Sterols Have Higher Affinity for Sphingomyelin than for Phosphatidylcholine Bilayers even at Equal Acyl-Chain Order
The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) o...
Saved in:
Published in | Biophysical journal Vol. 100; no. 11; pp. 2633 - 2641 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
08.06.2011
Biophysical Society The Biophysical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by 2H-NMR on bilayers made from either 14:0/14:0(d27)-PC, or 14:0(d27)-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (Kx) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the Kx did increase with acyl-chain order, the higher Kx for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the Kx was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in Kx. We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes. |
---|---|
AbstractList | The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by (2)H-NMR on bilayers made from either 14:0/14:0((d27))-PC, or 14:0((d27))-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (K(x)) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the K(x) did increase with acyl-chain order, the higher K(x) for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the K(x) was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in K(x). We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes.The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by (2)H-NMR on bilayers made from either 14:0/14:0((d27))-PC, or 14:0((d27))-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (K(x)) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the K(x) did increase with acyl-chain order, the higher K(x) for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the K(x) was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in K(x). We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes. The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by ...-NMR on bilayers made from either 14:0/14:0..., or 14:0... Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (...) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the ... did increase with acyl-chain order, the higher ... for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the ... was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in ... We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes. (ProQuest: ... denotes formulae/symbols omitted.) The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by (2)H-NMR on bilayers made from either 14:0/14:0((d27))-PC, or 14:0((d27))-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (K(x)) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the K(x) did increase with acyl-chain order, the higher K(x) for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the K(x) was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in K(x). We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes. The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by ²H-NMR on bilayers made from either 14:0/14:0₍d₂₇₎-PC, or 14:0₍d₂₇₎-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (Kₓ) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the Kₓ did increase with acyl-chain order, the higher Kₓ for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the Kₓ was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in Kₓ. We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes. The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by 2H-NMR on bilayers made from either 14:0/14:0(d27)-PC, or 14:0(d27)-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (Kx) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the Kx did increase with acyl-chain order, the higher Kx for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the Kx was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in Kx. We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes. The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by ²H-NMR on bilayers made from either 14:0/14:0₍d₂₇₎-PC, or 14:0₍d₂₇₎-SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient (Kₓ) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the Kₓ did increase with acyl-chain order, the higher Kₓ for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the Kₓ was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in Kₓ. We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes. The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function. However, cholesterol does not interact favorably with all types of phospholipids and, for example, prefers more ordered sphingomyelins (SMs) over phosphatidylcholines (PCs). The reason for this preference is not clear. Here we have studied whether acyl-chain order could be responsible for the preferred sterol interaction with SMs. Acyl-chain order was deduced from diphenylhexatriene anisotropy and from the deuterium order parameter obtained by 2 H-NMR on bilayers made from either 14:0/14:0 (d27) -PC, or 14:0 (d27) -SM. Sterol/phospholipid interaction was determined from sterol bilayer partitioning. Cholestatrienol (CTL) was used as a fluorescence probe for cholesterol, because its relative membrane partitioning is similar to cholesterol. When CTL was allowed to reach equilibrium partitioning between cyclodextrins and unilamellar vesicles made from either 14:0/14:0-PC or 14:0-SM, the molar-fraction partitioning coefficient ( K x ) was approximately twofold higher for SM bilayers than for PC bilayers. This was even the case when the temperature in the SM samples was raised to achieve equal acyl-chain order, as determined from 1,6-diphenyl-1,3,5-hexatriene (DPH) anisotropy and the deuterium order parameter. Although the K x did increase with acyl-chain order, the higher K x for SM bilayers was always evident. At equal acyl-chain order parameter (DPH anisotropy), the K x was also higher for 14:0-SM bilayers than for bilayers made from either 14:0/15:0-PC or 15:0-/14:0-PC, suggesting that minor differences in chain length or molecular asymmetry are not responsible for the difference in K x . We conclude that acyl-chain order affects the bilayer affinity of CTL (and thus cholesterol), but that it is not the cause for the preferred affinity of sterols for SMs over matched PCs. Instead, it is likely that the interfacial properties of SMs influence and stabilize interactions with sterols in bilayer membranes. |
Author | Slotte, J. Peter Lönnfors, Max Nyholm, Thomas K.M. Doux, Jacques P.F. Killian, J. Antoinette |
AuthorAffiliation | Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands |
AuthorAffiliation_xml | – name: Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands – name: Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland |
Author_xml | – sequence: 1 givenname: Max surname: Lönnfors fullname: Lönnfors, Max organization: Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland – sequence: 2 givenname: Jacques P.F. surname: Doux fullname: Doux, Jacques P.F. organization: Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands – sequence: 3 givenname: J. Antoinette surname: Killian fullname: Killian, J. Antoinette organization: Biochemistry of Membranes, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands – sequence: 4 givenname: Thomas K.M. surname: Nyholm fullname: Nyholm, Thomas K.M. organization: Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland – sequence: 5 givenname: J. Peter surname: Slotte fullname: Slotte, J. Peter email: jpslotte@abo.fi organization: Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21641308$$D View this record in MEDLINE/PubMed |
BookMark | eNp9klFr2zAUhc3oWNNuP2Avm9lL9-JM17ZkmcIgC90yKHSQ9Vko8nWsoEip5AT87yc37dj6kCfB1XcOVzrnIjmzzmKSvAcyBQLsy2a62m2mOQGYkmJKGHuVTICWeUYIZ2fJhBDCsqKs6XlyEcKGEMgpgTfJeQ6shILwSRKWPXpnQrqQB0wXet2hT2dtq63uh7R1Pl3uOm3Xbjug0TbtO2kfx786F3ad7HUzGNW5eIfpN23kgD6keECbyj69edhLk87UYLJ5J6P8zjfo3yavW2kCvns6L5P77ze_54vs9u7Hz_nsNlOMkD5rVcmokg1ras7qlsqm5fWqrVvGJJc55U0BlaINFshyoJyogld1AxzjiCIrLpOvR9_dfrXFRqHtvTRi5_VW-kE4qcX_N1Z3Yu0OogCogI4GV08G3j3sMfRiq4NCY6RFtw-CV4SWVclH8vNJEljFaRkTohH99ALduL238SOiXw5VGUOK0Id_V_-783NwEaiOgPIuBI-tULqPabjxJdoIIGKsiNiIWBExVkSQQsQFohJeKJ_NT2k-HjWtdEKuvQ7ifhkBGisFwGEkro8ExkAPGr0ISqNV2GiPqheN0yf8_wCNDt4C |
CitedBy_id | crossref_primary_10_1021_acs_langmuir_0c01237 crossref_primary_10_1021_acs_langmuir_6b00927 crossref_primary_10_1021_la203589u crossref_primary_10_1016_j_bpj_2015_12_043 crossref_primary_10_1021_acs_jpcb_5b07375 crossref_primary_10_1038_s41589_020_00678_2 crossref_primary_10_1016_j_anifeedsci_2022_115524 crossref_primary_10_1016_j_plipres_2018_11_002 crossref_primary_10_1101_cshperspect_a041263 crossref_primary_10_3389_fcell_2016_00155 crossref_primary_10_1177_1535370219870771 crossref_primary_10_1172_JCI188127 crossref_primary_10_1021_la4018129 crossref_primary_10_1016_j_plipres_2017_01_002 crossref_primary_10_1016_j_bbamem_2019_05_001 crossref_primary_10_1016_j_bpj_2019_05_015 crossref_primary_10_1016_j_bbamem_2012_07_030 crossref_primary_10_3390_membranes12090828 crossref_primary_10_1016_j_bpj_2019_05_010 crossref_primary_10_1021_acs_langmuir_9b01202 crossref_primary_10_1016_j_bpj_2023_02_009 crossref_primary_10_1080_87559129_2021_2015773 crossref_primary_10_1016_j_chemphyslip_2016_04_002 crossref_primary_10_1016_j_bbamem_2012_06_004 crossref_primary_10_1016_j_bbamem_2016_03_013 crossref_primary_10_1021_acs_langmuir_5b00403 crossref_primary_10_1021_la504047n crossref_primary_10_1016_j_bbrep_2021_100941 crossref_primary_10_1074_jbc_M111_276444 crossref_primary_10_1016_j_bpj_2014_04_054 crossref_primary_10_1016_j_bbamem_2012_11_009 crossref_primary_10_1021_acs_langmuir_5b03566 crossref_primary_10_1074_jbc_RA119_010393 crossref_primary_10_1007_s11010_019_03628_2 crossref_primary_10_1021_acs_jpcb_2c03127 crossref_primary_10_1016_j_bbamem_2015_05_010 crossref_primary_10_3934_biophy_2017_4_528 crossref_primary_10_7554_eLife_02882 crossref_primary_10_1016_j_bpj_2015_11_3515 crossref_primary_10_1016_j_bpj_2017_04_026 crossref_primary_10_1016_j_biochi_2022_09_016 crossref_primary_10_1016_j_bpj_2015_09_009 crossref_primary_10_1016_j_bpj_2019_03_028 crossref_primary_10_1016_j_bbamem_2012_08_029 crossref_primary_10_1016_j_bbamem_2011_08_026 crossref_primary_10_1016_j_bbamem_2016_06_014 crossref_primary_10_1016_j_chemphyslip_2018_07_002 crossref_primary_10_1021_acs_jpclett_4c00332 crossref_primary_10_1016_j_bpj_2016_06_036 crossref_primary_10_3390_ijms242115693 crossref_primary_10_1016_j_bbamem_2015_12_008 crossref_primary_10_1016_j_bpj_2018_11_3135 crossref_primary_10_1021_acs_langmuir_7b01765 crossref_primary_10_1016_j_tibs_2025_01_007 crossref_primary_10_3233_ADR_210299 crossref_primary_10_1021_acs_langmuir_4c03717 crossref_primary_10_1016_j_bbamem_2023_184242 crossref_primary_10_1016_j_colsurfb_2021_111842 crossref_primary_10_1021_acs_langmuir_8b01539 crossref_primary_10_1016_j_jcis_2025_137333 crossref_primary_10_1016_j_plipres_2013_05_001 crossref_primary_10_1021_acs_jpcb_7b00359 crossref_primary_10_1016_j_cell_2021_12_025 crossref_primary_10_1016_j_bpj_2013_12_034 crossref_primary_10_1016_j_tjnut_2024_04_006 crossref_primary_10_1088_1572_9494_ac7783 crossref_primary_10_1083_jcb_202308055 crossref_primary_10_1016_j_bbamem_2014_12_017 crossref_primary_10_1074_jbc_M114_598805 crossref_primary_10_1186_s13578_023_01127_y crossref_primary_10_1016_j_bbalip_2013_10_016 crossref_primary_10_1016_j_bbamem_2015_02_027 crossref_primary_10_1021_acs_analchem_4c00433 crossref_primary_10_1039_c3sm50553g crossref_primary_10_1111_tra_12586 crossref_primary_10_1186_s12944_019_0957_z crossref_primary_10_1016_j_abb_2023_109836 crossref_primary_10_1016_j_bpj_2019_09_025 crossref_primary_10_3389_fimmu_2021_613591 crossref_primary_10_7554_eLife_70504 |
Cites_doi | 10.1021/bi9528356 10.1016/0009-3084(84)90086-0 10.1529/biophysj.104.054718 10.1016/0009-3084(84)90079-3 10.1021/bi00053a016 10.1016/S0006-3495(99)77369-8 10.1021/bi00456a027 10.1016/S0926-2040(97)00024-6 10.1529/biophysj.107.112904 10.1016/S0005-2736(98)00178-3 10.1016/0960-0760(92)90265-K 10.1016/S0006-3495(02)75340-X 10.1016/S0006-3495(99)76997-3 10.1529/biophysj.104.048702 10.1016/0005-2736(92)90197-T 10.1021/bi00122a017 10.1021/ja903529f 10.1016/j.bbamem.2009.11.003 10.1016/0014-5793(79)80564-5 10.1016/0009-3084(76)90070-0 10.1002/jss.400080404 10.1016/S0014-5793(03)00678-1 10.1016/0304-4157(87)90017-7 10.1016/j.bbamem.2010.07.006 10.1016/j.bpj.2010.04.052 10.1063/1.2996296 10.1016/0301-4622(94)00075-1 10.1016/S0006-3495(90)82558-3 10.1016/0009-3084(93)90060-G 10.1016/S0006-3495(98)74011-1 10.1016/S0005-2736(98)00260-0 10.1016/0009-3084(96)02535-2 10.1016/S0163-7827(01)00020-0 10.1016/S0163-7827(01)00009-1 10.1021/bi100891z 10.1146/annurev.biophys.32.110601.141803 10.1016/j.bbamem.2010.03.022 10.1021/bi00631a011 10.1016/j.ssnmr.2005.02.002 10.1016/S0006-3495(00)76551-9 10.1016/j.bbamem.2009.12.025 10.1016/S0009-3084(00)00122-5 10.1016/S0005-2736(99)00099-1 10.1016/S0304-4157(98)00006-9 10.1529/biophysj.105.063271 10.1016/S0301-4622(00)00226-X 10.1016/j.bpj.2010.09.049 10.1016/0005-2736(81)90198-X 10.1021/jp077735b 10.1074/jbc.M303567200 10.1529/biophysj.105.080127 10.1007/BF02531316 10.1529/biophysj.108.133744 10.1529/biophysj.106.088427 10.1016/S0006-3495(99)77254-1 10.1016/0304-4157(83)90015-1 10.1194/jlr.M600344-JLR200 10.1016/S0006-3495(02)73917-9 10.1016/0304-4157(85)90011-5 10.1016/0304-4157(80)90006-4 10.1016/S0006-3495(02)75394-0 10.1021/bi0156714 10.1016/0301-4622(88)85034-8 |
ContentType | Journal Article |
Copyright | 2011 Biophysical Society Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved. Copyright Biophysical Society Jun 8, 2011 2011 by the Biophysical Society. 2011 Biophysical Society |
Copyright_xml | – notice: 2011 Biophysical Society – notice: Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved. – notice: Copyright Biophysical Society Jun 8, 2011 – notice: 2011 by the Biophysical Society. 2011 Biophysical Society |
DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7TK 7TM 7U9 8FD FR3 H94 K9. P64 7S9 L.6 7X8 5PM |
DOI | 10.1016/j.bpj.2011.03.066 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1542-0086 |
EndPage | 2641 |
ExternalDocumentID | PMC3117156 2377131361 21641308 10_1016_j_bpj_2011_03_066 US201500111816 S0006349511005182 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 23N 2WC 4.4 457 5GY 5RE 62- 6I. 6J9 AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACBEA ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AEXQZ AFRAH AFTJW AGHFR AGKMS AHMBA AHPSJ AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AYCSE AZFZN BAWUL CS3 D0L DIK DU5 E3Z EBS EJD F5P FCP FDB FRP HYE HZ~ IH2 IXB JIG KQ8 L7B M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPM RWL SES SSZ TAE TBP TN5 WH7 WOQ WOW WQ6 X7M YNY YWH ZA5 ~02 --K .GJ 3O- 53G 6TJ 7X2 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 AAMRU AAQXK ABUWG ABWVN ACRPL ADMUD ADNMO ADVLN AEUYN AFKRA AI. AKAPO AKRWK ALIPV ARAPS ASPBG ATCPS AVWKF AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU DWQXO FBQ FEDTE FGOYB FYUFA G-2 GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HVGLF HX~ LK8 M0K M1P M2O M2P M2Q M7P MVM OZT P62 PHGZT PQQKQ PRG PROAC PSQYO Q2X R2- S0X UKHRP UKR VH1 YYP ZGI ZXP ~KM AAYWO AAYXX ABDGV ACVFH ADCNI ADXHL AEUPX AFPUW AGCQF AGQPQ AIGII AKBMS AKYEP APXCP CITATION PHGZM CGR CUY CVF ECM EIF NPM 7QO 7QP 7TK 7TM 7U9 8FD EFKBS FR3 H94 K9. P64 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c600t-fc465cad6d9869f5adf89bf9f66a8a258d317c5de3e621580c3879d18ede35e63 |
IEDL.DBID | IXB |
ISSN | 0006-3495 1542-0086 |
IngestDate | Thu Aug 21 18:20:42 EDT 2025 Fri Jul 11 10:15:03 EDT 2025 Fri Jul 11 09:10:08 EDT 2025 Fri Jul 25 11:04:48 EDT 2025 Thu Apr 03 06:57:02 EDT 2025 Tue Jul 01 03:33:15 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Thu Apr 03 09:45:37 EDT 2025 Fri Feb 23 02:32:53 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c600t-fc465cad6d9869f5adf89bf9f66a8a258d317c5de3e621580c3879d18ede35e63 |
Notes | http://dx.doi.org/10.1016/j.bpj.2011.03.066 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0006349511005182 |
PMID | 21641308 |
PQID | 872174125 |
PQPubID | 7454 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3117156 proquest_miscellaneous_870547486 proquest_miscellaneous_1678540665 proquest_journals_872174125 pubmed_primary_21641308 crossref_citationtrail_10_1016_j_bpj_2011_03_066 crossref_primary_10_1016_j_bpj_2011_03_066 fao_agris_US201500111816 elsevier_sciencedirect_doi_10_1016_j_bpj_2011_03_066 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-06-08 |
PublicationDateYYYYMMDD | 2011-06-08 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Biophysical journal |
PublicationTitleAlternate | Biophys J |
PublicationYear | 2011 |
Publisher | Elsevier Inc Biophysical Society The Biophysical Society |
Publisher_xml | – name: Elsevier Inc – name: Biophysical Society – name: The Biophysical Society |
References | Sternin, Bloom, Mackay (bib38) 1983; 55 McCabe, Wassall (bib39) 1997; 10 Hyslop, Morel, Sauerheber (bib48) 1990; 29 Halling, Ramstedt, Nyholm (bib8) 2008; 95 Davis (bib35) 1983; 737 Zhang, Lu, Berkowitz (bib68) 2008; 112 Hunter, Squier (bib58) 1998; 1415 Ramstedt, Slotte (bib11) 1999; 76 Fischer, Stephenson, Schroeder (bib30) 1984; 36 Reference deleted in proof. Schmidt, Barenholz, Thompson (bib66) 1977; 16 Huang, Li (bib36) 1999; 1422 Niu, Litman (bib45) 2002; 83 Brzustowicz, Cherezov, Wassall (bib46) 2002; 82 Huang, Feigenson (bib64) 1999; 76 McMullen, Lewis, McElhaney (bib25) 1993; 32 McIntosh, Simon, Huang (bib56) 1992; 31 Cohen, Barenholz, Dagan (bib28) 1984; 35 Tsamaloukas, Szadkowska, Heerklotz (bib43) 2006; 90 Wassall, Brzustowicz, Stillwell (bib47) 2004; 132 Barenholz, Thompson (bib13) 1980; 604 Petrache, Dodd, Brown (bib41) 2000; 79 Björkbom, Ohvo-Rekilä, Slotte (bib57) 2010; 1798 Malcolm, Ross, Higinbotham (bib65) 2005; 27 Bennett, MacCallum, Tieleman (bib18) 2009; 131 Stockton, Smith (bib62) 1976; 17 Blom, Koivusalo, Ikonen (bib55) 2001; 40 Schroeder, Nemecz, Thompson (bib49) 1988; 32 Pebay-Peyroula, Dufourc, Szabo (bib42) 1994; 53 Haines (bib4) 2001; 40 Aittoniemi, Niemelä, Vattulainen (bib16) 2007; 92 Cooper (bib5) 1978; 8 Boggs (bib14) 1987; 906 Niemelä, Hyvönen, Vattulainen (bib26) 2004; 87 Ohvo-Rekilä, Akerlund, Slotte (bib31) 2000; 105 Lentz (bib60) 1993; 64 Koynova, Caffrey (bib37) 1998; 1376 Mattjus, Slotte (bib22) 1996; 81 Yeagle, Albert, Frye (bib2) 1990; 57 Nyholm, Grandell, Slotte (bib34) 2010; 1798 Mehnert, Jacob, Beyer (bib27) 2006; 90 Róg, Vattulainen, Karttunen (bib51) 2008; 129 Huang, Buboltz, Feigenson (bib44) 1999; 1417 Heyn (bib63) 1979; 108 Yeagle (bib1) 1985; 822 Scheidt, Muller, Huster (bib53) 2003; 278 Björkbom, Róg, Slotte (bib20) 2010; 99 Mitchell, Litman (bib61) 1998; 74 Ohvo-Rekilä, Ramstedt, Slotte (bib3) 2002; 41 Lakowicz (bib33) 1999 Ramstedt, Slotte (bib24) 1999; 77 Jaikishan, Björkbom, Slotte (bib32) 2010; 1798 Wolf, Koumanov, Quinn (bib6) 2001; 89 Björkqvist, Nyholm, Ramstedt (bib21) 2005; 88 Siminovitch, Jeffrey (bib67) 1981; 645 van Duyl, Ganchev, Killian (bib12) 2003; 547 Rouser, Fleischer, Yamamoto (bib29) 1970; 5 Simons, Vaz (bib7) 2004; 33 Kucerka, Marquardt, Katsaras (bib17) 2010; 49 Jaikishan, Björkbom, Slotte (bib59) 2010; 1798 Nyström, Lönnfors, Nyholm (bib19) 2010; 99 Maulik, Shipley (bib23) 1996; 35 Krajewski-Bertrand, Milon, Ourisson (bib40) 1992; 1105 Guo, Kurze, Hamilton (bib15) 2002; 83 Bunge, Müller, Huster (bib9) 2008; 94 Valsecchi, Mauri, Sonnino (bib54) 2007; 48 Barenholz (bib10) 1984 Slotte (bib50) 1992; 42 Haines (10.1016/j.bpj.2011.03.066_bib4) 2001; 40 Siminovitch (10.1016/j.bpj.2011.03.066_bib67) 1981; 645 Rouser (10.1016/j.bpj.2011.03.066_bib29) 1970; 5 Bunge (10.1016/j.bpj.2011.03.066_bib9) 2008; 94 Guo (10.1016/j.bpj.2011.03.066_bib15) 2002; 83 Valsecchi (10.1016/j.bpj.2011.03.066_bib54) 2007; 48 Barenholz (10.1016/j.bpj.2011.03.066_bib13) 1980; 604 10.1016/j.bpj.2011.03.066_bib52 Mitchell (10.1016/j.bpj.2011.03.066_bib61) 1998; 74 Maulik (10.1016/j.bpj.2011.03.066_bib23) 1996; 35 Jaikishan (10.1016/j.bpj.2011.03.066_bib32) 2010; 1798 Halling (10.1016/j.bpj.2011.03.066_bib8) 2008; 95 Hunter (10.1016/j.bpj.2011.03.066_bib58) 1998; 1415 Fischer (10.1016/j.bpj.2011.03.066_bib30) 1984; 36 Schroeder (10.1016/j.bpj.2011.03.066_bib49) 1988; 32 McMullen (10.1016/j.bpj.2011.03.066_bib25) 1993; 32 Heyn (10.1016/j.bpj.2011.03.066_bib63) 1979; 108 Tsamaloukas (10.1016/j.bpj.2011.03.066_bib43) 2006; 90 Wolf (10.1016/j.bpj.2011.03.066_bib6) 2001; 89 Slotte (10.1016/j.bpj.2011.03.066_bib50) 1992; 42 Simons (10.1016/j.bpj.2011.03.066_bib7) 2004; 33 Ramstedt (10.1016/j.bpj.2011.03.066_bib11) 1999; 76 Róg (10.1016/j.bpj.2011.03.066_bib51) 2008; 129 Stockton (10.1016/j.bpj.2011.03.066_bib62) 1976; 17 Ramstedt (10.1016/j.bpj.2011.03.066_bib24) 1999; 77 Koynova (10.1016/j.bpj.2011.03.066_bib37) 1998; 1376 Lentz (10.1016/j.bpj.2011.03.066_bib60) 1993; 64 Aittoniemi (10.1016/j.bpj.2011.03.066_bib16) 2007; 92 Niu (10.1016/j.bpj.2011.03.066_bib45) 2002; 83 Nyström (10.1016/j.bpj.2011.03.066_bib19) 2010; 99 Björkbom (10.1016/j.bpj.2011.03.066_bib57) 2010; 1798 Brzustowicz (10.1016/j.bpj.2011.03.066_bib46) 2002; 82 Bennett (10.1016/j.bpj.2011.03.066_bib18) 2009; 131 Nyholm (10.1016/j.bpj.2011.03.066_bib34) 2010; 1798 Yeagle (10.1016/j.bpj.2011.03.066_bib2) 1990; 57 Mattjus (10.1016/j.bpj.2011.03.066_bib22) 1996; 81 Huang (10.1016/j.bpj.2011.03.066_bib44) 1999; 1417 Krajewski-Bertrand (10.1016/j.bpj.2011.03.066_bib40) 1992; 1105 Sternin (10.1016/j.bpj.2011.03.066_bib38) 1983; 55 van Duyl (10.1016/j.bpj.2011.03.066_bib12) 2003; 547 Kucerka (10.1016/j.bpj.2011.03.066_bib17) 2010; 49 Ohvo-Rekilä (10.1016/j.bpj.2011.03.066_bib3) 2002; 41 Mehnert (10.1016/j.bpj.2011.03.066_bib27) 2006; 90 Wassall (10.1016/j.bpj.2011.03.066_bib47) 2004; 132 Huang (10.1016/j.bpj.2011.03.066_bib64) 1999; 76 Huang (10.1016/j.bpj.2011.03.066_bib36) 1999; 1422 Boggs (10.1016/j.bpj.2011.03.066_bib14) 1987; 906 Ohvo-Rekilä (10.1016/j.bpj.2011.03.066_bib31) 2000; 105 Hyslop (10.1016/j.bpj.2011.03.066_bib48) 1990; 29 Petrache (10.1016/j.bpj.2011.03.066_bib41) 2000; 79 Jaikishan (10.1016/j.bpj.2011.03.066_bib59) 2010; 1798 Zhang (10.1016/j.bpj.2011.03.066_bib68) 2008; 112 Cooper (10.1016/j.bpj.2011.03.066_bib5) 1978; 8 Pebay-Peyroula (10.1016/j.bpj.2011.03.066_bib42) 1994; 53 McIntosh (10.1016/j.bpj.2011.03.066_bib56) 1992; 31 Lakowicz (10.1016/j.bpj.2011.03.066_bib33) 1999 Niemelä (10.1016/j.bpj.2011.03.066_bib26) 2004; 87 Malcolm (10.1016/j.bpj.2011.03.066_bib65) 2005; 27 Yeagle (10.1016/j.bpj.2011.03.066_bib1) 1985; 822 Barenholz (10.1016/j.bpj.2011.03.066_bib10) 1984 Björkqvist (10.1016/j.bpj.2011.03.066_bib21) 2005; 88 Cohen (10.1016/j.bpj.2011.03.066_bib28) 1984; 35 Scheidt (10.1016/j.bpj.2011.03.066_bib53) 2003; 278 Davis (10.1016/j.bpj.2011.03.066_bib35) 1983; 737 McCabe (10.1016/j.bpj.2011.03.066_bib39) 1997; 10 Schmidt (10.1016/j.bpj.2011.03.066_bib66) 1977; 16 Björkbom (10.1016/j.bpj.2011.03.066_bib20) 2010; 99 Blom (10.1016/j.bpj.2011.03.066_bib55) 2001; 40 8242843 - Chem Phys Lipids. 1993 Sep;64(1-3):99-116 18307337 - J Phys Chem B. 2008 Mar 27;112(12):3807-11 9450320 - Chem Phys Lipids. 1996 Jun 17;81(1):69-80 11724577 - Biochemistry. 2001 Dec 4;40(48):14635-44 7841331 - Biophys Chem. 1994 Dec;53(1-2):45-56 19045210 - J Chem Phys. 2008 Oct 21;129(15):154508 8422361 - Biochemistry. 1993 Jan 19;32(2):516-22 10548720 - Biochim Biophys Acta. 1999 Nov 16;1422(3):273-307 15792981 - Biophys J. 2005 Jun;88(6):4054-63 520575 - FEBS Lett. 1979 Dec 15;108(2):359-64 3233314 - Biophys Chem. 1988 Oct;32(1):57-72 9472792 - Solid State Nucl Magn Reson. 1997 Dec;10(1-2):53-61 20669961 - Biochemistry. 2010 Sep 7;49(35):7485-93 12860394 - FEBS Lett. 2003 Jul 17;547(1-3):101-6 7000188 - Biochim Biophys Acta. 1980 Sep 30;604(2):129-58 10076038 - Biochim Biophys Acta. 1999 Feb 4;1417(1):89-100 11751316 - Biophys J. 2002 Jan;82(1 Pt 1):285-98 17093290 - J Lipid Res. 2007 Feb;48(2):417-24 12202372 - Biophys J. 2002 Sep;83(3):1465-78 19913494 - Biochim Biophys Acta. 2010 Mar;1798(3):453-60 1033045 - Chem Phys Lipids. 1976 Oct;17(2-3 SPEC NO):251-63 10096908 - Biophys J. 1999 Apr;76(4):2142-57 11412894 - Prog Lipid Res. 2001 Jul;40(4):299-324 18641061 - Biophys J. 2008 Oct;95(8):3861-71 2160270 - Biochemistry. 1990 Jan 30;29(4):1025-38 12496107 - Biophys J. 2002 Dec;83(6):3408-15 9533699 - Biophys J. 1998 Feb;74(2 Pt 1):879-91 20044977 - Biochim Biophys Acta. 2010 May;1798(5):1008-13 1586660 - Biochim Biophys Acta. 1992 Apr 13;1105(2):213-20 2306492 - Biophys J. 1990 Mar;57(3):413-24 5483450 - Lipids. 1970 May;5(5):494-6 3307919 - Biochim Biophys Acta. 1987 Oct 5;906(3):353-404 15315947 - Biophys J. 2004 Nov;87(5):2976-89 1616882 - J Steroid Biochem Mol Biol. 1992 Jun;42(5):521-6 8672507 - Biochemistry. 1996 Jun 18;35(24):8025-34 21081078 - Biophys J. 2010 Nov 17;99(10):3300-8 3904832 - Biochim Biophys Acta. 1985 Dec 9;822(3-4):267-87 6337629 - Biochim Biophys Acta. 1983 Mar 21;737(1):117-71 15799883 - Solid State Nucl Magn Reson. 2005 Jun;27(4):247-56 9858687 - Biochim Biophys Acta. 1998 Dec 9;1415(1):63-76 11254209 - Biophys Chem. 2001 Feb 15;89(2-3):163-72 6518610 - Chem Phys Lipids. 1984 Nov;36(1):1-14 723275 - J Supramol Struct. 1978;8(4):413-30 20359462 - Biochim Biophys Acta. 2010 Aug;1798(8):1615-22 15530450 - Chem Phys Lipids. 2004 Nov;132(1):79-88 19673519 - J Am Chem Soc. 2009 Sep 9;131(35):12714-20 20643071 - Biophys J. 2010 Jul 21;99(2):526-33 12947110 - J Biol Chem. 2003 Nov 14;278(46):45563-9 11106622 - Biophys J. 2000 Dec;79(6):3172-92 16284259 - Biophys J. 2006 Feb 1;90(3):939-46 9666088 - Biochim Biophys Acta. 1998 Jun 29;1376(1):91-145 6499099 - Chem Phys Lipids. 1984 Oct;35(4):371-84 9929492 - Biophys J. 1999 Feb;76(2):908-15 889781 - Biochemistry. 1977 Jun 14;16(12):2649-56 11694269 - Prog Lipid Res. 2002 Jan;41(1):66-97 17114220 - Biophys J. 2007 Feb 15;92(4):1125-37 10465760 - Biophys J. 1999 Sep;77(3):1498-506 16581844 - Biophys J. 2006 Jun 15;90(12):4479-87 18178660 - Biophys J. 2008 Apr 1;94(7):2680-90 6895037 - Biochim Biophys Acta. 1981 Jul 20;645(2):270-8 1536844 - Biochemistry. 1992 Feb 25;31(7):2012-20 10823464 - Chem Phys Lipids. 2000 Apr;105(2):167-78 20637720 - Biochim Biophys Acta. 2010 Oct;1798(10):1987-94 15139814 - Annu Rev Biophys Biomol Struct. 2004;33:269-95 |
References_xml | – volume: 31 start-page: 2012 year: 1992 end-page: 2020 ident: bib56 article-title: Structure and cohesive properties of sphingomyelin/cholesterol bilayers publication-title: Biochemistry – volume: 81 start-page: 69 year: 1996 end-page: 80 ident: bib22 article-title: Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids? publication-title: Chem. Phys. Lipids – volume: 40 start-page: 299 year: 2001 end-page: 324 ident: bib4 article-title: Do sterols reduce proton and sodium leaks through lipid bilayers? publication-title: Prog. Lipid Res. – volume: 822 start-page: 267 year: 1985 end-page: 287 ident: bib1 article-title: Cholesterol and the cell membrane publication-title: Biochim. Biophys. Acta – volume: 1798 start-page: 453 year: 2010 end-page: 460 ident: bib57 article-title: Characterization of membrane properties of inositol phosphorylceramide publication-title: Biochim. Biophys. Acta – volume: 1105 start-page: 213 year: 1992 end-page: 220 ident: bib40 article-title: The interaction of various cholesterol ‘ancestors’ with lipid membranes: a publication-title: Biochim. Biophys. Acta – volume: 278 start-page: 45563 year: 2003 end-page: 45569 ident: bib53 article-title: The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol publication-title: J. Biol. Chem. – volume: 131 start-page: 12714 year: 2009 end-page: 12720 ident: bib18 article-title: Molecular view of cholesterol flip-flop and chemical potential in different membrane environments publication-title: J. Am. Chem. Soc. – volume: 64 start-page: 99 year: 1993 end-page: 116 ident: bib60 article-title: Use of fluorescent probes to monitor molecular order and motions within liposome bilayers publication-title: Chem. Phys. Lipids – volume: 90 start-page: 939 year: 2006 end-page: 946 ident: bib27 article-title: Structure and lipid interaction of N-palmitoylsphingomyelin in bilayer membranes as revealed by publication-title: Biophys. J. – volume: 32 start-page: 516 year: 1993 end-page: 522 ident: bib25 article-title: Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines publication-title: Biochemistry – volume: 27 start-page: 247 year: 2005 end-page: 256 ident: bib65 article-title: A study of the headgroup motion of sphingomyelin using publication-title: Solid State Nucl. Magn. Reson. – volume: 99 start-page: 3300 year: 2010 end-page: 3308 ident: bib20 article-title: Effect of sphingomyelin headgroup size on molecular properties and interactions with cholesterol publication-title: Biophys. J. – volume: 48 start-page: 417 year: 2007 end-page: 424 ident: bib54 article-title: Ceramide and sphingomyelin species of fibroblasts and neurons in culture publication-title: J. Lipid Res. – volume: 112 start-page: 3807 year: 2008 end-page: 3811 ident: bib68 article-title: Energetics of cholesterol transfer between lipid bilayers publication-title: J. Phys. Chem. B – volume: 5 start-page: 494 year: 1970 end-page: 496 ident: bib29 article-title: Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots publication-title: Lipids – volume: 1798 start-page: 1615 year: 2010 end-page: 1622 ident: bib59 article-title: Phosphatidyl alcohols: effect of head group size on domain forming properties and interactions with sterols publication-title: Biochim. Biophys. Acta – volume: 8 start-page: 413 year: 1978 end-page: 430 ident: bib5 article-title: Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells publication-title: J. Supramol. Struct. – volume: 17 start-page: 251 year: 1976 end-page: 263 ident: bib62 article-title: A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. I. Perdeuterated fatty acid probes publication-title: Chem. Phys. Lipids – volume: 49 start-page: 7485 year: 2010 end-page: 7493 ident: bib17 article-title: Cholesterol in bilayers with PUFA chains: doping with DMPC or POPC results in sterol reorientation and membrane-domain formation publication-title: Biochemistry – volume: 55 start-page: 274 year: 1983 end-page: 282 ident: bib38 article-title: De-Pake-ing of NMR spectra publication-title: J. Magn. Reson. – volume: 1415 start-page: 63 year: 1998 end-page: 76 ident: bib58 article-title: Phospholipid acyl-chain rotational dynamics are independent of headgroup structure in unilamellar vesicles containing binary mixtures of dioleoyl-phosphatidylcholine and dioleoyl-phosphatidylethanolamine publication-title: Biochim. Biophys. Acta – reference: Reference deleted in proof. – volume: 35 start-page: 8025 year: 1996 end-page: 8034 ident: bib23 article-title: N-palmitoyl sphingomyelin bilayers: structure and interactions with cholesterol and dipalmitoylphosphatidylcholine publication-title: Biochemistry – year: 1999 ident: bib33 article-title: Principles of Fluorescence Spectroscopy – volume: 36 start-page: 1 year: 1984 end-page: 14 ident: bib30 article-title: 5,7,9(11)-Cholestatrien-3 publication-title: Chem. Phys. Lipids – volume: 129 start-page: 154508 year: 2008 ident: bib51 article-title: Comparison of cholesterol and its direct precursors along the biosynthetic pathway: effects of cholesterol, desmosterol and 7-dehydrocholesterol on saturated and unsaturated lipid bilayers publication-title: J. Chem. Phys. – volume: 83 start-page: 3408 year: 2002 end-page: 3415 ident: bib45 article-title: Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl-chain unsaturation and headgroup composition publication-title: Biophys. J. – volume: 89 start-page: 163 year: 2001 end-page: 172 ident: bib6 article-title: Cholesterol favors phase separation of sphingomyelin publication-title: Biophys. Chem. – volume: 99 start-page: 526 year: 2010 end-page: 533 ident: bib19 article-title: Transmembrane peptides influence the affinity of sterols for phospholipid bilayers publication-title: Biophys. J. – volume: 906 start-page: 353 year: 1987 end-page: 404 ident: bib14 article-title: Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function publication-title: Biochim. Biophys. Acta – volume: 87 start-page: 2976 year: 2004 end-page: 2989 ident: bib26 article-title: Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine publication-title: Biophys. J. – volume: 1417 start-page: 89 year: 1999 end-page: 100 ident: bib44 article-title: Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers publication-title: Biochim. Biophys. Acta – volume: 77 start-page: 1498 year: 1999 end-page: 1506 ident: bib24 article-title: Comparison of the biophysical properties of racemic and d-erythro-N-acyl sphingomyelins publication-title: Biophys. J. – volume: 74 start-page: 879 year: 1998 end-page: 891 ident: bib61 article-title: Molecular order and dynamics in bilayers consisting of highly polyunsaturated phospholipids publication-title: Biophys. J. – volume: 42 start-page: 521 year: 1992 end-page: 526 ident: bib50 article-title: Substrate specificity of cholesterol oxidase from publication-title: J. Steroid Biochem. Mol. Biol. – volume: 33 start-page: 269 year: 2004 end-page: 295 ident: bib7 article-title: Model systems, lipid rafts, and cell membranes publication-title: Annu. Rev. Biophys. Biomol. Struct. – volume: 76 start-page: 908 year: 1999 end-page: 915 ident: bib11 article-title: Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length publication-title: Biophys. J. – volume: 1422 start-page: 273 year: 1999 end-page: 307 ident: bib36 article-title: Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids publication-title: Biochim. Biophys. Acta – volume: 92 start-page: 1125 year: 2007 end-page: 1137 ident: bib16 article-title: Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine publication-title: Biophys. J. – volume: 35 start-page: 371 year: 1984 end-page: 384 ident: bib28 article-title: Preparation and characterization of well defined d-erythro sphingomyelins publication-title: Chem. Phys. Lipids – volume: 29 start-page: 1025 year: 1990 end-page: 1038 ident: bib48 article-title: Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes publication-title: Biochemistry – start-page: 131 year: 1984 end-page: 174 ident: bib10 article-title: Sphingomyelin-lecithin balance in membranes: composition, structure, and function relationships publication-title: Physiology of Membrane Fluidity – volume: 604 start-page: 129 year: 1980 end-page: 158 ident: bib13 article-title: Sphingomyelins in bilayers and biological membranes publication-title: Biochim. Biophys. Acta – volume: 53 start-page: 45 year: 1994 end-page: 56 ident: bib42 article-title: Location of diphenyl-hexatriene and trimethylammonium-diphenyl-hexatriene in dipalmitoylphosphatidylcholine bilayers by neutron diffraction publication-title: Biophys. Chem. – volume: 82 start-page: 285 year: 2002 end-page: 298 ident: bib46 article-title: Molecular organization of cholesterol in polyunsaturated membranes: microdomain formation publication-title: Biophys. J. – volume: 94 start-page: 2680 year: 2008 end-page: 2690 ident: bib9 article-title: Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures publication-title: Biophys. J. – volume: 88 start-page: 4054 year: 2005 end-page: 4063 ident: bib21 article-title: Domain formation and stability in complex lipid bilayers as reported by cholestatrienol publication-title: Biophys. J. – volume: 1798 start-page: 1008 year: 2010 end-page: 1013 ident: bib34 article-title: Sterol affinity for bilayer membranes is affected by their ceramide content and the ceramide chain length publication-title: Biochim. Biophys. Acta – volume: 90 start-page: 4479 year: 2006 end-page: 4487 ident: bib43 article-title: Thermodynamic comparison of the interactions of cholesterol with unsaturated phospholipid and sphingomyelins publication-title: Biophys. J. – volume: 10 start-page: 53 year: 1997 end-page: 61 ident: bib39 article-title: Rapid deconvolution of NMR powder spectra by weighted fast Fourier transformation publication-title: Solid State Nucl. Magn. Reson. – volume: 645 start-page: 270 year: 1981 end-page: 278 ident: bib67 article-title: Orientational order in the choline headgroup of sphingomyelin: a publication-title: Biochim. Biophys. Acta – volume: 547 start-page: 101 year: 2003 end-page: 106 ident: bib12 article-title: Sphingomyelin is much more effective than saturated phosphatidylcholine in excluding unsaturated phosphatidylcholine from domains formed with cholesterol publication-title: FEBS Lett. – volume: 57 start-page: 413 year: 1990 end-page: 424 ident: bib2 article-title: Cholesterol dynamics in membranes publication-title: Biophys. J. – volume: 83 start-page: 1465 year: 2002 end-page: 1478 ident: bib15 article-title: A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems publication-title: Biophys. J. – volume: 1376 start-page: 91 year: 1998 end-page: 145 ident: bib37 article-title: Phases and phase transitions of the phosphatidylcholines publication-title: Biochim. Biophys. Acta – volume: 95 start-page: 3861 year: 2008 end-page: 3871 ident: bib8 article-title: Cholesterol interactions with fluid-phase phospholipids: effect on the lateral organization of the bilayer publication-title: Biophys. J. – volume: 132 start-page: 79 year: 2004 end-page: 88 ident: bib47 article-title: Order from disorder, corralling cholesterol with chaotic lipids. The role of polyunsaturated lipids in membrane raft formation publication-title: Chem. Phys. Lipids – volume: 32 start-page: 57 year: 1988 end-page: 72 ident: bib49 article-title: Fluorescence properties of cholestatrienol in phosphatidylcholine bilayer vesicles publication-title: Biophys. Chem. – volume: 108 start-page: 359 year: 1979 end-page: 364 ident: bib63 article-title: Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments publication-title: FEBS Lett. – volume: 76 start-page: 2142 year: 1999 end-page: 2157 ident: bib64 article-title: A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers publication-title: Biophys. J. – volume: 737 start-page: 117 year: 1983 end-page: 171 ident: bib35 article-title: The description of membrane lipid conformation, order and dynamics by publication-title: Biochim. Biophys. Acta – volume: 1798 start-page: 1987 year: 2010 end-page: 1994 ident: bib32 article-title: Sphingomyelin analogs with branched N-acyl-chains: the position of branching dramatically affects acyl-chain order and sterol interactions in bilayer membranes publication-title: Biochim. Biophys. Acta – volume: 41 start-page: 66 year: 2002 end-page: 97 ident: bib3 article-title: Cholesterol interactions with phospholipids in membranes publication-title: Prog. Lipid Res. – volume: 105 start-page: 167 year: 2000 end-page: 178 ident: bib31 article-title: Cyclodextrin-catalyzed extraction of fluorescent sterols from monolayer membranes and small unilamellar vesicles publication-title: Chem. Phys. Lipids – volume: 40 start-page: 14635 year: 2001 end-page: 14644 ident: bib55 article-title: Mass spectrometric analysis reveals an increase in plasma membrane polyunsaturated phospholipid species upon cellular cholesterol loading publication-title: Biochemistry – volume: 79 start-page: 3172 year: 2000 end-page: 3192 ident: bib41 article-title: Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by publication-title: Biophys. J. – volume: 16 start-page: 2649 year: 1977 end-page: 2656 ident: bib66 article-title: A nuclear magnetic resonance study of sphingomyelin in bilayer systems publication-title: Biochemistry – volume: 35 start-page: 8025 year: 1996 ident: 10.1016/j.bpj.2011.03.066_bib23 article-title: N-palmitoyl sphingomyelin bilayers: structure and interactions with cholesterol and dipalmitoylphosphatidylcholine publication-title: Biochemistry doi: 10.1021/bi9528356 – volume: 36 start-page: 1 year: 1984 ident: 10.1016/j.bpj.2011.03.066_bib30 article-title: δ5,7,9(11)-Cholestatrien-3 β-ol: a fluorescent cholesterol analogue publication-title: Chem. Phys. Lipids doi: 10.1016/0009-3084(84)90086-0 – volume: 88 start-page: 4054 year: 2005 ident: 10.1016/j.bpj.2011.03.066_bib21 article-title: Domain formation and stability in complex lipid bilayers as reported by cholestatrienol publication-title: Biophys. J. doi: 10.1529/biophysj.104.054718 – volume: 55 start-page: 274 year: 1983 ident: 10.1016/j.bpj.2011.03.066_bib38 article-title: De-Pake-ing of NMR spectra publication-title: J. Magn. Reson. – volume: 35 start-page: 371 year: 1984 ident: 10.1016/j.bpj.2011.03.066_bib28 article-title: Preparation and characterization of well defined d-erythro sphingomyelins publication-title: Chem. Phys. Lipids doi: 10.1016/0009-3084(84)90079-3 – volume: 32 start-page: 516 year: 1993 ident: 10.1016/j.bpj.2011.03.066_bib25 article-title: Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines publication-title: Biochemistry doi: 10.1021/bi00053a016 – volume: 76 start-page: 2142 year: 1999 ident: 10.1016/j.bpj.2011.03.066_bib64 article-title: A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77369-8 – volume: 29 start-page: 1025 year: 1990 ident: 10.1016/j.bpj.2011.03.066_bib48 article-title: Organization and interaction of cholesterol and phosphatidylcholine in model bilayer membranes publication-title: Biochemistry doi: 10.1021/bi00456a027 – volume: 10 start-page: 53 year: 1997 ident: 10.1016/j.bpj.2011.03.066_bib39 article-title: Rapid deconvolution of NMR powder spectra by weighted fast Fourier transformation publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/S0926-2040(97)00024-6 – volume: 94 start-page: 2680 year: 2008 ident: 10.1016/j.bpj.2011.03.066_bib9 article-title: Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures publication-title: Biophys. J. doi: 10.1529/biophysj.107.112904 – volume: 1415 start-page: 63 year: 1998 ident: 10.1016/j.bpj.2011.03.066_bib58 article-title: Phospholipid acyl-chain rotational dynamics are independent of headgroup structure in unilamellar vesicles containing binary mixtures of dioleoyl-phosphatidylcholine and dioleoyl-phosphatidylethanolamine publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(98)00178-3 – volume: 132 start-page: 79 year: 2004 ident: 10.1016/j.bpj.2011.03.066_bib47 article-title: Order from disorder, corralling cholesterol with chaotic lipids. The role of polyunsaturated lipids in membrane raft formation publication-title: Chem. Phys. Lipids – volume: 42 start-page: 521 year: 1992 ident: 10.1016/j.bpj.2011.03.066_bib50 article-title: Substrate specificity of cholesterol oxidase from Streptomyces cinnamomeus—a monolayer study publication-title: J. Steroid Biochem. Mol. Biol. doi: 10.1016/0960-0760(92)90265-K – volume: 83 start-page: 3408 year: 2002 ident: 10.1016/j.bpj.2011.03.066_bib45 article-title: Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl-chain unsaturation and headgroup composition publication-title: Biophys. J. doi: 10.1016/S0006-3495(02)75340-X – volume: 77 start-page: 1498 year: 1999 ident: 10.1016/j.bpj.2011.03.066_bib24 article-title: Comparison of the biophysical properties of racemic and d-erythro-N-acyl sphingomyelins publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)76997-3 – volume: 87 start-page: 2976 year: 2004 ident: 10.1016/j.bpj.2011.03.066_bib26 article-title: Structure and dynamics of sphingomyelin bilayer: insight gained through systematic comparison to phosphatidylcholine publication-title: Biophys. J. doi: 10.1529/biophysj.104.048702 – volume: 1105 start-page: 213 year: 1992 ident: 10.1016/j.bpj.2011.03.066_bib40 article-title: The interaction of various cholesterol ‘ancestors’ with lipid membranes: a 2H-NMR study on oriented bilayers publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(92)90197-T – volume: 31 start-page: 2012 year: 1992 ident: 10.1016/j.bpj.2011.03.066_bib56 article-title: Structure and cohesive properties of sphingomyelin/cholesterol bilayers publication-title: Biochemistry doi: 10.1021/bi00122a017 – volume: 131 start-page: 12714 year: 2009 ident: 10.1016/j.bpj.2011.03.066_bib18 article-title: Molecular view of cholesterol flip-flop and chemical potential in different membrane environments publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903529f – volume: 1798 start-page: 453 year: 2010 ident: 10.1016/j.bpj.2011.03.066_bib57 article-title: Characterization of membrane properties of inositol phosphorylceramide publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2009.11.003 – volume: 108 start-page: 359 year: 1979 ident: 10.1016/j.bpj.2011.03.066_bib63 article-title: Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments publication-title: FEBS Lett. doi: 10.1016/0014-5793(79)80564-5 – volume: 17 start-page: 251 year: 1976 ident: 10.1016/j.bpj.2011.03.066_bib62 article-title: A deuterium nuclear magnetic resonance study of the condensing effect of cholesterol on egg phosphatidylcholine bilayer membranes. I. Perdeuterated fatty acid probes publication-title: Chem. Phys. Lipids doi: 10.1016/0009-3084(76)90070-0 – year: 1999 ident: 10.1016/j.bpj.2011.03.066_bib33 – volume: 8 start-page: 413 year: 1978 ident: 10.1016/j.bpj.2011.03.066_bib5 article-title: Influence of increased membrane cholesterol on membrane fluidity and cell function in human red blood cells publication-title: J. Supramol. Struct. doi: 10.1002/jss.400080404 – volume: 547 start-page: 101 year: 2003 ident: 10.1016/j.bpj.2011.03.066_bib12 article-title: Sphingomyelin is much more effective than saturated phosphatidylcholine in excluding unsaturated phosphatidylcholine from domains formed with cholesterol publication-title: FEBS Lett. doi: 10.1016/S0014-5793(03)00678-1 – volume: 906 start-page: 353 year: 1987 ident: 10.1016/j.bpj.2011.03.066_bib14 article-title: Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4157(87)90017-7 – volume: 1798 start-page: 1987 year: 2010 ident: 10.1016/j.bpj.2011.03.066_bib32 article-title: Sphingomyelin analogs with branched N-acyl-chains: the position of branching dramatically affects acyl-chain order and sterol interactions in bilayer membranes publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2010.07.006 – volume: 99 start-page: 526 year: 2010 ident: 10.1016/j.bpj.2011.03.066_bib19 article-title: Transmembrane peptides influence the affinity of sterols for phospholipid bilayers publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.04.052 – volume: 129 start-page: 154508 year: 2008 ident: 10.1016/j.bpj.2011.03.066_bib51 article-title: Comparison of cholesterol and its direct precursors along the biosynthetic pathway: effects of cholesterol, desmosterol and 7-dehydrocholesterol on saturated and unsaturated lipid bilayers publication-title: J. Chem. Phys. doi: 10.1063/1.2996296 – volume: 53 start-page: 45 year: 1994 ident: 10.1016/j.bpj.2011.03.066_bib42 article-title: Location of diphenyl-hexatriene and trimethylammonium-diphenyl-hexatriene in dipalmitoylphosphatidylcholine bilayers by neutron diffraction publication-title: Biophys. Chem. doi: 10.1016/0301-4622(94)00075-1 – volume: 57 start-page: 413 year: 1990 ident: 10.1016/j.bpj.2011.03.066_bib2 article-title: Cholesterol dynamics in membranes publication-title: Biophys. J. doi: 10.1016/S0006-3495(90)82558-3 – volume: 64 start-page: 99 year: 1993 ident: 10.1016/j.bpj.2011.03.066_bib60 article-title: Use of fluorescent probes to monitor molecular order and motions within liposome bilayers publication-title: Chem. Phys. Lipids doi: 10.1016/0009-3084(93)90060-G – volume: 74 start-page: 879 year: 1998 ident: 10.1016/j.bpj.2011.03.066_bib61 article-title: Molecular order and dynamics in bilayers consisting of highly polyunsaturated phospholipids publication-title: Biophys. J. doi: 10.1016/S0006-3495(98)74011-1 – volume: 1417 start-page: 89 year: 1999 ident: 10.1016/j.bpj.2011.03.066_bib44 article-title: Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(98)00260-0 – volume: 81 start-page: 69 year: 1996 ident: 10.1016/j.bpj.2011.03.066_bib22 article-title: Does cholesterol discriminate between sphingomyelin and phosphatidylcholine in mixed monolayers containing both phospholipids? publication-title: Chem. Phys. Lipids doi: 10.1016/0009-3084(96)02535-2 – volume: 41 start-page: 66 year: 2002 ident: 10.1016/j.bpj.2011.03.066_bib3 article-title: Cholesterol interactions with phospholipids in membranes publication-title: Prog. Lipid Res. doi: 10.1016/S0163-7827(01)00020-0 – ident: 10.1016/j.bpj.2011.03.066_bib52 – volume: 40 start-page: 299 year: 2001 ident: 10.1016/j.bpj.2011.03.066_bib4 article-title: Do sterols reduce proton and sodium leaks through lipid bilayers? publication-title: Prog. Lipid Res. doi: 10.1016/S0163-7827(01)00009-1 – volume: 49 start-page: 7485 year: 2010 ident: 10.1016/j.bpj.2011.03.066_bib17 article-title: Cholesterol in bilayers with PUFA chains: doping with DMPC or POPC results in sterol reorientation and membrane-domain formation publication-title: Biochemistry doi: 10.1021/bi100891z – volume: 33 start-page: 269 year: 2004 ident: 10.1016/j.bpj.2011.03.066_bib7 article-title: Model systems, lipid rafts, and cell membranes publication-title: Annu. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.32.110601.141803 – volume: 1798 start-page: 1615 year: 2010 ident: 10.1016/j.bpj.2011.03.066_bib59 article-title: Phosphatidyl alcohols: effect of head group size on domain forming properties and interactions with sterols publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2010.03.022 – volume: 16 start-page: 2649 year: 1977 ident: 10.1016/j.bpj.2011.03.066_bib66 article-title: A nuclear magnetic resonance study of sphingomyelin in bilayer systems publication-title: Biochemistry doi: 10.1021/bi00631a011 – volume: 27 start-page: 247 year: 2005 ident: 10.1016/j.bpj.2011.03.066_bib65 article-title: A study of the headgroup motion of sphingomyelin using 31P NMR and an analytically soluble model publication-title: Solid State Nucl. Magn. Reson. doi: 10.1016/j.ssnmr.2005.02.002 – volume: 79 start-page: 3172 year: 2000 ident: 10.1016/j.bpj.2011.03.066_bib41 article-title: Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy publication-title: Biophys. J. doi: 10.1016/S0006-3495(00)76551-9 – volume: 1798 start-page: 1008 year: 2010 ident: 10.1016/j.bpj.2011.03.066_bib34 article-title: Sterol affinity for bilayer membranes is affected by their ceramide content and the ceramide chain length publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamem.2009.12.025 – volume: 105 start-page: 167 year: 2000 ident: 10.1016/j.bpj.2011.03.066_bib31 article-title: Cyclodextrin-catalyzed extraction of fluorescent sterols from monolayer membranes and small unilamellar vesicles publication-title: Chem. Phys. Lipids doi: 10.1016/S0009-3084(00)00122-5 – volume: 1422 start-page: 273 year: 1999 ident: 10.1016/j.bpj.2011.03.066_bib36 article-title: Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids publication-title: Biochim. Biophys. Acta doi: 10.1016/S0005-2736(99)00099-1 – volume: 1376 start-page: 91 year: 1998 ident: 10.1016/j.bpj.2011.03.066_bib37 article-title: Phases and phase transitions of the phosphatidylcholines publication-title: Biochim. Biophys. Acta doi: 10.1016/S0304-4157(98)00006-9 – volume: 90 start-page: 939 year: 2006 ident: 10.1016/j.bpj.2011.03.066_bib27 article-title: Structure and lipid interaction of N-palmitoylsphingomyelin in bilayer membranes as revealed by 2H-NMR spectroscopy publication-title: Biophys. J. doi: 10.1529/biophysj.105.063271 – volume: 89 start-page: 163 year: 2001 ident: 10.1016/j.bpj.2011.03.066_bib6 article-title: Cholesterol favors phase separation of sphingomyelin publication-title: Biophys. Chem. doi: 10.1016/S0301-4622(00)00226-X – volume: 99 start-page: 3300 year: 2010 ident: 10.1016/j.bpj.2011.03.066_bib20 article-title: Effect of sphingomyelin headgroup size on molecular properties and interactions with cholesterol publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.09.049 – volume: 645 start-page: 270 year: 1981 ident: 10.1016/j.bpj.2011.03.066_bib67 article-title: Orientational order in the choline headgroup of sphingomyelin: a 14N-NMR study publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(81)90198-X – volume: 112 start-page: 3807 year: 2008 ident: 10.1016/j.bpj.2011.03.066_bib68 article-title: Energetics of cholesterol transfer between lipid bilayers publication-title: J. Phys. Chem. B doi: 10.1021/jp077735b – volume: 278 start-page: 45563 year: 2003 ident: 10.1016/j.bpj.2011.03.066_bib53 article-title: The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol publication-title: J. Biol. Chem. doi: 10.1074/jbc.M303567200 – volume: 90 start-page: 4479 year: 2006 ident: 10.1016/j.bpj.2011.03.066_bib43 article-title: Thermodynamic comparison of the interactions of cholesterol with unsaturated phospholipid and sphingomyelins publication-title: Biophys. J. doi: 10.1529/biophysj.105.080127 – volume: 5 start-page: 494 year: 1970 ident: 10.1016/j.bpj.2011.03.066_bib29 article-title: Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots publication-title: Lipids doi: 10.1007/BF02531316 – volume: 95 start-page: 3861 year: 2008 ident: 10.1016/j.bpj.2011.03.066_bib8 article-title: Cholesterol interactions with fluid-phase phospholipids: effect on the lateral organization of the bilayer publication-title: Biophys. J. doi: 10.1529/biophysj.108.133744 – volume: 92 start-page: 1125 year: 2007 ident: 10.1016/j.bpj.2011.03.066_bib16 article-title: Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine publication-title: Biophys. J. doi: 10.1529/biophysj.106.088427 – volume: 76 start-page: 908 year: 1999 ident: 10.1016/j.bpj.2011.03.066_bib11 article-title: Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length publication-title: Biophys. J. doi: 10.1016/S0006-3495(99)77254-1 – volume: 737 start-page: 117 year: 1983 ident: 10.1016/j.bpj.2011.03.066_bib35 article-title: The description of membrane lipid conformation, order and dynamics by 2H-NMR publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4157(83)90015-1 – volume: 48 start-page: 417 year: 2007 ident: 10.1016/j.bpj.2011.03.066_bib54 article-title: Ceramide and sphingomyelin species of fibroblasts and neurons in culture publication-title: J. Lipid Res. doi: 10.1194/jlr.M600344-JLR200 – volume: 83 start-page: 1465 year: 2002 ident: 10.1016/j.bpj.2011.03.066_bib15 article-title: A solid-state NMR study of phospholipid-cholesterol interactions: sphingomyelin-cholesterol binary systems publication-title: Biophys. J. doi: 10.1016/S0006-3495(02)73917-9 – volume: 822 start-page: 267 year: 1985 ident: 10.1016/j.bpj.2011.03.066_bib1 article-title: Cholesterol and the cell membrane publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4157(85)90011-5 – start-page: 131 year: 1984 ident: 10.1016/j.bpj.2011.03.066_bib10 article-title: Sphingomyelin-lecithin balance in membranes: composition, structure, and function relationships – volume: 604 start-page: 129 year: 1980 ident: 10.1016/j.bpj.2011.03.066_bib13 article-title: Sphingomyelins in bilayers and biological membranes publication-title: Biochim. Biophys. Acta doi: 10.1016/0304-4157(80)90006-4 – volume: 82 start-page: 285 year: 2002 ident: 10.1016/j.bpj.2011.03.066_bib46 article-title: Molecular organization of cholesterol in polyunsaturated membranes: microdomain formation publication-title: Biophys. J. doi: 10.1016/S0006-3495(02)75394-0 – volume: 40 start-page: 14635 year: 2001 ident: 10.1016/j.bpj.2011.03.066_bib55 article-title: Mass spectrometric analysis reveals an increase in plasma membrane polyunsaturated phospholipid species upon cellular cholesterol loading publication-title: Biochemistry doi: 10.1021/bi0156714 – volume: 32 start-page: 57 year: 1988 ident: 10.1016/j.bpj.2011.03.066_bib49 article-title: Fluorescence properties of cholestatrienol in phosphatidylcholine bilayer vesicles publication-title: Biophys. Chem. doi: 10.1016/0301-4622(88)85034-8 – reference: 9472792 - Solid State Nucl Magn Reson. 1997 Dec;10(1-2):53-61 – reference: 15530450 - Chem Phys Lipids. 2004 Nov;132(1):79-88 – reference: 20044977 - Biochim Biophys Acta. 2010 May;1798(5):1008-13 – reference: 18307337 - J Phys Chem B. 2008 Mar 27;112(12):3807-11 – reference: 520575 - FEBS Lett. 1979 Dec 15;108(2):359-64 – reference: 1033045 - Chem Phys Lipids. 1976 Oct;17(2-3 SPEC NO):251-63 – reference: 10465760 - Biophys J. 1999 Sep;77(3):1498-506 – reference: 17114220 - Biophys J. 2007 Feb 15;92(4):1125-37 – reference: 15792981 - Biophys J. 2005 Jun;88(6):4054-63 – reference: 1536844 - Biochemistry. 1992 Feb 25;31(7):2012-20 – reference: 2306492 - Biophys J. 1990 Mar;57(3):413-24 – reference: 6337629 - Biochim Biophys Acta. 1983 Mar 21;737(1):117-71 – reference: 10096908 - Biophys J. 1999 Apr;76(4):2142-57 – reference: 5483450 - Lipids. 1970 May;5(5):494-6 – reference: 20637720 - Biochim Biophys Acta. 2010 Oct;1798(10):1987-94 – reference: 11724577 - Biochemistry. 2001 Dec 4;40(48):14635-44 – reference: 2160270 - Biochemistry. 1990 Jan 30;29(4):1025-38 – reference: 7841331 - Biophys Chem. 1994 Dec;53(1-2):45-56 – reference: 20669961 - Biochemistry. 2010 Sep 7;49(35):7485-93 – reference: 16284259 - Biophys J. 2006 Feb 1;90(3):939-46 – reference: 6895037 - Biochim Biophys Acta. 1981 Jul 20;645(2):270-8 – reference: 9929492 - Biophys J. 1999 Feb;76(2):908-15 – reference: 6518610 - Chem Phys Lipids. 1984 Nov;36(1):1-14 – reference: 18178660 - Biophys J. 2008 Apr 1;94(7):2680-90 – reference: 12496107 - Biophys J. 2002 Dec;83(6):3408-15 – reference: 3233314 - Biophys Chem. 1988 Oct;32(1):57-72 – reference: 19045210 - J Chem Phys. 2008 Oct 21;129(15):154508 – reference: 15799883 - Solid State Nucl Magn Reson. 2005 Jun;27(4):247-56 – reference: 1586660 - Biochim Biophys Acta. 1992 Apr 13;1105(2):213-20 – reference: 9858687 - Biochim Biophys Acta. 1998 Dec 9;1415(1):63-76 – reference: 723275 - J Supramol Struct. 1978;8(4):413-30 – reference: 10076038 - Biochim Biophys Acta. 1999 Feb 4;1417(1):89-100 – reference: 10823464 - Chem Phys Lipids. 2000 Apr;105(2):167-78 – reference: 3307919 - Biochim Biophys Acta. 1987 Oct 5;906(3):353-404 – reference: 9533699 - Biophys J. 1998 Feb;74(2 Pt 1):879-91 – reference: 7000188 - Biochim Biophys Acta. 1980 Sep 30;604(2):129-58 – reference: 12202372 - Biophys J. 2002 Sep;83(3):1465-78 – reference: 21081078 - Biophys J. 2010 Nov 17;99(10):3300-8 – reference: 18641061 - Biophys J. 2008 Oct;95(8):3861-71 – reference: 11254209 - Biophys Chem. 2001 Feb 15;89(2-3):163-72 – reference: 10548720 - Biochim Biophys Acta. 1999 Nov 16;1422(3):273-307 – reference: 15139814 - Annu Rev Biophys Biomol Struct. 2004;33:269-95 – reference: 19913494 - Biochim Biophys Acta. 2010 Mar;1798(3):453-60 – reference: 1616882 - J Steroid Biochem Mol Biol. 1992 Jun;42(5):521-6 – reference: 19673519 - J Am Chem Soc. 2009 Sep 9;131(35):12714-20 – reference: 8672507 - Biochemistry. 1996 Jun 18;35(24):8025-34 – reference: 15315947 - Biophys J. 2004 Nov;87(5):2976-89 – reference: 9666088 - Biochim Biophys Acta. 1998 Jun 29;1376(1):91-145 – reference: 889781 - Biochemistry. 1977 Jun 14;16(12):2649-56 – reference: 9450320 - Chem Phys Lipids. 1996 Jun 17;81(1):69-80 – reference: 6499099 - Chem Phys Lipids. 1984 Oct;35(4):371-84 – reference: 20359462 - Biochim Biophys Acta. 2010 Aug;1798(8):1615-22 – reference: 12860394 - FEBS Lett. 2003 Jul 17;547(1-3):101-6 – reference: 8422361 - Biochemistry. 1993 Jan 19;32(2):516-22 – reference: 17093290 - J Lipid Res. 2007 Feb;48(2):417-24 – reference: 11106622 - Biophys J. 2000 Dec;79(6):3172-92 – reference: 3904832 - Biochim Biophys Acta. 1985 Dec 9;822(3-4):267-87 – reference: 11412894 - Prog Lipid Res. 2001 Jul;40(4):299-324 – reference: 12947110 - J Biol Chem. 2003 Nov 14;278(46):45563-9 – reference: 11751316 - Biophys J. 2002 Jan;82(1 Pt 1):285-98 – reference: 20643071 - Biophys J. 2010 Jul 21;99(2):526-33 – reference: 8242843 - Chem Phys Lipids. 1993 Sep;64(1-3):99-116 – reference: 16581844 - Biophys J. 2006 Jun 15;90(12):4479-87 – reference: 11694269 - Prog Lipid Res. 2002 Jan;41(1):66-97 |
SSID | ssj0012501 |
Score | 2.3346493 |
Snippet | The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function.... The interaction between cholesterol and phospholipids in bilayer membranes is important for the formation and maintenance of membrane structure and function.... |
SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2633 |
SubjectTerms | Anisotropy Biophysics Cell Membrane - chemistry Cell Membrane - metabolism Cholestenes - metabolism Cholesterol cyclodextrins Deuterium Diphenylhexatriene - metabolism Fluorescence Lipid Bilayers - chemistry Lipid Bilayers - metabolism Lipids Membrane Membrane Fluidity Membranes Myristates - metabolism phosphatidylcholines Phosphatidylcholines - chemistry Phosphatidylcholines - metabolism sphingomyelins Sphingomyelins - chemistry Sphingomyelins - metabolism Sterols Substrate Specificity Temperature |
Title | Sterols Have Higher Affinity for Sphingomyelin than for Phosphatidylcholine Bilayers even at Equal Acyl-Chain Order |
URI | https://dx.doi.org/10.1016/j.bpj.2011.03.066 https://www.ncbi.nlm.nih.gov/pubmed/21641308 https://www.proquest.com/docview/872174125 https://www.proquest.com/docview/1678540665 https://www.proquest.com/docview/870547486 https://pubmed.ncbi.nlm.nih.gov/PMC3117156 |
Volume | 100 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7rguCLeN9xVSL4JNRtmzZNH2eHXQbFG-PAvIVMkzhdalvsrNB_75fecGTdB1_6kJzQNic550tyzhdC3sDyWYA24cWahVigCO6lWxeZE6g08pkycZch9_ETX66j95t4c0QWYy6MC6scbH9v0ztrPZScDb15Vue5y_GFewW-d6RnMWAy7DCLRJfEtzmfThLg4odb87jnpMeTzS7Ga1tfDSye7J3fESXe6JvuWFXdhED_DqT8wzNdPiD3B0hJ5_1XPyRHpnxE7vaXTLaPSbNC11VFQ5fql6F9XAedW5tjMrcUmJWuarcNVf1oXW46dXvpXfGXXdXUO2hOt4UzksCj9DwvlAPp1BE_UbWnFy4rk86ztvAWO4Xmnx2X5xOyvrz4tlh6w1ULXgbEs_dsFvE4U5rrVPDUxkpbkW5tajlXQoWx0MAZWawNMxwgQfgZE0mqA2FQFBvOnpLjsirNCaEagEuFodaMi8hopoSj4NNA8iZl1lcz4o-dLLOBh9xdh1HIMeDsSkIv0ulF-kxCLzPydmpS9yQctwlHo-bkwUiScBK3NTuBlqX6Dtsq16vQ7QShFgAIVaej6uUwwxspEreYw_CakddTLaamO29RpamuGxkACAAQcw4Z-g8ZmMs4SiKBlzzrx9L0hyFWskAYYkaSg1E2CThm8MOaMt91DOEsCBIszJ__X1ecknv9zjn3fPGCHO9_XpuXgF777atubuH54av4De0sKyI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2IQQviO9148NIPCGFJXHsOI9dtamDbSB1lfpmubFNM4UkWjqk_Pfc5aOiaOyBV_ustD7f3c_23c-EfATP5wC0SY8bFsIGRQovWWJmTqCTyGfa8rZC7uJSTOfRlwVf7JDJUAuDaZW97-98euut-5ajfjaPqizDGl8Ir4DvkfSMA0zeJQ8ADcRonWeL481VAsT4_tk84aH4cLXZJnktq-uexpN99lumxDuD067T5V0Q9O9Myj9C0-lT8qTHlHTc_exnZMcWz8nD7pXJ5gWpZzB3ZV7Tqf5laZfYQcfOZWDNDQXQSmcVnkOVPxssTqd4mN42f1-VdbUC1ZkmRy8JgJQeZ7lGlE6R-YnqNT3Bskw6Tpvcm6w0DP-GZJ4vyfz05Goy9fq3FrwUIM_ac2kkeKqNMIkUiePaOJksXeKE0FKHXBoAGik3llkBKEH6KZNxYgJpoYlbwV6RvaIs7D6hBhCXDkNjmJCRNUxL5OAzAOVtwpyvR8QfJlmlPRE5voeRqyHj7FqBXhTqRflMgV5G5NNmSNWxcNwnHA2aU1tLSUGUuG_YPmhZ6R_gXNV8FuJREPQCAoKuw0H1qjfxWskYd3OwvEbkw6YXbBMvXHRhy9taBYAEABELATL0HzLgL3kURxI-8rpbS5t_GMJWFiCGHJF4a5VtBJAafLunyFYtRTgLghh25gf_NxXvyaPp1cW5Oj-7_HpIHnfH6MLz5Ruyt765tW8Bh62X71o7-w3kki1N |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sterols+Have+Higher+Affinity+for+Sphingomyelin+than+for+Phosphatidylcholine+Bilayers+even+at+Equal+Acyl-Chain+Order&rft.jtitle=Biophysical+journal&rft.au=L%C3%B6nnfors%2C+Max&rft.au=Doux%2C+Jacques%C2%A0P.F.&rft.au=Killian%2C+J.+Antoinette&rft.au=Nyholm%2C+Thomas%C2%A0K.M.&rft.date=2011-06-08&rft.pub=Elsevier+Inc&rft.issn=0006-3495&rft.eissn=1542-0086&rft.volume=100&rft.issue=11&rft.spage=2633&rft.epage=2641&rft_id=info:doi/10.1016%2Fj.bpj.2011.03.066&rft.externalDocID=S0006349511005182 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon |