 23633941 - PLoS Comput Biol. 2013 Apr;9(4):e1003037
– reference: 11718418 - Neural Netw. 2001 Nov;14(9):1173-80
– reference: 18275283 - Annu Rev Neurosci. 2008;31:25-46
– reference: 20110507 - Science. 2010 Jan 29;327(5965):587-90
– reference: 15105494 - Science. 2004 Apr 23;304(5670):559-64
– reference: 17478724 - Science. 2007 May 4;316(5825):758-61
– reference: 12048943 - Behav Brain Sci. 2001 Aug;24(4):602-7; discussion 652-71
– reference: 20188660 - Neuron. 2010 Feb 25;65(4):563-76
– reference: 12816563 - Neural Comput. 2003 Jul;15(7):1481-510
– reference: 20053290 - BMC Neurosci. 2010 Jan 06;11:3
– reference: 15378039 - Nat Rev Neurosci. 2004 Oct;5(10):793-807
– reference: 22845820 - Neural Comput. 2012 Oct;24(10):2700-25
– reference: 12662863 - Neural Netw. 1997 Jun;10(4):683-691
– reference: 16378515 - Neural Comput. 2006 Feb;18(2):245-82
– reference: 17610826 - Curr Biol. 2007 Jul 3;17(13):R496-500
– reference: 11055442 - Neuron. 2000 Sep;27(3):611-22
– reference: 7054394 - J Neurosci. 1982 Jan;2(1):32-48
– reference: 17226088 - J Comput Neurosci. 2007 Jun;22(3):301-12
– reference: 20821064 - Bull Math Biol. 2011 Feb;73(2):344-72
– reference: 18928369 - Neural Comput. 2009 Apr;21(4):1038-67
– reference: 7584893 - Neural Comput. 1995 Nov;7(6):1129-59
– reference: 15720770 - Neural Comput. 2005 Feb;17(2):245-319
– reference: 17444757 - Neural Comput. 2007 Jun;19(6):1468-502
– reference: 10591212 - Nature. 1999 Dec 2;402(6761):529-33
– reference: 10059807 - Phys Rev Lett. 1995 Nov 27;75(22):4071-4074
– reference: 15720773 - Neural Comput. 2005 Feb;17(2):397-423
– reference: 9852584 - J Neurosci. 1998 Dec 15;18(24):10464-72
– reference: 22761993 - Sci Rep. 2012;2:485
– reference: 23592970 - PLoS Comput Biol. 2013 Apr;9(4):e1003024
– reference: 23754982 - Front Neural Circuits. 2013 May 28;7:75
– reference: 11826166 - J Physiol. 2002 Feb 1;538(Pt 3):803-22
– reference: 9425547 - Vision Res. 1997 Dec;37(23):3327-38
– reference: 22792056 - PLoS Comput Biol. 2012;8(7):e1002584
SSID ssj0062650
Score 2.0180357
Snippet A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 143
SubjectTerms Avalanches
Circuits
Firing pattern
information maximization
Learning
Nervous system
Neural networks
neuronal avalanches
Neurons
Neuroplasticity
Neuroscience
Orientation behavior
orientation selectivity
precise firing sequences
recurrent neural network
Science
spike-timing-dependent plasticity
Visual cortex
Visual pathways
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFH7InryIuv6orksEETyUmaRJmxzHxWURXGRdYW8hbRMVZjvizID73_sl6Qwzi6wXj23TNP3y0ve95uUL0ZsgWgdm60vBPQKUppdl6xtRwl30xiDG6JPO9qfz-uyr_Hilrna2-oo5YVkeOAM3cfAhoNkg5qGVvRLGNQoP9kIFI7lO68jh8zbBVP4Gg6WraZ6URAhmJmGIqSHwdVEqO63Q2XFCSav_bwTzdp7kjuM5fUgPRsbIZrmlj-ieHx7T4WxAtHx9w96ylMOZfo4f0pcZy5tLRujnN-zz3K1h83PPRh3Vb-xijSMwVQbmx-Kc07X7zRYDu4g_3qNUE4t6HXjgeU4QXz6hy9MPlydn5bhtQtmBvazK0HmldOUqrYNzlRPa8apvA69NC_A7rlwvKllPW26k7ELtVeAucN2hHEb8UzoYFoN_TkygAiWa4EPlZe9AJj34oHLBN1WLOgqabGC03SgpHne2mFuEFhF4m4C3EXibgC_o3faOn1lO446y72PPbMtFIex0AuZhR_Ow_zKPgo42_WrH0bm0Qmi8luFaF_R6exnjKk6WuMEv1ksLntqo2iCeLOhZNoNtS0QM6-RUFtTsGcheU_evDD--J-1uKcBPa_Xif7zbS7of0YorI4U6ooPVr7V_BYq0ao_TaPgDck4PUw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9sIFFcpHoCAjISQO0W4cO7FPaItaVUhUCIrUm-Ukdqm0dZb9kNp_z4zjXboI9ZiNN7FmxvZ79uQNwHvPG4vI1uW8cEhQ6k7kjat5jstFpzVyjC7qbH89q05_ii8X8iJtuC1TWuVmTowTdde3tEc-5lxJXutCqU_z3zlVjaLT1VRC4yHs4RSs1Aj2jo7Pvn3fzMWI1uVkOJxEKqbHPlCKCK55JJkdv9S5sxhFzf7_Ac1_8yXvLEAn-_A4IUc2HVz9BB648BQOpgFZ8_Ut-8BiLmfcJD-AH1M2qCuRC2a3bD6za4z9mWOpSsQlW6zxChErQwTI6Ozp2t6wPrAFbcCTZBMjqUt8YRgSxZfP4Pzk-PzzaZ7KJ-QtophV7lsnpSptqZS3trRc2aLsGl9UukEntIW0HS9FNWkKLUTrKyd9YX2hWmyHI_85jEIf3EtgHB-AxvfOl050FkGlQ1worXd12eAzMhhvzGjaJC1OFS5mBikGGd5EwxsyvImGz-Dj9h_zQVbjnrZH5JltOxLEjj_0i0uTxpexCDWQjSF_843oJNe2lhifjkuvRaHqDA43fjVplC7N35jK4N32No4vOjSxwfXrpUG8WstKI6_M4MUQBtuecKJ3YiIyqHcCZKeru3fC1a-o4S044tRKvrq_W6_hEdmBvn3k8hBGq8XavUEQtGrepkj_A9YZCa0
  priority: 102
  providerName: ProQuest
Title A biologically plausible learning rule for the Infomax on recurrent neural networks
URI https://www.ncbi.nlm.nih.gov/pubmed/25505404
https://www.proquest.com/docview/2285279188
https://www.proquest.com/docview/1637569871
https://pubmed.ncbi.nlm.nih.gov/PMC4243565
https://doaj.org/article/a242096499fb4d529a75ebee25f94187
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED7B9sILAsaPwKiMhJB4CMOOnTgPCHVoY0LahGCT-mY5ib0hZelIW2n977lzfkBR4aVSG8dJfXe577Od7wBee1FYRLYuFtwhQckqGRcuEzGmiyrPkWNUQWf79Cw9uZBfZmr2-_XofgAXW6kd1ZO6aOt3tz_XHzHgPxDjxHx74Bva-IGZjISwMf_fhV3MSxnVMziV45oCIvdQr5WnKdIvrnW3aLm1B5IIJugu-_ptQ74Ksv7bsOjfWyr_yFHHD-B-Dy7ZtPOGh3DHNY9gb9ogsb5eszcsbPcM8-h78H3KOgEmslK9Zje1XWF41I71hSQuWbvCbwhqGYJERstT1_aWzRvW0hw9qToxUsPECzbdXvLFYzg_Pjr_dBL3FRbiEoHOMvalU0onNtHaW5tYoS1PqsLzNC_QTiVXthKJTN8XPJey9KlTnlvPdYnt8OHwBHaaeeOeARPYgRKZdz5xsrKIOx1CR2W9y5IC-4jgYBhGU_bq41QEozbIQsgGJtjAkA1MsEEEb8czbjrljf-0PSTLjO1IMzv8MG8vTR-CxiIaQcKGFM8XslIit5lCF3ZC-VxynUWwP9jVDH5ohND4t3J0lwhejYcxBGldxTZuvloYhLSZSnOknhE87dxgvJPBjSLINhxk41Y3jzQ_roLMtxQIZVP1_J99voB7NAT0ZqRQ-7CzbFfuJUKkZTGB3cOjs6_fJmGKAT8_z_gkRMMvQRkQ8A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a3QO8TMC4ZAwwEiDxELVx7Fwe0NTBpo5tFYIi7c1yEntM6pKuF0F_FP9x5zhJWRHa2x7TuI51Lvb32cfnALy1PNOIbI3PA4MEJS6En5mY-7hcFGmKHKNwebZPh9Hgh_hyJs824E97F4bCKts50U3URZXTHnmX80TyOA2SZG9y5VPVKDpdbUto1GZxbJa_kLLNPh59Rv2-4_zwYPRp4DdVBfwcF_e5b3MjZRLqMEms1qHmiQ7CIrNBlGY4tjyQuuChiHoZ8nuR28hIG2gbJDm2Q4fAbu_BpgijHu_A5v7B8Ou3dupHciB79VkoMr-0a0uKSMElljJ0u4tBN9Y-VyLgf7j23_DMG-vd4UPYaoAq69eW9Qg2TPkYtvslkvTLJXvPXOio25Pfhu99VidzIo2Pl2wy1gt0tbFhTVGKczZd4BMCZIaAk9FR16X-zaqSTWm_nzJEMcqsiR8s67j02RMY3YVcn0KnrErzHBjHDlDX1tjQiEIjhjUIQ6W2Jg4z7MODbitGlTeZzKmgxlghoyHBKyd4RYJXTvAefFj9Y1Jn8bil7T5pZtWO8m-7H6rpuWrcWWlENkj-kC7aTBSSpzqW6A6GS5uKIIk92G31qppJYab-mrAHb1av0Z3pjEaXplrMFMLjWEYp0lgPntVmsBoJJzYpesKDeM1A1oa6_qa8-OlShguOsDiSO7cP6zXcH4xOT9TJ0fD4BTwgmdC1Sy53oTOfLsxLxF_z7FVj9QzUHfvZNcxwRf4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8IGB8BAYYCZB4iNo4dj4eEOrYqo1BNcGQ9mY5iT2QOqf0Q9A_jf-OOycpK0J722Ma17HOd77fzz7fAby0vNCIbE3II4MEJa1EWJiUh-guqjxHjlH5PNufxsnhV_HhTJ5twe_uLgyFVXZrol-oq7qkPfI-55nkaR4hYbNtWMTJ_ujd9EdIFaTopLUrp9GoyLFZ_UT6Nn97tI9z_Yrz0cHp-8OwrTAQlujoF6EtjZRZrOMss1rHmmc6iqvCRkle4DjLSOqKxyIZFMj1RWkTI22kbZSV2A6NA7u9AdspkaIebO8djE8-d24AiYIcNOeiyALzvnUUnYLulrJ1-0tCl_ygLxfwP4z7b6jmJd83ugO3W9DKho2W3YUt4-7BztAhYb9YsdfMh5H6_fkd-DJkTWInmv3Jik0neolmNzGsLVBxzmZLfEKwzBB8Mjr2utC_WO3YjPb-KVsUoyyb-EHXxKjP78Ppdcj1AfRc7cwjYBw7wHm3xsZGVBrxrEFIKrU1aVxgHwH0OzGqss1qTsU1JgrZDQleecErErzygg_gzfof0yajxxVt92hm1u0oF7f_oZ6dq9a0lUaUg0QQqaMtRCV5rlOJpmG4tLmIsjSA3W5eVbtAzNVfdQ7gxfo1mjad12hn6uVcIVROZZIjpQ3gYaMG65FwYpZiIAJINxRkY6ibb9z3bz59uOAIkRP5-OphPYebaF_q49H4-AncIpHQDUwud6G3mC3NU4Rii-JZq_QM1DWb2R-6Kkoz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+biologically+plausible+learning+rule+for+the+Infomax+on+recurrent+neural+networks&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Hayakawa%2C+Takashi&rft.au=Kaneko%2C+Takeshi&rft.au=Aoyagi%2C+Toshio&rft.date=2014-11-25&rft.issn=1662-5188&rft.eissn=1662-5188&rft.volume=8&rft.spage=143&rft_id=info:doi/10.3389%2Ffncom.2014.00143&rft_id=info%3Apmid%2F25505404&rft.externalDocID=25505404
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon