Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances
The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obta...
Saved in:
Published in | Applied physiology, nutrition, and metabolism Vol. 36; no. 4; pp. 555 - 561 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Ottawa
NRC Research Press
01.08.2011
Presses scientifiques du CNRC Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography–mass spectrometry. The limit of detection (LOD) was set at 0.1 µg·mL
–1
. The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg·mL
–1
. Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg·mL
–1
). Triathlon (3.3 ± 2.2 µg·mL
–1
), cycling (2.6 ± 2.0 µg·mL
–1
), and rowing (1.9 ± 1.4 µg·mL
–1
) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg·mL
–1
). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg·mL
–1
. Endurance sports were the disciplines showing the highest urine caffeine excretion after competition. |
---|---|
AbstractList | The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography--mass spectrometry. The limit of detection (LOD) was set at 0.1 µg x [mL.sup.-1]. The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg x [mL.sup.-1]. Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg x [mL.sup.-1]. Triathlon (3.3 ± 2.2 µg x [mL.sup.-1]), cycling (2.6 ± 2.0 µg x [mL.sup.-1]), and rowing (1.9 ± 1.4 µg x [mL.sup.-1]) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg x [mL.sup.-1]). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg x [mL.sup.-1]. Endurance sports were the disciplines showing the highest urine caffeine excretion after competition. The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography-mass spectrometry. The limit of detection (LOD) was set at 0.1 µg·mL(-1). The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg·mL(-1). Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg·mL(-1)). Triathlon (3.3 ± 2.2 µg·mL(-1)), cycling (2.6 ± 2.0 µg·mL(-1)), and rowing (1.9 ± 1.4 µg·mL(-1)) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg·mL(-1)). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg·mL(-1). Endurance sports were the disciplines showing the highest urine caffeine excretion after competition.The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography-mass spectrometry. The limit of detection (LOD) was set at 0.1 µg·mL(-1). The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg·mL(-1). Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg·mL(-1)). Triathlon (3.3 ± 2.2 µg·mL(-1)), cycling (2.6 ± 2.0 µg·mL(-1)), and rowing (1.9 ± 1.4 µg·mL(-1)) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg·mL(-1)). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg·mL(-1). Endurance sports were the disciplines showing the highest urine caffeine excretion after competition. The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography–mass spectrometry. The limit of detection (LOD) was set at 0.1 µg·mL –1 . The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg·mL –1 . Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg·mL –1 ). Triathlon (3.3 ± 2.2 µg·mL –1 ), cycling (2.6 ± 2.0 µg·mL –1 ), and rowing (1.9 ± 1.4 µg·mL –1 ) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg·mL –1 ). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg·mL –1 . Endurance sports were the disciplines showing the highest urine caffeine excretion after competition. The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography-mass spectrometry. The limit of detection (LOD) was set at 0.1 µg·mL(-1). The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg·mL(-1). Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg·mL(-1)). Triathlon (3.3 ± 2.2 µg·mL(-1)), cycling (2.6 ± 2.0 µg·mL(-1)), and rowing (1.9 ± 1.4 µg·mL(-1)) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg·mL(-1)). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg·mL(-1). Endurance sports were the disciplines showing the highest urine caffeine excretion after competition. The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography--mass spectrometry. The limit of detection (LOD) was set at 0.1 µg x [mL.sup.-1]. The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg x [mL.sup.-1]. Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg x [mL.sup.-1]. Triathlon (3.3 ± 2.2 µg x [mL.sup.-1]), cycling (2.6 ± 2.0 µg x [mL.sup.-1]), and rowing (1.9 ± 1.4 µg x [mL.sup.-1]) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg x [mL.sup.-1]). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg x [mL.sup.-1]. Endurance sports were the disciplines showing the highest urine caffeine excretion after competition. Key words: caffeine, methylxanthine, doping control, endurance, intermittent sports, exercise. Cette etude se propose d'evaluer la consommation de cafeine chez les athletes apres son retrait de la liste de dopage. A cette fin, on evalue la concentration de cafeine dans 20 686 echantillons d'urine preleves dans le contexte du controle antidopage entre 2004 et 2008. On analyse seulement les echantillons d'urine preleves lors de competitions nationales et internationales. La determination de la concentration urinaire de cafeine se fait par extraction alcaline suivie d'une chromatographie en phase gazeuse-spectrometrie de masse. La limite de detection (LOD) est fixee a 0,1 µg x [mL.sup.-1]. Le pourcentage des echantillons d' urine sous la LOD est de 26,2 %; les autres echantillons (73,8 %) contiennent donc de la cafeine. La plupart des echantillons d'urine (67,3 %) presentent une teneur en cafeine inferieure a 5 µg x [mL.sup.-1]. Seulement 0,6 % des echantillons d' urine presentent une teneur en cafeine superieure au seuil defini anterieurement comme celui du dopage, soit 12 µg x [mL.sup.-1]. On observe les plus hauts taux urinaires de cafeine au triathlon (3,3 ± 2,2 µg x [mL.sup.-1]), au cyclisme (2,6 ± 2,0 µg x [mL.sup.-1])et a l'aviron (1,9 ± 1,4 µg x [mL.sup.-1]) et les plus faibles taux a la gymnastique (0,5 ± 0,4 µg x [mL.sup.-1]). Les concurrents les plus ages (>30 ans) presentent de plus hauts taux urinaires de cafeine que les plus jeunes (<20 ans; p < 0,05); on n'observe pas de differences entre les femmes et les hommes. En conclusion, trois athletes sur quatre consomment de la cafeine avant ou pendant la competition. Toutefois, une faible proportion de concurrents (0,6 %) presente un taux urinaire de cafeine superieur a 12 µg x [mL.sup.-1]. C'est dans les sports d'endurance qu'on observe les plus importantes excretions urinaires de cafeine apres la competition. Mots-cles : cafeine, methylxanthine, controle antidopage, endurance, sports intermittent, exercice physique. [Traduit par la Redaction] The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography-mass spectrometry. The limit of detection (LOD) was set at 0.1 mu g.mL super(-1). The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 mu g.mL super(-1). Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 mu g.mL super(-1)) . Triathlon (3.3 plus or minus 2.2 mu g.mL super(-1)) , cycling (2.6 plus or minus 2.0 mu g.mL super(-1)) , and rowing (1.9 plus or minus 1.4 mu g.mL super(-1)) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 plus or minus 0.4 mu g.mL super(-1)) . Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 mu g.mL super(-1). Endurance sports were the disciplines showing the highest urine caffeine excretion after competition.Original Abstract: Cette etude se propose d'evaluer la consommation de cafeine chez les athletes apres son retrait de la liste de dopage. A cette fin, on evalue la concentration de cafeine dans 20 686 echantillons d'urine preleves dans le contexte du controle antidopage entre 2004 et 2008. On analyse seulement les echantillons d'urine preleves lors de competitions nationales et internationales. La determination de la concentration urinaire de cafeine se fait par extraction alcaline suivie d'une chromatographie en phase gazeuse - spectrometrie de masse. La limite de detection (LOD) est fixee a 0,1 mu g.mL super(-1). Le pourcentage des echantillons d'urine sous la LOD est de 26,2 %; les autres echantillons (73,8 %) contiennent donc de la cafeine. La plupart des echantillons d'urine (67,3 %) presentent une teneur en cafeine inferieure a 5 mu g.mL super(-1). Seulement 0,6 % des echantillons d'urine presentent une teneur en cafeine superieure au seuil defini anterieurement comme celui du dopage, soit 12 mu g.mL super(-1). On observe les plus hauts taux urinaires de cafeine au triathlon (3,3 plus or minus 2,2 mu g.mL super(-1)) , au cyclisme (2,6 plus or minus 2,0 mu g.mL super(-1)) et a l'aviron (1,9 plus or minus 1,4 mu g.mL super(-1)) et les plus faibles taux a la gymnastique (0,5 plus or minus 0,4 mu g.mL super(-1)) . Les concurrents les plus ages (>30 ans) presentent de plus hauts taux urinaires de cafeine que les plus jeunes (<20 ans; p < 0,05) ; on n'observe pas de differences entre les femmes et les hommes. En conclusion, trois athletes sur quatre consomment de la cafeine avant ou pendant la competition. Toutefois, une faible proportion de concurrents (0,6 %) presente un taux urinaire de cafeine superieur a 12 mu g.mL super(-1). C'est dans les sports d'endurance qu'on observe les plus importantes excretions urinaires de cafeine apres la competition. |
Abstract_FL | Cette étude se propose d’évaluer la consommation de caféine chez les athlètes après son retrait de la liste de dopage. À cette fin, on évalue la concentration de caféine dans 20 686 échantillons d’urine prélevés dans le contexte du contrôle antidopage entre 2004 et 2008. On analyse seulement les échantillons d’urine prélevés lors de compétitions nationales et internationales. La détermination de la concentration urinaire de caféine se fait par extraction alcaline suivie d’une chromatographie en phase gazeuse – spectrométrie de masse. La limite de détection (LOD) est fixée à 0,1 μg·mL
–1
. Le pourcentage des échantillons d’urine sous la LOD est de 26,2 %; les autres échantillons (73,8 %) contiennent donc de la caféine. La plupart des échantillons d’urine (67,3 %) présentent une teneur en caféine inférieure à 5 μg·mL
–1
. Seulement 0,6 % des échantillons d’urine présentent une teneur en caféine supérieure au seuil défini antérieurement comme celui du dopage, soit 12 μg·mL
–1
. On observe les plus hauts taux urinaires de caféine au triathlon (3,3 ± 2,2 μg·mL
–1
), au cyclisme (2,6 ± 2,0 μg·mL
–1
) et à l’aviron (1,9 ± 1,4 μg·mL
–1
) et les plus faibles taux à la gymnastique (0,5 ± 0,4 μg·mL
–1
). Les concurrents les plus âgés (>30 ans) présentent de plus hauts taux urinaires de caféine que les plus jeunes (<20 ans; p < 0,05) ; on n’observe pas de différences entre les femmes et les hommes. En conclusion, trois athlètes sur quatre consomment de la caféine avant ou pendant la compétition. Toutefois, une faible proportion de concurrents (0,6 %) présente un taux urinaire de caféine supérieur à 12 μg·mL
–1
. C’est dans les sports d’endurance qu’on observe les plus importantes excrétions urinaires de caféine après la compétition. |
Audience | Academic |
Author | Muñoz, Gloria Muñoz-Guerra, Jesús Del Coso, Juan |
Author_xml | – sequence: 1 givenname: Juan surname: Del Coso fullname: Del Coso, Juan organization: Camilo Jose Cela University, Madrid, Spain., Spanish Antidoping Agency, Doping Control Laboratory in Madrid, Spain – sequence: 2 givenname: Gloria surname: Muñoz fullname: Muñoz, Gloria organization: Camilo Jose Cela University, Madrid, Spain – sequence: 3 givenname: Jesús surname: Muñoz-Guerra fullname: Muñoz-Guerra, Jesús organization: Camilo Jose Cela University, Madrid, Spain |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24554750$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21854160$$D View this record in MEDLINE/PubMed |
BookMark | eNp90t1r1TAUAPAiEzfn8D-QoDhF6EzaJk0fL_MTBvqg-BjS9OQ2kiZ3Sarsxb_d1Hu3OT9GoS3ldz56cu4Xe847KIqHBJ8QUncvR0JKTKs7xQFpCS1pXeG9q3dS7RdHMZoeY8wrztvqXrFfEU4bwvBB8eNjgG_SglOAvEZKag3GAZojIOMQWJMAyTRaSBCR9tb678atkUkRBZh8jkU6-AmlEdAXH-yAVi6Z8pXfLGy1zpkvkDUxLel76RwMKM59TDKXjA-Ku1raCEe752Hx-c3rT6fvyrMPb9-frs5KxTBO-c44b1qCKWtq4JQMWDZcSwxtx2vVUc4YVbWCjiigA-GK9pTIoWGYcKC4PiyebfNugj-fISYxmajAWunAz1FwTimrSceyfH6rJHXFKW4JqzN9_Af96ufg8n8I3uVx57ZIRk-2aJ2nLIzTPgWplpxiVbG2qSrSLlVP_qHyNcBkVD5ubfL3GwHHvwWMIG0ao7dzMt7Fm_DRrsm5n2AQm2AmGS7E5Qpk8HQHZFTS6pAPxsRr11DatL9GWG6dCj7GAFook-RSL7dqrCBYLNso8jaKvI3XI7_ylyn_li-20gUVIIIMarwFH_8f75DYDLr-CUMX9MU |
CitedBy_id | crossref_primary_10_1016_j_jsams_2019_03_007 crossref_primary_10_1152_japplphysiol_00874_2024 crossref_primary_10_18261_ntfe_16_4_6 crossref_primary_10_1016_j_jsams_2018_07_022 crossref_primary_10_1152_japplphysiol_00509_2015 crossref_primary_10_23736_S0022_4707_21_12808_7 crossref_primary_10_1016_j_mayocp_2021_05_030 crossref_primary_10_2478_sjecr_2022_0016 crossref_primary_10_3390_nu10101352 crossref_primary_10_3390_nu17020351 crossref_primary_10_1139_apnm_2012_0339 crossref_primary_10_1186_s12970_019_0276_9 crossref_primary_10_1152_ajpcell_00269_2018 crossref_primary_10_3390_nu13092944 crossref_primary_10_38021_asbid_1199261 crossref_primary_10_1007_s00394_022_02874_3 crossref_primary_10_1007_s40279_019_01101_0 crossref_primary_10_3390_brainsci14030280 crossref_primary_10_1007_s00421_015_3313_7 crossref_primary_10_1136_bjsports_2018_100278 crossref_primary_10_18261_ntfe_19_1_7 crossref_primary_10_33667_2078_5631_2024_16_69_72 crossref_primary_10_1080_07420528_2022_2077747 crossref_primary_10_1007_s00726_014_1709_z crossref_primary_10_1016_j_nut_2019_06_016 crossref_primary_10_1519_SSC_0000000000000642 crossref_primary_10_1080_15502783_2024_2400513 crossref_primary_10_1080_15438627_2018_1552146 crossref_primary_10_3390_app12199957 crossref_primary_10_1007_s40279_017_0763_6 crossref_primary_10_7717_peerj_16677 crossref_primary_10_1080_00948705_2023_2279572 crossref_primary_10_3390_jcm10194380 crossref_primary_10_1016_j_jsams_2013_07_004 crossref_primary_10_3390_ijerph18115773 crossref_primary_10_61399_ikcusbfd_1257486 crossref_primary_10_3390_nu12020434 crossref_primary_10_3389_fnut_2022_999847 crossref_primary_10_3390_nu11081912 crossref_primary_10_1016_j_heliyon_2024_e35025 crossref_primary_10_3390_nu16213611 crossref_primary_10_1016_j_chroma_2014_05_047 crossref_primary_10_52547_rbmb_11_4_663 crossref_primary_10_1249_MSS_0000000000000753 crossref_primary_10_1519_SSC_0000000000000777 crossref_primary_10_1080_19390211_2021_1904085 crossref_primary_10_1152_japplphysiol_00108_2021 crossref_primary_10_1007_s40279_018_0967_4 crossref_primary_10_1161_HYPERTENSIONAHA_114_04512 crossref_primary_10_1017_S0007114514002189 crossref_primary_10_1590_1517_869220192502180594 crossref_primary_10_3390_nu16193228 crossref_primary_10_1080_02640414_2015_1052746 crossref_primary_10_1007_s40279_015_0412_x crossref_primary_10_3389_fnut_2024_1359999 crossref_primary_10_3390_antiox12030554 crossref_primary_10_1080_02640414_2014_981849 crossref_primary_10_1139_apnm_2020_0551 crossref_primary_10_52082_jssm_2023_436 crossref_primary_10_3390_nu14091769 crossref_primary_10_52082_jssm_2023_435 crossref_primary_10_7717_peerj_9144 crossref_primary_10_3390_nu16081146 crossref_primary_10_1016_j_nut_2020_111121 crossref_primary_10_1371_journal_pone_0031380 crossref_primary_10_1007_s00421_014_2973_z crossref_primary_10_1016_j_jsams_2018_08_016 crossref_primary_10_1080_27697061_2023_2212740 crossref_primary_10_1080_10408398_2022_2068499 crossref_primary_10_3390_nu12123813 crossref_primary_10_3390_sports8040054 crossref_primary_10_1007_s11906_014_0468_2 crossref_primary_10_1002_elps_201800512 crossref_primary_10_1177_2047487314554867 crossref_primary_10_1111_sms_14109 crossref_primary_10_3390_jfmk7040071 crossref_primary_10_3390_nu13103663 crossref_primary_10_3390_nu14091930 crossref_primary_10_1519_JSC_0000000000001603 crossref_primary_10_1017_S0007114515002573 crossref_primary_10_1111_sms_13776 crossref_primary_10_1139_apnm_2017_0370 crossref_primary_10_1519_SSC_0000000000000630 crossref_primary_10_3390_genes11080933 crossref_primary_10_1007_s00394_021_02617_w crossref_primary_10_1016_j_iac_2018_01_012 crossref_primary_10_1080_02640414_2023_2191089 crossref_primary_10_3390_sports7040095 crossref_primary_10_1089_jcr_2011_1209 crossref_primary_10_1016_j_mayocp_2017_12_010 crossref_primary_10_1007_s40279_017_0776_1 crossref_primary_10_3390_sports11010004 crossref_primary_10_3390_nu12020406 crossref_primary_10_3390_nu13020344 crossref_primary_10_1016_j_sleh_2019_06_007 crossref_primary_10_3390_nu13062016 crossref_primary_10_3390_nu11071465 crossref_primary_10_1186_s13102_023_00805_1 crossref_primary_10_3390_nu11020286 crossref_primary_10_1519_JSC_0000000000001332 crossref_primary_10_1123_apaq_2020_0241 crossref_primary_10_1007_s00726_014_1702_6 crossref_primary_10_1007_s00421_016_3496_6 crossref_primary_10_1007_s40279_022_01796_8 crossref_primary_10_1007_s00394_024_03486_9 crossref_primary_10_1007_s00421_023_05295_0 crossref_primary_10_1123_ijspp_2018_0238 crossref_primary_10_2147_OAJSM_S431820 crossref_primary_10_1519_SSC_0000000000000207 crossref_primary_10_4274_tmsj_galenos_2022_09_01_02 crossref_primary_10_1186_s12970_016_0157_4 crossref_primary_10_1186_s12970_020_00383_4 crossref_primary_10_1007_s11332_016_0281_1 crossref_primary_10_3390_nu9091033 crossref_primary_10_1080_17461391_2021_1874058 crossref_primary_10_3390_nu13030815 crossref_primary_10_1007_s00394_021_02708_8 crossref_primary_10_3390_nu14142996 crossref_primary_10_3390_nu12041087 crossref_primary_10_1016_j_nut_2021_111377 crossref_primary_10_3390_nu11092040 crossref_primary_10_1038_s41598_022_12222_4 crossref_primary_10_1007_s00726_013_1473_5 crossref_primary_10_3390_sports12080206 crossref_primary_10_1371_journal_pone_0224596 crossref_primary_10_29252_nfsr_7_2_1 crossref_primary_10_1136_medethics_2015_102659 crossref_primary_10_1080_02701367_2023_2276401 crossref_primary_10_3390_nu16101421 crossref_primary_10_1097_MD_0000000000031984 crossref_primary_10_1007_s40279_018_0980_7 crossref_primary_10_1016_j_clnesp_2024_11_007 crossref_primary_10_1007_s00394_020_02427_6 crossref_primary_10_1177_19417381251315093 crossref_primary_10_4236_cc_2019_71002 crossref_primary_10_1123_ijspp_2014_0103 crossref_primary_10_1007_s40279_018_0939_8 crossref_primary_10_1016_j_nut_2020_111046 crossref_primary_10_1186_1550_2783_9_21 crossref_primary_10_3389_fnut_2023_1303805 crossref_primary_10_3390_nu16050640 crossref_primary_10_1519_SSC_0000000000000141 crossref_primary_10_3389_fspor_2022_821750 crossref_primary_10_1097_MD_0000000000035674 crossref_primary_10_1016_j_scispo_2021_07_011 crossref_primary_10_3389_fspor_2020_574854 crossref_primary_10_3390_nu16010029 crossref_primary_10_1007_s40279_021_01521_x crossref_primary_10_1123_ijsnem_2023_0141 crossref_primary_10_1159_000508228 crossref_primary_10_1007_s00421_024_05639_4 crossref_primary_10_3390_nu12061685 crossref_primary_10_3390_nu11040937 crossref_primary_10_3390_nu15051178 crossref_primary_10_3390_nu13041330 crossref_primary_10_1519_JSC_0000000000002299 crossref_primary_10_1007_s11302_023_09922_5 crossref_primary_10_1186_s12970_014_0056_5 crossref_primary_10_1590_rbce_46_20240011 crossref_primary_10_1080_02701367_2024_2377303 crossref_primary_10_1002_hup_2775 crossref_primary_10_3390_nu13093088 crossref_primary_10_1007_s00421_024_05680_3 crossref_primary_10_1186_s12970_019_0286_7 |
Cites_doi | 10.1136/bjsm.26.2.116 10.1249/MSS.0b013e318184f45e 10.1249/MSS.0b013e3181a16cf7 10.1249/MSS.0b013e3181621336 10.1249/01.mss.0000177216.21847.8a 10.1152/japplphysiol.00911.2002 10.1055/s-2007-972996 10.1139/h95-012 10.1519/JSC.0b013e31818b979a 10.1080/02640410310001655741 10.1123/ijspp.3.2.157 10.1123/ijsnem.18.3.328 10.1055/s-2005-837437 10.1123/ijspp.2.3.250 10.1249/01.mss.0000188449.18968.62 10.1055/s-2008-1025901 10.1152/jappl.1991.71.6.2292 10.1152/jappl.1998.85.4.1502 10.1152/japplphysiol.00249.2002 10.1123/ijsnem.14.6.626 10.1123/ijsnem.19.4.410 10.1055/s-2005-872921 10.2165/11317770-000000000-00000 10.1152/jappl.1995.78.3.867 10.1016/j.jsams.2006.12.118 10.1007/s00421-007-0557-x 10.1249/MSS.0b013e318182a9c7 10.1139/H08-130 10.1123/ijsnem.12.4.438 10.1097/00005768-200011000-00021 10.1123/ijsnem.10.4.464 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS COPYRIGHT 2011 NRC Research Press Copyright Human Kinetics Aug 2011 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2011 NRC Research Press – notice: Copyright Human Kinetics Aug 2011 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TS 7X8 |
DOI | 10.1139/h11-052 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Physical Education Index MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Physical Education Index MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Physical Education Index CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition Recreation & Sports |
EISSN | 1715-5320 |
EndPage | 561 |
ExternalDocumentID | 2453878901 A267422176 21854160 24554750 10_1139_h11_052 h11-052 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Spain |
GeographicLocations_xml | – name: Spain |
GroupedDBID | 0R 186 23M 2QV 4.4 53G 5GY 5RP AAIKC AAWTL ABDBF ABFLS ABFSI ABPTK ACGFS ADHUB AENEX ALMA_UNASSIGNED_HOLDINGS C1A CAG COF CS3 D8U DL DXH E.L EAD EAP EAS EBD EBS EJD EMK ESX F5P HZ H~9 IAO IEA IFM IHR IHW INH INR ITC NRXXU O9- OHT PQEST PQQKQ PV9 RIG RRP RZL TUS UKR UPT X XFK -~X 00T 0R~ 36B AAFWJ AAHBH AAMNW AAYXX ABJNI ACGFO ACUHS CITATION DATHI HZ~ IPNFZ IPT VQG ZY4 IQODW CGR CUY CVF ECM EIF NPM 7TS 7X8 |
ID | FETCH-LOGICAL-c600t-c668847105643e851d0a48fa0e7983c958665c3ce91ce5d18c5b51ad46018e503 |
ISSN | 1715-5312 |
IngestDate | Fri Jul 11 06:36:41 EDT 2025 Fri Jul 11 05:10:40 EDT 2025 Mon Jun 30 06:55:06 EDT 2025 Wed Mar 19 01:52:39 EDT 2025 Sat Mar 08 18:20:50 EST 2025 Thu May 22 21:18:16 EDT 2025 Mon Jul 21 06:03:39 EDT 2025 Mon Jul 21 09:13:25 EDT 2025 Tue Jul 01 02:56:38 EDT 2025 Thu Apr 24 23:11:01 EDT 2025 Wed Nov 11 00:32:51 EST 2020 Thu May 23 14:20:23 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Physical exercise Human Sport Prevalence Intermittent Doping Endurance Athlete Caffeine |
Language | English |
License | http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c600t-c668847105643e851d0a48fa0e7983c958665c3ce91ce5d18c5b51ad46018e503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PMID | 21854160 |
PQID | 890009581 |
PQPubID | 28783 |
PageCount | 7 |
ParticipantIDs | gale_infotracacademiconefile_A267422176 proquest_miscellaneous_885563196 gale_healthsolutions_A267422176 crossref_primary_10_1139_h11_052 nrcresearch_primary_10_1139_h11_052 proquest_miscellaneous_1328507163 gale_infotracmisc_A267422176 proquest_journals_890009581 crossref_citationtrail_10_1139_h11_052 pubmed_primary_21854160 pascalfrancis_primary_24554750 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-01 |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ottawa |
PublicationPlace_xml | – name: Ottawa – name: Canada |
PublicationTitle | Applied physiology, nutrition, and metabolism |
PublicationTitleAlternate | Appl Physiol Nutr Metab |
PublicationYear | 2011 |
Publisher | NRC Research Press Presses scientifiques du CNRC Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: Presses scientifiques du CNRC – name: Canadian Science Publishing NRC Research Press |
References | Hunter A.M. (refg22/ref22) 2002; 12 Doherty M. (refg13/ref13) 2004; 14 refg31/ref31 refg11/ref11 refg25/ref25 refg6/ref6 refg29/ref29 refg34/ref34 Lorino A.J. (refg24/ref24) 2006; 20 Graham T.E. (refg18/ref18) 1995; 78 Green J.M. (refg19/ref19) 2007; 2 refg26/ref26 refg14/ref14 refg2/ref2 Foskett A. (refg15/ref15) 2009; 19 refg21/ref21 refg4/ref4 refg10/ref10 refg12/ref12 refg28/ref28 refg32/ref32 Del Coso J. (refg7/ref7) 2009; 41 Anderson M.E. (refg1/ref1) 2000; 10 refg35/ref35 refg3/ref3 Cox G.R. (refg9/ref9) 2002; 93 refg16/ref16 McNaughton L.R. (refg27/ref27) 2008; 3 Conway K.J. (refg5/ref5) 2003; 94 Costill D.L. (refg8/ref8) 1978; 10 Jenkins N.T. (refg23/ref23) 2008; 18 refg33/ref33 Graham T.E. (refg17/ref17) 1991; 71 Roti M.W. (refg30/ref30) 2006; 77 Greer F. (refg20/ref20) 1998; 85 |
References_xml | – ident: refg35/ref35 doi: 10.1136/bjsm.26.2.116 – volume: 41 start-page: 164 issue: 1 year: 2009 ident: refg7/ref7 publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0b013e318184f45e – ident: refg12/ref12 doi: 10.1249/MSS.0b013e3181a16cf7 – ident: refg6/ref6 doi: 10.1249/MSS.0b013e3181621336 – ident: refg32/ref32 doi: 10.1249/01.mss.0000177216.21847.8a – volume: 94 start-page: 1557 issue: 4 year: 2003 ident: refg5/ref5 publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00911.2002 – ident: refg29/ref29 doi: 10.1055/s-2007-972996 – volume: 10 start-page: 155 issue: 3 year: 1978 ident: refg8/ref8 publication-title: Med. Sci. Sports – ident: refg26/ref26 – ident: refg25/ref25 doi: 10.1139/h95-012 – ident: refg16/ref16 doi: 10.1519/JSC.0b013e31818b979a – ident: refg14/ref14 doi: 10.1080/02640410310001655741 – volume: 20 start-page: 851 issue: 4 year: 2006 ident: refg24/ref24 publication-title: J. Strength Cond. Res. – volume: 3 start-page: 157 issue: 2 year: 2008 ident: refg27/ref27 publication-title: Int. J. Sports Physiol. Perform. doi: 10.1123/ijspp.3.2.157 – volume: 18 start-page: 328 issue: 3 year: 2008 ident: refg23/ref23 publication-title: Int. J. Sport Nutr. Exerc. Metab. doi: 10.1123/ijsnem.18.3.328 – ident: refg34/ref34 doi: 10.1055/s-2005-837437 – volume: 2 start-page: 250 issue: 3 year: 2007 ident: refg19/ref19 publication-title: Int. J. Sports Physiol. Perform. doi: 10.1123/ijspp.2.3.250 – ident: refg31/ref31 doi: 10.1249/01.mss.0000188449.18968.62 – ident: refg11/ref11 doi: 10.1055/s-2008-1025901 – volume: 71 start-page: 2292 issue: 6 year: 1991 ident: refg17/ref17 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1991.71.6.2292 – volume: 85 start-page: 1502 issue: 4 year: 1998 ident: refg20/ref20 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1998.85.4.1502 – volume: 93 start-page: 990 issue: 3 year: 2002 ident: refg9/ref9 publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00249.2002 – volume: 14 start-page: 626 issue: 6 year: 2004 ident: refg13/ref13 publication-title: Int. J. Sport Nutr. Exerc. Metab. doi: 10.1123/ijsnem.14.6.626 – volume: 19 start-page: 410 issue: 4 year: 2009 ident: refg15/ref15 publication-title: Int. J. Sport Nutr. Exerc. Metab. doi: 10.1123/ijsnem.19.4.410 – ident: refg33/ref33 doi: 10.1055/s-2005-872921 – ident: refg10/ref10 doi: 10.2165/11317770-000000000-00000 – volume: 78 start-page: 867 issue: 3 year: 1995 ident: refg18/ref18 publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1995.78.3.867 – ident: refg28/ref28 doi: 10.1016/j.jsams.2006.12.118 – ident: refg2/ref2 doi: 10.1007/s00421-007-0557-x – ident: refg21/ref21 doi: 10.1249/MSS.0b013e318182a9c7 – ident: refg4/ref4 doi: 10.1139/H08-130 – volume: 77 start-page: 124 issue: 2 year: 2006 ident: refg30/ref30 publication-title: Aviat. Space Environ. Med. – volume: 12 start-page: 438 issue: 4 year: 2002 ident: refg22/ref22 publication-title: Int. J. Sport Nutr. Exerc. Metab. doi: 10.1123/ijsnem.12.4.438 – ident: refg3/ref3 doi: 10.1097/00005768-200011000-00021 – volume: 10 start-page: 464 issue: 4 year: 2000 ident: refg1/ref1 publication-title: Int. J. Sport Nutr. Exerc. Metab. doi: 10.1123/ijsnem.10.4.464 |
SSID | ssib000828872 ssj0045063 |
Score | 2.4127321 |
Snippet | The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we... |
SourceID | proquest gale pubmed pascalfrancis crossref nrcresearch |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 555 |
SubjectTerms | Adult Athletes Athletes - statistics & numerical data Biological and medical sciences Caffeine Caffeine - administration & dosage Caffeine - urine caféine Central Nervous System Stimulants - urine contrôle antidopage doping control Doping in Sports Drug use Drug Utilization endurance exercice physique exercise Female Fundamental and applied biological sciences. Psychology Gas chromatography Gas Chromatography-Mass Spectrometry Health aspects Humans intermittent sports Male Mass spectrometry Measurement methylxanthine méthylxanthine Prevalence Reproducibility of Results Sex Distribution Sports sports intermittent Urinalysis Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports Young Adult |
Title | Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/h11-052 https://www.ncbi.nlm.nih.gov/pubmed/21854160 https://www.proquest.com/docview/890009581 https://www.proquest.com/docview/1328507163 https://www.proquest.com/docview/885563196 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4huLSHqk1fLpRu1YoeIhc_1o59DCEUVSVIQCTUi2Wvd0Wk4CDstFIP_Uf9j53ZXTt2gb4uFrJH9ob5PDuznu9bQt5yLuOYhfCm-ZmwmfSYHeUOs1EDVzgcP7RhoXg0CQ-n7ON5cL629qPVtbSssvf82628kv_xKpwDvyJL9h8829wUTsDf4F84gofh-Fc-Rv2lVLGGVHd4KqXApHFZaiUQpBf3VbcELq5K8Pjiq6KwqG8Fl4svSF6s6SW6q2ZYVDN7X5OohpqWOQcg4O2zFENyv4RIUyFUynZeWyezaqGkIcAUtdR_3SN6KSoA3byWLcQEevypPzo-PdYMkRVUj6aT489q0R5bBNPOafvDdHxyMtTNOWV35UIvxbZWLlSPCfx8zfycSdSrLfv5sj-anIxaIXngBjZEik7M1qIpBpusFYADLfpr5vJAC73fnCZ8VFm9wCFp_dyuEPcvE2TTtugxSL4GuEK04UFV4q2TjeHe_t5BPfWzQG_d1wxZs7TxcbvmYZ30xyQB94trbqSdLrA3Ny3h9ZR6X5W7Cx-VAJ09JA9M5UKHGoaPyJooesTan4mK7lAjLzunk9rlPdJblSRgcaq-TT0m31egpQtJa9BSAC2dFVSBltagpQ1oKYCWGtBSBC0F0FIFWtoCLdWgpQhavL0GLV2B9gmZHozPRoe22QTE5pCLV3AMI8ygIFFnvoD6IHdSFsnUEYM48nkcoGAj97mIXS6C3I14kAVumrPQcSMROP5Tsl4sCvGc0DiD6Sx3pcRNJJgbp04os0HkxFKGYZZzi-zUvkm4UcjHjVrmiaqU_TgBJybgRIvQxvBKi8LcNHmFzk00m7kJNsnQCwfM89xBaJF3ygKBCU_hqeHDwFhRkq1judWxhAmAdy6_aQHoNwO6zcpcTa5yaZHtDvQamxr2FtmssZiYKFgmUazKtMi1yOvmKo4QmzcLsViWiet7EZadoQ__uDtsogiVCiEdsMgzjfLV46GkgLLRefGn8W2Se6sws0XWq-uleAklQ5Vtmxf1JzgIGY8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prevalence+of+caffeine+use+in+elite+athletes+following+its+removal+from+the+World+Anti-Doping+Agency+list+of+banned+substances&rft.jtitle=Applied+physiology%2C+nutrition%2C+and+metabolism&rft.au=DEL+COSO%2C+Juan&rft.au=MUNOZ%2C+Gloria&rft.au=MUNOZ-GUERRA%2C+Jesus&rft.date=2011-08-01&rft.pub=Presses+scientifiques+du+CNRC&rft.issn=1715-5312&rft.volume=36&rft.issue=4&rft.spage=555&rft.epage=561&rft_id=info:doi/10.1139%2Fh11-052&rft.externalDBID=n%2Fa&rft.externalDocID=24554750 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1715-5312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1715-5312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1715-5312&client=summon |