Clinical and inflammatory features based machine learning model for fatal risk prediction of hospitalized COVID-19 patients: results from a retrospective cohort study

To appraise effective predictors for COVID-19 mortality in a retrospective cohort study. A total of 1270 COVID-19 patients, including 984 admitted in Sino French New City Branch (training and internal validation sets randomly split at 7:3 ratio) and 286 admitted in Optical Valley Branch (external va...

Full description

Saved in:
Bibliographic Details
Published inAnnals of medicine (Helsinki) Vol. 53; no. 1; pp. 257 - 266
Main Authors Guan, Xin, Zhang, Bo, Fu, Ming, Li, Mengying, Yuan, Xu, Zhu, Yaowu, Peng, Jing, Guo, Huan, Lu, Yanjun
Format Journal Article
LanguageEnglish
Published England Taylor & Francis 2021
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To appraise effective predictors for COVID-19 mortality in a retrospective cohort study. A total of 1270 COVID-19 patients, including 984 admitted in Sino French New City Branch (training and internal validation sets randomly split at 7:3 ratio) and 286 admitted in Optical Valley Branch (external validation set) of Wuhan Tongji hospital, were included in this study. Forty-eight clinical and laboratory features were screened with LASSO method. Further multi-tree extreme gradient boosting (XGBoost) machine learning-based model was used to rank importance of features selected from LASSO and subsequently constructed death risk prediction model with simple-tree XGBoost model. Performances of models were evaluated by AUC, prediction accuracy, precision, and F1 scores. Six features, including disease severity, age, levels of high-sensitivity C-reactive protein (hs-CRP), lactate dehydrogenase (LDH), ferritin, and interleukin-10 (IL-10), were selected as predictors for COVID-19 mortality. Simple-tree XGBoost model conducted by these features can predict death risk accurately with >90% precision and >85% sensitivity, as well as F1 scores >0.90 in training and validation sets. We proposed the disease severity, age, serum levels of hs-CRP, LDH, ferritin, and IL-10 as significant predictors for death risk of COVID-19, which may help to identify the high-risk COVID-19 cases. KEY MESSAGES A machine learning method is used to build death risk model for COVID-19 patients. Disease severity, age, hs-CRP, LDH, ferritin, and IL-10 are death risk factors. These findings may help to identify the high-risk COVID-19 cases.
AbstractList To appraise effective predictors for COVID-19 mortality in a retrospective cohort study.OBJECTIVESTo appraise effective predictors for COVID-19 mortality in a retrospective cohort study.A total of 1270 COVID-19 patients, including 984 admitted in Sino French New City Branch (training and internal validation sets randomly split at 7:3 ratio) and 286 admitted in Optical Valley Branch (external validation set) of Wuhan Tongji hospital, were included in this study. Forty-eight clinical and laboratory features were screened with LASSO method. Further multi-tree extreme gradient boosting (XGBoost) machine learning-based model was used to rank importance of features selected from LASSO and subsequently constructed death risk prediction model with simple-tree XGBoost model. Performances of models were evaluated by AUC, prediction accuracy, precision, and F1 scores.METHODSA total of 1270 COVID-19 patients, including 984 admitted in Sino French New City Branch (training and internal validation sets randomly split at 7:3 ratio) and 286 admitted in Optical Valley Branch (external validation set) of Wuhan Tongji hospital, were included in this study. Forty-eight clinical and laboratory features were screened with LASSO method. Further multi-tree extreme gradient boosting (XGBoost) machine learning-based model was used to rank importance of features selected from LASSO and subsequently constructed death risk prediction model with simple-tree XGBoost model. Performances of models were evaluated by AUC, prediction accuracy, precision, and F1 scores.Six features, including disease severity, age, levels of high-sensitivity C-reactive protein (hs-CRP), lactate dehydrogenase (LDH), ferritin, and interleukin-10 (IL-10), were selected as predictors for COVID-19 mortality. Simple-tree XGBoost model conducted by these features can predict death risk accurately with >90% precision and >85% sensitivity, as well as F1 scores >0.90 in training and validation sets.RESULTSSix features, including disease severity, age, levels of high-sensitivity C-reactive protein (hs-CRP), lactate dehydrogenase (LDH), ferritin, and interleukin-10 (IL-10), were selected as predictors for COVID-19 mortality. Simple-tree XGBoost model conducted by these features can predict death risk accurately with >90% precision and >85% sensitivity, as well as F1 scores >0.90 in training and validation sets.We proposed the disease severity, age, serum levels of hs-CRP, LDH, ferritin, and IL-10 as significant predictors for death risk of COVID-19, which may help to identify the high-risk COVID-19 cases. KEY MESSAGES A machine learning method is used to build death risk model for COVID-19 patients. Disease severity, age, hs-CRP, LDH, ferritin, and IL-10 are death risk factors. These findings may help to identify the high-risk COVID-19 cases.CONCLUSIONWe proposed the disease severity, age, serum levels of hs-CRP, LDH, ferritin, and IL-10 as significant predictors for death risk of COVID-19, which may help to identify the high-risk COVID-19 cases. KEY MESSAGES A machine learning method is used to build death risk model for COVID-19 patients. Disease severity, age, hs-CRP, LDH, ferritin, and IL-10 are death risk factors. These findings may help to identify the high-risk COVID-19 cases.
Objectives To appraise effective predictors for COVID-19 mortality in a retrospective cohort study.Methods A total of 1270 COVID-19 patients, including 984 admitted in Sino French New City Branch (training and internal validation sets randomly split at 7:3 ratio) and 286 admitted in Optical Valley Branch (external validation set) of Wuhan Tongji hospital, were included in this study. Forty-eight clinical and laboratory features were screened with LASSO method. Further multi-tree extreme gradient boosting (XGBoost) machine learning-based model was used to rank importance of features selected from LASSO and subsequently constructed death risk prediction model with simple-tree XGBoost model. Performances of models were evaluated by AUC, prediction accuracy, precision, and F1 scores.Results Six features, including disease severity, age, levels of high-sensitivity C-reactive protein (hs-CRP), lactate dehydrogenase (LDH), ferritin, and interleukin-10 (IL-10), were selected as predictors for COVID-19 mortality. Simple-tree XGBoost model conducted by these features can predict death risk accurately with >90% precision and >85% sensitivity, as well as F1 scores >0.90 in training and validation sets.Conclusion We proposed the disease severity, age, serum levels of hs-CRP, LDH, ferritin, and IL-10 as significant predictors for death risk of COVID-19, which may help to identify the high-risk COVID-19 cases.KEY MESSAGESA machine learning method is used to build death risk model for COVID-19 patients.Disease severity, age, hs-CRP, LDH, ferritin, and IL-10 are death risk factors.These findings may help to identify the high-risk COVID-19 cases.
To appraise effective predictors for COVID-19 mortality in a retrospective cohort study. A total of 1270 COVID-19 patients, including 984 admitted in Sino French New City Branch (training and internal validation sets randomly split at 7:3 ratio) and 286 admitted in Optical Valley Branch (external validation set) of Wuhan Tongji hospital, were included in this study. Forty-eight clinical and laboratory features were screened with LASSO method. Further multi-tree extreme gradient boosting (XGBoost) machine learning-based model was used to rank importance of features selected from LASSO and subsequently constructed death risk prediction model with simple-tree XGBoost model. Performances of models were evaluated by AUC, prediction accuracy, precision, and F1 scores. Six features, including disease severity, age, levels of high-sensitivity C-reactive protein (hs-CRP), lactate dehydrogenase (LDH), ferritin, and interleukin-10 (IL-10), were selected as predictors for COVID-19 mortality. Simple-tree XGBoost model conducted by these features can predict death risk accurately with >90% precision and >85% sensitivity, as well as F1 scores >0.90 in training and validation sets. We proposed the disease severity, age, serum levels of hs-CRP, LDH, ferritin, and IL-10 as significant predictors for death risk of COVID-19, which may help to identify the high-risk COVID-19 cases. KEY MESSAGES A machine learning method is used to build death risk model for COVID-19 patients. Disease severity, age, hs-CRP, LDH, ferritin, and IL-10 are death risk factors. These findings may help to identify the high-risk COVID-19 cases.
To appraise effective predictors for COVID-19 mortality in a retrospective cohort study. A total of 1270 COVID-19 patients, including 984 admitted in Sino French New City Branch (training and internal validation sets randomly split at 7:3 ratio) and 286 admitted in Optical Valley Branch (external validation set) of Wuhan Tongji hospital, were included in this study. Forty-eight clinical and laboratory features were screened with LASSO method. Further multi-tree extreme gradient boosting (XGBoost) machine learning-based model was used to rank importance of features selected from LASSO and subsequently constructed death risk prediction model with simple-tree XGBoost model. Performances of models were evaluated by AUC, prediction accuracy, precision, and F1 scores. Six features, including disease severity, age, levels of high-sensitivity C-reactive protein (hs-CRP), lactate dehydrogenase (LDH), ferritin, and interleukin-10 (IL-10), were selected as predictors for COVID-19 mortality. Simple-tree XGBoost model conducted by these features can predict death risk accurately with >90% precision and >85% sensitivity, as well as F1 scores >0.90 in training and validation sets. We proposed the disease severity, age, serum levels of hs-CRP, LDH, ferritin, and IL-10 as significant predictors for death risk of COVID-19, which may help to identify the high-risk COVID-19 cases. KEY MESSAGES A machine learning method is used to build death risk model for COVID-19 patients. Disease severity, age, hs-CRP, LDH, ferritin, and IL-10 are death risk factors. These findings may help to identify the high-risk COVID-19 cases.
Author Fu, Ming
Yuan, Xu
Zhu, Yaowu
Lu, Yanjun
Zhang, Bo
Li, Mengying
Peng, Jing
Guo, Huan
Guan, Xin
Author_xml – sequence: 1
  givenname: Xin
  surname: Guan
  fullname: Guan, Xin
  organization: Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 2
  givenname: Bo
  surname: Zhang
  fullname: Zhang, Bo
  organization: Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 3
  givenname: Ming
  surname: Fu
  fullname: Fu, Ming
  organization: Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 4
  givenname: Mengying
  surname: Li
  fullname: Li, Mengying
  organization: Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 5
  givenname: Xu
  surname: Yuan
  fullname: Yuan, Xu
  organization: Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 6
  givenname: Yaowu
  surname: Zhu
  fullname: Zhu, Yaowu
  organization: Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 7
  givenname: Jing
  surname: Peng
  fullname: Peng, Jing
  organization: Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 8
  givenname: Huan
  surname: Guo
  fullname: Guo, Huan
  organization: Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology
– sequence: 9
  givenname: Yanjun
  orcidid: 0000-0002-9518-9584
  surname: Lu
  fullname: Lu, Yanjun
  organization: Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33410720$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhkeoiKaFRwB5yWaKL3MFCRWFW6RK3QBb64wviYvHDranKDxQn7MeklaUBaws-_z_d2yf_6Q4ct6ponhO8BnBHX6F265mXY_PKKb5qGu6uqkeFQvCmrqkuMFHxWLWlLPouDiJ8QpjTFuCnxTHjFUEtxQvipulNc4IsAicRMZpC-MIyYcd0grSFFREA0Ql0QhiY5xCVkFwxq3R6KWySPuANKQMCCZ-R9ugpBHJeIe8RhsftybXzK8MWF5-W70vSY-2kIxyKb5GmT7ZFJEOfkSQtylkh8r-a4WE3_iQUEyT3D0tHmuwUT07rKfF148fviw_lxeXn1bLdxelaDBOpRyqgcpW9Z0EaDvJetbhQbRQ10JQXfW9YFQMtFFdU2FFidCs1kJpzCQwwthpsdpzpYcrvg1mhLDjHgz_feDDmkNIRljFSTfUFa1I07Z9xUjVtb0e-krjPo9g0DSz3u5Z22kYlRT5yQHsA-jDijMbvvbXPAN71jYZ8PIACP7HpGLio4lCWQtO-SlyWrUNoTWmc68Xf_a6b3I36Cyo9wKRfzgGpe8lBPM5UPwuUHwOFD8EKvve_OUTeaDzfPOVjf2v-3zvzsHyYYSfPljJE-ysDzqAEyZy9m_ELfJ-50U
CitedBy_id crossref_primary_10_1007_s13105_022_00926_0
crossref_primary_10_4103_ecdt_ECDT_104_22
crossref_primary_10_3390_nu14163406
crossref_primary_10_1186_s12876_023_02949_3
crossref_primary_10_1021_acs_jafc_3c08503
crossref_primary_10_61186_ijbc_15_3_93
crossref_primary_10_1136_bmj_m1328
crossref_primary_10_4236_ojog_2022_128066
crossref_primary_10_1093_jamia_ocaf016
crossref_primary_10_12998_wjcc_v11_i12_2716
crossref_primary_10_1007_s00330_022_08588_8
crossref_primary_10_1038_s41598_023_45438_z
crossref_primary_10_1038_s41598_023_31251_1
crossref_primary_10_1016_j_bspc_2022_103745
crossref_primary_10_1016_j_imu_2021_100564
crossref_primary_10_1021_acsomega_1c04012
crossref_primary_10_2174_0115680266282179240124072121
crossref_primary_10_2478_rrlm_2023_0015
crossref_primary_10_4103_wjtcm_WJTCM_60_21
crossref_primary_10_2174_1570161120666220404200205
crossref_primary_10_56766_ntms_1127805
crossref_primary_10_1136_jim_2021_002278
crossref_primary_10_17671_gazibtd_910806
crossref_primary_10_3389_fcimb_2024_1371371
crossref_primary_10_24304_kjcp_2024_34_3_141
crossref_primary_10_1155_2022_3783058
crossref_primary_10_3390_healthcare12171694
crossref_primary_10_3389_fpubh_2022_1026053
crossref_primary_10_1371_journal_pone_0278123
crossref_primary_10_21272_eumj_2024_12_3__736_741
crossref_primary_10_3389_fonc_2022_1054300
crossref_primary_10_1038_s41746_022_00646_1
crossref_primary_10_7759_cureus_18768
crossref_primary_10_3390_life12050735
crossref_primary_10_2147_IJGM_S318949
crossref_primary_10_1186_s12889_024_19196_0
crossref_primary_10_1007_s00354_024_00261_6
crossref_primary_10_1186_s12913_022_08421_4
crossref_primary_10_34067_KID_0005342021
crossref_primary_10_1002_jcc_26785
crossref_primary_10_1109_ACCESS_2023_3296260
crossref_primary_10_3390_diagnostics12081847
crossref_primary_10_3390_info12120490
crossref_primary_10_1021_acsomega_3c03677
crossref_primary_10_3390_make5040064
crossref_primary_10_3389_fpubh_2023_1183725
crossref_primary_10_1186_s12944_023_01994_x
crossref_primary_10_3390_v15112184
crossref_primary_10_1111_cns_13993
crossref_primary_10_7759_cureus_28428
crossref_primary_10_1016_j_acci_2022_01_001
crossref_primary_10_1016_j_compbiomed_2021_104531
crossref_primary_10_1111_tbed_14548
crossref_primary_10_1186_s12879_024_09669_3
crossref_primary_10_1016_j_array_2022_100271
crossref_primary_10_1038_s41598_022_18332_3
crossref_primary_10_3389_fdgth_2021_681608
crossref_primary_10_1016_j_eclinm_2024_102617
crossref_primary_10_1007_s44196_024_00633_2
crossref_primary_10_14412_1996_7012_2022_2_74_80
crossref_primary_10_2174_0109298673290777240301071513
crossref_primary_10_3390_informatics11030048
crossref_primary_10_3389_fimmu_2021_705646
crossref_primary_10_3390_diagnostics12010056
crossref_primary_10_3390_jcdd10020039
crossref_primary_10_1016_j_archger_2021_104383
crossref_primary_10_3389_fimmu_2022_811952
crossref_primary_10_3389_fonc_2023_1160383
crossref_primary_10_1177_20552076231170493
crossref_primary_10_1016_j_ijmedinf_2022_104791
crossref_primary_10_3389_fpubh_2022_1070870
crossref_primary_10_3390_jpm11090893
crossref_primary_10_1371_journal_pone_0274171
crossref_primary_10_1183_13993003_00459_2022
crossref_primary_10_1371_journal_pone_0294289
crossref_primary_10_1002_btm2_70002
crossref_primary_10_1007_s40121_022_00636_6
crossref_primary_10_1038_s41598_023_28943_z
crossref_primary_10_1080_03007995_2023_2270420
crossref_primary_10_2147_RMHP_S318265
crossref_primary_10_1016_j_csbj_2021_11_040
crossref_primary_10_1016_j_jaip_2023_09_023
crossref_primary_10_3390_jpm11121380
crossref_primary_10_1038_s41598_021_03687_w
crossref_primary_10_3390_biomedicines10102414
crossref_primary_10_3390_electronics13061005
crossref_primary_10_3390_ijerph19159165
crossref_primary_10_1136_postgradmedj_2021_139704
crossref_primary_10_38016_jista_1082310
crossref_primary_10_3390_electronics12183878
crossref_primary_10_1053_j_seminhematol_2021_07_001
crossref_primary_10_3389_fimmu_2021_715072
crossref_primary_10_3389_fonc_2022_938292
crossref_primary_10_3390_tropicalmed7110338
crossref_primary_10_1016_j_compbiomed_2021_105176
crossref_primary_10_3390_life13020322
crossref_primary_10_3390_microorganisms11071740
crossref_primary_10_3389_fonc_2022_982806
crossref_primary_10_4103_2311_8571_326076
Cites_doi 10.1097/RLI.0000000000000518
10.1016/j.jaci.2020.04.006
10.1161/HYPERTENSIONAHA.120.15324
10.1183/09031936.96.09081736
10.1007/s00134-020-06202-3
10.1146/annurev.immunol.19.1.683
10.1164/rccm.202002-0445OC
10.1002/hep.1840180420
10.2196/20108
10.1002/dmrr.3319
10.1001/jama.2020.6130
10.1001/jamainternmed.2020.0994
10.1164/ajrccm.155.1.9001283
10.1016/j.jad.2020.02.046
10.1001/jama.2020.2648
10.1016/S2213-2600(20)30079-5
10.1515/cclm-2020-0369
10.1172/jci.insight.139834
10.18637/jss.v039.i05
10.1093/ajcp/aqaa062
10.1007/s11427-020-1643-8
10.1016/S0140-6736(20)30566-3
10.1093/cid/ciaa414
10.1001/jamainternmed.2020.2033
10.1182/blood-2015-09-672592
10.1038/s42256-020-0180-7
10.1164/rccm.202003-0736LE
10.1152/ajplung.00058.2015
10.1515/cclm-2020-0459
10.18637/jss.v028.i05
10.1007/s10916-020-01582-x
10.1016/j.autrev.2020.102568
10.1080/22221751.2020.1770129
ContentType Journal Article
Copyright 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2021
2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2021
– notice: 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2021 The Author(s)
DBID 0YH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1080/07853890.2020.1868564
DatabaseName Taylor & Francis Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate X. Guan et al
EISSN 1365-2060
EndPage 266
ExternalDocumentID oai_doaj_org_article_18b5424167794314879fb94f09136bf2
PMC7799376
33410720
10_1080_07853890_2020_1868564
1868564
Genre Research Article
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
00X
03L
0YH
23M
36B
4.4
5GY
5RE
AALUX
ABLKL
ABUPF
ACENM
ACGEJ
ACGFS
ADCVX
ADRBQ
ADXPE
AENEX
AEOZL
AFKVX
AGYJP
AIJEM
AJWEG
ALMA_UNASSIGNED_HOLDINGS
BABNJ
BLEHA
BOHLJ
CCCUG
CS3
DKSSO
EBD
EBS
EMB
EMOBN
F5P
GROUPED_DOAJ
H13
HZ~
KRBQP
KSSTO
KWAYT
KYCEM
LJTGL
M4Z
O9-
OK1
P2P
RPM
SV3
TDBHL
TFDNU
TFL
TFW
V1S
WH7
~1N
.55
.GJ
34G
39C
3O-
53G
5VS
AAFWJ
AALIY
AAORF
AAPXX
AAYXX
ABWCV
ABZEW
ADFZZ
AFFNX
AFLEI
AJVHN
AWYRJ
BRMBE
CAG
CITATION
COF
CYYVM
CZDIS
DRXRE
DWTOO
EJD
JENTW
M44
NUSFT
OVD
QQXMO
TEORI
X7M
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c600t-db4b2d7e98daa78d39380bc7a55cc2f499c32cb26e8640e21cf35fcef03da3133
IEDL.DBID 0YH
ISSN 0785-3890
1365-2060
IngestDate Wed Aug 27 01:29:04 EDT 2025
Thu Aug 21 14:30:41 EDT 2025
Thu Jul 10 23:42:59 EDT 2025
Thu Jan 02 22:57:21 EST 2025
Sun Jul 06 05:02:37 EDT 2025
Thu Apr 24 22:54:48 EDT 2025
Wed Dec 25 09:06:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords COVID-19
extreme gradient boosting
fatal risk
machine learning
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c600t-db4b2d7e98daa78d39380bc7a55cc2f499c32cb26e8640e21cf35fcef03da3133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Supplementary data for this article can be accessed here.
ORCID 0000-0002-9518-9584
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/07853890.2020.1868564
PMID 33410720
PQID 2476125022
PQPubID 23479
PageCount 10
ParticipantIDs pubmed_primary_33410720
informaworld_taylorfrancis_310_1080_07853890_2020_1868564
proquest_miscellaneous_2476125022
crossref_primary_10_1080_07853890_2020_1868564
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7799376
doaj_primary_oai_doaj_org_article_18b5424167794314879fb94f09136bf2
crossref_citationtrail_10_1080_07853890_2020_1868564
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Annals of medicine (Helsinki)
PublicationTitleAlternate Ann Med
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References e_1_3_3_30_1
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_39_1
e_1_3_3_19_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
Fernandez-Delgado M (e_1_3_3_36_1) 2014; 15
Chen T (e_1_3_3_9_1) 2016
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_4_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_2_1
– ident: e_1_3_3_37_1
  doi: 10.1097/RLI.0000000000000518
– ident: e_1_3_3_15_1
  doi: 10.1016/j.jaci.2020.04.006
– ident: e_1_3_3_17_1
  doi: 10.1161/HYPERTENSIONAHA.120.15324
– ident: e_1_3_3_23_1
  doi: 10.1183/09031936.96.09081736
– start-page: 785
  year: 2016
  ident: e_1_3_3_9_1
  article-title: XGBoost: a scalable tree boosting system
  publication-title: Assoc Comp Machinery
– ident: e_1_3_3_4_1
  doi: 10.1007/s00134-020-06202-3
– ident: e_1_3_3_32_1
  doi: 10.1146/annurev.immunol.19.1.683
– ident: e_1_3_3_39_1
– ident: e_1_3_3_13_1
  doi: 10.1164/rccm.202002-0445OC
– ident: e_1_3_3_31_1
  doi: 10.1002/hep.1840180420
– ident: e_1_3_3_16_1
  doi: 10.2196/20108
– ident: e_1_3_3_30_1
  doi: 10.1002/dmrr.3319
– ident: e_1_3_3_38_1
  doi: 10.1001/jama.2020.6130
– ident: e_1_3_3_28_1
  doi: 10.1001/jamainternmed.2020.0994
– ident: e_1_3_3_27_1
  doi: 10.1164/ajrccm.155.1.9001283
– ident: e_1_3_3_11_1
  doi: 10.1016/j.jad.2020.02.046
– volume: 15
  start-page: 3133
  year: 2014
  ident: e_1_3_3_36_1
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_3_3_1
  doi: 10.1001/jama.2020.2648
– ident: e_1_3_3_14_1
  doi: 10.1016/S2213-2600(20)30079-5
– ident: e_1_3_3_26_1
  doi: 10.1515/cclm-2020-0369
– ident: e_1_3_3_34_1
  doi: 10.1172/jci.insight.139834
– ident: e_1_3_3_8_1
  doi: 10.18637/jss.v039.i05
– ident: e_1_3_3_20_1
  doi: 10.1093/ajcp/aqaa062
– ident: e_1_3_3_19_1
  doi: 10.1007/s11427-020-1643-8
– ident: e_1_3_3_35_1
  doi: 10.1016/S0140-6736(20)30566-3
– ident: e_1_3_3_25_1
  doi: 10.1093/cid/ciaa414
– ident: e_1_3_3_5_1
  doi: 10.1001/jamainternmed.2020.2033
– ident: e_1_3_3_21_1
  doi: 10.1182/blood-2015-09-672592
– ident: e_1_3_3_7_1
– ident: e_1_3_3_12_1
  doi: 10.1038/s42256-020-0180-7
– ident: e_1_3_3_24_1
  doi: 10.1164/rccm.202003-0736LE
– ident: e_1_3_3_22_1
  doi: 10.1152/ajplung.00058.2015
– ident: e_1_3_3_29_1
  doi: 10.1515/cclm-2020-0459
– ident: e_1_3_3_10_1
  doi: 10.18637/jss.v028.i05
– ident: e_1_3_3_6_1
  doi: 10.1007/s10916-020-01582-x
– ident: e_1_3_3_18_1
  doi: 10.1016/j.autrev.2020.102568
– ident: e_1_3_3_33_1
  doi: 10.1080/22221751.2020.1770129
SSID ssj0002710
Score 2.6016538
Snippet To appraise effective predictors for COVID-19 mortality in a retrospective cohort study. A total of 1270 COVID-19 patients, including 984 admitted in Sino...
To appraise effective predictors for COVID-19 mortality in a retrospective cohort study.OBJECTIVESTo appraise effective predictors for COVID-19 mortality in a...
Objectives To appraise effective predictors for COVID-19 mortality in a retrospective cohort study.Methods A total of 1270 COVID-19 patients, including 984...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 257
SubjectTerms Adult
Aged
Aged, 80 and over
C-Reactive Protein - metabolism
Cardiovascular Diseases - epidemiology
China - epidemiology
Clinical Decision Rules
Cohort Studies
Comorbidity
COVID-19
COVID-19 - epidemiology
COVID-19 - metabolism
COVID-19 - mortality
COVID-19 - physiopathology
Diabetes Mellitus - epidemiology
extreme gradient boosting
fatal risk
Female
Ferritins - metabolism
Hospitalization
Humans
Hypertension - epidemiology
Immunology
Interleukin-10 - metabolism
L-Lactate Dehydrogenase - metabolism
Machine Learning
Male
Middle Aged
Prognosis
Reproducibility of Results
Retrospective Studies
SARS-CoV-2
Severity of Illness Index
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQD4gL4s3y0iBxDSS2Yzu9QaEqSIULRb1FtmPTSttstZu98IP6O5lxnNVuhbQXbomTOLZnkpmxx9_H2LtGGqG05YWKPhRSyLIwwvtCWUlQKkI5S4Hi6Xd1cia_ndfnW1RflBM2wgOPA_ehMq6WaGaUJigzdN51E10jI-FZKhfT3xePp2Aq_4O5TjgEaP_qAk1yOe3dIVRtLKMijA05FhllaiV3rFIC778FXfovB_R2HuWWYTp-wO5njxI-jj15yO6E_hG7e5rXzB-zmwz9OQfbd4BvQx24SmvrEEOC9VwB2bIOrlJiZYDMJPEbEk0OYPMg0iwPUB46XC-papInLCJcZN6Ryz9YwdGPX18_F1UDGa11dQhY-3o-rIC2sYDF02G5mHZ3ArHzLgdIELdP2Nnxl59HJ0VmZyg8OklD0TnpeKdDYzprtelEI0zpvLZ17T2PGEl5wb3jKhgly8ArH0WNChFL0VmBofFTdtAv-vCcgVNSW1dZWxFrUlNara2xlcYA2hMe3YzJSTqtz9DlxKAxb6sJ4TQLtSWhtlmoM_Z-89j1iN2x74FPJPrNzQS9nQpQIduskO0-hZyxZltx2iHNvMSRJqUVexrwdtKyFj9zWruxfVisVy2XmnxR9Lhm7NmodZtmCvRESs1xmPSOPu70Y_dKf3mRoMSxD-ifqhf_o-Mv2T1OCT9pfuoVOxiW6_AaPbbBvUkf51_Rhjdz
  priority: 102
  providerName: Directory of Open Access Journals
Title Clinical and inflammatory features based machine learning model for fatal risk prediction of hospitalized COVID-19 patients: results from a retrospective cohort study
URI https://www.tandfonline.com/doi/abs/10.1080/07853890.2020.1868564
https://www.ncbi.nlm.nih.gov/pubmed/33410720
https://www.proquest.com/docview/2476125022
https://pubmed.ncbi.nlm.nih.gov/PMC7799376
https://doaj.org/article/18b5424167794314879fb94f09136bf2
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgL4t3lsRokroHEduyEGxSqBalwoQhOke3EbaVtUiXZCz-I38mM46y6FagHjklsx87MZB4ef8PYq1IWQmnDE-Vdk0gh06QQziXKSIJSEcoachSPvqjVsfz8I5-zCYeYVkk-tJ-AIsK_moTb2GHOiHuDWg3FtEzRu-N4q1BFruRNdgs1cUpFDNKfq-3PmOsASEBdEuozH-L51zA76img-F_BMP2bJXo1ofKShjq8x-5G0xLeTbxwn91o2gfs9lHcPH_IfkcM0DXgygHfhsxwHjbZwTcB33MAUmo1nIcMywZiSYkTCPVyAKcHnsI9QAnpcNHT0ERY6DycxgIkZ79wgIOv3z99SLISImzr8BZw9M16HIDOs4DBy7Hv5mOeQGV6-xEC1u0jdnz48dvBKollGhKH1tKY1FZaXuumLGpjdFGLUhSpddrkuXPco0vlBHeWq6ZQMm145rzIkTN8Kmoj0Ed-zPbarm32GVgltbGZMRmVTypTo7UpTKbRk3YETLdgcqZO5SKGOZXSWFfZDHUaiVoRUatI1AV7ve12MYF4XNfhPZF-25gwuMONrj-pokhjW5tLNICUJpA9dCt16W0pPSGtKuv5gpWXGacaQwjGT_VSKnHNBF7OXFahvNMmjmmbbjNUXGoyStH0WrAnE9dtpynQJEk1x8-kd_hxZx27T9qz04ApjmtAQ1U9_Y85P2N3OCX8hPjUc7Y39pvmBVpso10GmVyGeMcyBNT-AJPPOGs
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSMCl4lm2vAaJayCxHTvhBoVqC91yaVE5RbYTt5W2myqbvfCD-J3MeJ3VbgXqgWMe9to7M5lv7PE3jL0tZSGUNjxR3jWJFDJNCuFcoowkKhWhrKFAcXKkxify62l-unYWhtIqKYb2S6KI8K0m46bF6CEl7j26NbTTMsXwjuOtQhW5krfZnRydLxln-nO8-hpzHRgJqElCbYZTPP_qZsM_BRr_aySmf4Oi1zMq11zU_gO2HbElfFwqw0N2q5k9Yncncff8MfsdSUCngFMH_DXUhsuwyw6-CQSfcyCvVsNlSLFsINaUOINQMAdweOBpvQcoIx2uOuqaJAuth_NYgeTiF3aw9_3HweckKyHyts4_APa-mPZzoAMtYPCy79rhnCdQnd6uh0B2-4Sd7H853hsnsU5D4hAu9UltpeW1bsqiNkYXtShFkVqnTZ47xz3GVE5wZ7lqCiXThmfOixxVw6eiNgKD5Kdsa9bOmmcMrJLa2MyYjOonlanR2hQm0xhKO2KmGzE5SKdykcScamlMq2zgOo1CrUioVRTqiL1bNbtasnjc1OATiX71MpFwhxttd1ZFm8Z3bS4RASlNLHsYV-rS21J6olpV1vMRK9cVp-rDGoxfFkypxA0DeDNoWYUGT7s4Zta0i3nFpSZUithrxHaWWrcapkBMkmqOf5Pe0MeNeWw-mV2cB1JxnAMiVbX7H2N-ze6NjyeH1eHB0bfn7D6n7J-wWPWCbfXdonmJ8K23r4J9_gHPYzna
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSBUXxJvlOUhcA4nt2Ak3aFltgRYOFMEpsp24rbTdXSXZCz-I38mM46y6FagHjnnYa-_MZL6xx98w9qqUhVDa8ER51yRSyDQphHOJMpKoVISyhgLFwyM1O5Yff-RjNmEX0yophvYDUUT4VpNxr2o_ZsS9Qa-GZlqmGN1xvFWoIlfyOruRo--l6g3pz9nmY8x1ICSgJgm1GQ_x_KubLfcUWPwvcZj-DYleTqi84KGmt9mtCC3h3aALd9i1ZnGX7R7GzfN77HfkAJ0Dzhzw11AZzsMmO_gm8Ht2QE6thvOQYdlALClxAqFeDuDwwNNyD1BCOqxa6poEC0sPp7EAydkv7GDvy_eD_SQrIdK2dm8Be1_P-w7oPAsYvOzb5XjME6hMb9tD4Lq9z46nH77tzZJYpiFxiJb6pLbS8lo3ZVEbo4talKJIrdMmz53jHkMqJ7izXDWFkmnDM-dFjprhU1EbgTHyA7azWC6aRwysktrYzJiMyieVqdHaFCbTGEk7IqabMDlKp3KRw5xKacyrbKQ6jUKtSKhVFOqEvd40Ww0kHlc1eE-i37xMHNzhxrI9qaJJ47s2lwiAlCaSPQwrdeltKT0xrSrr-YSVFxWn6sMSjB_qpVTiigG8HLWsQnunTRyzaJbrruJSEyhF6DVhDwet2wxTICRJNce_SW_p49Y8tp8szk4DpzjOAYGqevwfY37Bdr_uT6vPB0efnrCbnHJ_wlLVU7bTt-vmGYK33j4P5vkHo3Y5Aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+and+inflammatory+features+based+machine+learning+model+for+fatal+risk+prediction+of+hospitalized+COVID-19+patients%3A+results+from+a+retrospective+cohort+study&rft.jtitle=Annals+of+medicine+%28Helsinki%29&rft.au=Guan%2C+Xin&rft.au=Zhang%2C+Bo&rft.au=Fu%2C+Ming&rft.au=Li%2C+Mengying&rft.date=2021&rft.pub=Taylor+%26+Francis&rft.issn=0785-3890&rft.eissn=1365-2060&rft.volume=53&rft.issue=1&rft.spage=257&rft.epage=266&rft_id=info:doi/10.1080%2F07853890.2020.1868564&rft.externalDBID=0YH&rft.externalDocID=1868564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0785-3890&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0785-3890&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0785-3890&client=summon