Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances

The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obta...

Full description

Saved in:
Bibliographic Details
Published inApplied physiology, nutrition, and metabolism Vol. 36; no. 4; pp. 555 - 561
Main Authors Del Coso, Juan, Muñoz, Gloria, Muñoz-Guerra, Jesús
Format Journal Article
LanguageEnglish
Published Ottawa NRC Research Press 01.08.2011
Presses scientifiques du CNRC
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography–mass spectrometry. The limit of detection (LOD) was set at 0.1 µg·mL –1 . The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg·mL –1 . Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg·mL –1 ). Triathlon (3.3 ± 2.2 µg·mL –1 ), cycling (2.6 ± 2.0 µg·mL –1 ), and rowing (1.9 ± 1.4 µg·mL –1 ) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg·mL –1 ). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg·mL –1 . Endurance sports were the disciplines showing the highest urine caffeine excretion after competition.
AbstractList The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography--mass spectrometry. The limit of detection (LOD) was set at 0.1 µg x [mL.sup.-1]. The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg x [mL.sup.-1]. Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg x [mL.sup.-1]. Triathlon (3.3 ± 2.2 µg x [mL.sup.-1]), cycling (2.6 ± 2.0 µg x [mL.sup.-1]), and rowing (1.9 ± 1.4 µg x [mL.sup.-1]) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg x [mL.sup.-1]). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg x [mL.sup.-1]. Endurance sports were the disciplines showing the highest urine caffeine excretion after competition.
The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography-mass spectrometry. The limit of detection (LOD) was set at 0.1 µg·mL(-1). The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg·mL(-1). Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg·mL(-1)). Triathlon (3.3 ± 2.2 µg·mL(-1)), cycling (2.6 ± 2.0 µg·mL(-1)), and rowing (1.9 ± 1.4 µg·mL(-1)) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg·mL(-1)). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg·mL(-1). Endurance sports were the disciplines showing the highest urine caffeine excretion after competition.The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography-mass spectrometry. The limit of detection (LOD) was set at 0.1 µg·mL(-1). The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg·mL(-1). Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg·mL(-1)). Triathlon (3.3 ± 2.2 µg·mL(-1)), cycling (2.6 ± 2.0 µg·mL(-1)), and rowing (1.9 ± 1.4 µg·mL(-1)) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg·mL(-1)). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg·mL(-1). Endurance sports were the disciplines showing the highest urine caffeine excretion after competition.
The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography–mass spectrometry. The limit of detection (LOD) was set at 0.1 µg·mL –1 . The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg·mL –1 . Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg·mL –1 ). Triathlon (3.3 ± 2.2 µg·mL –1 ), cycling (2.6 ± 2.0 µg·mL –1 ), and rowing (1.9 ± 1.4 µg·mL –1 ) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg·mL –1 ). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg·mL –1 . Endurance sports were the disciplines showing the highest urine caffeine excretion after competition.
The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography-mass spectrometry. The limit of detection (LOD) was set at 0.1 µg·mL(-1). The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg·mL(-1). Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg·mL(-1)). Triathlon (3.3 ± 2.2 µg·mL(-1)), cycling (2.6 ± 2.0 µg·mL(-1)), and rowing (1.9 ± 1.4 µg·mL(-1)) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg·mL(-1)). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg·mL(-1). Endurance sports were the disciplines showing the highest urine caffeine excretion after competition.
The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20 686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography--mass spectrometry. The limit of detection (LOD) was set at 0.1 µg x [mL.sup.-1]. The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 µg x [mL.sup.-1]. Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 µg x [mL.sup.-1]. Triathlon (3.3 ± 2.2 µg x [mL.sup.-1]), cycling (2.6 ± 2.0 µg x [mL.sup.-1]), and rowing (1.9 ± 1.4 µg x [mL.sup.-1]) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 ± 0.4 µg x [mL.sup.-1]). Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 µg x [mL.sup.-1]. Endurance sports were the disciplines showing the highest urine caffeine excretion after competition. Key words: caffeine, methylxanthine, doping control, endurance, intermittent sports, exercise. Cette etude se propose d'evaluer la consommation de cafeine chez les athletes apres son retrait de la liste de dopage. A cette fin, on evalue la concentration de cafeine dans 20 686 echantillons d'urine preleves dans le contexte du controle antidopage entre 2004 et 2008. On analyse seulement les echantillons d'urine preleves lors de competitions nationales et internationales. La determination de la concentration urinaire de cafeine se fait par extraction alcaline suivie d'une chromatographie en phase gazeuse-spectrometrie de masse. La limite de detection (LOD) est fixee a 0,1 µg x [mL.sup.-1]. Le pourcentage des echantillons d' urine sous la LOD est de 26,2 %; les autres echantillons (73,8 %) contiennent donc de la cafeine. La plupart des echantillons d'urine (67,3 %) presentent une teneur en cafeine inferieure a 5 µg x [mL.sup.-1]. Seulement 0,6 % des echantillons d' urine presentent une teneur en cafeine superieure au seuil defini anterieurement comme celui du dopage, soit 12 µg x [mL.sup.-1]. On observe les plus hauts taux urinaires de cafeine au triathlon (3,3 ± 2,2 µg x [mL.sup.-1]), au cyclisme (2,6 ± 2,0 µg x [mL.sup.-1])et a l'aviron (1,9 ± 1,4 µg x [mL.sup.-1]) et les plus faibles taux a la gymnastique (0,5 ± 0,4 µg x [mL.sup.-1]). Les concurrents les plus ages (>30 ans) presentent de plus hauts taux urinaires de cafeine que les plus jeunes (<20 ans; p < 0,05); on n'observe pas de differences entre les femmes et les hommes. En conclusion, trois athletes sur quatre consomment de la cafeine avant ou pendant la competition. Toutefois, une faible proportion de concurrents (0,6 %) presente un taux urinaire de cafeine superieur a 12 µg x [mL.sup.-1]. C'est dans les sports d'endurance qu'on observe les plus importantes excretions urinaires de cafeine apres la competition. Mots-cles : cafeine, methylxanthine, controle antidopage, endurance, sports intermittent, exercice physique. [Traduit par la Redaction]
The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we measured the caffeine concentration in 20686 urine samples obtained for doping control from 2004 to 2008. We utilized only urine samples obtained after official national and international competitions. Urine caffeine concentration was determined using alkaline extraction followed by gas chromatography-mass spectrometry. The limit of detection (LOD) was set at 0.1 mu g.mL super(-1). The percentage of urine samples below the LOD was 26.2%; the remaining 73.8% of the urine samples contained caffeine. Most urine samples (67.3%) had urinary caffeine concentrations below 5 mu g.mL super(-1). Only 0.6% of urine samples exceeded the former threshold for caffeine doping (12 mu g.mL super(-1)) . Triathlon (3.3 plus or minus 2.2 mu g.mL super(-1)) , cycling (2.6 plus or minus 2.0 mu g.mL super(-1)) , and rowing (1.9 plus or minus 1.4 mu g.mL super(-1)) were the sports with the highest levels of urine caffeine concentration; gymnastics was the sport with the lowest urine caffeine concentration (0.5 plus or minus 0.4 mu g.mL super(-1)) . Older competitors (>30 y) had higher levels of caffeine in their urine than younger competitors (<20 y; p < 0.05); there were no differences between males and females. In conclusion, 3 out of 4 athletes had consumed caffeine before or during sports competition. Nevertheless, only a small proportion of these competitors (0.6%) had a urine caffeine concentration higher than 12 mu g.mL super(-1). Endurance sports were the disciplines showing the highest urine caffeine excretion after competition.Original Abstract: Cette etude se propose d'evaluer la consommation de cafeine chez les athletes apres son retrait de la liste de dopage. A cette fin, on evalue la concentration de cafeine dans 20 686 echantillons d'urine preleves dans le contexte du controle antidopage entre 2004 et 2008. On analyse seulement les echantillons d'urine preleves lors de competitions nationales et internationales. La determination de la concentration urinaire de cafeine se fait par extraction alcaline suivie d'une chromatographie en phase gazeuse - spectrometrie de masse. La limite de detection (LOD) est fixee a 0,1 mu g.mL super(-1). Le pourcentage des echantillons d'urine sous la LOD est de 26,2 %; les autres echantillons (73,8 %) contiennent donc de la cafeine. La plupart des echantillons d'urine (67,3 %) presentent une teneur en cafeine inferieure a 5 mu g.mL super(-1). Seulement 0,6 % des echantillons d'urine presentent une teneur en cafeine superieure au seuil defini anterieurement comme celui du dopage, soit 12 mu g.mL super(-1). On observe les plus hauts taux urinaires de cafeine au triathlon (3,3 plus or minus 2,2 mu g.mL super(-1)) , au cyclisme (2,6 plus or minus 2,0 mu g.mL super(-1)) et a l'aviron (1,9 plus or minus 1,4 mu g.mL super(-1)) et les plus faibles taux a la gymnastique (0,5 plus or minus 0,4 mu g.mL super(-1)) . Les concurrents les plus ages (>30 ans) presentent de plus hauts taux urinaires de cafeine que les plus jeunes (<20 ans; p < 0,05) ; on n'observe pas de differences entre les femmes et les hommes. En conclusion, trois athletes sur quatre consomment de la cafeine avant ou pendant la competition. Toutefois, une faible proportion de concurrents (0,6 %) presente un taux urinaire de cafeine superieur a 12 mu g.mL super(-1). C'est dans les sports d'endurance qu'on observe les plus importantes excretions urinaires de cafeine apres la competition.
Abstract_FL Cette étude se propose d’évaluer la consommation de caféine chez les athlètes après son retrait de la liste de dopage. À cette fin, on évalue la concentration de caféine dans 20 686 échantillons d’urine prélevés dans le contexte du contrôle antidopage entre 2004 et 2008. On analyse seulement les échantillons d’urine prélevés lors de compétitions nationales et internationales. La détermination de la concentration urinaire de caféine se fait par extraction alcaline suivie d’une chromatographie en phase gazeuse – spectrométrie de masse. La limite de détection (LOD) est fixée à 0,1 μg·mL –1 . Le pourcentage des échantillons d’urine sous la LOD est de 26,2 %; les autres échantillons (73,8 %) contiennent donc de la caféine. La plupart des échantillons d’urine (67,3 %) présentent une teneur en caféine inférieure à 5 μg·mL –1 . Seulement 0,6 % des échantillons d’urine présentent une teneur en caféine supérieure au seuil défini antérieurement comme celui du dopage, soit 12 μg·mL –1 . On observe les plus hauts taux urinaires de caféine au triathlon (3,3 ± 2,2 μg·mL –1 ), au cyclisme (2,6 ± 2,0 μg·mL –1 ) et à l’aviron (1,9 ± 1,4 μg·mL –1 ) et les plus faibles taux à la gymnastique (0,5 ± 0,4 μg·mL –1 ). Les concurrents les plus âgés (>30 ans) présentent de plus hauts taux urinaires de caféine que les plus jeunes (<20 ans; p < 0,05) ; on n’observe pas de différences entre les femmes et les hommes. En conclusion, trois athlètes sur quatre consomment de la caféine avant ou pendant la compétition. Toutefois, une faible proportion de concurrents (0,6 %) présente un taux urinaire de caféine supérieur à 12 μg·mL –1 . C’est dans les sports d’endurance qu’on observe les plus importantes excrétions urinaires de caféine après la compétition.
Audience Academic
Author Muñoz, Gloria
Muñoz-Guerra, Jesús
Del Coso, Juan
Author_xml – sequence: 1
  givenname: Juan
  surname: Del Coso
  fullname: Del Coso, Juan
  organization: Camilo Jose Cela University, Madrid, Spain., Spanish Antidoping Agency, Doping Control Laboratory in Madrid, Spain
– sequence: 2
  givenname: Gloria
  surname: Muñoz
  fullname: Muñoz, Gloria
  organization: Camilo Jose Cela University, Madrid, Spain
– sequence: 3
  givenname: Jesús
  surname: Muñoz-Guerra
  fullname: Muñoz-Guerra, Jesús
  organization: Camilo Jose Cela University, Madrid, Spain
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24554750$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21854160$$D View this record in MEDLINE/PubMed
BookMark eNp90t1r1TAUAPAiEzfn8D-QoDhF6EzaJk0fL_MTBvqg-BjS9OQ2kiZ3Sarsxb_d1Hu3OT9GoS3ldz56cu4Xe847KIqHBJ8QUncvR0JKTKs7xQFpCS1pXeG9q3dS7RdHMZoeY8wrztvqXrFfEU4bwvBB8eNjgG_SglOAvEZKag3GAZojIOMQWJMAyTRaSBCR9tb678atkUkRBZh8jkU6-AmlEdAXH-yAVi6Z8pXfLGy1zpkvkDUxLel76RwMKM59TDKXjA-Ku1raCEe752Hx-c3rT6fvyrMPb9-frs5KxTBO-c44b1qCKWtq4JQMWDZcSwxtx2vVUc4YVbWCjiigA-GK9pTIoWGYcKC4PiyebfNugj-fISYxmajAWunAz1FwTimrSceyfH6rJHXFKW4JqzN9_Af96ufg8n8I3uVx57ZIRk-2aJ2nLIzTPgWplpxiVbG2qSrSLlVP_qHyNcBkVD5ubfL3GwHHvwWMIG0ao7dzMt7Fm_DRrsm5n2AQm2AmGS7E5Qpk8HQHZFTS6pAPxsRr11DatL9GWG6dCj7GAFook-RSL7dqrCBYLNso8jaKvI3XI7_ylyn_li-20gUVIIIMarwFH_8f75DYDLr-CUMX9MU
CitedBy_id crossref_primary_10_1016_j_jsams_2019_03_007
crossref_primary_10_1152_japplphysiol_00874_2024
crossref_primary_10_18261_ntfe_16_4_6
crossref_primary_10_1016_j_jsams_2018_07_022
crossref_primary_10_1152_japplphysiol_00509_2015
crossref_primary_10_23736_S0022_4707_21_12808_7
crossref_primary_10_1016_j_mayocp_2021_05_030
crossref_primary_10_2478_sjecr_2022_0016
crossref_primary_10_3390_nu10101352
crossref_primary_10_3390_nu17020351
crossref_primary_10_1139_apnm_2012_0339
crossref_primary_10_1186_s12970_019_0276_9
crossref_primary_10_1152_ajpcell_00269_2018
crossref_primary_10_3390_nu13092944
crossref_primary_10_38021_asbid_1199261
crossref_primary_10_1007_s00394_022_02874_3
crossref_primary_10_1007_s40279_019_01101_0
crossref_primary_10_3390_brainsci14030280
crossref_primary_10_1007_s00421_015_3313_7
crossref_primary_10_1136_bjsports_2018_100278
crossref_primary_10_18261_ntfe_19_1_7
crossref_primary_10_33667_2078_5631_2024_16_69_72
crossref_primary_10_1080_07420528_2022_2077747
crossref_primary_10_1007_s00726_014_1709_z
crossref_primary_10_1016_j_nut_2019_06_016
crossref_primary_10_1519_SSC_0000000000000642
crossref_primary_10_1080_15502783_2024_2400513
crossref_primary_10_1080_15438627_2018_1552146
crossref_primary_10_3390_app12199957
crossref_primary_10_1007_s40279_017_0763_6
crossref_primary_10_7717_peerj_16677
crossref_primary_10_1080_00948705_2023_2279572
crossref_primary_10_3390_jcm10194380
crossref_primary_10_1016_j_jsams_2013_07_004
crossref_primary_10_3390_ijerph18115773
crossref_primary_10_61399_ikcusbfd_1257486
crossref_primary_10_3390_nu12020434
crossref_primary_10_3389_fnut_2022_999847
crossref_primary_10_3390_nu11081912
crossref_primary_10_1016_j_heliyon_2024_e35025
crossref_primary_10_3390_nu16213611
crossref_primary_10_1016_j_chroma_2014_05_047
crossref_primary_10_52547_rbmb_11_4_663
crossref_primary_10_1249_MSS_0000000000000753
crossref_primary_10_1519_SSC_0000000000000777
crossref_primary_10_1080_19390211_2021_1904085
crossref_primary_10_1152_japplphysiol_00108_2021
crossref_primary_10_1007_s40279_018_0967_4
crossref_primary_10_1161_HYPERTENSIONAHA_114_04512
crossref_primary_10_1017_S0007114514002189
crossref_primary_10_1590_1517_869220192502180594
crossref_primary_10_3390_nu16193228
crossref_primary_10_1080_02640414_2015_1052746
crossref_primary_10_1007_s40279_015_0412_x
crossref_primary_10_3389_fnut_2024_1359999
crossref_primary_10_3390_antiox12030554
crossref_primary_10_1080_02640414_2014_981849
crossref_primary_10_1139_apnm_2020_0551
crossref_primary_10_52082_jssm_2023_436
crossref_primary_10_3390_nu14091769
crossref_primary_10_52082_jssm_2023_435
crossref_primary_10_7717_peerj_9144
crossref_primary_10_3390_nu16081146
crossref_primary_10_1016_j_nut_2020_111121
crossref_primary_10_1371_journal_pone_0031380
crossref_primary_10_1007_s00421_014_2973_z
crossref_primary_10_1016_j_jsams_2018_08_016
crossref_primary_10_1080_27697061_2023_2212740
crossref_primary_10_1080_10408398_2022_2068499
crossref_primary_10_3390_nu12123813
crossref_primary_10_3390_sports8040054
crossref_primary_10_1007_s11906_014_0468_2
crossref_primary_10_1002_elps_201800512
crossref_primary_10_1177_2047487314554867
crossref_primary_10_1111_sms_14109
crossref_primary_10_3390_jfmk7040071
crossref_primary_10_3390_nu13103663
crossref_primary_10_3390_nu14091930
crossref_primary_10_1519_JSC_0000000000001603
crossref_primary_10_1017_S0007114515002573
crossref_primary_10_1111_sms_13776
crossref_primary_10_1139_apnm_2017_0370
crossref_primary_10_1519_SSC_0000000000000630
crossref_primary_10_3390_genes11080933
crossref_primary_10_1007_s00394_021_02617_w
crossref_primary_10_1016_j_iac_2018_01_012
crossref_primary_10_1080_02640414_2023_2191089
crossref_primary_10_3390_sports7040095
crossref_primary_10_1089_jcr_2011_1209
crossref_primary_10_1016_j_mayocp_2017_12_010
crossref_primary_10_1007_s40279_017_0776_1
crossref_primary_10_3390_sports11010004
crossref_primary_10_3390_nu12020406
crossref_primary_10_3390_nu13020344
crossref_primary_10_1016_j_sleh_2019_06_007
crossref_primary_10_3390_nu13062016
crossref_primary_10_3390_nu11071465
crossref_primary_10_1186_s13102_023_00805_1
crossref_primary_10_3390_nu11020286
crossref_primary_10_1519_JSC_0000000000001332
crossref_primary_10_1123_apaq_2020_0241
crossref_primary_10_1007_s00726_014_1702_6
crossref_primary_10_1007_s00421_016_3496_6
crossref_primary_10_1007_s40279_022_01796_8
crossref_primary_10_1007_s00394_024_03486_9
crossref_primary_10_1007_s00421_023_05295_0
crossref_primary_10_1123_ijspp_2018_0238
crossref_primary_10_2147_OAJSM_S431820
crossref_primary_10_1519_SSC_0000000000000207
crossref_primary_10_4274_tmsj_galenos_2022_09_01_02
crossref_primary_10_1186_s12970_016_0157_4
crossref_primary_10_1186_s12970_020_00383_4
crossref_primary_10_1007_s11332_016_0281_1
crossref_primary_10_3390_nu9091033
crossref_primary_10_1080_17461391_2021_1874058
crossref_primary_10_3390_nu13030815
crossref_primary_10_1007_s00394_021_02708_8
crossref_primary_10_3390_nu14142996
crossref_primary_10_3390_nu12041087
crossref_primary_10_1016_j_nut_2021_111377
crossref_primary_10_3390_nu11092040
crossref_primary_10_1038_s41598_022_12222_4
crossref_primary_10_1007_s00726_013_1473_5
crossref_primary_10_3390_sports12080206
crossref_primary_10_1371_journal_pone_0224596
crossref_primary_10_29252_nfsr_7_2_1
crossref_primary_10_1136_medethics_2015_102659
crossref_primary_10_1080_02701367_2023_2276401
crossref_primary_10_3390_nu16101421
crossref_primary_10_1097_MD_0000000000031984
crossref_primary_10_1007_s40279_018_0980_7
crossref_primary_10_1016_j_clnesp_2024_11_007
crossref_primary_10_1007_s00394_020_02427_6
crossref_primary_10_1177_19417381251315093
crossref_primary_10_4236_cc_2019_71002
crossref_primary_10_1123_ijspp_2014_0103
crossref_primary_10_1007_s40279_018_0939_8
crossref_primary_10_1016_j_nut_2020_111046
crossref_primary_10_1186_1550_2783_9_21
crossref_primary_10_3389_fnut_2023_1303805
crossref_primary_10_3390_nu16050640
crossref_primary_10_1519_SSC_0000000000000141
crossref_primary_10_3389_fspor_2022_821750
crossref_primary_10_1097_MD_0000000000035674
crossref_primary_10_1016_j_scispo_2021_07_011
crossref_primary_10_3389_fspor_2020_574854
crossref_primary_10_3390_nu16010029
crossref_primary_10_1007_s40279_021_01521_x
crossref_primary_10_1123_ijsnem_2023_0141
crossref_primary_10_1159_000508228
crossref_primary_10_1007_s00421_024_05639_4
crossref_primary_10_3390_nu12061685
crossref_primary_10_3390_nu11040937
crossref_primary_10_3390_nu15051178
crossref_primary_10_3390_nu13041330
crossref_primary_10_1519_JSC_0000000000002299
crossref_primary_10_1007_s11302_023_09922_5
crossref_primary_10_1186_s12970_014_0056_5
crossref_primary_10_1590_rbce_46_20240011
crossref_primary_10_1080_02701367_2024_2377303
crossref_primary_10_1002_hup_2775
crossref_primary_10_3390_nu13093088
crossref_primary_10_1007_s00421_024_05680_3
crossref_primary_10_1186_s12970_019_0286_7
Cites_doi 10.1136/bjsm.26.2.116
10.1249/MSS.0b013e318184f45e
10.1249/MSS.0b013e3181a16cf7
10.1249/MSS.0b013e3181621336
10.1249/01.mss.0000177216.21847.8a
10.1152/japplphysiol.00911.2002
10.1055/s-2007-972996
10.1139/h95-012
10.1519/JSC.0b013e31818b979a
10.1080/02640410310001655741
10.1123/ijspp.3.2.157
10.1123/ijsnem.18.3.328
10.1055/s-2005-837437
10.1123/ijspp.2.3.250
10.1249/01.mss.0000188449.18968.62
10.1055/s-2008-1025901
10.1152/jappl.1991.71.6.2292
10.1152/jappl.1998.85.4.1502
10.1152/japplphysiol.00249.2002
10.1123/ijsnem.14.6.626
10.1123/ijsnem.19.4.410
10.1055/s-2005-872921
10.2165/11317770-000000000-00000
10.1152/jappl.1995.78.3.867
10.1016/j.jsams.2006.12.118
10.1007/s00421-007-0557-x
10.1249/MSS.0b013e318182a9c7
10.1139/H08-130
10.1123/ijsnem.12.4.438
10.1097/00005768-200011000-00021
10.1123/ijsnem.10.4.464
ContentType Journal Article
Copyright 2015 INIST-CNRS
COPYRIGHT 2011 NRC Research Press
Copyright Human Kinetics Aug 2011
Copyright_xml – notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2011 NRC Research Press
– notice: Copyright Human Kinetics Aug 2011
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TS
7X8
DOI 10.1139/h11-052
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Physical Education Index
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Physical Education Index
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE


Physical Education Index
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Diet & Clinical Nutrition
Recreation & Sports
EISSN 1715-5320
EndPage 561
ExternalDocumentID 2453878901
A267422176
21854160
24554750
10_1139_h11_052
h11-052
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GroupedDBID 0R
186
23M
2QV
4.4
53G
5GY
5RP
AAIKC
AAWTL
ABDBF
ABFLS
ABFSI
ABPTK
ACGFS
ADHUB
AENEX
ALMA_UNASSIGNED_HOLDINGS
C1A
CAG
COF
CS3
D8U
DL
DXH
E.L
EAD
EAP
EAS
EBD
EBS
EJD
EMK
ESX
F5P
HZ
H~9
IAO
IEA
IFM
IHR
IHW
INH
INR
ITC
NRXXU
O9-
OHT
PQEST
PQQKQ
PV9
RIG
RRP
RZL
TUS
UKR
UPT
X
XFK
-~X
00T
0R~
36B
AAFWJ
AAHBH
AAMNW
AAYXX
ABJNI
ACGFO
ACUHS
CITATION
DATHI
HZ~
IPNFZ
IPT
VQG
ZY4
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TS
7X8
ID FETCH-LOGICAL-c600t-c668847105643e851d0a48fa0e7983c958665c3ce91ce5d18c5b51ad46018e503
ISSN 1715-5312
IngestDate Fri Jul 11 06:36:41 EDT 2025
Fri Jul 11 05:10:40 EDT 2025
Mon Jun 30 06:55:06 EDT 2025
Wed Mar 19 01:52:39 EDT 2025
Sat Mar 08 18:20:50 EST 2025
Thu May 22 21:18:16 EDT 2025
Mon Jul 21 06:03:39 EDT 2025
Mon Jul 21 09:13:25 EDT 2025
Tue Jul 01 02:56:38 EDT 2025
Thu Apr 24 23:11:01 EDT 2025
Wed Nov 11 00:32:51 EST 2020
Thu May 23 14:20:23 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Physical exercise
Human
Sport
Prevalence
Intermittent
Doping
Endurance
Athlete
Caffeine
Language English
License http://www.nrcresearchpress.com/page/about/CorporateTextAndDataMining
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c600t-c668847105643e851d0a48fa0e7983c958665c3ce91ce5d18c5b51ad46018e503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PMID 21854160
PQID 890009581
PQPubID 28783
PageCount 7
ParticipantIDs gale_infotracacademiconefile_A267422176
proquest_miscellaneous_885563196
gale_healthsolutions_A267422176
crossref_primary_10_1139_h11_052
nrcresearch_primary_10_1139_h11_052
proquest_miscellaneous_1328507163
gale_infotracmisc_A267422176
proquest_journals_890009581
crossref_citationtrail_10_1139_h11_052
pubmed_primary_21854160
pascalfrancis_primary_24554750
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-01
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Ottawa
PublicationPlace_xml – name: Ottawa
– name: Canada
PublicationTitle Applied physiology, nutrition, and metabolism
PublicationTitleAlternate Appl Physiol Nutr Metab
PublicationYear 2011
Publisher NRC Research Press
Presses scientifiques du CNRC
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: Presses scientifiques du CNRC
– name: Canadian Science Publishing NRC Research Press
References Hunter A.M. (refg22/ref22) 2002; 12
Doherty M. (refg13/ref13) 2004; 14
refg31/ref31
refg11/ref11
refg25/ref25
refg6/ref6
refg29/ref29
refg34/ref34
Lorino A.J. (refg24/ref24) 2006; 20
Graham T.E. (refg18/ref18) 1995; 78
Green J.M. (refg19/ref19) 2007; 2
refg26/ref26
refg14/ref14
refg2/ref2
Foskett A. (refg15/ref15) 2009; 19
refg21/ref21
refg4/ref4
refg10/ref10
refg12/ref12
refg28/ref28
refg32/ref32
Del Coso J. (refg7/ref7) 2009; 41
Anderson M.E. (refg1/ref1) 2000; 10
refg35/ref35
refg3/ref3
Cox G.R. (refg9/ref9) 2002; 93
refg16/ref16
McNaughton L.R. (refg27/ref27) 2008; 3
Conway K.J. (refg5/ref5) 2003; 94
Costill D.L. (refg8/ref8) 1978; 10
Jenkins N.T. (refg23/ref23) 2008; 18
refg33/ref33
Graham T.E. (refg17/ref17) 1991; 71
Roti M.W. (refg30/ref30) 2006; 77
Greer F. (refg20/ref20) 1998; 85
References_xml – ident: refg35/ref35
  doi: 10.1136/bjsm.26.2.116
– volume: 41
  start-page: 164
  issue: 1
  year: 2009
  ident: refg7/ref7
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0b013e318184f45e
– ident: refg12/ref12
  doi: 10.1249/MSS.0b013e3181a16cf7
– ident: refg6/ref6
  doi: 10.1249/MSS.0b013e3181621336
– ident: refg32/ref32
  doi: 10.1249/01.mss.0000177216.21847.8a
– volume: 94
  start-page: 1557
  issue: 4
  year: 2003
  ident: refg5/ref5
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00911.2002
– ident: refg29/ref29
  doi: 10.1055/s-2007-972996
– volume: 10
  start-page: 155
  issue: 3
  year: 1978
  ident: refg8/ref8
  publication-title: Med. Sci. Sports
– ident: refg26/ref26
– ident: refg25/ref25
  doi: 10.1139/h95-012
– ident: refg16/ref16
  doi: 10.1519/JSC.0b013e31818b979a
– ident: refg14/ref14
  doi: 10.1080/02640410310001655741
– volume: 20
  start-page: 851
  issue: 4
  year: 2006
  ident: refg24/ref24
  publication-title: J. Strength Cond. Res.
– volume: 3
  start-page: 157
  issue: 2
  year: 2008
  ident: refg27/ref27
  publication-title: Int. J. Sports Physiol. Perform.
  doi: 10.1123/ijspp.3.2.157
– volume: 18
  start-page: 328
  issue: 3
  year: 2008
  ident: refg23/ref23
  publication-title: Int. J. Sport Nutr. Exerc. Metab.
  doi: 10.1123/ijsnem.18.3.328
– ident: refg34/ref34
  doi: 10.1055/s-2005-837437
– volume: 2
  start-page: 250
  issue: 3
  year: 2007
  ident: refg19/ref19
  publication-title: Int. J. Sports Physiol. Perform.
  doi: 10.1123/ijspp.2.3.250
– ident: refg31/ref31
  doi: 10.1249/01.mss.0000188449.18968.62
– ident: refg11/ref11
  doi: 10.1055/s-2008-1025901
– volume: 71
  start-page: 2292
  issue: 6
  year: 1991
  ident: refg17/ref17
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1991.71.6.2292
– volume: 85
  start-page: 1502
  issue: 4
  year: 1998
  ident: refg20/ref20
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1998.85.4.1502
– volume: 93
  start-page: 990
  issue: 3
  year: 2002
  ident: refg9/ref9
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00249.2002
– volume: 14
  start-page: 626
  issue: 6
  year: 2004
  ident: refg13/ref13
  publication-title: Int. J. Sport Nutr. Exerc. Metab.
  doi: 10.1123/ijsnem.14.6.626
– volume: 19
  start-page: 410
  issue: 4
  year: 2009
  ident: refg15/ref15
  publication-title: Int. J. Sport Nutr. Exerc. Metab.
  doi: 10.1123/ijsnem.19.4.410
– ident: refg33/ref33
  doi: 10.1055/s-2005-872921
– ident: refg10/ref10
  doi: 10.2165/11317770-000000000-00000
– volume: 78
  start-page: 867
  issue: 3
  year: 1995
  ident: refg18/ref18
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1995.78.3.867
– ident: refg28/ref28
  doi: 10.1016/j.jsams.2006.12.118
– ident: refg2/ref2
  doi: 10.1007/s00421-007-0557-x
– ident: refg21/ref21
  doi: 10.1249/MSS.0b013e318182a9c7
– ident: refg4/ref4
  doi: 10.1139/H08-130
– volume: 77
  start-page: 124
  issue: 2
  year: 2006
  ident: refg30/ref30
  publication-title: Aviat. Space Environ. Med.
– volume: 12
  start-page: 438
  issue: 4
  year: 2002
  ident: refg22/ref22
  publication-title: Int. J. Sport Nutr. Exerc. Metab.
  doi: 10.1123/ijsnem.12.4.438
– ident: refg3/ref3
  doi: 10.1097/00005768-200011000-00021
– volume: 10
  start-page: 464
  issue: 4
  year: 2000
  ident: refg1/ref1
  publication-title: Int. J. Sport Nutr. Exerc. Metab.
  doi: 10.1123/ijsnem.10.4.464
SSID ssib000828872
ssj0045063
Score 2.4127321
Snippet The aim of this investigation was to determine the use of caffeine by athletes after its removal from the World Anti-Doping Agency list. For this purpose, we...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
nrcresearch
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 555
SubjectTerms Adult
Athletes
Athletes - statistics & numerical data
Biological and medical sciences
Caffeine
Caffeine - administration & dosage
Caffeine - urine
caféine
Central Nervous System Stimulants - urine
contrôle antidopage
doping control
Doping in Sports
Drug use
Drug Utilization
endurance
exercice physique
exercise
Female
Fundamental and applied biological sciences. Psychology
Gas chromatography
Gas Chromatography-Mass Spectrometry
Health aspects
Humans
intermittent sports
Male
Mass spectrometry
Measurement
methylxanthine
méthylxanthine
Prevalence
Reproducibility of Results
Sex Distribution
Sports
sports intermittent
Urinalysis
Vertebrates: body movement. Posture. Locomotion. Flight. Swimming. Physical exercise. Rest. Sports
Young Adult
Title Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances
URI http://www.nrcresearchpress.com/doi/abs/10.1139/h11-052
https://www.ncbi.nlm.nih.gov/pubmed/21854160
https://www.proquest.com/docview/890009581
https://www.proquest.com/docview/1328507163
https://www.proquest.com/docview/885563196
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF4huLSHqk1fLpRu1YoeIhc_1o59DCEUVSVIQCTUi2Wvd0Wk4CDstFIP_Uf9j53ZXTt2gb4uFrJH9ob5PDuznu9bQt5yLuOYhfCm-ZmwmfSYHeUOs1EDVzgcP7RhoXg0CQ-n7ON5cL629qPVtbSssvf82628kv_xKpwDvyJL9h8829wUTsDf4F84gofh-Fc-Rv2lVLGGVHd4KqXApHFZaiUQpBf3VbcELq5K8Pjiq6KwqG8Fl4svSF6s6SW6q2ZYVDN7X5OohpqWOQcg4O2zFENyv4RIUyFUynZeWyezaqGkIcAUtdR_3SN6KSoA3byWLcQEevypPzo-PdYMkRVUj6aT489q0R5bBNPOafvDdHxyMtTNOWV35UIvxbZWLlSPCfx8zfycSdSrLfv5sj-anIxaIXngBjZEik7M1qIpBpusFYADLfpr5vJAC73fnCZ8VFm9wCFp_dyuEPcvE2TTtugxSL4GuEK04UFV4q2TjeHe_t5BPfWzQG_d1wxZs7TxcbvmYZ30xyQB94trbqSdLrA3Ny3h9ZR6X5W7Cx-VAJ09JA9M5UKHGoaPyJooesTan4mK7lAjLzunk9rlPdJblSRgcaq-TT0m31egpQtJa9BSAC2dFVSBltagpQ1oKYCWGtBSBC0F0FIFWtoCLdWgpQhavL0GLV2B9gmZHozPRoe22QTE5pCLV3AMI8ygIFFnvoD6IHdSFsnUEYM48nkcoGAj97mIXS6C3I14kAVumrPQcSMROP5Tsl4sCvGc0DiD6Sx3pcRNJJgbp04os0HkxFKGYZZzi-zUvkm4UcjHjVrmiaqU_TgBJybgRIvQxvBKi8LcNHmFzk00m7kJNsnQCwfM89xBaJF3ygKBCU_hqeHDwFhRkq1judWxhAmAdy6_aQHoNwO6zcpcTa5yaZHtDvQamxr2FtmssZiYKFgmUazKtMi1yOvmKo4QmzcLsViWiet7EZadoQ__uDtsogiVCiEdsMgzjfLV46GkgLLRefGn8W2Se6sws0XWq-uleAklQ5Vtmxf1JzgIGY8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prevalence+of+caffeine+use+in+elite+athletes+following+its+removal+from+the+World+Anti-Doping+Agency+list+of+banned+substances&rft.jtitle=Applied+physiology%2C+nutrition%2C+and+metabolism&rft.au=DEL+COSO%2C+Juan&rft.au=MUNOZ%2C+Gloria&rft.au=MUNOZ-GUERRA%2C+Jesus&rft.date=2011-08-01&rft.pub=Presses+scientifiques+du+CNRC&rft.issn=1715-5312&rft.volume=36&rft.issue=4&rft.spage=555&rft.epage=561&rft_id=info:doi/10.1139%2Fh11-052&rft.externalDBID=n%2Fa&rft.externalDocID=24554750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1715-5312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1715-5312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1715-5312&client=summon