Sterols Have Higher Affinity for Sphingomyelin than for Phosphatidylcholine Bilayers even at Equal Acyl-Chain Order

The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) o...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 100; no. 11; pp. 2633 - 2641
Main Authors Lönnfors, Max, Doux, Jacques P.F., Killian, J. Antoinette, Nyholm, Thomas K.M., Slotte, J. Peter
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.06.2011
Biophysical Society
The Biophysical Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by 2H-NMR on bilayers made from either 14:0/14:0(d27)-PC, or 14:0(d27)-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (Kx) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the Kx did increase with acyl-chain order, the higher Kx for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the Kx was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in Kx. We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes.
AbstractList The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by (2)H-NMR on bilayers made from either 14:0/14:0((d27))-PC, or 14:0((d27))-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (K(x)) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the K(x) did increase with acyl-chain order, the higher K(x) for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the K(x) was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in K(x). We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes.The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by (2)H-NMR on bilayers made from either 14:0/14:0((d27))-PC, or 14:0((d27))-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (K(x)) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the K(x) did increase with acyl-chain order, the higher K(x) for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the K(x) was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in K(x). We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes.
The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by ...-NMR on bilayers made from either 14:0/14:0..., or 14:0... Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (...) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the ... did increase with acyl-chain order, the higher ... for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the ... was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in ... We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes. (ProQuest: ... denotes formulae/symbols omitted.)
The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by (2)H-NMR on bilayers made from either 14:0/14:0((d27))-PC, or 14:0((d27))-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (K(x)) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the K(x) did increase with acyl-chain order, the higher K(x) for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the K(x) was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in K(x). We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes.
The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by ²H-NMR on bilayers made from either 14:0/14:0₍d₂₇₎-PC, or 14:0₍d₂₇₎-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (Kₓ) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the Kₓ did increase with acyl-chain order, the higher Kₓ for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the Kₓ was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in Kₓ. We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes.
The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by 2H-NMR on bilayers made from either 14:0/14:0(d27)-PC, or 14:0(d27)-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (Kx) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the Kx did increase with acyl-chain order, the higher Kx for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the Kx was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in Kx. We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes.
The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by ²H-NMR on bilayers made from either 14:0/14:0₍d₂₇₎-PC, or 14:0₍d₂₇₎-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (Kₓ) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the Kₓ did increase with acyl-chain order, the higher Kₓ for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the Kₓ was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in Kₓ. We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes.
The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by 2 H-NMR on bilayers made from either 14:0/14:0 (d27) -PC, or 14:0 (d27) -SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient ( K x ) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the K x did increase with acyl-chain order, the higher K x for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the K x was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in K x . We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes.
Author Slotte, J. Peter
Lönnfors, Max
Nyholm, Thomas K.M.
Doux, Jacques P.F.
Killian, J. Antoinette
AuthorAffiliation Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
AuthorAffiliation_xml – name: Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
– name: Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
Author_xml – sequence: 1
  givenname: Max
  surname: Lönnfors
  fullname: Lönnfors, Max
  organization: Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
– sequence: 2
  givenname: Jacques P.F.
  surname: Doux
  fullname: Doux, Jacques P.F.
  organization: Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
– sequence: 3
  givenname: J. Antoinette
  surname: Killian
  fullname: Killian, J. Antoinette
  organization: Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
– sequence: 4
  givenname: Thomas K.M.
  surname: Nyholm
  fullname: Nyholm, Thomas K.M.
  organization: Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
– sequence: 5
  givenname: J. Peter
  surname: Slotte
  fullname: Slotte, J. Peter
  email: jpslotte@abo.fi
  organization: Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21641308$$D View this record in MEDLINE/PubMed
BookMark eNp9klFr2zAUhc3oWNNuP2Avm9lL9-JM17ZkmcIgC90yKHSQ9Vko8nWsoEip5AT87yc37dj6kCfB1XcOVzrnIjmzzmKSvAcyBQLsy2a62m2mOQGYkmJKGHuVTICWeUYIZ2fJhBDCsqKs6XlyEcKGEMgpgTfJeQ6shILwSRKWPXpnQrqQB0wXet2hT2dtq63uh7R1Pl3uOm3Xbjug0TbtO2kfx786F3ad7HUzGNW5eIfpN23kgD6keECbyj69edhLk87UYLJ5J6P8zjfo3yavW2kCvns6L5P77ze_54vs9u7Hz_nsNlOMkD5rVcmokg1ras7qlsqm5fWqrVvGJJc55U0BlaINFshyoJyogld1AxzjiCIrLpOvR9_dfrXFRqHtvTRi5_VW-kE4qcX_N1Z3Yu0OogCogI4GV08G3j3sMfRiq4NCY6RFtw-CV4SWVclH8vNJEljFaRkTohH99ALduL238SOiXw5VGUOK0Id_V_-783NwEaiOgPIuBI-tULqPabjxJdoIIGKsiNiIWBExVkSQQsQFohJeKJ_NT2k-HjWtdEKuvQ7ifhkBGisFwGEkro8ExkAPGr0ISqNV2GiPqheN0yf8_wCNDt4C
CitedBy_id crossref_primary_10_1021_acs_langmuir_0c01237
crossref_primary_10_1021_acs_langmuir_6b00927
crossref_primary_10_1021_la203589u
crossref_primary_10_1016_j_bpj_2015_12_043
crossref_primary_10_1021_acs_jpcb_5b07375
crossref_primary_10_1038_s41589_020_00678_2
crossref_primary_10_1016_j_anifeedsci_2022_115524
crossref_primary_10_1016_j_plipres_2018_11_002
crossref_primary_10_1101_cshperspect_a041263
crossref_primary_10_3389_fcell_2016_00155
crossref_primary_10_1177_1535370219870771
crossref_primary_10_1172_JCI188127
crossref_primary_10_1021_la4018129
crossref_primary_10_1016_j_plipres_2017_01_002
crossref_primary_10_1016_j_bbamem_2019_05_001
crossref_primary_10_1016_j_bpj_2019_05_015
crossref_primary_10_1016_j_bbamem_2012_07_030
crossref_primary_10_3390_membranes12090828
crossref_primary_10_1016_j_bpj_2019_05_010
crossref_primary_10_1021_acs_langmuir_9b01202
crossref_primary_10_1016_j_bpj_2023_02_009
crossref_primary_10_1080_87559129_2021_2015773
crossref_primary_10_1016_j_chemphyslip_2016_04_002
crossref_primary_10_1016_j_bbamem_2012_06_004
crossref_primary_10_1016_j_bbamem_2016_03_013
crossref_primary_10_1021_acs_langmuir_5b00403
crossref_primary_10_1021_la504047n
crossref_primary_10_1016_j_bbrep_2021_100941
crossref_primary_10_1074_jbc_M111_276444
crossref_primary_10_1016_j_bpj_2014_04_054
crossref_primary_10_1016_j_bbamem_2012_11_009
crossref_primary_10_1021_acs_langmuir_5b03566
crossref_primary_10_1074_jbc_RA119_010393
crossref_primary_10_1007_s11010_019_03628_2
crossref_primary_10_1021_acs_jpcb_2c03127
crossref_primary_10_1016_j_bbamem_2015_05_010
crossref_primary_10_3934_biophy_2017_4_528
crossref_primary_10_7554_eLife_02882
crossref_primary_10_1016_j_bpj_2015_11_3515
crossref_primary_10_1016_j_bpj_2017_04_026
crossref_primary_10_1016_j_biochi_2022_09_016
crossref_primary_10_1016_j_bpj_2015_09_009
crossref_primary_10_1016_j_bpj_2019_03_028
crossref_primary_10_1016_j_bbamem_2012_08_029
crossref_primary_10_1016_j_bbamem_2011_08_026
crossref_primary_10_1016_j_bbamem_2016_06_014
crossref_primary_10_1016_j_chemphyslip_2018_07_002
crossref_primary_10_1021_acs_jpclett_4c00332
crossref_primary_10_1016_j_bpj_2016_06_036
crossref_primary_10_3390_ijms242115693
crossref_primary_10_1016_j_bbamem_2015_12_008
crossref_primary_10_1016_j_bpj_2018_11_3135
crossref_primary_10_1021_acs_langmuir_7b01765
crossref_primary_10_1016_j_tibs_2025_01_007
crossref_primary_10_3233_ADR_210299
crossref_primary_10_1021_acs_langmuir_4c03717
crossref_primary_10_1016_j_bbamem_2023_184242
crossref_primary_10_1016_j_colsurfb_2021_111842
crossref_primary_10_1021_acs_langmuir_8b01539
crossref_primary_10_1016_j_jcis_2025_137333
crossref_primary_10_1016_j_plipres_2013_05_001
crossref_primary_10_1021_acs_jpcb_7b00359
crossref_primary_10_1016_j_cell_2021_12_025
crossref_primary_10_1016_j_bpj_2013_12_034
crossref_primary_10_1016_j_tjnut_2024_04_006
crossref_primary_10_1088_1572_9494_ac7783
crossref_primary_10_1083_jcb_202308055
crossref_primary_10_1016_j_bbamem_2014_12_017
crossref_primary_10_1074_jbc_M114_598805
crossref_primary_10_1186_s13578_023_01127_y
crossref_primary_10_1016_j_bbalip_2013_10_016
crossref_primary_10_1016_j_bbamem_2015_02_027
crossref_primary_10_1021_acs_analchem_4c00433
crossref_primary_10_1039_c3sm50553g
crossref_primary_10_1111_tra_12586
crossref_primary_10_1186_s12944_019_0957_z
crossref_primary_10_1016_j_abb_2023_109836
crossref_primary_10_1016_j_bpj_2019_09_025
crossref_primary_10_3389_fimmu_2021_613591
crossref_primary_10_7554_eLife_70504
Cites_doi 10.1021/bi9528356
10.1016/0009-3084(84)90086-0
10.1529/biophysj.104.054718
10.1016/0009-3084(84)90079-3
10.1021/bi00053a016
10.1016/S0006-3495(99)77369-8
10.1021/bi00456a027
10.1016/S0926-2040(97)00024-6
10.1529/biophysj.107.112904
10.1016/S0005-2736(98)00178-3
10.1016/0960-0760(92)90265-K
10.1016/S0006-3495(02)75340-X
10.1016/S0006-3495(99)76997-3
10.1529/biophysj.104.048702
10.1016/0005-2736(92)90197-T
10.1021/bi00122a017
10.1021/ja903529f
10.1016/j.bbamem.2009.11.003
10.1016/0014-5793(79)80564-5
10.1016/0009-3084(76)90070-0
10.1002/jss.400080404
10.1016/S0014-5793(03)00678-1
10.1016/0304-4157(87)90017-7
10.1016/j.bbamem.2010.07.006
10.1016/j.bpj.2010.04.052
10.1063/1.2996296
10.1016/0301-4622(94)00075-1
10.1016/S0006-3495(90)82558-3
10.1016/0009-3084(93)90060-G
10.1016/S0006-3495(98)74011-1
10.1016/S0005-2736(98)00260-0
10.1016/0009-3084(96)02535-2
10.1016/S0163-7827(01)00020-0
10.1016/S0163-7827(01)00009-1
10.1021/bi100891z
10.1146/annurev.biophys.32.110601.141803
10.1016/j.bbamem.2010.03.022
10.1021/bi00631a011
10.1016/j.ssnmr.2005.02.002
10.1016/S0006-3495(00)76551-9
10.1016/j.bbamem.2009.12.025
10.1016/S0009-3084(00)00122-5
10.1016/S0005-2736(99)00099-1
10.1016/S0304-4157(98)00006-9
10.1529/biophysj.105.063271
10.1016/S0301-4622(00)00226-X
10.1016/j.bpj.2010.09.049
10.1016/0005-2736(81)90198-X
10.1021/jp077735b
10.1074/jbc.M303567200
10.1529/biophysj.105.080127
10.1007/BF02531316
10.1529/biophysj.108.133744
10.1529/biophysj.106.088427
10.1016/S0006-3495(99)77254-1
10.1016/0304-4157(83)90015-1
10.1194/jlr.M600344-JLR200
10.1016/S0006-3495(02)73917-9
10.1016/0304-4157(85)90011-5
10.1016/0304-4157(80)90006-4
10.1016/S0006-3495(02)75394-0
10.1021/bi0156714
10.1016/0301-4622(88)85034-8
ContentType Journal Article
Copyright 2011 Biophysical Society
Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Copyright Biophysical Society Jun 8, 2011
2011 by the Biophysical Society. 2011 Biophysical Society
Copyright_xml – notice: 2011 Biophysical Society
– notice: Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Biophysical Society Jun 8, 2011
– notice: 2011 by the Biophysical Society. 2011 Biophysical Society
DBID 6I.
AAFTH
FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TK
7TM
7U9
8FD
FR3
H94
K9.
P64
7S9
L.6
7X8
5PM
DOI 10.1016/j.bpj.2011.03.066
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts
MEDLINE
AGRICOLA



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1542-0086
EndPage 2641
ExternalDocumentID PMC3117156
2377131361
21641308
10_1016_j_bpj_2011_03_066
US201500111816
S0006349511005182
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
23N
2WC
4.4
457
5GY
5RE
62-
6I.
6J9
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKRW
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
AENEX
AEXQZ
AFRAH
AFTJW
AGHFR
AGKMS
AHMBA
AHPSJ
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
AYCSE
AZFZN
BAWUL
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FRP
HYE
HZ~
IH2
IXB
JIG
KQ8
L7B
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
RNS
ROL
RPM
RWL
SES
SSZ
TAE
TBP
TN5
WH7
WOQ
WOW
WQ6
X7M
YNY
YWH
ZA5
~02
--K
.GJ
3O-
53G
6TJ
7X2
7X7
88E
88I
8AF
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
AAMRU
AAQXK
ABUWG
ABWVN
ACRPL
ADMUD
ADNMO
ADVLN
AEUYN
AFKRA
AI.
AKAPO
AKRWK
ALIPV
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
DWQXO
FBQ
FEDTE
FGOYB
FYUFA
G-2
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HVGLF
HX~
LK8
M0K
M1P
M2O
M2P
M2Q
M7P
MVM
OZT
P62
PHGZT
PQQKQ
PRG
PROAC
PSQYO
Q2X
R2-
S0X
UKHRP
UKR
VH1
YYP
ZGI
ZXP
~KM
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGCQF
AGQPQ
AIGII
AKBMS
AKYEP
APXCP
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
7TK
7TM
7U9
8FD
EFKBS
FR3
H94
K9.
P64
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c600t-fc465cad6d9869f5adf89bf9f66a8a258d317c5de3e621580c3879d18ede35e63
IEDL.DBID IXB
ISSN 0006-3495
1542-0086
IngestDate Thu Aug 21 18:20:42 EDT 2025
Fri Jul 11 10:15:03 EDT 2025
Fri Jul 11 09:10:08 EDT 2025
Fri Jul 25 11:04:48 EDT 2025
Thu Apr 03 06:57:02 EDT 2025
Tue Jul 01 03:33:15 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Thu Apr 03 09:45:37 EDT 2025
Fri Feb 23 02:32:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c600t-fc465cad6d9869f5adf89bf9f66a8a258d317c5de3e621580c3879d18ede35e63
Notes http://dx.doi.org/10.1016/j.bpj.2011.03.066
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0006349511005182
PMID 21641308
PQID 872174125
PQPubID 7454
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3117156
proquest_miscellaneous_870547486
proquest_miscellaneous_1678540665
proquest_journals_872174125
pubmed_primary_21641308
crossref_citationtrail_10_1016_j_bpj_2011_03_066
crossref_primary_10_1016_j_bpj_2011_03_066
fao_agris_US201500111816
elsevier_sciencedirect_doi_10_1016_j_bpj_2011_03_066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06-08
PublicationDateYYYYMMDD 2011-06-08
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Biophysical journal
PublicationTitleAlternate Biophys J
PublicationYear 2011
Publisher Elsevier Inc
Biophysical Society
The Biophysical Society
Publisher_xml – name: Elsevier Inc
– name: Biophysical Society
– name: The Biophysical Society
References Sternin, Bloom, Mackay (bib38) 1983; 55
McCabe, Wassall (bib39) 1997; 10
Hyslop, Morel, Sauerheber (bib48) 1990; 29
Halling, Ramstedt, Nyholm (bib8) 2008; 95
Davis (bib35) 1983; 737
Zhang, Lu, Berkowitz (bib68) 2008; 112
Hunter, Squier (bib58) 1998; 1415
Ramstedt, Slotte (bib11) 1999; 76
Fischer, Stephenson, Schroeder (bib30) 1984; 36
Reference deleted in proof.
Schmidt, Barenholz, Thompson (bib66) 1977; 16
Huang, Li (bib36) 1999; 1422
Niu, Litman (bib45) 2002; 83
Brzustowicz, Cherezov, Wassall (bib46) 2002; 82
Huang, Feigenson (bib64) 1999; 76
McMullen, Lewis, McElhaney (bib25) 1993; 32
McIntosh, Simon, Huang (bib56) 1992; 31
Cohen, Barenholz, Dagan (bib28) 1984; 35
Tsamaloukas, Szadkowska, Heerklotz (bib43) 2006; 90
Wassall, Brzustowicz, Stillwell (bib47) 2004; 132
Barenholz, Thompson (bib13) 1980; 604
Petrache, Dodd, Brown (bib41) 2000; 79
Björkbom, Ohvo-Rekilä, Slotte (bib57) 2010; 1798
Malcolm, Ross, Higinbotham (bib65) 2005; 27
Bennett, MacCallum, Tieleman (bib18) 2009; 131
Stockton, Smith (bib62) 1976; 17
Blom, Koivusalo, Ikonen (bib55) 2001; 40
Schroeder, Nemecz, Thompson (bib49) 1988; 32
Pebay-Peyroula, Dufourc, Szabo (bib42) 1994; 53
Haines (bib4) 2001; 40
Aittoniemi, Niemelä, Vattulainen (bib16) 2007; 92
Cooper (bib5) 1978; 8
Boggs (bib14) 1987; 906
Niemelä, Hyvönen, Vattulainen (bib26) 2004; 87
Ohvo-Rekilä, Akerlund, Slotte (bib31) 2000; 105
Lentz (bib60) 1993; 64
Koynova, Caffrey (bib37) 1998; 1376
Mattjus, Slotte (bib22) 1996; 81
Yeagle, Albert, Frye (bib2) 1990; 57
Nyholm, Grandell, Slotte (bib34) 2010; 1798
Mehnert, Jacob, Beyer (bib27) 2006; 90
Róg, Vattulainen, Karttunen (bib51) 2008; 129
Huang, Buboltz, Feigenson (bib44) 1999; 1417
Heyn (bib63) 1979; 108
Yeagle (bib1) 1985; 822
Scheidt, Muller, Huster (bib53) 2003; 278
Björkbom, Róg, Slotte (bib20) 2010; 99
Mitchell, Litman (bib61) 1998; 74
Ohvo-Rekilä, Ramstedt, Slotte (bib3) 2002; 41
Lakowicz (bib33) 1999
Ramstedt, Slotte (bib24) 1999; 77
Jaikishan, Björkbom, Slotte (bib32) 2010; 1798
Wolf, Koumanov, Quinn (bib6) 2001; 89
Björkqvist, Nyholm, Ramstedt (bib21) 2005; 88
Siminovitch, Jeffrey (bib67) 1981; 645
van Duyl, Ganchev, Killian (bib12) 2003; 547
Rouser, Fleischer, Yamamoto (bib29) 1970; 5
Simons, Vaz (bib7) 2004; 33
Kucerka, Marquardt, Katsaras (bib17) 2010; 49
Jaikishan, Björkbom, Slotte (bib59) 2010; 1798
Nyström, Lönnfors, Nyholm (bib19) 2010; 99
Maulik, Shipley (bib23) 1996; 35
Krajewski-Bertrand, Milon, Ourisson (bib40) 1992; 1105
Guo, Kurze, Hamilton (bib15) 2002; 83
Bunge, Müller, Huster (bib9) 2008; 94
Valsecchi, Mauri, Sonnino (bib54) 2007; 48
Barenholz (bib10) 1984
Slotte (bib50) 1992; 42
Haines (10.1016/j.bpj.2011.03.066_bib4) 2001; 40
Siminovitch (10.1016/j.bpj.2011.03.066_bib67) 1981; 645
Rouser (10.1016/j.bpj.2011.03.066_bib29) 1970; 5
Bunge (10.1016/j.bpj.2011.03.066_bib9) 2008; 94
Guo (10.1016/j.bpj.2011.03.066_bib15) 2002; 83
Valsecchi (10.1016/j.bpj.2011.03.066_bib54) 2007; 48
Barenholz (10.1016/j.bpj.2011.03.066_bib13) 1980; 604
10.1016/j.bpj.2011.03.066_bib52
Mitchell (10.1016/j.bpj.2011.03.066_bib61) 1998; 74
Maulik (10.1016/j.bpj.2011.03.066_bib23) 1996; 35
Jaikishan (10.1016/j.bpj.2011.03.066_bib32) 2010; 1798
Halling (10.1016/j.bpj.2011.03.066_bib8) 2008; 95
Hunter (10.1016/j.bpj.2011.03.066_bib58) 1998; 1415
Fischer (10.1016/j.bpj.2011.03.066_bib30) 1984; 36
Schroeder (10.1016/j.bpj.2011.03.066_bib49) 1988; 32
McMullen (10.1016/j.bpj.2011.03.066_bib25) 1993; 32
Heyn (10.1016/j.bpj.2011.03.066_bib63) 1979; 108
Tsamaloukas (10.1016/j.bpj.2011.03.066_bib43) 2006; 90
Wolf (10.1016/j.bpj.2011.03.066_bib6) 2001; 89
Slotte (10.1016/j.bpj.2011.03.066_bib50) 1992; 42
Simons (10.1016/j.bpj.2011.03.066_bib7) 2004; 33
Ramstedt (10.1016/j.bpj.2011.03.066_bib11) 1999; 76
Róg (10.1016/j.bpj.2011.03.066_bib51) 2008; 129
Stockton (10.1016/j.bpj.2011.03.066_bib62) 1976; 17
Ramstedt (10.1016/j.bpj.2011.03.066_bib24) 1999; 77
Koynova (10.1016/j.bpj.2011.03.066_bib37) 1998; 1376
Lentz (10.1016/j.bpj.2011.03.066_bib60) 1993; 64
Aittoniemi (10.1016/j.bpj.2011.03.066_bib16) 2007; 92
Niu (10.1016/j.bpj.2011.03.066_bib45) 2002; 83
Nyström (10.1016/j.bpj.2011.03.066_bib19) 2010; 99
Björkbom (10.1016/j.bpj.2011.03.066_bib57) 2010; 1798
Brzustowicz (10.1016/j.bpj.2011.03.066_bib46) 2002; 82
Bennett (10.1016/j.bpj.2011.03.066_bib18) 2009; 131
Nyholm (10.1016/j.bpj.2011.03.066_bib34) 2010; 1798
Yeagle (10.1016/j.bpj.2011.03.066_bib2) 1990; 57
Mattjus (10.1016/j.bpj.2011.03.066_bib22) 1996; 81
Huang (10.1016/j.bpj.2011.03.066_bib44) 1999; 1417
Krajewski-Bertrand (10.1016/j.bpj.2011.03.066_bib40) 1992; 1105
Sternin (10.1016/j.bpj.2011.03.066_bib38) 1983; 55
van Duyl (10.1016/j.bpj.2011.03.066_bib12) 2003; 547
Kucerka (10.1016/j.bpj.2011.03.066_bib17) 2010; 49
Ohvo-Rekilä (10.1016/j.bpj.2011.03.066_bib3) 2002; 41
Mehnert (10.1016/j.bpj.2011.03.066_bib27) 2006; 90
Wassall (10.1016/j.bpj.2011.03.066_bib47) 2004; 132
Huang (10.1016/j.bpj.2011.03.066_bib64) 1999; 76
Huang (10.1016/j.bpj.2011.03.066_bib36) 1999; 1422
Boggs (10.1016/j.bpj.2011.03.066_bib14) 1987; 906
Ohvo-Rekilä (10.1016/j.bpj.2011.03.066_bib31) 2000; 105
Hyslop (10.1016/j.bpj.2011.03.066_bib48) 1990; 29
Petrache (10.1016/j.bpj.2011.03.066_bib41) 2000; 79
Jaikishan (10.1016/j.bpj.2011.03.066_bib59) 2010; 1798
Zhang (10.1016/j.bpj.2011.03.066_bib68) 2008; 112
Cooper (10.1016/j.bpj.2011.03.066_bib5) 1978; 8
Pebay-Peyroula (10.1016/j.bpj.2011.03.066_bib42) 1994; 53
McIntosh (10.1016/j.bpj.2011.03.066_bib56) 1992; 31
Lakowicz (10.1016/j.bpj.2011.03.066_bib33) 1999
Niemelä (10.1016/j.bpj.2011.03.066_bib26) 2004; 87
Malcolm (10.1016/j.bpj.2011.03.066_bib65) 2005; 27
Yeagle (10.1016/j.bpj.2011.03.066_bib1) 1985; 822
Barenholz (10.1016/j.bpj.2011.03.066_bib10) 1984
Björkqvist (10.1016/j.bpj.2011.03.066_bib21) 2005; 88
Cohen (10.1016/j.bpj.2011.03.066_bib28) 1984; 35
Scheidt (10.1016/j.bpj.2011.03.066_bib53) 2003; 278
Davis (10.1016/j.bpj.2011.03.066_bib35) 1983; 737
McCabe (10.1016/j.bpj.2011.03.066_bib39) 1997; 10
Schmidt (10.1016/j.bpj.2011.03.066_bib66) 1977; 16
Björkbom (10.1016/j.bpj.2011.03.066_bib20) 2010; 99
Blom (10.1016/j.bpj.2011.03.066_bib55) 2001; 40
8242843 - Chem Phys Lipids. 1993 Sep;64(1-3):99-116
18307337 - J Phys Chem B. 2008 Mar 27;112(12):3807-11
9450320 - Chem Phys Lipids. 1996 Jun 17;81(1):69-80
11724577 - Biochemistry. 2001 Dec 4;40(48):14635-44
7841331 - Biophys Chem. 1994 Dec;53(1-2):45-56
19045210 - J Chem Phys. 2008 Oct 21;129(15):154508
8422361 - Biochemistry. 1993 Jan 19;32(2):516-22
10548720 - Biochim Biophys Acta. 1999 Nov 16;1422(3):273-307
15792981 - Biophys J. 2005 Jun;88(6):4054-63
520575 - FEBS Lett. 1979 Dec 15;108(2):359-64
3233314 - Biophys Chem. 1988 Oct;32(1):57-72
9472792 - Solid State Nucl Magn Reson. 1997 Dec;10(1-2):53-61
20669961 - Biochemistry. 2010 Sep 7;49(35):7485-93
12860394 - FEBS Lett. 2003 Jul 17;547(1-3):101-6
7000188 - Biochim Biophys Acta. 1980 Sep 30;604(2):129-58
10076038 - Biochim Biophys Acta. 1999 Feb 4;1417(1):89-100
11751316 - Biophys J. 2002 Jan;82(1 Pt 1):285-98
17093290 - J Lipid Res. 2007 Feb;48(2):417-24
12202372 - Biophys J. 2002 Sep;83(3):1465-78
19913494 - Biochim Biophys Acta. 2010 Mar;1798(3):453-60
1033045 - Chem Phys Lipids. 1976 Oct;17(2-3 SPEC NO):251-63
10096908 - Biophys J. 1999 Apr;76(4):2142-57
11412894 - Prog Lipid Res. 2001 Jul;40(4):299-324
18641061 - Biophys J. 2008 Oct;95(8):3861-71
2160270 - Biochemistry. 1990 Jan 30;29(4):1025-38
12496107 - Biophys J. 2002 Dec;83(6):3408-15
9533699 - Biophys J. 1998 Feb;74(2 Pt 1):879-91
20044977 - Biochim Biophys Acta. 2010 May;1798(5):1008-13
1586660 - Biochim Biophys Acta. 1992 Apr 13;1105(2):213-20
2306492 - Biophys J. 1990 Mar;57(3):413-24
5483450 - Lipids. 1970 May;5(5):494-6
3307919 - Biochim Biophys Acta. 1987 Oct 5;906(3):353-404
15315947 - Biophys J. 2004 Nov;87(5):2976-89
1616882 - J Steroid Biochem Mol Biol. 1992 Jun;42(5):521-6
8672507 - Biochemistry. 1996 Jun 18;35(24):8025-34
21081078 - Biophys J. 2010 Nov 17;99(10):3300-8
3904832 - Biochim Biophys Acta. 1985 Dec 9;822(3-4):267-87
6337629 - Biochim Biophys Acta. 1983 Mar 21;737(1):117-71
15799883 - Solid State Nucl Magn Reson. 2005 Jun;27(4):247-56
9858687 - Biochim Biophys Acta. 1998 Dec 9;1415(1):63-76
11254209 - Biophys Chem. 2001 Feb 15;89(2-3):163-72
6518610 - Chem Phys Lipids. 1984 Nov;36(1):1-14
723275 - J Supramol Struct. 1978;8(4):413-30
20359462 - Biochim Biophys Acta. 2010 Aug;1798(8):1615-22
15530450 - Chem Phys Lipids. 2004 Nov;132(1):79-88
19673519 - J Am Chem Soc. 2009 Sep 9;131(35):12714-20
20643071 - Biophys J. 2010 Jul 21;99(2):526-33
12947110 - J Biol Chem. 2003 Nov 14;278(46):45563-9
11106622 - Biophys J. 2000 Dec;79(6):3172-92
16284259 - Biophys J. 2006 Feb 1;90(3):939-46
9666088 - Biochim Biophys Acta. 1998 Jun 29;1376(1):91-145
6499099 - Chem Phys Lipids. 1984 Oct;35(4):371-84
9929492 - Biophys J. 1999 Feb;76(2):908-15
889781 - Biochemistry. 1977 Jun 14;16(12):2649-56
11694269 - Prog Lipid Res. 2002 Jan;41(1):66-97
17114220 - Biophys J. 2007 Feb 15;92(4):1125-37
10465760 - Biophys J. 1999 Sep;77(3):1498-506
16581844 - Biophys J. 2006 Jun 15;90(12):4479-87
18178660 - Biophys J. 2008 Apr 1;94(7):2680-90
6895037 - Biochim Biophys Acta. 1981 Jul 20;645(2):270-8
1536844 - Biochemistry. 1992 Feb 25;31(7):2012-20
10823464 - Chem Phys Lipids. 2000 Apr;105(2):167-78
20637720 - Biochim Biophys Acta. 2010 Oct;1798(10):1987-94
15139814 - Annu Rev Biophys Biomol Struct. 2004;33:269-95
References_xml – volume: 31
  start-page: 2012
  year: 1992
  end-page: 2020
  ident: bib56
  article-title: Structure and cohesive properties of sphingomyelin/cholesterol bilayers
  publication-title: Biochemistry
– volume: 81
  start-page: 69
  year: 1996
  end-page: 80
  ident: bib22
  article-title: Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids?
  publication-title: Chem. Phys. Lipids
– volume: 40
  start-page: 299
  year: 2001
  end-page: 324
  ident: bib4
  article-title: Do sterols reduce proton and sodium leaks through lipid bilayers?
  publication-title: Prog. Lipid Res.
– volume: 822
  start-page: 267
  year: 1985
  end-page: 287
  ident: bib1
  article-title: Cholesterol and the cell membrane
  publication-title: Biochim. Biophys. Acta
– volume: 1798
  start-page: 453
  year: 2010
  end-page: 460
  ident: bib57
  article-title: Characterization of membrane properties of inositol phosphorylceramide
  publication-title: Biochim. Biophys. Acta
– volume: 1105
  start-page: 213
  year: 1992
  end-page: 220
  ident: bib40
  article-title: The interaction of various cholesterol ‘ancestors’ with lipid membranes: a
  publication-title: Biochim. Biophys. Acta
– volume: 278
  start-page: 45563
  year: 2003
  end-page: 45569
  ident: bib53
  article-title: The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol
  publication-title: J. Biol. Chem.
– volume: 131
  start-page: 12714
  year: 2009
  end-page: 12720
  ident: bib18
  article-title: Molecular view of cholesterol flip-flop and chemical potential in different membrane environments
  publication-title: J. Am. Chem. Soc.
– volume: 64
  start-page: 99
  year: 1993
  end-page: 116
  ident: bib60
  article-title: Use of fluorescent probes to monitor molecular order and motions within liposome bilayers
  publication-title: Chem. Phys. Lipids
– volume: 90
  start-page: 939
  year: 2006
  end-page: 946
  ident: bib27
  article-title: Structure and lipid interaction of N-palmitoylsphingomyelin in bilayer membranes as revealed by
  publication-title: Biophys. J.
– volume: 32
  start-page: 516
  year: 1993
  end-page: 522
  ident: bib25
  article-title: Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines
  publication-title: Biochemistry
– volume: 27
  start-page: 247
  year: 2005
  end-page: 256
  ident: bib65
  article-title: A study of the headgroup motion of sphingomyelin using
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 99
  start-page: 3300
  year: 2010
  end-page: 3308
  ident: bib20
  article-title: Effect of sphingomyelin headgroup size on molecular properties and interactions with cholesterol
  publication-title: Biophys. J.
– volume: 48
  start-page: 417
  year: 2007
  end-page: 424
  ident: bib54
  article-title: Ceramide and sphingomyelin species of fibroblasts and neurons in culture
  publication-title: J. Lipid Res.
– volume: 112
  start-page: 3807
  year: 2008
  end-page: 3811
  ident: bib68
  article-title: Energetics of cholesterol transfer between lipid bilayers
  publication-title: J. Phys. Chem. B
– volume: 5
  start-page: 494
  year: 1970
  end-page: 496
  ident: bib29
  article-title: Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots
  publication-title: Lipids
– volume: 1798
  start-page: 1615
  year: 2010
  end-page: 1622
  ident: bib59
  article-title: Phosphatidyl alcohols: effect of head group size on domain forming properties and interactions with sterols
  publication-title: Biochim. Biophys. Acta
– volume: 8
  start-page: 413
  year: 1978
  end-page: 430
  ident: bib5
  article-title: Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells
  publication-title: J. Supramol. Struct.
– volume: 17
  start-page: 251
  year: 1976
  end-page: 263
  ident: bib62
  article-title: A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. I. Perdeuterated fatty acid probes
  publication-title: Chem. Phys. Lipids
– volume: 49
  start-page: 7485
  year: 2010
  end-page: 7493
  ident: bib17
  article-title: Cholesterol in bilayers with PUFA chains: doping with DMPC or POPC results in sterol reorientation and membrane-domain formation
  publication-title: Biochemistry
– volume: 55
  start-page: 274
  year: 1983
  end-page: 282
  ident: bib38
  article-title: De-Pake-ing of NMR spectra
  publication-title: J. Magn. Reson.
– volume: 1415
  start-page: 63
  year: 1998
  end-page: 76
  ident: bib58
  article-title: Phospholipid acyl-chain rotational dynamics are independent of headgroup structure in unilamellar vesicles containing binary mixtures of dioleoyl-phosphatidylcholine and dioleoyl-phosphatidylethanolamine
  publication-title: Biochim. Biophys. Acta
– reference: Reference deleted in proof.
– volume: 35
  start-page: 8025
  year: 1996
  end-page: 8034
  ident: bib23
  article-title: N-palmitoyl sphingomyelin bilayers: structure and interactions with cholesterol and dipalmitoylphosphatidylcholine
  publication-title: Biochemistry
– year: 1999
  ident: bib33
  article-title: Principles of Fluorescence Spectroscopy
– volume: 36
  start-page: 1
  year: 1984
  end-page: 14
  ident: bib30
  article-title: 5,7,9(11)-Cholestatrien-3
  publication-title: Chem. Phys. Lipids
– volume: 129
  start-page: 154508
  year: 2008
  ident: bib51
  article-title: Comparison of cholesterol and its direct precursors along the biosynthetic pathway: effects of cholesterol, desmosterol and 7-dehydrocholesterol on saturated and unsaturated lipid bilayers
  publication-title: J. Chem. Phys.
– volume: 83
  start-page: 3408
  year: 2002
  end-page: 3415
  ident: bib45
  article-title: Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl-chain unsaturation and headgroup composition
  publication-title: Biophys. J.
– volume: 89
  start-page: 163
  year: 2001
  end-page: 172
  ident: bib6
  article-title: Cholesterol favors phase separation of sphingomyelin
  publication-title: Biophys. Chem.
– volume: 99
  start-page: 526
  year: 2010
  end-page: 533
  ident: bib19
  article-title: Transmembrane peptides influence the affinity of sterols for phospholipid bilayers
  publication-title: Biophys. J.
– volume: 906
  start-page: 353
  year: 1987
  end-page: 404
  ident: bib14
  article-title: Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function
  publication-title: Biochim. Biophys. Acta
– volume: 87
  start-page: 2976
  year: 2004
  end-page: 2989
  ident: bib26
  article-title: Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine
  publication-title: Biophys. J.
– volume: 1417
  start-page: 89
  year: 1999
  end-page: 100
  ident: bib44
  article-title: Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers
  publication-title: Biochim. Biophys. Acta
– volume: 77
  start-page: 1498
  year: 1999
  end-page: 1506
  ident: bib24
  article-title: Comparison of the biophysical properties of racemic and d-erythro-N-acyl sphingomyelins
  publication-title: Biophys. J.
– volume: 74
  start-page: 879
  year: 1998
  end-page: 891
  ident: bib61
  article-title: Molecular order and dynamics in bilayers consisting of highly polyunsaturated phospholipids
  publication-title: Biophys. J.
– volume: 42
  start-page: 521
  year: 1992
  end-page: 526
  ident: bib50
  article-title: Substrate specificity of cholesterol oxidase from
  publication-title: J. Steroid Biochem. Mol. Biol.
– volume: 33
  start-page: 269
  year: 2004
  end-page: 295
  ident: bib7
  article-title: Model systems, lipid rafts, and cell membranes
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
– volume: 76
  start-page: 908
  year: 1999
  end-page: 915
  ident: bib11
  article-title: Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length
  publication-title: Biophys. J.
– volume: 1422
  start-page: 273
  year: 1999
  end-page: 307
  ident: bib36
  article-title: Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids
  publication-title: Biochim. Biophys. Acta
– volume: 92
  start-page: 1125
  year: 2007
  end-page: 1137
  ident: bib16
  article-title: Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine
  publication-title: Biophys. J.
– volume: 35
  start-page: 371
  year: 1984
  end-page: 384
  ident: bib28
  article-title: Preparation and characterization of well defined d-erythro sphingomyelins
  publication-title: Chem. Phys. Lipids
– volume: 29
  start-page: 1025
  year: 1990
  end-page: 1038
  ident: bib48
  article-title: Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes
  publication-title: Biochemistry
– start-page: 131
  year: 1984
  end-page: 174
  ident: bib10
  article-title: Sphingomyelin-lecithin balance in membranes: composition, structure, and function relationships
  publication-title: Physiology of Membrane Fluidity
– volume: 604
  start-page: 129
  year: 1980
  end-page: 158
  ident: bib13
  article-title: Sphingomyelins in bilayers and biological membranes
  publication-title: Biochim. Biophys. Acta
– volume: 53
  start-page: 45
  year: 1994
  end-page: 56
  ident: bib42
  article-title: Location of diphenyl-hexatriene and trimethylammonium-diphenyl-hexatriene in dipalmitoylphosphatidylcholine bilayers by neutron diffraction
  publication-title: Biophys. Chem.
– volume: 82
  start-page: 285
  year: 2002
  end-page: 298
  ident: bib46
  article-title: Molecular organization of cholesterol in polyunsaturated membranes: microdomain formation
  publication-title: Biophys. J.
– volume: 94
  start-page: 2680
  year: 2008
  end-page: 2690
  ident: bib9
  article-title: Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures
  publication-title: Biophys. J.
– volume: 88
  start-page: 4054
  year: 2005
  end-page: 4063
  ident: bib21
  article-title: Domain formation and stability in complex lipid bilayers as reported by cholestatrienol
  publication-title: Biophys. J.
– volume: 1798
  start-page: 1008
  year: 2010
  end-page: 1013
  ident: bib34
  article-title: Sterol affinity for bilayer membranes is affected by their ceramide content and the ceramide chain length
  publication-title: Biochim. Biophys. Acta
– volume: 90
  start-page: 4479
  year: 2006
  end-page: 4487
  ident: bib43
  article-title: Thermodynamic comparison of the interactions of cholesterol with unsaturated phospholipid and sphingomyelins
  publication-title: Biophys. J.
– volume: 10
  start-page: 53
  year: 1997
  end-page: 61
  ident: bib39
  article-title: Rapid deconvolution of NMR powder spectra by weighted fast Fourier transformation
  publication-title: Solid State Nucl. Magn. Reson.
– volume: 645
  start-page: 270
  year: 1981
  end-page: 278
  ident: bib67
  article-title: Orientational order in the choline headgroup of sphingomyelin: a
  publication-title: Biochim. Biophys. Acta
– volume: 547
  start-page: 101
  year: 2003
  end-page: 106
  ident: bib12
  article-title: Sphingomyelin is much more effective than saturated phosphatidylcholine in excluding unsaturated phosphatidylcholine from domains formed with cholesterol
  publication-title: FEBS Lett.
– volume: 57
  start-page: 413
  year: 1990
  end-page: 424
  ident: bib2
  article-title: Cholesterol dynamics in membranes
  publication-title: Biophys. J.
– volume: 83
  start-page: 1465
  year: 2002
  end-page: 1478
  ident: bib15
  article-title: A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems
  publication-title: Biophys. J.
– volume: 1376
  start-page: 91
  year: 1998
  end-page: 145
  ident: bib37
  article-title: Phases and phase transitions of the phosphatidylcholines
  publication-title: Biochim. Biophys. Acta
– volume: 95
  start-page: 3861
  year: 2008
  end-page: 3871
  ident: bib8
  article-title: Cholesterol interactions with fluid-phase phospholipids: effect on the lateral organization of the bilayer
  publication-title: Biophys. J.
– volume: 132
  start-page: 79
  year: 2004
  end-page: 88
  ident: bib47
  article-title: Order from disorder, corralling cholesterol with chaotic lipids. The role of polyunsaturated lipids in membrane raft formation
  publication-title: Chem. Phys. Lipids
– volume: 32
  start-page: 57
  year: 1988
  end-page: 72
  ident: bib49
  article-title: Fluorescence properties of cholestatrienol in phosphatidylcholine bilayer vesicles
  publication-title: Biophys. Chem.
– volume: 108
  start-page: 359
  year: 1979
  end-page: 364
  ident: bib63
  article-title: Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments
  publication-title: FEBS Lett.
– volume: 76
  start-page: 2142
  year: 1999
  end-page: 2157
  ident: bib64
  article-title: A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers
  publication-title: Biophys. J.
– volume: 737
  start-page: 117
  year: 1983
  end-page: 171
  ident: bib35
  article-title: The description of membrane lipid conformation, order and dynamics by
  publication-title: Biochim. Biophys. Acta
– volume: 1798
  start-page: 1987
  year: 2010
  end-page: 1994
  ident: bib32
  article-title: Sphingomyelin analogs with branched N-acyl-chains: the position of branching dramatically affects acyl-chain order and sterol interactions in bilayer membranes
  publication-title: Biochim. Biophys. Acta
– volume: 41
  start-page: 66
  year: 2002
  end-page: 97
  ident: bib3
  article-title: Cholesterol interactions with phospholipids in membranes
  publication-title: Prog. Lipid Res.
– volume: 105
  start-page: 167
  year: 2000
  end-page: 178
  ident: bib31
  article-title: Cyclodextrin-catalyzed extraction of fluorescent sterols from monolayer membranes and small unilamellar vesicles
  publication-title: Chem. Phys. Lipids
– volume: 40
  start-page: 14635
  year: 2001
  end-page: 14644
  ident: bib55
  article-title: Mass spectrometric analysis reveals an increase in plasma membrane polyunsaturated phospholipid species upon cellular cholesterol loading
  publication-title: Biochemistry
– volume: 79
  start-page: 3172
  year: 2000
  end-page: 3192
  ident: bib41
  article-title: Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by
  publication-title: Biophys. J.
– volume: 16
  start-page: 2649
  year: 1977
  end-page: 2656
  ident: bib66
  article-title: A nuclear magnetic resonance study of sphingomyelin in bilayer systems
  publication-title: Biochemistry
– volume: 35
  start-page: 8025
  year: 1996
  ident: 10.1016/j.bpj.2011.03.066_bib23
  article-title: N-palmitoyl sphingomyelin bilayers: structure and interactions with cholesterol and dipalmitoylphosphatidylcholine
  publication-title: Biochemistry
  doi: 10.1021/bi9528356
– volume: 36
  start-page: 1
  year: 1984
  ident: 10.1016/j.bpj.2011.03.066_bib30
  article-title: δ5,7,9(11)-Cholestatrien-3 β-ol: a fluorescent cholesterol analogue
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/0009-3084(84)90086-0
– volume: 88
  start-page: 4054
  year: 2005
  ident: 10.1016/j.bpj.2011.03.066_bib21
  article-title: Domain formation and stability in complex lipid bilayers as reported by cholestatrienol
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.054718
– volume: 55
  start-page: 274
  year: 1983
  ident: 10.1016/j.bpj.2011.03.066_bib38
  article-title: De-Pake-ing of NMR spectra
  publication-title: J. Magn. Reson.
– volume: 35
  start-page: 371
  year: 1984
  ident: 10.1016/j.bpj.2011.03.066_bib28
  article-title: Preparation and characterization of well defined d-erythro sphingomyelins
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/0009-3084(84)90079-3
– volume: 32
  start-page: 516
  year: 1993
  ident: 10.1016/j.bpj.2011.03.066_bib25
  article-title: Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines
  publication-title: Biochemistry
  doi: 10.1021/bi00053a016
– volume: 76
  start-page: 2142
  year: 1999
  ident: 10.1016/j.bpj.2011.03.066_bib64
  article-title: A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77369-8
– volume: 29
  start-page: 1025
  year: 1990
  ident: 10.1016/j.bpj.2011.03.066_bib48
  article-title: Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes
  publication-title: Biochemistry
  doi: 10.1021/bi00456a027
– volume: 10
  start-page: 53
  year: 1997
  ident: 10.1016/j.bpj.2011.03.066_bib39
  article-title: Rapid deconvolution of NMR powder spectra by weighted fast Fourier transformation
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/S0926-2040(97)00024-6
– volume: 94
  start-page: 2680
  year: 2008
  ident: 10.1016/j.bpj.2011.03.066_bib9
  article-title: Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.107.112904
– volume: 1415
  start-page: 63
  year: 1998
  ident: 10.1016/j.bpj.2011.03.066_bib58
  article-title: Phospholipid acyl-chain rotational dynamics are independent of headgroup structure in unilamellar vesicles containing binary mixtures of dioleoyl-phosphatidylcholine and dioleoyl-phosphatidylethanolamine
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(98)00178-3
– volume: 132
  start-page: 79
  year: 2004
  ident: 10.1016/j.bpj.2011.03.066_bib47
  article-title: Order from disorder, corralling cholesterol with chaotic lipids. The role of polyunsaturated lipids in membrane raft formation
  publication-title: Chem. Phys. Lipids
– volume: 42
  start-page: 521
  year: 1992
  ident: 10.1016/j.bpj.2011.03.066_bib50
  article-title: Substrate specificity of cholesterol oxidase from Streptomyces cinnamomeus—a monolayer study
  publication-title: J. Steroid Biochem. Mol. Biol.
  doi: 10.1016/0960-0760(92)90265-K
– volume: 83
  start-page: 3408
  year: 2002
  ident: 10.1016/j.bpj.2011.03.066_bib45
  article-title: Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl-chain unsaturation and headgroup composition
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(02)75340-X
– volume: 77
  start-page: 1498
  year: 1999
  ident: 10.1016/j.bpj.2011.03.066_bib24
  article-title: Comparison of the biophysical properties of racemic and d-erythro-N-acyl sphingomyelins
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)76997-3
– volume: 87
  start-page: 2976
  year: 2004
  ident: 10.1016/j.bpj.2011.03.066_bib26
  article-title: Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.104.048702
– volume: 1105
  start-page: 213
  year: 1992
  ident: 10.1016/j.bpj.2011.03.066_bib40
  article-title: The interaction of various cholesterol ‘ancestors’ with lipid membranes: a 2H-NMR study on oriented bilayers
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(92)90197-T
– volume: 31
  start-page: 2012
  year: 1992
  ident: 10.1016/j.bpj.2011.03.066_bib56
  article-title: Structure and cohesive properties of sphingomyelin/cholesterol bilayers
  publication-title: Biochemistry
  doi: 10.1021/bi00122a017
– volume: 131
  start-page: 12714
  year: 2009
  ident: 10.1016/j.bpj.2011.03.066_bib18
  article-title: Molecular view of cholesterol flip-flop and chemical potential in different membrane environments
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903529f
– volume: 1798
  start-page: 453
  year: 2010
  ident: 10.1016/j.bpj.2011.03.066_bib57
  article-title: Characterization of membrane properties of inositol phosphorylceramide
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2009.11.003
– volume: 108
  start-page: 359
  year: 1979
  ident: 10.1016/j.bpj.2011.03.066_bib63
  article-title: Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(79)80564-5
– volume: 17
  start-page: 251
  year: 1976
  ident: 10.1016/j.bpj.2011.03.066_bib62
  article-title: A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. I. Perdeuterated fatty acid probes
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/0009-3084(76)90070-0
– year: 1999
  ident: 10.1016/j.bpj.2011.03.066_bib33
– volume: 8
  start-page: 413
  year: 1978
  ident: 10.1016/j.bpj.2011.03.066_bib5
  article-title: Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells
  publication-title: J. Supramol. Struct.
  doi: 10.1002/jss.400080404
– volume: 547
  start-page: 101
  year: 2003
  ident: 10.1016/j.bpj.2011.03.066_bib12
  article-title: Sphingomyelin is much more effective than saturated phosphatidylcholine in excluding unsaturated phosphatidylcholine from domains formed with cholesterol
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(03)00678-1
– volume: 906
  start-page: 353
  year: 1987
  ident: 10.1016/j.bpj.2011.03.066_bib14
  article-title: Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4157(87)90017-7
– volume: 1798
  start-page: 1987
  year: 2010
  ident: 10.1016/j.bpj.2011.03.066_bib32
  article-title: Sphingomyelin analogs with branched N-acyl-chains: the position of branching dramatically affects acyl-chain order and sterol interactions in bilayer membranes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2010.07.006
– volume: 99
  start-page: 526
  year: 2010
  ident: 10.1016/j.bpj.2011.03.066_bib19
  article-title: Transmembrane peptides influence the affinity of sterols for phospholipid bilayers
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.04.052
– volume: 129
  start-page: 154508
  year: 2008
  ident: 10.1016/j.bpj.2011.03.066_bib51
  article-title: Comparison of cholesterol and its direct precursors along the biosynthetic pathway: effects of cholesterol, desmosterol and 7-dehydrocholesterol on saturated and unsaturated lipid bilayers
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2996296
– volume: 53
  start-page: 45
  year: 1994
  ident: 10.1016/j.bpj.2011.03.066_bib42
  article-title: Location of diphenyl-hexatriene and trimethylammonium-diphenyl-hexatriene in dipalmitoylphosphatidylcholine bilayers by neutron diffraction
  publication-title: Biophys. Chem.
  doi: 10.1016/0301-4622(94)00075-1
– volume: 57
  start-page: 413
  year: 1990
  ident: 10.1016/j.bpj.2011.03.066_bib2
  article-title: Cholesterol dynamics in membranes
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(90)82558-3
– volume: 64
  start-page: 99
  year: 1993
  ident: 10.1016/j.bpj.2011.03.066_bib60
  article-title: Use of fluorescent probes to monitor molecular order and motions within liposome bilayers
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/0009-3084(93)90060-G
– volume: 74
  start-page: 879
  year: 1998
  ident: 10.1016/j.bpj.2011.03.066_bib61
  article-title: Molecular order and dynamics in bilayers consisting of highly polyunsaturated phospholipids
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(98)74011-1
– volume: 1417
  start-page: 89
  year: 1999
  ident: 10.1016/j.bpj.2011.03.066_bib44
  article-title: Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(98)00260-0
– volume: 81
  start-page: 69
  year: 1996
  ident: 10.1016/j.bpj.2011.03.066_bib22
  article-title: Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids?
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/0009-3084(96)02535-2
– volume: 41
  start-page: 66
  year: 2002
  ident: 10.1016/j.bpj.2011.03.066_bib3
  article-title: Cholesterol interactions with phospholipids in membranes
  publication-title: Prog. Lipid Res.
  doi: 10.1016/S0163-7827(01)00020-0
– ident: 10.1016/j.bpj.2011.03.066_bib52
– volume: 40
  start-page: 299
  year: 2001
  ident: 10.1016/j.bpj.2011.03.066_bib4
  article-title: Do sterols reduce proton and sodium leaks through lipid bilayers?
  publication-title: Prog. Lipid Res.
  doi: 10.1016/S0163-7827(01)00009-1
– volume: 49
  start-page: 7485
  year: 2010
  ident: 10.1016/j.bpj.2011.03.066_bib17
  article-title: Cholesterol in bilayers with PUFA chains: doping with DMPC or POPC results in sterol reorientation and membrane-domain formation
  publication-title: Biochemistry
  doi: 10.1021/bi100891z
– volume: 33
  start-page: 269
  year: 2004
  ident: 10.1016/j.bpj.2011.03.066_bib7
  article-title: Model systems, lipid rafts, and cell membranes
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.32.110601.141803
– volume: 1798
  start-page: 1615
  year: 2010
  ident: 10.1016/j.bpj.2011.03.066_bib59
  article-title: Phosphatidyl alcohols: effect of head group size on domain forming properties and interactions with sterols
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2010.03.022
– volume: 16
  start-page: 2649
  year: 1977
  ident: 10.1016/j.bpj.2011.03.066_bib66
  article-title: A nuclear magnetic resonance study of sphingomyelin in bilayer systems
  publication-title: Biochemistry
  doi: 10.1021/bi00631a011
– volume: 27
  start-page: 247
  year: 2005
  ident: 10.1016/j.bpj.2011.03.066_bib65
  article-title: A study of the headgroup motion of sphingomyelin using 31P NMR and an analytically soluble model
  publication-title: Solid State Nucl. Magn. Reson.
  doi: 10.1016/j.ssnmr.2005.02.002
– volume: 79
  start-page: 3172
  year: 2000
  ident: 10.1016/j.bpj.2011.03.066_bib41
  article-title: Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(00)76551-9
– volume: 1798
  start-page: 1008
  year: 2010
  ident: 10.1016/j.bpj.2011.03.066_bib34
  article-title: Sterol affinity for bilayer membranes is affected by their ceramide content and the ceramide chain length
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamem.2009.12.025
– volume: 105
  start-page: 167
  year: 2000
  ident: 10.1016/j.bpj.2011.03.066_bib31
  article-title: Cyclodextrin-catalyzed extraction of fluorescent sterols from monolayer membranes and small unilamellar vesicles
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/S0009-3084(00)00122-5
– volume: 1422
  start-page: 273
  year: 1999
  ident: 10.1016/j.bpj.2011.03.066_bib36
  article-title: Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0005-2736(99)00099-1
– volume: 1376
  start-page: 91
  year: 1998
  ident: 10.1016/j.bpj.2011.03.066_bib37
  article-title: Phases and phase transitions of the phosphatidylcholines
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/S0304-4157(98)00006-9
– volume: 90
  start-page: 939
  year: 2006
  ident: 10.1016/j.bpj.2011.03.066_bib27
  article-title: Structure and lipid interaction of N-palmitoylsphingomyelin in bilayer membranes as revealed by 2H-NMR spectroscopy
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.063271
– volume: 89
  start-page: 163
  year: 2001
  ident: 10.1016/j.bpj.2011.03.066_bib6
  article-title: Cholesterol favors phase separation of sphingomyelin
  publication-title: Biophys. Chem.
  doi: 10.1016/S0301-4622(00)00226-X
– volume: 99
  start-page: 3300
  year: 2010
  ident: 10.1016/j.bpj.2011.03.066_bib20
  article-title: Effect of sphingomyelin headgroup size on molecular properties and interactions with cholesterol
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.09.049
– volume: 645
  start-page: 270
  year: 1981
  ident: 10.1016/j.bpj.2011.03.066_bib67
  article-title: Orientational order in the choline headgroup of sphingomyelin: a 14N-NMR study
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(81)90198-X
– volume: 112
  start-page: 3807
  year: 2008
  ident: 10.1016/j.bpj.2011.03.066_bib68
  article-title: Energetics of cholesterol transfer between lipid bilayers
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp077735b
– volume: 278
  start-page: 45563
  year: 2003
  ident: 10.1016/j.bpj.2011.03.066_bib53
  article-title: The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M303567200
– volume: 90
  start-page: 4479
  year: 2006
  ident: 10.1016/j.bpj.2011.03.066_bib43
  article-title: Thermodynamic comparison of the interactions of cholesterol with unsaturated phospholipid and sphingomyelins
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.080127
– volume: 5
  start-page: 494
  year: 1970
  ident: 10.1016/j.bpj.2011.03.066_bib29
  article-title: Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots
  publication-title: Lipids
  doi: 10.1007/BF02531316
– volume: 95
  start-page: 3861
  year: 2008
  ident: 10.1016/j.bpj.2011.03.066_bib8
  article-title: Cholesterol interactions with fluid-phase phospholipids: effect on the lateral organization of the bilayer
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.108.133744
– volume: 92
  start-page: 1125
  year: 2007
  ident: 10.1016/j.bpj.2011.03.066_bib16
  article-title: Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.088427
– volume: 76
  start-page: 908
  year: 1999
  ident: 10.1016/j.bpj.2011.03.066_bib11
  article-title: Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(99)77254-1
– volume: 737
  start-page: 117
  year: 1983
  ident: 10.1016/j.bpj.2011.03.066_bib35
  article-title: The description of membrane lipid conformation, order and dynamics by 2H-NMR
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4157(83)90015-1
– volume: 48
  start-page: 417
  year: 2007
  ident: 10.1016/j.bpj.2011.03.066_bib54
  article-title: Ceramide and sphingomyelin species of fibroblasts and neurons in culture
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M600344-JLR200
– volume: 83
  start-page: 1465
  year: 2002
  ident: 10.1016/j.bpj.2011.03.066_bib15
  article-title: A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(02)73917-9
– volume: 822
  start-page: 267
  year: 1985
  ident: 10.1016/j.bpj.2011.03.066_bib1
  article-title: Cholesterol and the cell membrane
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4157(85)90011-5
– start-page: 131
  year: 1984
  ident: 10.1016/j.bpj.2011.03.066_bib10
  article-title: Sphingomyelin-lecithin balance in membranes: composition, structure, and function relationships
– volume: 604
  start-page: 129
  year: 1980
  ident: 10.1016/j.bpj.2011.03.066_bib13
  article-title: Sphingomyelins in bilayers and biological membranes
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0304-4157(80)90006-4
– volume: 82
  start-page: 285
  year: 2002
  ident: 10.1016/j.bpj.2011.03.066_bib46
  article-title: Molecular organization of cholesterol in polyunsaturated membranes: microdomain formation
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(02)75394-0
– volume: 40
  start-page: 14635
  year: 2001
  ident: 10.1016/j.bpj.2011.03.066_bib55
  article-title: Mass spectrometric analysis reveals an increase in plasma membrane polyunsaturated phospholipid species upon cellular cholesterol loading
  publication-title: Biochemistry
  doi: 10.1021/bi0156714
– volume: 32
  start-page: 57
  year: 1988
  ident: 10.1016/j.bpj.2011.03.066_bib49
  article-title: Fluorescence properties of cholestatrienol in phosphatidylcholine bilayer vesicles
  publication-title: Biophys. Chem.
  doi: 10.1016/0301-4622(88)85034-8
– reference: 9472792 - Solid State Nucl Magn Reson. 1997 Dec;10(1-2):53-61
– reference: 15530450 - Chem Phys Lipids. 2004 Nov;132(1):79-88
– reference: 20044977 - Biochim Biophys Acta. 2010 May;1798(5):1008-13
– reference: 18307337 - J Phys Chem B. 2008 Mar 27;112(12):3807-11
– reference: 520575 - FEBS Lett. 1979 Dec 15;108(2):359-64
– reference: 1033045 - Chem Phys Lipids. 1976 Oct;17(2-3 SPEC NO):251-63
– reference: 10465760 - Biophys J. 1999 Sep;77(3):1498-506
– reference: 17114220 - Biophys J. 2007 Feb 15;92(4):1125-37
– reference: 15792981 - Biophys J. 2005 Jun;88(6):4054-63
– reference: 1536844 - Biochemistry. 1992 Feb 25;31(7):2012-20
– reference: 2306492 - Biophys J. 1990 Mar;57(3):413-24
– reference: 6337629 - Biochim Biophys Acta. 1983 Mar 21;737(1):117-71
– reference: 10096908 - Biophys J. 1999 Apr;76(4):2142-57
– reference: 5483450 - Lipids. 1970 May;5(5):494-6
– reference: 20637720 - Biochim Biophys Acta. 2010 Oct;1798(10):1987-94
– reference: 11724577 - Biochemistry. 2001 Dec 4;40(48):14635-44
– reference: 2160270 - Biochemistry. 1990 Jan 30;29(4):1025-38
– reference: 7841331 - Biophys Chem. 1994 Dec;53(1-2):45-56
– reference: 20669961 - Biochemistry. 2010 Sep 7;49(35):7485-93
– reference: 16284259 - Biophys J. 2006 Feb 1;90(3):939-46
– reference: 6895037 - Biochim Biophys Acta. 1981 Jul 20;645(2):270-8
– reference: 9929492 - Biophys J. 1999 Feb;76(2):908-15
– reference: 6518610 - Chem Phys Lipids. 1984 Nov;36(1):1-14
– reference: 18178660 - Biophys J. 2008 Apr 1;94(7):2680-90
– reference: 12496107 - Biophys J. 2002 Dec;83(6):3408-15
– reference: 3233314 - Biophys Chem. 1988 Oct;32(1):57-72
– reference: 19045210 - J Chem Phys. 2008 Oct 21;129(15):154508
– reference: 15799883 - Solid State Nucl Magn Reson. 2005 Jun;27(4):247-56
– reference: 1586660 - Biochim Biophys Acta. 1992 Apr 13;1105(2):213-20
– reference: 9858687 - Biochim Biophys Acta. 1998 Dec 9;1415(1):63-76
– reference: 723275 - J Supramol Struct. 1978;8(4):413-30
– reference: 10076038 - Biochim Biophys Acta. 1999 Feb 4;1417(1):89-100
– reference: 10823464 - Chem Phys Lipids. 2000 Apr;105(2):167-78
– reference: 3307919 - Biochim Biophys Acta. 1987 Oct 5;906(3):353-404
– reference: 9533699 - Biophys J. 1998 Feb;74(2 Pt 1):879-91
– reference: 7000188 - Biochim Biophys Acta. 1980 Sep 30;604(2):129-58
– reference: 12202372 - Biophys J. 2002 Sep;83(3):1465-78
– reference: 21081078 - Biophys J. 2010 Nov 17;99(10):3300-8
– reference: 18641061 - Biophys J. 2008 Oct;95(8):3861-71
– reference: 11254209 - Biophys Chem. 2001 Feb 15;89(2-3):163-72
– reference: 10548720 - Biochim Biophys Acta. 1999 Nov 16;1422(3):273-307
– reference: 15139814 - Annu Rev Biophys Biomol Struct. 2004;33:269-95
– reference: 19913494 - Biochim Biophys Acta. 2010 Mar;1798(3):453-60
– reference: 1616882 - J Steroid Biochem Mol Biol. 1992 Jun;42(5):521-6
– reference: 19673519 - J Am Chem Soc. 2009 Sep 9;131(35):12714-20
– reference: 8672507 - Biochemistry. 1996 Jun 18;35(24):8025-34
– reference: 15315947 - Biophys J. 2004 Nov;87(5):2976-89
– reference: 9666088 - Biochim Biophys Acta. 1998 Jun 29;1376(1):91-145
– reference: 889781 - Biochemistry. 1977 Jun 14;16(12):2649-56
– reference: 9450320 - Chem Phys Lipids. 1996 Jun 17;81(1):69-80
– reference: 6499099 - Chem Phys Lipids. 1984 Oct;35(4):371-84
– reference: 20359462 - Biochim Biophys Acta. 2010 Aug;1798(8):1615-22
– reference: 12860394 - FEBS Lett. 2003 Jul 17;547(1-3):101-6
– reference: 8422361 - Biochemistry. 1993 Jan 19;32(2):516-22
– reference: 17093290 - J Lipid Res. 2007 Feb;48(2):417-24
– reference: 11106622 - Biophys J. 2000 Dec;79(6):3172-92
– reference: 3904832 - Biochim Biophys Acta. 1985 Dec 9;822(3-4):267-87
– reference: 11412894 - Prog Lipid Res. 2001 Jul;40(4):299-324
– reference: 12947110 - J Biol Chem. 2003 Nov 14;278(46):45563-9
– reference: 11751316 - Biophys J. 2002 Jan;82(1 Pt 1):285-98
– reference: 20643071 - Biophys J. 2010 Jul 21;99(2):526-33
– reference: 8242843 - Chem Phys Lipids. 1993 Sep;64(1-3):99-116
– reference: 16581844 - Biophys J. 2006 Jun 15;90(12):4479-87
– reference: 11694269 - Prog Lipid Res. 2002 Jan;41(1):66-97
SSID ssj0012501
Score 2.3346493
Snippet The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function....
The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function....
SourceID pubmedcentral
proquest
pubmed
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2633
SubjectTerms Anisotropy
Biophysics
Cell Membrane - chemistry
Cell Membrane - metabolism
Cholestenes - metabolism
Cholesterol
cyclodextrins
Deuterium
Diphenylhexatriene - metabolism
Fluorescence
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Lipids
Membrane
Membrane Fluidity
Membranes
Myristates - metabolism
phosphatidylcholines
Phosphatidylcholines - chemistry
Phosphatidylcholines - metabolism
sphingomyelins
Sphingomyelins - chemistry
Sphingomyelins - metabolism
Sterols
Substrate Specificity
Temperature
Title Sterols Have Higher Affinity for Sphingomyelin than for Phosphatidylcholine Bilayers even at Equal Acyl-Chain Order
URI https://dx.doi.org/10.1016/j.bpj.2011.03.066
https://www.ncbi.nlm.nih.gov/pubmed/21641308
https://www.proquest.com/docview/872174125
https://www.proquest.com/docview/1678540665
https://www.proquest.com/docview/870547486
https://pubmed.ncbi.nlm.nih.gov/PMC3117156
Volume 100
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7rguCLeN9xVSL4JNRtmzZNH2eHXQbFG-PAvIVMkzhdalvsrNB_75fecGTdB1_6kJzQNic550tyzhdC3sDyWYA24cWahVigCO6lWxeZE6g08pkycZch9_ETX66j95t4c0QWYy6MC6scbH9v0ztrPZScDb15Vue5y_GFewW-d6RnMWAy7DCLRJfEtzmfThLg4odb87jnpMeTzS7Ga1tfDSye7J3fESXe6JvuWFXdhED_DqT8wzNdPiD3B0hJ5_1XPyRHpnxE7vaXTLaPSbNC11VFQ5fql6F9XAedW5tjMrcUmJWuarcNVf1oXW46dXvpXfGXXdXUO2hOt4UzksCj9DwvlAPp1BE_UbWnFy4rk86ztvAWO4Xmnx2X5xOyvrz4tlh6w1ULXgbEs_dsFvE4U5rrVPDUxkpbkW5tajlXQoWx0MAZWawNMxwgQfgZE0mqA2FQFBvOnpLjsirNCaEagEuFodaMi8hopoSj4NNA8iZl1lcz4o-dLLOBh9xdh1HIMeDsSkIv0ulF-kxCLzPydmpS9yQctwlHo-bkwUiScBK3NTuBlqX6Dtsq16vQ7QShFgAIVaej6uUwwxspEreYw_CakddTLaamO29RpamuGxkACAAQcw4Z-g8ZmMs4SiKBlzzrx9L0hyFWskAYYkaSg1E2CThm8MOaMt91DOEsCBIszJ__X1ecknv9zjn3fPGCHO9_XpuXgF777atubuH54av4De0sKyI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IQQviO9148NIPCGFJXHsOI9dtamDbSB1lfpmubFNM4UkWjqk_Pfc5aOiaOyBV_ustD7f3c_23c-EfATP5wC0SY8bFsIGRQovWWJmTqCTyGfa8rZC7uJSTOfRlwVf7JDJUAuDaZW97-98euut-5ajfjaPqizDGl8Ir4DvkfSMA0zeJQ8ADcRonWeL481VAsT4_tk84aH4cLXZJnktq-uexpN99lumxDuD067T5V0Q9O9Myj9C0-lT8qTHlHTc_exnZMcWz8nD7pXJ5gWpZzB3ZV7Tqf5laZfYQcfOZWDNDQXQSmcVnkOVPxssTqd4mN42f1-VdbUC1ZkmRy8JgJQeZ7lGlE6R-YnqNT3Bskw6Tpvcm6w0DP-GZJ4vyfz05Goy9fq3FrwUIM_ac2kkeKqNMIkUiePaOJksXeKE0FKHXBoAGik3llkBKEH6KZNxYgJpoYlbwV6RvaIs7D6hBhCXDkNjmJCRNUxL5OAzAOVtwpyvR8QfJlmlPRE5voeRqyHj7FqBXhTqRflMgV5G5NNmSNWxcNwnHA2aU1tLSUGUuG_YPmhZ6R_gXNV8FuJREPQCAoKuw0H1qjfxWskYd3OwvEbkw6YXbBMvXHRhy9taBYAEABELATL0HzLgL3kURxI-8rpbS5t_GMJWFiCGHJF4a5VtBJAafLunyFYtRTgLghh25gf_NxXvyaPp1cW5Oj-7_HpIHnfH6MLz5Ruyt765tW8Bh62X71o7-w3kki1N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sterols+Have+Higher+Affinity+for+Sphingomyelin+than+for+Phosphatidylcholine+Bilayers+even+at+Equal+Acyl-Chain+Order&rft.jtitle=Biophysical+journal&rft.au=L%C3%B6nnfors%2C+Max&rft.au=Doux%2C+Jacques%C2%A0P.F.&rft.au=Killian%2C+J.+Antoinette&rft.au=Nyholm%2C+Thomas%C2%A0K.M.&rft.date=2011-06-08&rft.pub=Elsevier+Inc&rft.issn=0006-3495&rft.eissn=1542-0086&rft.volume=100&rft.issue=11&rft.spage=2633&rft.epage=2641&rft_id=info:doi/10.1016%2Fj.bpj.2011.03.066&rft.externalDocID=S0006349511005182
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon