A biologically plausible learning rule for the Infomax on recurrent neural networks
A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural n...
Saved in:
Published in | Frontiers in computational neuroscience Vol. 8; p. 143 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
25.11.2014
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons. |
---|---|
AbstractList | A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Recently, several characteristics of cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to self-organize and display such characteristic activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce several firing profiles observed in the cerebral cortex: cell-assembly-like repeats of precise firing sequences, neuronal avalanche, spontaneous replays of learned firing sequences and orientation selectivity in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons. A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons. A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons.A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons. |
Author | Hayakawa, Takashi Kaneko, Takeshi Aoyagi, Toshio |
AuthorAffiliation | 2 CREST, Japan Science and Technology Agency Kawaguchi, Japan 1 Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan 3 Department of Applied Analysis and Complex Dynamics, Graduate School of Informatics, Kyoto University Kyoto, Japan |
AuthorAffiliation_xml | – name: 2 CREST, Japan Science and Technology Agency Kawaguchi, Japan – name: 3 Department of Applied Analysis and Complex Dynamics, Graduate School of Informatics, Kyoto University Kyoto, Japan – name: 1 Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University Kyoto, Japan |
Author_xml | – sequence: 1 givenname: Takashi surname: Hayakawa fullname: Hayakawa, Takashi – sequence: 2 givenname: Takeshi surname: Kaneko fullname: Kaneko, Takeshi – sequence: 3 givenname: Toshio surname: Aoyagi fullname: Aoyagi, Toshio |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25505404$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstvEzEQxleoiD7gzgmtxIVLgt9rX5CqCtpIlTjQuzXrtVMHrx3s3UL_e5ykVG0lLh4_fvNpxvOdNkcxRds07zFaUirVZxdNGpcEYbZEdaGvmhMsBFlwLOXRk_1xc1rKBiFBBEdvmmPCOeIMsZPmx3nb-xTS2hsI4b7dBpiL74Ntg4UcfVy3ea4nl3I73dp2FV0a4U-bYputmXO2cWqjnTOEGqbfKf8sb5vXDkKx7x7iWXPz7evNxdXi-vvl6uL8emEEQtPCGcu5pECldAAUiARMh95hoXqCkcEcBkKZQD1WjBknLHcYHJamcqijZ83qIDsk2Oht9iPke53A6_1FymsNefImWA2EEaQEU8r1bOBEQcdtby3hTjEsd1pfDlrbuR_tYGpXtaNnos9for_V63SnGWGUC14FPj0I5PRrtmXSoy_GhgDRprloLGjHhZIdrujHF-gmzTnWn9KESE46VSdWqQ9PK3os5d_oKoAOgMmplGzdI4KR3rlD792hd-7Qe3fUFPEixfgJJp92Pfnw_8S_FGHADg |
CitedBy_id | crossref_primary_10_3389_fncom_2019_00039 crossref_primary_10_3902_jnns_25_104 crossref_primary_10_1103_PhysRevE_92_052710 crossref_primary_10_1371_journal_pcbi_1004698 crossref_primary_10_1016_j_neucom_2020_03_008 |
Cites_doi | 10.1162/neco.2008.03-08-727 10.1016/S0042-6989(97)00121-1 10.1103/PhysRevLett.75.4071 10.1016/j.neuron.2010.02.003 10.1016/S0893-6080(01)00091-0 10.1038/nn1895 10.1207/s15516709cog2802_2 10.1017/CBO9780511574566 10.1007/s10827-006-0014-6 10.1016/j.tins.2005.06.004 10.1162/neco.2007.19.6.1468 10.1523/JNEUROSCI.02-01-00032.1982 10.1371/journal.pcbi.1000757 10.1523/JNEUROSCI.23-35-11167.2003 10.1126/science.1179850 10.1146/annurev.neuro.31.060407.125639 10.1038/srep00485 10.1113/jphysiol.2001.012959 10.1016/S0896-6273(00)00070-2 10.1162/NECO_a_00341 10.1088/0954-898X/3/2/009 10.1016/S0042-6989(97)00169-7 10.1371/journal.pcbi.1003037 10.1016/S0893-6080(96)00110-4 10.1113/jphysiol.1959.sp006308 10.1371/journal.pcbi.1002250 10.1126/science.271.5257.1870 10.1109/2.36 10.1162/0899766053011555 10.1162/089976603321891774 10.1126/science.1093173 10.1371/journal.pcbi.1003024 10.1371/journal.pone.0025339 10.1214/aoms/1177729586 10.1162/089976601750264992 10.1038/nrn1519 10.1002/0471221317 10.1162/089976606775093882 10.1152/jn.2002.88.1.455 10.1073/pnas.0500495102 10.1523/JNEUROSCI.18-24-10464.1998 10.1186/1471-2202-11-3 10.1162/0899766053011474 10.1073/pnas.152343099 10.1371/journal.pcbi.1002584 10.1038/990101 10.1017/S0140525X01000024 10.1016/S0896-6273(02)01096-6 10.1162/neco.1995.7.6.1129 10.1016/j.cub.2007.04.024 10.1126/science.1135468 10.3389/fncir.2013.00075 10.1007/s11538-010-9564-x 10.1371/journal.pbio.0030068 |
ContentType | Journal Article |
Copyright | 2014. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2014 Hayakawa, Kaneko and Aoyagi. 2014 |
Copyright_xml | – notice: 2014. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2014 Hayakawa, Kaneko and Aoyagi. 2014 |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fncom.2014.00143 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5188 |
ExternalDocumentID | oai_doaj_org_article_a242096499fb4d529a75ebee25f94187 PMC4243565 25505404 10_3389_fncom_2014_00143 |
Genre | Journal Article |
GeographicLocations | Japan |
GeographicLocations_xml | – name: Japan |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADMLS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DWQXO E3Z F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IPNFZ M48 NPM PQGLB RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c600t-fce5583a388faa3a28a13dbf169b210c15ad23460b1944cf6e5f1af18ca13073 |
IEDL.DBID | M48 |
ISSN | 1662-5188 |
IngestDate | Wed Aug 27 00:51:41 EDT 2025 Thu Aug 21 14:10:45 EDT 2025 Fri Jul 11 02:29:12 EDT 2025 Fri Jul 25 11:57:49 EDT 2025 Mon Jul 21 06:03:40 EDT 2025 Thu Apr 24 22:56:52 EDT 2025 Tue Jul 01 00:59:28 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | information maximization recurrent neural network biologically plausible learning rule precise firing sequence spike-timing-dependent plasticity neuronal avalanche orientation selectivity |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c600t-fce5583a388faa3a28a13dbf169b210c15ad23460b1944cf6e5f1af18ca13073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Markus Diesmann, Jülich Research Centre, Germany This article was submitted to the journal Frontiers in Computational Neuroscience. Reviewed by: Christian Leibold, Ludwig Maximilians University, Germany; Matthieu Gilson, Universitat Pompeu Fabra, Spain; J. Michael Herrmann, The University of Edinburgh, UK |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fncom.2014.00143 |
PMID | 25505404 |
PQID | 2285279188 |
PQPubID | 4424409 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a242096499fb4d529a75ebee25f94187 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4243565 proquest_miscellaneous_1637569871 proquest_journals_2285279188 pubmed_primary_25505404 crossref_primary_10_3389_fncom_2014_00143 crossref_citationtrail_10_3389_fncom_2014_00143 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-25 |
PublicationDateYYYYMMDD | 2014-11-25 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in computational neuroscience |
PublicationTitleAlternate | Front Comput Neurosci |
PublicationYear | 2014 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Chechik (B11) 2003; 15 Stickgold (B49) 2005; 28 Tanaka (B50) 2012; 24 Lee (B33) 2002; 36 Izhikevich (B29) 2006; 18 Teramae (B53) 2012; 2 Han (B23) 2000; 27 Zylberberg (B58) 2011; 7 Cover (B13) 2012 Bienenstock (B9) 1982; 2 Florian (B19) 2007; 19 Zapperi (B57) 1995; 75 Deco (B14) 1997; 10 Olshausen (B39) 1997; 37 Toyoizumi (B54) 2005; 102 Skaggs (B47) 1996; 271 Baxter (B4) 1999 Gilson (B22) 2012; 8 Hebb (B24) 1949 Ren (B40) 2007; 316 Bi (B8) 1998; 18 Tanaka (B51) 2009; 21 Linsker (B34) 1988; 21 Markram (B35) 2004; 5 Okajima (B37) 2001; 14 Barlow (B3) 2001; 24 Savin (B45) 2010; 6 Caporale (B10) 2008; 31 Ikegaya (B28) 2004; 304 Ringach (B42) 2004; 28 Kay (B32) 2010; 73 Wörgötter (B55) 2005; 17 Yao (B56) 2007; 10 Nessler (B36) 2013; 9 Fiete (B18) 2010; 65 Robbins (B44) 1951; 22 Shouval (B46) 2002; 99 Frémaux (B20) 2013; 9 Hyvärinen (B26) 2001a; 13 Song (B48) 2005; 3 Abeles (B1) 1991 Bell (B7) 1997; 37 Diesmann (B15) 1999; 402 Beggs (B5) 2003; 23 Atick (B2) 1992; 3 Renart (B41) 2010; 327 Bell (B6) 1995; 7 Feldmeyer (B17) 2002; 538 Karklin (B31) 2005; 17 Gilson (B21) 2011; 6 Hubel (B25) 1959; 148 Douglas (B16) 2007; 17 Chen (B12) 2010; 11 Olshausen (B38) 2012 Kaneko (B30) 2013; 7 Teramae (B52) 2007; 22 Hyvärinen (B27) 2001b Ringach (B43) 2002; 88 12816563 - Neural Comput. 2003 Jul;15(7):1481-510 17478724 - Science. 2007 May 4;316(5825):758-61 22046123 - PLoS Comput Biol. 2011 Oct;7(10):e1002250 22792056 - PLoS Comput Biol. 2012;8(7):e1002584 11718418 - Neural Netw. 2001 Nov;14(9):1173-80 7054394 - J Neurosci. 1982 Jan;2(1):32-48 23633941 - PLoS Comput Biol. 2013 Apr;9(4):e1003037 22845820 - Neural Comput. 2012 Oct;24(10):2700-25 15737062 - PLoS Biol. 2005 Mar;3(3):e68 14403679 - J Physiol. 1959 Oct;148:574-91 7584893 - Neural Comput. 1995 Nov;7(6):1129-59 20821064 - Bull Math Biol. 2011 Feb;73(2):344-72 18928369 - Neural Comput. 2009 Apr;21(4):1038-67 20110507 - Science. 2010 Jan 29;327(5965):587-90 11826166 - J Physiol. 2002 Feb 1;538(Pt 3):803-22 12136127 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10831-6 17610826 - Curr Biol. 2007 Jul 3;17(13):R496-500 17444757 - Neural Comput. 2007 Jun;19(6):1468-502 10591212 - Nature. 1999 Dec 2;402(6761):529-33 17468750 - Nat Neurosci. 2007 Jun;10(6):772-8 22003389 - PLoS One. 2011;6(10):e25339 17226088 - J Comput Neurosci. 2007 Jun;22(3):301-12 20053290 - BMC Neurosci. 2010 Jan 06;11:3 12662863 - Neural Netw. 1997 Jun;10(4):683-691 10059807 - Phys Rev Lett. 1995 Nov 27;75(22):4071-4074 22149669 - Network. 2011;22(1-4):4-44 12048943 - Behav Brain Sci. 2001 Aug;24(4):602-7; discussion 652-71 8596957 - Science. 1996 Mar 29;271(5257):1870-3 23754982 - Front Neural Circuits. 2013 May 28;7:75 18275283 - Annu Rev Neurosci. 2008;31:25-46 15105494 - Science. 2004 Apr 23;304(5670):559-64 15378039 - Nat Rev Neurosci. 2004 Oct;5(10):793-807 15720770 - Neural Comput. 2005 Feb;17(2):245-319 12495631 - Neuron. 2002 Dec 19;36(6):1183-94 15979164 - Trends Neurosci. 2005 Aug;28(8):408-15 20188660 - Neuron. 2010 Feb 25;65(4):563-76 9425546 - Vision Res. 1997 Dec;37(23):3311-25 11440596 - Neural Comput. 2001 Jul;13(7):1527-58 12091567 - J Neurophysiol. 2002 Jul;88(1):455-63 9425547 - Vision Res. 1997 Dec;37(23):3327-38 9852584 - J Neurosci. 1998 Dec 15;18(24):10464-72 20421937 - PLoS Comput Biol. 2010 Apr 22;6(4):e1000757 15720773 - Neural Comput. 2005 Feb;17(2):397-423 14657176 - J Neurosci. 2003 Dec 3;23(35):11167-77 16378515 - Neural Comput. 2006 Feb;18(2):245-82 23592970 - PLoS Comput Biol. 2013 Apr;9(4):e1003024 11055442 - Neuron. 2000 Sep;27(3):611-22 22761993 - Sci Rep. 2012;2:485 15795376 - Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5239-44 |
References_xml | – volume: 21 start-page: 1038 year: 2009 ident: B51 article-title: Recurrent Infomax generates cell assemblies, neuronal avalanches, and simple cell-like selectivity publication-title: Neural Comput doi: 10.1162/neco.2008.03-08-727 – volume: 37 start-page: 3327 year: 1997 ident: B7 article-title: The “independent components†of natural scenes are edge filters publication-title: Vision Res doi: 10.1016/S0042-6989(97)00121-1 – volume: 75 start-page: 4071 year: 1995 ident: B57 article-title: Self-organized branching processes: mean-field theory for avalanches publication-title: Phys. Rev. Lett doi: 10.1103/PhysRevLett.75.4071 – volume: 65 start-page: 563 year: 2010 ident: B18 article-title: Spike-time-dependent plasticity and heterosynaptic competition organize networks to produce long scale-free sequences of neural activity publication-title: Neuron doi: 10.1016/j.neuron.2010.02.003 – volume: 14 start-page: 1173 year: 2001 ident: B37 article-title: An Infomax-based learning rule that generates cells similar to visual cortical neurons publication-title: Neural Netw doi: 10.1016/S0893-6080(01)00091-0 – volume: 10 start-page: 772 year: 2007 ident: B56 article-title: Rapid learning in cortical coding of visual scenes publication-title: Nat. Neurosci doi: 10.1038/nn1895 – volume: 28 start-page: 147 year: 2004 ident: B42 article-title: Reverse correlation in neurophysiology publication-title: Cogn. Sci doi: 10.1207/s15516709cog2802_2 – volume-title: Corticonics: Neural Circuits of The Cerebral Cortex year: 1991 ident: B1 doi: 10.1017/CBO9780511574566 – volume: 22 start-page: 301 year: 2007 ident: B52 article-title: Local cortical circuit model inferred from power-law distributed neuronal avalanches publication-title: J. Comput. Neurosci doi: 10.1007/s10827-006-0014-6 – volume: 28 start-page: 408 year: 2005 ident: B49 article-title: Memory consolidation and reconsolidation: what is the role of sleep? publication-title: Trends Neurosci doi: 10.1016/j.tins.2005.06.004 – volume: 19 start-page: 1468 year: 2007 ident: B19 article-title: Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity publication-title: Neural Comput doi: 10.1162/neco.2007.19.6.1468 – volume: 2 start-page: 32 year: 1982 ident: B9 article-title: Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.02-01-00032.1982 – volume-title: Elements of Information Theory year: 2012 ident: B13 – volume: 6 start-page: e1000757 year: 2010 ident: B45 article-title: Independent component analysis in spiking neurons publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1000757 – volume: 23 start-page: 11167 year: 2003 ident: B5 article-title: Neuronal avalanches in neocortical circuits publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.23-35-11167.2003 – volume: 327 start-page: 587 year: 2010 ident: B41 article-title: The asynchronous state in cortical circuits publication-title: Science doi: 10.1126/science.1179850 – volume: 31 start-page: 25 year: 2008 ident: B10 article-title: Spike timing-dependent plasticity: a Hebbian learning rule publication-title: Annu. Rev. Neurosci doi: 10.1146/annurev.neuro.31.060407.125639 – volume-title: Direct Gradient-Based Reinforcement Learning: I. Gradient Estimation Algorithms year: 1999 ident: B4 – volume: 2 start-page: 485 year: 2012 ident: B53 article-title: Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links publication-title: Sci. Rep doi: 10.1038/srep00485 – volume-title: The Organization of Behavior: A Neuropsychological Theory year: 1949 ident: B24 – volume: 538 start-page: 803 year: 2002 ident: B17 article-title: Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column publication-title: J. Physiol doi: 10.1113/jphysiol.2001.012959 – volume: 27 start-page: 611 year: 2000 ident: B23 article-title: Reversible associative depression and nonassociative potentiation at a parallel fiber synapse publication-title: Neuron doi: 10.1016/S0896-6273(00)00070-2 – volume: 24 start-page: 2700 year: 2012 ident: B50 article-title: Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability publication-title: Neural Comput doi: 10.1162/NECO_a_00341 – volume: 3 start-page: 213 year: 1992 ident: B2 article-title: Could information theory provide an ecological theory of sensory processing? publication-title: Network doi: 10.1088/0954-898X/3/2/009 – volume: 37 start-page: 15 year: 1997 ident: B39 article-title: Sparse coding with an overcomplete basis set: a strategy employed by V1? publication-title: Vision Res doi: 10.1016/S0042-6989(97)00169-7 – volume: 9 start-page: e1003037 year: 2013 ident: B36 article-title: Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1003037 – volume: 10 start-page: 683 year: 1997 ident: B14 article-title: Non-linear feature extraction by redundancy reduction in an unsupervised stochastic neural network publication-title: Neural Netw doi: 10.1016/S0893-6080(96)00110-4 – volume: 148 start-page: 574 year: 1959 ident: B25 article-title: Receptive fields of single neurones in the cat's striate cortex publication-title: J. Physiol doi: 10.1113/jphysiol.1959.sp006308 – volume: 7 start-page: e1002250 year: 2011 ident: B58 article-title: A sparse coding model with synaptically local plasticity and spiking neurons can account for the diverse shapes of V1 simple cell receptive fields publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1002250 – volume: 271 start-page: 1870 year: 1996 ident: B47 article-title: Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience publication-title: Science doi: 10.1126/science.271.5257.1870 – volume: 21 start-page: 105 year: 1988 ident: B34 article-title: Self-organization in a perceptual network publication-title: Computer doi: 10.1109/2.36 – volume: 17 start-page: 245 year: 2005 ident: B55 article-title: Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms publication-title: Neural Comput doi: 10.1162/0899766053011555 – volume: 15 start-page: 1481 year: 2003 ident: B11 article-title: Spike-timing-dependent plasticity and relevant mutual information maximization publication-title: Neural Comput doi: 10.1162/089976603321891774 – volume: 304 start-page: 559 year: 2004 ident: B28 article-title: Synfire chains and cortical songs: temporal modules of cortical activity publication-title: Science doi: 10.1126/science.1093173 – volume: 9 start-page: e1003024 year: 2013 ident: B20 article-title: Reinforcement learning using a continuous time actor-critic framework with spiking neurons publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1003024 – volume: 6 start-page: e25339 year: 2011 ident: B21 article-title: Stability versus neuronal specialization for STDP: long-tail weight distributions solve the dilemma publication-title: PLoS ONE doi: 10.1371/journal.pone.0025339 – volume: 22 start-page: 400 year: 1951 ident: B44 article-title: A stochastic approximation method publication-title: Ann. Math. Stat doi: 10.1214/aoms/1177729586 – volume: 13 start-page: 1527 year: 2001a ident: B26 article-title: Topographic independent component analysis publication-title: Neural Comput doi: 10.1162/089976601750264992 – volume: 5 start-page: 793 year: 2004 ident: B35 article-title: Interneurons of the neocortical inhibitory system publication-title: Nat. Rev. Neurosci doi: 10.1038/nrn1519 – volume-title: Independent Component Analysis year: 2001b ident: B27 doi: 10.1002/0471221317 – year: 2012 ident: B38 publication-title: Sparse Coding Simulation Software – volume: 18 start-page: 245 year: 2006 ident: B29 article-title: Polychronization: computation with spikes publication-title: Neural Comput doi: 10.1162/089976606775093882 – volume: 88 start-page: 455 year: 2002 ident: B43 article-title: Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex publication-title: J. Neurophysiol doi: 10.1152/jn.2002.88.1.455 – volume: 102 start-page: 5239 year: 2005 ident: B54 article-title: Generalized Bienenstock–Cooper–Munro rule for spiking neurons that maximizes information transmission publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0500495102 – volume: 18 start-page: 10464 year: 1998 ident: B8 article-title: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.18-24-10464.1998 – volume: 11 start-page: 3 year: 2010 ident: B12 article-title: A few strong connections: optimizing information retention in neuronal avalanches publication-title: BMC Neurosci doi: 10.1186/1471-2202-11-3 – volume: 17 start-page: 397 year: 2005 ident: B31 article-title: A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals publication-title: Neural Comput doi: 10.1162/0899766053011474 – volume: 99 start-page: 10831 year: 2002 ident: B46 article-title: A unified model of NMDA receptor-dependent bidirectional synaptic plasticity publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.152343099 – volume: 8 start-page: e1002584 year: 2012 ident: B22 article-title: Spectral analysis of input spike trains by spike-timing-dependent plasticity publication-title: PLoS Comput. Biol doi: 10.1371/journal.pcbi.1002584 – volume: 402 start-page: 529 year: 1999 ident: B15 article-title: Stable propagation of synchronous spiking in cortical neural networks publication-title: Nature doi: 10.1038/990101 – volume: 24 start-page: 602 year: 2001 ident: B3 article-title: The exploitation of regularities in the environment by the brain publication-title: Behav. Brain Sci doi: 10.1017/S0140525X01000024 – volume: 36 start-page: 1183 year: 2002 ident: B33 article-title: Memory of sequential experience in the hippocampus during slow wave sleep publication-title: Neuron doi: 10.1016/S0896-6273(02)01096-6 – volume: 7 start-page: 1129 year: 1995 ident: B6 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Comput doi: 10.1162/neco.1995.7.6.1129 – volume: 17 start-page: R496 year: 2007 ident: B16 article-title: Recurrent neuronal circuits in the neocortex publication-title: Curr. Biol doi: 10.1016/j.cub.2007.04.024 – volume: 316 start-page: 758 year: 2007 ident: B40 article-title: Specialized inhibitory synaptic actions between nearby neocortical pyramidal neurons publication-title: Science doi: 10.1126/science.1135468 – volume: 7 issue: 75 year: 2013 ident: B30 article-title: Local connections of excitatory neurons in motor-associated cortical areas of the rat publication-title: Front. Neural Circuits doi: 10.3389/fncir.2013.00075 – volume: 73 start-page: 344 year: 2010 ident: B32 article-title: Coherent Infomax as a computational goal for neural systems publication-title: Bull. Math. Biol doi: 10.1007/s11538-010-9564-x – volume: 3 start-page: e68 year: 2005 ident: B48 article-title: Highly nonrandom features of synaptic connectivity in local cortical circuits publication-title: PLoS Biol doi: 10.1371/journal.pbio.0030068 – reference: 14403679 - J Physiol. 1959 Oct;148:574-91 – reference: 22003389 - PLoS One. 2011;6(10):e25339 – reference: 20421937 - PLoS Comput Biol. 2010 Apr 22;6(4):e1000757 – reference: 8596957 - Science. 1996 Mar 29;271(5257):1870-3 – reference: 15979164 - Trends Neurosci. 2005 Aug;28(8):408-15 – reference: 17468750 - Nat Neurosci. 2007 Jun;10(6):772-8 – reference: 12091567 - J Neurophysiol. 2002 Jul;88(1):455-63 – reference: 12136127 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10831-6 – reference: 22149669 - Network. 2011;22(1-4):4-44 – reference: 14657176 - J Neurosci. 2003 Dec 3;23(35):11167-77 – reference: 9425546 - Vision Res. 1997 Dec;37(23):3311-25 – reference: 15737062 - PLoS Biol. 2005 Mar;3(3):e68 – reference: 11440596 - Neural Comput. 2001 Jul;13(7):1527-58 – reference: 12495631 - Neuron. 2002 Dec 19;36(6):1183-94 – reference: 22046123 - PLoS Comput Biol. 2011 Oct;7(10):e1002250 – reference: 15795376 - Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5239-44 – reference: 23633941 - PLoS Comput Biol. 2013 Apr;9(4):e1003037 – reference: 11718418 - Neural Netw. 2001 Nov;14(9):1173-80 – reference: 18275283 - Annu Rev Neurosci. 2008;31:25-46 – reference: 20110507 - Science. 2010 Jan 29;327(5965):587-90 – reference: 15105494 - Science. 2004 Apr 23;304(5670):559-64 – reference: 17478724 - Science. 2007 May 4;316(5825):758-61 – reference: 12048943 - Behav Brain Sci. 2001 Aug;24(4):602-7; discussion 652-71 – reference: 20188660 - Neuron. 2010 Feb 25;65(4):563-76 – reference: 12816563 - Neural Comput. 2003 Jul;15(7):1481-510 – reference: 20053290 - BMC Neurosci. 2010 Jan 06;11:3 – reference: 15378039 - Nat Rev Neurosci. 2004 Oct;5(10):793-807 – reference: 22845820 - Neural Comput. 2012 Oct;24(10):2700-25 – reference: 12662863 - Neural Netw. 1997 Jun;10(4):683-691 – reference: 16378515 - Neural Comput. 2006 Feb;18(2):245-82 – reference: 17610826 - Curr Biol. 2007 Jul 3;17(13):R496-500 – reference: 11055442 - Neuron. 2000 Sep;27(3):611-22 – reference: 7054394 - J Neurosci. 1982 Jan;2(1):32-48 – reference: 17226088 - J Comput Neurosci. 2007 Jun;22(3):301-12 – reference: 20821064 - Bull Math Biol. 2011 Feb;73(2):344-72 – reference: 18928369 - Neural Comput. 2009 Apr;21(4):1038-67 – reference: 7584893 - Neural Comput. 1995 Nov;7(6):1129-59 – reference: 15720770 - Neural Comput. 2005 Feb;17(2):245-319 – reference: 17444757 - Neural Comput. 2007 Jun;19(6):1468-502 – reference: 10591212 - Nature. 1999 Dec 2;402(6761):529-33 – reference: 10059807 - Phys Rev Lett. 1995 Nov 27;75(22):4071-4074 – reference: 15720773 - Neural Comput. 2005 Feb;17(2):397-423 – reference: 9852584 - J Neurosci. 1998 Dec 15;18(24):10464-72 – reference: 22761993 - Sci Rep. 2012;2:485 – reference: 23592970 - PLoS Comput Biol. 2013 Apr;9(4):e1003024 – reference: 23754982 - Front Neural Circuits. 2013 May 28;7:75 – reference: 11826166 - J Physiol. 2002 Feb 1;538(Pt 3):803-22 – reference: 9425547 - Vision Res. 1997 Dec;37(23):3327-38 – reference: 22792056 - PLoS Comput Biol. 2012;8(7):e1002584 |
SSID | ssj0062650 |
Score | 2.0180357 |
Snippet | A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 143 |
SubjectTerms | Avalanches Circuits Firing pattern information maximization Learning Nervous system Neural networks neuronal avalanches Neurons Neuroplasticity Neuroscience Orientation behavior orientation selectivity precise firing sequences recurrent neural network Science spike-timing-dependent plasticity Visual cortex Visual pathways |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFH7InryIuv6orksEETyUmaRJmxzHxWURXGRdYW8hbRMVZjvizID73_sl6Qwzi6wXj23TNP3y0ve95uUL0ZsgWgdm60vBPQKUppdl6xtRwl30xiDG6JPO9qfz-uyr_Hilrna2-oo5YVkeOAM3cfAhoNkg5qGVvRLGNQoP9kIFI7lO68jh8zbBVP4Gg6WraZ6URAhmJmGIqSHwdVEqO63Q2XFCSav_bwTzdp7kjuM5fUgPRsbIZrmlj-ieHx7T4WxAtHx9w96ylMOZfo4f0pcZy5tLRujnN-zz3K1h83PPRh3Vb-xijSMwVQbmx-Kc07X7zRYDu4g_3qNUE4t6HXjgeU4QXz6hy9MPlydn5bhtQtmBvazK0HmldOUqrYNzlRPa8apvA69NC_A7rlwvKllPW26k7ELtVeAucN2hHEb8UzoYFoN_TkygAiWa4EPlZe9AJj34oHLBN1WLOgqabGC03SgpHne2mFuEFhF4m4C3EXibgC_o3faOn1lO446y72PPbMtFIex0AuZhR_Ow_zKPgo42_WrH0bm0Qmi8luFaF_R6exnjKk6WuMEv1ksLntqo2iCeLOhZNoNtS0QM6-RUFtTsGcheU_evDD--J-1uKcBPa_Xif7zbS7of0YorI4U6ooPVr7V_BYq0ao_TaPgDck4PUw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3B9sIFFcpHoCAjISQO0W4cO7FPaItaVUhUCIrUm-Ukdqm0dZb9kNp_z4zjXboI9ZiNN7FmxvZ79uQNwHvPG4vI1uW8cEhQ6k7kjat5jstFpzVyjC7qbH89q05_ii8X8iJtuC1TWuVmTowTdde3tEc-5lxJXutCqU_z3zlVjaLT1VRC4yHs4RSs1Aj2jo7Pvn3fzMWI1uVkOJxEKqbHPlCKCK55JJkdv9S5sxhFzf7_Ac1_8yXvLEAn-_A4IUc2HVz9BB648BQOpgFZ8_Ut-8BiLmfcJD-AH1M2qCuRC2a3bD6za4z9mWOpSsQlW6zxChErQwTI6Ozp2t6wPrAFbcCTZBMjqUt8YRgSxZfP4Pzk-PzzaZ7KJ-QtophV7lsnpSptqZS3trRc2aLsGl9UukEntIW0HS9FNWkKLUTrKyd9YX2hWmyHI_85jEIf3EtgHB-AxvfOl050FkGlQ1worXd12eAzMhhvzGjaJC1OFS5mBikGGd5EwxsyvImGz-Dj9h_zQVbjnrZH5JltOxLEjj_0i0uTxpexCDWQjSF_843oJNe2lhifjkuvRaHqDA43fjVplC7N35jK4N32No4vOjSxwfXrpUG8WstKI6_M4MUQBtuecKJ3YiIyqHcCZKeru3fC1a-o4S044tRKvrq_W6_hEdmBvn3k8hBGq8XavUEQtGrepkj_A9YZCa0 priority: 102 providerName: ProQuest |
Title | A biologically plausible learning rule for the Infomax on recurrent neural networks |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25505404 https://www.proquest.com/docview/2285279188 https://www.proquest.com/docview/1637569871 https://pubmed.ncbi.nlm.nih.gov/PMC4243565 https://doaj.org/article/a242096499fb4d529a75ebee25f94187 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED7B9sILAsaPwKiMhJB4CMOOnTgPCHVoY0LahGCT-mY5ib0hZelIW2n977lzfkBR4aVSG8dJfXe577Od7wBee1FYRLYuFtwhQckqGRcuEzGmiyrPkWNUQWf79Cw9uZBfZmr2-_XofgAXW6kd1ZO6aOt3tz_XHzHgPxDjxHx74Bva-IGZjISwMf_fhV3MSxnVMziV45oCIvdQr5WnKdIvrnW3aLm1B5IIJugu-_ptQ74Ksv7bsOjfWyr_yFHHD-B-Dy7ZtPOGh3DHNY9gb9ogsb5eszcsbPcM8-h78H3KOgEmslK9Zje1XWF41I71hSQuWbvCbwhqGYJERstT1_aWzRvW0hw9qToxUsPECzbdXvLFYzg_Pjr_dBL3FRbiEoHOMvalU0onNtHaW5tYoS1PqsLzNC_QTiVXthKJTN8XPJey9KlTnlvPdYnt8OHwBHaaeeOeARPYgRKZdz5xsrKIOx1CR2W9y5IC-4jgYBhGU_bq41QEozbIQsgGJtjAkA1MsEEEb8czbjrljf-0PSTLjO1IMzv8MG8vTR-CxiIaQcKGFM8XslIit5lCF3ZC-VxynUWwP9jVDH5ohND4t3J0lwhejYcxBGldxTZuvloYhLSZSnOknhE87dxgvJPBjSLINhxk41Y3jzQ_roLMtxQIZVP1_J99voB7NAT0ZqRQ-7CzbFfuJUKkZTGB3cOjs6_fJmGKAT8_z_gkRMMvQRkQ8A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4a3QO8TMC4ZAwwEiDxELVx7Fwe0NTBpo5tFYIi7c1yEntM6pKuF0F_FP9x5zhJWRHa2x7TuI51Lvb32cfnALy1PNOIbI3PA4MEJS6En5mY-7hcFGmKHKNwebZPh9Hgh_hyJs824E97F4bCKts50U3URZXTHnmX80TyOA2SZG9y5VPVKDpdbUto1GZxbJa_kLLNPh59Rv2-4_zwYPRp4DdVBfwcF_e5b3MjZRLqMEms1qHmiQ7CIrNBlGY4tjyQuuChiHoZ8nuR28hIG2gbJDm2Q4fAbu_BpgijHu_A5v7B8Ou3dupHciB79VkoMr-0a0uKSMElljJ0u4tBN9Y-VyLgf7j23_DMG-vd4UPYaoAq69eW9Qg2TPkYtvslkvTLJXvPXOio25Pfhu99VidzIo2Pl2wy1gt0tbFhTVGKczZd4BMCZIaAk9FR16X-zaqSTWm_nzJEMcqsiR8s67j02RMY3YVcn0KnrErzHBjHDlDX1tjQiEIjhjUIQ6W2Jg4z7MODbitGlTeZzKmgxlghoyHBKyd4RYJXTvAefFj9Y1Jn8bil7T5pZtWO8m-7H6rpuWrcWWlENkj-kC7aTBSSpzqW6A6GS5uKIIk92G31qppJYab-mrAHb1av0Z3pjEaXplrMFMLjWEYp0lgPntVmsBoJJzYpesKDeM1A1oa6_qa8-OlShguOsDiSO7cP6zXcH4xOT9TJ0fD4BTwgmdC1Sy53oTOfLsxLxF_z7FVj9QzUHfvZNcxwRf4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8IGB8BAYYCZB4iNo4dj4eEOrYqo1BNcGQ9mY5iT2QOqf0Q9A_jf-OOycpK0J722Ma17HOd77fzz7fAby0vNCIbE3II4MEJa1EWJiUh-guqjxHjlH5PNufxsnhV_HhTJ5twe_uLgyFVXZrol-oq7qkPfI-55nkaR4hYbNtWMTJ_ujd9EdIFaTopLUrp9GoyLFZ_UT6Nn97tI9z_Yrz0cHp-8OwrTAQlujoF6EtjZRZrOMss1rHmmc6iqvCRkle4DjLSOqKxyIZFMj1RWkTI22kbZSV2A6NA7u9AdspkaIebO8djE8-d24AiYIcNOeiyALzvnUUnYLulrJ1-0tCl_ygLxfwP4z7b6jmJd83ugO3W9DKho2W3YUt4-7BztAhYb9YsdfMh5H6_fkd-DJkTWInmv3Jik0neolmNzGsLVBxzmZLfEKwzBB8Mjr2utC_WO3YjPb-KVsUoyyb-EHXxKjP78Ppdcj1AfRc7cwjYBw7wHm3xsZGVBrxrEFIKrU1aVxgHwH0OzGqss1qTsU1JgrZDQleecErErzygg_gzfof0yajxxVt92hm1u0oF7f_oZ6dq9a0lUaUg0QQqaMtRCV5rlOJpmG4tLmIsjSA3W5eVbtAzNVfdQ7gxfo1mjad12hn6uVcIVROZZIjpQ3gYaMG65FwYpZiIAJINxRkY6ibb9z3bz59uOAIkRP5-OphPYebaF_q49H4-AncIpHQDUwud6G3mC3NU4Rii-JZq_QM1DWb2R-6Kkoz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+biologically+plausible+learning+rule+for+the+Infomax+on+recurrent+neural+networks&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Hayakawa%2C+Takashi&rft.au=Kaneko%2C+Takeshi&rft.au=Aoyagi%2C+Toshio&rft.date=2014-11-25&rft.issn=1662-5188&rft.eissn=1662-5188&rft.volume=8&rft.spage=143&rft_id=info:doi/10.3389%2Ffncom.2014.00143&rft_id=info%3Apmid%2F25505404&rft.externalDocID=25505404 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon |