Recent advances in the epidemiology and genetics of acute intermittent porphyria
Acute intermittent porphyria (AIP) is a dominant inherited disorder with a low penetrance that is caused by mutations in the gene coding for hydroxymethylbilane synthase (HMBS). Information about the epidemiology and molecular genetic features of this rare disorder is crucial to clinical research, a...
Saved in:
Published in | Intractable & Rare Diseases Research Vol. 9; no. 4; pp. 196 - 204 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
International Research and Cooperation Association for Bio & Socio-Sciences Advancement
01.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Acute intermittent porphyria (AIP) is a dominant inherited disorder with a low penetrance that is caused by mutations in the gene coding for hydroxymethylbilane synthase (HMBS). Information about the epidemiology and molecular genetic features of this rare disorder is crucial to clinical research, and particularly to the evaluation of new treatments. Variations in the prevalence and penetrance of AIP in various studies may due to the different inclusion criteria and methods of assessment. Here, the prevalence and penetrance of AIP are analyzed systematically, and the genetic traits of different populations and findings regarding the genotype-phenotype correlation are summarized. In addition, quite a few studies have indicated that AIP susceptibility was affected by other factors, such as modifying genes. Findings regarding possible modifying genes are documented here, helping to reveal the pathogenesis of and treatments for AIP. The status of research on AIP in China reveals the lack of epidemiological and genetic studies of the Chinese population, a situation that needs to be promptly remedied. |
---|---|
AbstractList | Acute intermittent porphyria (AIP) is a dominant inherited disorder with a low penetrance that is caused by mutations in the gene coding for hydroxymethylbilane synthase (HMBS). Information about the epidemiology and molecular genetic features of this rare disorder is crucial to clinical research, and particularly to the evaluation of new treatments. Variations in the prevalence and penetrance of AIP in various studies may due to the different inclusion criteria and methods of assessment. Here, the prevalence and penetrance of AIP are analyzed systematically, and the genetic traits of different populations and findings regarding the genotype-phenotype correlation are summarized. In addition, quite a few studies have indicated that AIP susceptibility was affected by other factors, such as modifying genes. Findings regarding possible modifying genes are documented here, helping to reveal the pathogenesis of and treatments for AIP. The status of research on AIP in China reveals the lack of epidemiological and genetic studies of the Chinese population, a situation that needs to be promptly remedied. Acute intermittent porphyria (AIP) is a dominant inherited disorder with a low penetrance that is caused by mutations in the gene coding for hydroxymethylbilane synthase (HMBS). Information about the epidemiology and molecular genetic features of this rare disorder is crucial to clinical research, and particularly to the evaluation of new treatments. Variations in the prevalence and penetrance of AIP in various studies may due to the different inclusion criteria and methods of assessment. Here, the prevalence and penetrance of AIP are analyzed systematically, and the genetic traits of different populations and findings regarding the genotype-phenotype correlation are summarized. In addition, quite a few studies have indicated that AIP susceptibility was affected by other factors, such as modifying genes. Findings regarding possible modifying genes are documented here, helping to reveal the pathogenesis of and treatments for AIP. The status of research on AIP in China reveals the lack of epidemiological and genetic studies of the Chinese population, a situation that needs to be promptly remedied.Acute intermittent porphyria (AIP) is a dominant inherited disorder with a low penetrance that is caused by mutations in the gene coding for hydroxymethylbilane synthase (HMBS). Information about the epidemiology and molecular genetic features of this rare disorder is crucial to clinical research, and particularly to the evaluation of new treatments. Variations in the prevalence and penetrance of AIP in various studies may due to the different inclusion criteria and methods of assessment. Here, the prevalence and penetrance of AIP are analyzed systematically, and the genetic traits of different populations and findings regarding the genotype-phenotype correlation are summarized. In addition, quite a few studies have indicated that AIP susceptibility was affected by other factors, such as modifying genes. Findings regarding possible modifying genes are documented here, helping to reveal the pathogenesis of and treatments for AIP. The status of research on AIP in China reveals the lack of epidemiological and genetic studies of the Chinese population, a situation that needs to be promptly remedied. |
Author | Zhang, Yiran Tian, Yu Ma, Liyan Zhang, Songyun Peng, Chenxing |
Author_xml | – sequence: 1 fullname: Ma, Liyan organization: Department of Endocrinology, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China – sequence: 2 fullname: Tian, Yu organization: Department of Endocrinology, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China – sequence: 3 fullname: Peng, Chenxing organization: Department of Endocrinology, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China – sequence: 4 fullname: Zhang, Yiran organization: School of First Clinical Medical College, Southern Medical University, Guangzhou, Guangdong, China – sequence: 5 fullname: Zhang, Songyun organization: Department of Endocrinology, The second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33139978$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uc1rFDEUD1KxtfbsTeboZbf5mklyEWRRKxSUUsFbyGTe7KbMJGOSLex_b6ZbR-2hgZAX3u_jJb_X6MQHDwi9JXhd15JeutjFNcUUrzHDkr5AZ5TIZsUa8vNkqTk_RRcp3eGyBKa14q_QKWOEKSXkGfp-AxZ8rkx3b7yFVDlf5R1UMLkORheGsD1UxnfVFjxkZ1MV-srYfYaCzBBHl_PMn0KcdofozBv0sjdDgovH8xz9-PzpdnO1uv725evm4_XKNhjnlRGqhkaQnmBWCyZ6RptykZIT0uIyZwtccOhtq5iCRnYKoO0ZAyqoqY1h5-jDUXfatyN08yOiGfQU3WjiQQfj9P8d73Z6G-61qGUjhSgC7x8FYvi1h5T16JKFYTAewj5pystcmCpOC_Tdv16LyZ9vLIDLI8DGkFKEfoEQrOes9JyVnrPSD1kVRv2EYV022YV5WDc8w9sceXcpmy0sPiaWcAY44pXmZf9lLV27M1GDZ78BcZuyVg |
CitedBy_id | crossref_primary_10_7759_cureus_80552 crossref_primary_10_3390_life13091923 crossref_primary_10_1136_bcr_2021_241580 crossref_primary_10_1007_s00063_022_00978_6 crossref_primary_10_3390_diagnostics12051193 crossref_primary_10_1177_23247096221109206 crossref_primary_10_31146_1682_8658_ecg_229_9_212_216 crossref_primary_10_7759_cureus_68651 crossref_primary_10_5937_afmnai41_47223 crossref_primary_10_1097_MD_0000000000041526 crossref_primary_10_1002_ccr3_8100 crossref_primary_10_1097_MD_0000000000036167 crossref_primary_10_12998_wjcc_v10_i33_12319 crossref_primary_10_3389_fneur_2023_1334743 crossref_primary_10_3390_biomedicines10030648 crossref_primary_10_7759_cureus_44260 |
Cites_doi | 10.1097/MOH.0000000000000330 10.1007/s11920-018-0867-1 10.3389/fgene.2018.00129 10.1097/00008571-200401000-00001 10.1097/MD.0000000000012295 10.1016/0002-9343(79)91176-8 10.1002/jimd.12040 10.33549/physiolres.930000.55.S2.43 10.1139/y95-234 10.1046/j.1365-2796.1997.00189.x 10.1111/cge.13558 10.1097/01.md.0000152454.56435.f3 10.1074/jbc.M608172200 10.3389/fphar.2015.00261 10.1007/s10545-005-8050-3 10.1046/j.1529-8817.2003.00114.x 10.1007/BF03401859 10.1073/pnas.1719267115 10.1128/MCB.20.5.1868-1876.2000 10.1007/s11427-017-9090-6 10.1111/j.1469-1809.2008.00463.x 10.1042/BJ20082077 10.1016/j.ymgme.2018.09.002 10.1016/j.gene.2015.04.027 10.1034/j.1399-0004.2002.620406.x 10.1016/j.ymgme.2016.08.006 10.1124/jpet.104.073098 10.1126/science.8197458 10.1373/clinchem.2005.058198 10.1159/000133123 10.1111/ahg.12107 10.1002/(SICI)1098-1004(200005)15:5<480::AID-HUMU12>3.0.CO;2-J 10.1002/humu.9020 10.1002/0471142905.hg1720s86 10.1016/j.bcmd.2012.06.002 10.1155/2018/3216802 10.1172/JCI117543 10.1007/s00439-017-1779-6 10.2147/TCRM.S180161 10.1002/hep4.1297 10.1016/S0009-8981(99)00139-4 10.1093/hmg/ddy030 10.1053/j.gastro.2004.08.023 10.1016/j.tem.2004.07.007 10.1002/(SICI)1096-8628(19991008)86:4<366::AID-AJMG11>3.0.CO;2-# 10.3390/metabo4040977 10.1016/j.amjmed.2014.06.036 10.1038/383022a0 10.1007/BF00222712 10.1016/j.cell.2005.06.040 10.1016/S0009-9120(97)00114-8 10.1097/MD.0000000000011665 10.1053/j.gastro.2019.04.050 10.1111/bjh.14459 10.1097/00005792-199201000-00001 10.1016/S0041-008X(03)00231-X 10.1186/s13023-020-01375-y 10.1006/geno.1993.1005 10.1007/s004390050995 10.1007/s12664-016-0698-0 10.1159/000022924 10.17219/acem/58955 10.1007/s10545-006-0344-6 10.1016/S0140-6736(09)61925-5 10.1016/j.ymgme.2019.04.008 10.1093/clinchem/44.8.1766 10.1038/377451a0 10.1016/S0006-8993(02)03749-6 10.1016/j.jmb.2009.03.024 10.1097/01.md.0000152455.38510.af 10.1186/s13023-019-1031-7 10.1016/j.jemermed.2015.04.034 10.1124/mol.112.082503 10.7861/clinmedicine.12-3-293 10.1016/j.bcmd.2008.11.001 10.1093/hmg/4.2.215 10.1016/j.ymgme.2018.11.012 10.1038/ncomms12353 10.1002/ped4.12036 10.1016/j.ymgme.2020.02.003 10.1002/humu.23067 10.1016/j.ymgme.2019.01.015 10.1046/j.1471-4159.2000.0750321.x 10.1056/NEJMra1608634 10.1111/j.1552-6569.2010.00497.x 10.1155/2016/3927635 10.1055/s-2007-1007136 10.1016/j.ntt.2014.12.001 10.1046/j.1365-2796.2003.01172.x 10.1016/j.ymgme.2018.12.010 10.1681/ASN.2016080918 10.1007/s11427-017-9100-1 10.1111/j.1365-2362.1989.tb00252.x 10.1007/BF00278187 10.1093/clinchem/48.11.1891 10.1016/j.pediatrneurol.2014.05.016 10.3892/mmr.2020.11117 10.1111/j.1471-4159.2007.04905.x 10.1016/S0140-6736(05)70154-9 10.1086/515455 10.1172/JCI1909 10.3389/fphar.2019.01018 10.1007/BF03401985 10.1016/j.ymgme.2019.03.002 10.1016/j.ymgme.2019.10.011 10.1007/s10545-012-9544-4 10.1080/00365510902935979 10.1111/j.1432-1033.1987.tb10548.x 10.1371/journal.pone.0006796 |
ContentType | Journal Article |
Copyright | 2020 International Research and Cooperation Association for Bio & Socio-Sciences Advancement 2020, International Research and Cooperation Association for Bio & Socio - Sciences Advancement. 2020, International Research and Cooperation Association for Bio & Socio - Sciences Advancement 2020 |
Copyright_xml | – notice: 2020 International Research and Cooperation Association for Bio & Socio-Sciences Advancement – notice: 2020, International Research and Cooperation Association for Bio & Socio - Sciences Advancement. – notice: 2020, International Research and Cooperation Association for Bio & Socio - Sciences Advancement 2020 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.5582/irdr.2020.03082 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2186-361X |
EndPage | 204 |
ExternalDocumentID | PMC7586877 33139978 10_5582_irdr_2020_03082 article_irdr_9_4_9_2020_03082_article_char_en |
Genre | Journal Article Review |
GroupedDBID | ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL DIK HYE JSF JSH KQ8 OK1 RJT RPM RZJ AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c600t-a795e671f1035737f3261f188411b0025be474efcb939e68d9eebf33e272a5aa3 |
ISSN | 2186-3644 |
IngestDate | Thu Aug 21 18:33:17 EDT 2025 Fri Jul 11 09:50:18 EDT 2025 Thu Jan 02 22:33:13 EST 2025 Tue Jul 01 02:36:02 EDT 2025 Thu Apr 24 23:01:37 EDT 2025 Mon May 26 05:57:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | prevalence genetic traits modifying genes acute intermittent porphyria genotype-phenotype correlation penetrance |
Language | English |
License | 2020, International Research and Cooperation Association for Bio & Socio - Sciences Advancement. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c600t-a795e671f1035737f3261f188411b0025be474efcb939e68d9eebf33e272a5aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/irdr/9/4/9_2020.03082/_article/-char/en |
PMID | 33139978 |
PQID | 2457302942 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7586877 proquest_miscellaneous_2457302942 pubmed_primary_33139978 crossref_primary_10_5582_irdr_2020_03082 crossref_citationtrail_10_5582_irdr_2020_03082 jstage_primary_article_irdr_9_4_9_2020_03082_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Intractable & Rare Diseases Research |
PublicationTitleAlternate | IRDR |
PublicationYear | 2020 |
Publisher | International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
Publisher_xml | – name: International Research and Cooperation Association for Bio & Socio-Sciences Advancement |
References | 20. Kauppinen R. Porphyrias. Lancet. 2005; 365:241-252. 13. Shen, Y. Next-generation sequencing based molecular testing is an equalizer for diagnostic service of rare genetic disorders in China. Pediatr Invest. 2018; 2:96-97. 56. Greene-Davis ST, Neumann PE, Mann OE, Moss MA, Schreiber WE, Welch JP, Langley GR, Sangalang VE, Dempsey GI, Nassar BA. Detection of a R173W mutation in the porphobilinogen deaminase gene in the Nova Scotian "foreign Protestant" population with acute intermittent porphyria: a founder effect. Clin Biochem. 1997; 30:607-612. 18. Stein PE, Badminton MN, Rees DC. Update review of the acute porphyrias. Br J Haematol. 2017; 176:527-538. 92. Chen JD, Umesono K, Evans RM. SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers. Proc Natl Acad Sci U.S.A. 1996; 93:7567-7571. 43. Cooper DN, Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988; 78:151-155. 113. Yang J, Wang H, Yin K, Hua B, Zhu T, Zhao Y, Guo S, Yu X, Wu W, Zhou Z. A novel mutation in the porphobilinogen deaminase gene in an extended Chinese family with acute intermittent porphyria. Gene. 2015; 565:288-290. 68. Arora S, Young S, Kodali S, Singal AK. Hepatic porphyria: a narrative review. Indian J Gastroenterol. 2016; 35:405-418. 88. Chen B, Wang M, Gan L, Zhang B, Desnick RJ, Yasuda M. Characterization of the hepatic transcriptome following phenobarbital induction in mice with AIP. Mol Genet Metab. 2019; 128:382-390. 51. Gu XF, de Rooij F, Lee JS, Te Velde K, Deybach JC, Nordmann Y, Grandchamp B. High prevalence of a point mutation in the porphobilinogen deaminase gene in Dutch patients with acute intermittent porphyria. Hum Genet. 1993; 91:128-130. 105. Fukuda Y, Cheong PL, Lynch J, et al. The severity of hereditary porphyria is modulated by the porphyrin exporter and Lan antigen ABCB6. Nat Commun. 2016; 7:12353. 17. Spiritos Z, Salvador S, Mosquera D, Wilder J. Acute intermittent porphyria: Current perspectives and case presentation. Ther Clin Risk Manag. 2019; 15:1443-1451. 60. Schuurmans MM, Schneider-Yin X, Rüfenacht UB, Schnyder C, Minder CE, Puy H, Deybach JC, Minder EI. Influence of age and gender on the clinical expression of acute intermittent porphyria based on molecular study of porphobilinogen deaminase gene among Swiss patients. Mol Med. 2001; 7:535-542. 11. Naik H, Stoecker M, Sanderson SC, Balwani M, Desnick RJ. Experiences and concerns of patients with recurrent attacks of acute hepatic porphyria: a qualitative study. Mol Genet Metab. 2016; 119:278-283. 97. Tudor C, Feige JN, Pingali H, Lohray VB, Wahli W, Desvergne B, Engelborghs Y, Gelman L. Association with coregulators is the major determinant governing peroxisome proliferator-activated receptor mobility in living cells. J Biol Chem. 2007; 282:4417-4426. 29. Saint EG, Curnow DH. Porphyria in Western Australia. Lancet. 1962; 1:133-136. 24. von und zu Fraunberg M, Pischik E, Udd L, Kauppinen R. Clinical and biochemical characteristics and genotype-phenotype correlation in 143 Finnish and Russian patients with acute intermittent porphyria. Medicine (Baltimore). 2005; 84:35-47. 79. Döring F, Walter J, Will J, Föcking M, Boll M, Amasheh S, Clauss W, Daniel H. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J Clin Invest. 1998; 101:2761-2767. 47. Puy H, Deybach JC, Lamoril J, Robreau AM, Da Silva V, Gouya L, Grandchamp B, Nordmann Y. Molecular epidemiology and diagnosis of PBG deaminase gene defects in acute intermittent porphyria. Am J Hum Genet. 1997; 60:1373-1383. 36. Chretien S, Dubart A, Beaupain D, Raich N, Grandchamp B, Rosa J, Goossens M, Romeo PH. Alternative transcription and splicing of the human porphobilinogen deaminase gene result either in tissue-specific or in housekeeping expression. Proc Natl Acad Sci U.S.A. 1988; 85:6-10. 118. Ni J, Zhou LX, Hao HL, Liu Q, Yao M, Li ML, Peng B, Cui LY. The clinical and radiological spectrum of posterior reversible encephalopathy syndrome: a retrospective series of 24 patients. J Neuroimaging. 2011; 21:219-224. 8. Besur S, Schmeltzer P, Bonkovsky HL. Acute porphyrias. J Emerg Med. 2015; 49:305-312. 72. Fu Y, Jia J, Yue L, Yang R, Guo Y, Ni X, Shi T. Systematically analyzing the pathogenic variations for acute intermittent porphyria. Front Pharmacol. 2019; 10:1018. 33. Ren Y, Xu LX, Liu YF, Xiang CY, Gao F, Wang Y, Bai T, Yin JH, Zhao YL, Yang J. A novel 55-basepair deletion of hydroxymethylbilane synthase gene found in a Chinese patient with acute intermittent porphyria and her family: A case report. Medicine (Baltimore). 2018; 97:e12295. 55. Lee JS, Anvret M. Identification of the most common mutation within the porphobilinogen deaminase gene in Swedish patients with acute intermittent porphyria. Proc Natl Acad Sci U.S.A. 1991; 88:10912-10915. 21. Stein PE, Badminton MN, Barth JH, Rees DC, Sarkany R, Stewart MF, Cox TM. Acute intermittent porphyria: fatal complications of treatment. Clin Med (Lond). 2012; 12:293-294. 90. Degenhardt T, Väisänen S, Rakhshandehroo M, Kersten S, Carlberg C. Peroxisome proliferator-activated receptor alpha controls hepatic heme biosynthesis through ALAS1.J Mol Biol. 2009; 388:225-238. 102. Richert L, Lamboley C, Viollon-Abadie C, Grass P, Hartmann N, Laurent S, Heyd B, Mantion G, Chibout SD, Staedtler F. Effects of clofibric acid on mRNA expression profiles in primary cultures of rat, mouse and human hepatocytes. Toxicol Appl Pharmacol. 2003; 191:130-146. 3. Besur S, Hou W, Schmeltzer P, Bonkovsky HL. Clinically important features of porphyrin and heme metabolism and the porphyrias. Metabolites. 2014; 4:977-1006. 50. Kauppinen R, Mustajoki S, Pihlaja H, Peltonen L, Mustajoki P. Acute intermittent porphyria in Finland: 19 mutations in the porphobilinogen deaminase gene. Hum Mol Genet. 1995; 4:215-222. 44. Youssoufian H, Antonarakis SE, Bell W, Griffin AM, Kazazian HH. Nonsense and missense mutations in hemophilia A: estimate of the relative mutation rate at CG dinucleotides. Am J Hum Genet. 1988; 42:718-725. 117. Yang J, Chen Q, Yang H, Hua B, Zhu T, Zhao Y, Zhu H, Yu X, Zhang L, Zhou Z. Clinical and laboratory features of acute porphyria: A study of 36 subjects in a Chinese tertiary referral center. Biomed Res Int. 2016; 2016:3927635. 96. Vega R B, Huss J M, Kelly D P. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 2000; 20:1868-1876. 46. Solis C, Lopez-Echaniz I, Sefarty-Graneda D, Astrin KH, Desnick RJ. Identification and expression of mutations in the hydroxymethylbilane synthase gene causing acute intermittent porphyria (AIP). Mol Med. 1999; 5:664-671. 16. To-Figueras J, Badenas C, Carrera C, Muñoz C, Milá M, Lecha M, Herrero C. Genetic and biochemical characterization of 16 acute intermittent porphyria cases with a high prevalence of the R173W mutation. J Inherit Metab Dis. 2006; 29:580-585. 48. Grandchamp B. Acute intermittent porphyria. Semin Liver Dis. 1998; 18:17-24. 65. Andersson C, Innala E, Bäckström T. Acute intermittent porphyria in women: clinical expression, use and experience of exogenous sex hormones. A population-based study in northern Sweden. J Intern Med. 2003; 254:176-183. 94. Janknecht R, Hunter T. Transcription. A growing coactivator network. Nature. 1996; 383:22-23. 54. De Siervi A, Rossetti M V, Parera V E, Astrin KH, Aizencang GI, Glass IA, Batlle AM, Desnick RJ. Identification and characterization of hydroxymethylbilane synthase mutations causing acute intermittent porphyria: evidence for an ancestral founder of the common G111R mutation. Am J Med Genet. 1999; 86:366-375. 49. Martinez di Montemuros F, Di Pierro E, Fargion S, Biolcati G, Griso D, Macrì A, Fiorelli G, Cappellini MD. Molecular analysis of the hydroxymethylbilane synthase (HMBS) gene in Italian patients with acute intermittent porphyria: report of four novel mutations. Hum Mutat. 2000; 15:480. 45. Ulbrichova D, Schneider-Yin X, Mamet R, Saudek V, Martasek P, Minder EI, Schoenfeld N. Correlation between biochemical findings, structural and enzymatic abnormalities in mutated HMBS identified in six Israeli families with acute intermittent porphyria. Blood Cells Mol Dis. 2009; 42:167-173. 81. Jaramillo-Calle DA, Solano JM, Rabinstein AA, Bonkovsky HL. Porphyria-induced posterior reversible encephalopathy syndrome and central nervous system dysfunction. Mol Genet Metab. 2019; 128:242-253. 85. Phillips JD. Heme biosynthesis and the porphyrias. Mol Genet Metab. 2019; 128:164-177. 28. De Siervi A, Rossetti MV, Parera VE, Mendez M, Varela LS, del C Batlle AM. Acute intermittent porphyria: biochemical and clinical analysis in the Argentinean population. Clin Chim Acta. 1999; 288:63-71. 39. Grandchamp B, Picat C, Kauppinen R, Mignotte V, Peltonen L, Mustajoki P, Roméo PH, Goossens M, Nordmann Y. Molecular analysis of acute intermittent porphyria in a Finnish family with normal erythrocyte porphobilinogen deaminase. Eur J Clin Invest. 1989; 19:415-418. 119. Yang J, Zhu T, Zhao Y, Yu X, Zhu H, Jiang Y, Li X. Acute intermittent porphyria in the North of China: The acute attack effect on quality of life and psychological condition. Biomed Res Int. 2018; 2018:3216802. 64. Szlendak U, Bykowska K, Lipniacka A. Clinical, biochemical and molecular characteristics of the main types of porphyria. Adv Clin Exp Med. 2016; 25:361-368. 75. Badminton MN, Elder GH. Molecular mechanisms of dominant expression in porphyria. J Inherit Metab Dis. 2005; 28:277-286. 30. Floderus Y, Shoolingin-Jordan PM, Harper P. Acute intermittent porphyria in Sweden. Molecular, functional and clinical consequences of some new mutations found in the porphobilinogen deaminase gene. Clin Genet. 2002; 62:288-297. 103. Rakhshandehroo M, Hooiveld G, Müller M, Kersten S. Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human. PLoS ONE. 2009; 4:e6796. 58. Goncharova 88 89 110 111 112 113 114 115 116 90 117 91 118 92 119 93 94 95 96 97 10 98 11 99 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 100 101 102 103 104 105 106 80 107 81 108 82 109 83 84 85 86 87 |
References_xml | – reference: 60. Schuurmans MM, Schneider-Yin X, Rüfenacht UB, Schnyder C, Minder CE, Puy H, Deybach JC, Minder EI. Influence of age and gender on the clinical expression of acute intermittent porphyria based on molecular study of porphobilinogen deaminase gene among Swiss patients. Mol Med. 2001; 7:535-542. – reference: 119. Yang J, Zhu T, Zhao Y, Yu X, Zhu H, Jiang Y, Li X. Acute intermittent porphyria in the North of China: The acute attack effect on quality of life and psychological condition. Biomed Res Int. 2018; 2018:3216802. – reference: 53. Petersen NE, Nissen H, Hørder M, Senz J, Jamani A, Schreiber WE. Mutation screening by denaturing gradient gel electrophoresis in North American patients with acute intermittent porphyria. Clin Chem. 1998; 44:1766-1768. – reference: 31. Schneider-Yin X, Bogard C, Rüfenacht UB, Puy H, Nordmann Y, Minder EI, Deybach J. Identification of a prevalent nonsense mutation (W283X) and two novel mutations in the porphobilinogen deaminase gene of Swiss patients with acute intermittent porphyria. Hum Hered. 2000; 50:247-250. – reference: 26. Barreda-Sánchez M, Buendía-Martínez J, Glover-López G, Carazo-Díaz C, Ballesta-Martínez MJ, López-González V, Sánchez-Soler MJ, Rodriguez-Peña L, Serrano-Antón AT, Gil-Ferrer R, Martínez-Romero MDC, Carbonell-Meseguer P, Guillén-Navarro E. High penetrance of acute intermittent porphyria in a Spanish founder mutation population and CYP2D6 genotype as a susceptibility factor. Orphanet J Rare Dis. 2019; 14:59. – reference: 118. Ni J, Zhou LX, Hao HL, Liu Q, Yao M, Li ML, Peng B, Cui LY. The clinical and radiological spectrum of posterior reversible encephalopathy syndrome: a retrospective series of 24 patients. J Neuroimaging. 2011; 21:219-224. – reference: 1. Puy H, Gouya L, Deybach JC. Porphyrias. Lancet. 2010; 375:924-937. – reference: 54. De Siervi A, Rossetti M V, Parera V E, Astrin KH, Aizencang GI, Glass IA, Batlle AM, Desnick RJ. Identification and characterization of hydroxymethylbilane synthase mutations causing acute intermittent porphyria: evidence for an ancestral founder of the common G111R mutation. Am J Med Genet. 1999; 86:366-375. – reference: 34. Namba H, Narahara K, Tsuji K, Yokoyama Y, Seino Y. Assignment of human porphobilinogen deaminase to 11q24.1----q24.2 by in situ hybridization and gene dosage studies. Cytogenet Cell Genet.1991; 57:105-108. – reference: 76. Tchernitchko D, Tavernier Q, Lamoril J, Schmitt C, Talbi N, Lyoumi S, Robreau AM, Karim Z, Gouya L, Thervet E, Karras A, Puy H, Pallet N. A variant of peptide transporter 2 predicts the severity of porphyria-associated kidney disease. J Am Soc Nephrol. 2017; 28:1924-1932. – reference: 96. Vega R B, Huss J M, Kelly D P. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol. 2000; 20:1868-1876. – reference: 50. Kauppinen R, Mustajoki S, Pihlaja H, Peltonen L, Mustajoki P. Acute intermittent porphyria in Finland: 19 mutations in the porphobilinogen deaminase gene. Hum Mol Genet. 1995; 4:215-222. – reference: 4. Wang B, Rudnick S, Cengia B, Bonkovsky HL. Acute hepatic porphyrias: Review and recent progress. Hepatol Commun. 2019; 3:193-206. – reference: 71. Hift RJ, Meissner PN. An analysis of 112 acute porphyric attacks in Cape Town, South Africa: evidence that acute intermittent porphyria and variegate porphyria differ in susceptibility and severity. Medicine (Baltimore). 2005; 84:48-60. – reference: 69. Andersson C, Floderus Y, Wikberg A, Lithner F. The W198X and R173W mutations in the porphobilinogen deaminase gene in acute intermittent porphyria have higher clinical penetrance than R167W. A population-based study. Scand J Clin Lab Invest. 2000; 60:643-648. – reference: 25. Lenglet H, Schmitt C, Grange T, et al. From a dominant to an oligogenic model of inheritance with environmental modifiers in acute intermittent porphyria. Hum Mol Genet. 2018; 27:1164-1173 – reference: 47. Puy H, Deybach JC, Lamoril J, Robreau AM, Da Silva V, Gouya L, Grandchamp B, Nordmann Y. Molecular epidemiology and diagnosis of PBG deaminase gene defects in acute intermittent porphyria. Am J Hum Genet. 1997; 60:1373-1383. – reference: 35. Yoo HW, Warner CA, Chen CH, Desnick RJ. Hydroxymethylbilane synthase: complete genomic sequence and amplifiable polymorphisms in the human gene. Genomics. 1993; 15:21-19. – reference: 22. Ramanujam VS, Anderson KE. Porphyria diagnostics-Part 1: a brief overview of the porphyrias. Curr Protoc Hum Genet. 2015; 86:17.20.1-17.20.26. – reference: 32. Baumann K, Kauppinen R. Penetrance and predictive value of genetic screening in acute porphyria. Mol Genet Metab. 2020; 130:87-99. – reference: 108. Yang Y, Chen X, Wu H, Peng H, Sun W, He B, Yuan Z. A novel heterozygous mutation in the HMBS gene in a patient with acute intermittent porphyria and posterior reversible encephalopathy syndrome. Mol Med Rep. 2020; 22:516-524. – reference: 52. Whatley SD, Woolf JR, Elder GH. Comparison of complementary and genomic DNA sequencing for the detection of mutations in the HMBS gene in British patients with acute intermittent porphyria: Identification of 25 novel mutations. Hum Genet. 1999; 104:505-510. – reference: 95. Kurokawa R, Söderström M, Hörlein A, Halachmi S, Brown M, Rosenfeld MG, Glass CK. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature. 1995; 377:451-454. – reference: 109. Yang J, Han F, Chen Q, Zhu T, Zhao Y, Yu X, Zhu H, Cao J, Li X. Reversible splenial lesion syndrome (RESLES) due to acute intermittent porphyria with a novel mutation in the hydroxymethylbilane synthase gene. Orphanet J Rare Dis, 2020; 15:98. – reference: 57. Guillén-Navarro E, Carbonell P, Glover G, Sánchez-Solís M, Fernández-Barreiro A. Novel HMBS founder mutation and significant intronic polymorphism in Spanish patients with acute intermittent porphyria. Ann Hum Genet. 2004; 68:509-514. – reference: 49. Martinez di Montemuros F, Di Pierro E, Fargion S, Biolcati G, Griso D, Macrì A, Fiorelli G, Cappellini MD. Molecular analysis of the hydroxymethylbilane synthase (HMBS) gene in Italian patients with acute intermittent porphyria: report of four novel mutations. Hum Mutat. 2000; 15:480. – reference: 92. Chen JD, Umesono K, Evans RM. SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers. Proc Natl Acad Sci U.S.A. 1996; 93:7567-7571. – reference: 63. Bonkovsky HL, Maddukuri VC, Yazici C, Anderson KE, Bissell DM, Bloomer JR, Phillips JD, Naik H, Peter I, Baillargeon G, Bossi K, Gandolfo L, Light C, Bishop D, Desnick RJ. Acute porphyrias in the USA: features of 108 subjects from Porphyrias Consortium. Am J Med. 2014; 127:1233-1241. – reference: 100. Sérée E, Villard PH, Pascussi JM, Pineau T, Maurel P, Nguyen QB, Fallone F, Martin PM, Champion S, Lacarelle B, Savouret JF, Barra Y. Evidence for a new human CYP1A1 regulation pathway involving PPAR-alpha and 2 PPRE sites. Gastroenterology. 2004; 127:1436-1445. – reference: 51. Gu XF, de Rooij F, Lee JS, Te Velde K, Deybach JC, Nordmann Y, Grandchamp B. High prevalence of a point mutation in the porphobilinogen deaminase gene in Dutch patients with acute intermittent porphyria. Hum Genet. 1993; 91:128-130. – reference: 115. Zhao B, Wei Q, Wang Y, Chen Y, Shang H. Posterior reversible encephalopathy syndrome in acute intermittent porphyria. Pediatr Neurol. 2014; 51:457-460. – reference: 8. Besur S, Schmeltzer P, Bonkovsky HL. Acute porphyrias. J Emerg Med. 2015; 49:305-312. – reference: 65. Andersson C, Innala E, Bäckström T. Acute intermittent porphyria in women: clinical expression, use and experience of exogenous sex hormones. A population-based study in northern Sweden. J Intern Med. 2003; 254:176-183. – reference: 78. Novotny A, Xiang J, Stummer W, Teuscher NS, Smith DE, Keep RF. Mechanisms of 5-aminolevulinic acid uptake at the choroid plexus. J Neurochem. 2000; 75:321- 328. – reference: 61. Kauppinen R, von und zu Fraunberg M. Molecular and biochemical studies of acute intermittent porphyria in 196 patients and their families. Clin Chem. 2002; 48:1891-1900. – reference: 84. Peoc'h K, Nicolas G, Schmitt C, Mirmiran A, Daher R, Lefebvre T, Gouya L, Karim Z, Puy H. Regulation and tissue-specific expression of δ-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias. Mol Genet Metab. 2019; 128:190-197. – reference: 107. Ni X, Shi T. The challenge and promise of rare disease diagnosis in China. Sci China Life Sci. 2017; 60:681-685. – reference: 19. Elder G, Harper P, Badminton M, Sandberg S, Deybach JC. The incidence of inherited porphyrias in Europe. J Inherit Metab Dis. 2013; 36:849-857. – reference: 37. Grandchamp B, De Verneuil H, Beaumont C, Chretien S, Walter O, Nordmann Y. Tissue-specific expression of porphobilinogen deaminase. Two isoenzymes from a single gene. Eur J Biochem. 1987; 162:105-110. – reference: 70. Stölzel U, Doss MO, Schuppan D. Clinical guide and update on porphyrias. Gastroenterology. 2019; 157:365-381. – reference: 79. Döring F, Walter J, Will J, Föcking M, Boll M, Amasheh S, Clauss W, Daniel H. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J Clin Invest. 1998; 101:2761-2767. – reference: 30. Floderus Y, Shoolingin-Jordan PM, Harper P. Acute intermittent porphyria in Sweden. Molecular, functional and clinical consequences of some new mutations found in the porphobilinogen deaminase gene. Clin Genet. 2002; 62:288-297. – reference: 98. Handschin C, Lin J, Rhee J, Peyer AK, Chin S, Wu PH, Meyer UA, Spiegelman BM. Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1alpha. Cell. 2005; 122:505-515. – reference: 56. Greene-Davis ST, Neumann PE, Mann OE, Moss MA, Schreiber WE, Welch JP, Langley GR, Sangalang VE, Dempsey GI, Nassar BA. Detection of a R173W mutation in the porphobilinogen deaminase gene in the Nova Scotian "foreign Protestant" population with acute intermittent porphyria: a founder effect. Clin Biochem. 1997; 30:607-612. – reference: 105. Fukuda Y, Cheong PL, Lynch J, et al. The severity of hereditary porphyria is modulated by the porphyrin exporter and Lan antigen ABCB6. Nat Commun. 2016; 7:12353. – reference: 74. Thunell S. (Far) Outside the box: genomic approach to acute porphyria. Physiol Res. 2006; null:S43-66. – reference: 73. Chen B, Solis-Villa C, Erwin AL, Balwani M, Nazarenko I, Phillips JD, Desnick RJ, Yasuda M. Identification and characterization of 40 novel hydroxymethylbilane synthase mutations that cause acute intermittent porphyria. J Inherit Metab Dis. 2019; 42:186-194. – reference: 62. Yang CC, Kuo HC, You HL, Wang J, Huang CC, Liu CY, Lan MY, Stephenson DA, Lee MJ. HMBS mutations in Chinese patients with acute intermittent porphyria. Ann Hum Genet. 2008; 72:683-686. – reference: 18. Stein PE, Badminton MN, Rees DC. Update review of the acute porphyrias. Br J Haematol. 2017; 176:527-538. – reference: 28. De Siervi A, Rossetti MV, Parera VE, Mendez M, Varela LS, del C Batlle AM. Acute intermittent porphyria: biochemical and clinical analysis in the Argentinean population. Clin Chim Acta. 1999; 288:63-71. – reference: 64. Szlendak U, Bykowska K, Lipniacka A. Clinical, biochemical and molecular characteristics of the main types of porphyria. Adv Clin Exp Med. 2016; 25:361-368. – reference: 112. Jiao H, Xianfeng Z, Hui H, MaLizhen, Yuhong Z, Chu Z. A novel mutation, IVS2-2AgG, associated with acute intermittent porphyria in a Chinese family. J Pak Med Assoc. 2015; 65:898-900. – reference: 68. Arora S, Young S, Kodali S, Singal AK. Hepatic porphyria: a narrative review. Indian J Gastroenterol. 2016; 35:405-418. – reference: 82. Ennis SR, Novotny A, Xiang J, Shakui P, Masada T, Stummer W, Smith DE, Keep RF. Transport of 5-aminolevulinic acid between blood and brain. Brain Res. 2003; 959:226-234. – reference: 102. Richert L, Lamboley C, Viollon-Abadie C, Grass P, Hartmann N, Laurent S, Heyd B, Mantion G, Chibout SD, Staedtler F. Effects of clofibric acid on mRNA expression profiles in primary cultures of rat, mouse and human hepatocytes. Toxicol Appl Pharmacol. 2003; 191:130-146. – reference: 3. Besur S, Hou W, Schmeltzer P, Bonkovsky HL. Clinically important features of porphyrin and heme metabolism and the porphyrias. Metabolites. 2014; 4:977-1006. – reference: 6. Yasuda M, Chen B, Desnick RJ. Recent advances on porphyria genetics: Inheritance, penetrance & molecular heterogeneity, including new modifying/causative genes. Mol Genet Metab. 2019; 128:320-331. – reference: 45. Ulbrichova D, Schneider-Yin X, Mamet R, Saudek V, Martasek P, Minder EI, Schoenfeld N. Correlation between biochemical findings, structural and enzymatic abnormalities in mutated HMBS identified in six Israeli families with acute intermittent porphyria. Blood Cells Mol Dis. 2009; 42:167-173. – reference: 59. Gregor A, Schneider-Yin X, Szlendak U, Wettstein A, Lipniacka A, Rüfenacht UB, Minder EI. Molecular study of the hydroxymethylbilane synthase gene (HMBS) among Polish patients with acute intermittent porphyria. Hum Mutat. 2002; 19:310. – reference: 81. Jaramillo-Calle DA, Solano JM, Rabinstein AA, Bonkovsky HL. Porphyria-induced posterior reversible encephalopathy syndrome and central nervous system dysfunction. Mol Genet Metab. 2019; 128:242-253. – reference: 40. Granata F, Mendez M, Brancaleoni V, Castelbon FJ, Graziadei G, Ventura P, Di Pierro E. Molecular characterization, by digital PCR analysis of four HMBS gene mutations affecting the ubiquitous isoform of Porphobilinogen Deaminase (PBGD) in patients with Acute Intermittent Porphyria (AIP). Mol Genet Metab. 2018; 125:295-301. – reference: 89. Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics. 2004; 14:1-18. – reference: 10. Duque-Serrano L, Patarroyo-Rodriguez L, Gotlib D, Molano-Eslava JC. Psychiatric aspects of acute porphyria: a comprehensive review. Curr Psychiatry Rep. 2018; 20:5. – reference: 29. Saint EG, Curnow DH. Porphyria in Western Australia. Lancet. 1962; 1:133-136. – reference: 17. Spiritos Z, Salvador S, Mosquera D, Wilder J. Acute intermittent porphyria: Current perspectives and case presentation. Ther Clin Risk Manag. 2019; 15:1443-1451. – reference: 75. Badminton MN, Elder GH. Molecular mechanisms of dominant expression in porphyria. J Inherit Metab Dis. 2005; 28:277-286. – reference: 2. Anderson KE, Sassa S, Bishop DF, Desnick RJ. Disorders of heme biosynthesis: X-linked sideroblastic anemia and the porphyrias, in: The Online Metabolic and Molecular Bases of Inherited Disease (Scriver C, Beaudet A, Sly W, Valle D, eds.). McGraw Hill, New York, 2001; pp. 2961-3062. – reference: 33. Ren Y, Xu LX, Liu YF, Xiang CY, Gao F, Wang Y, Bai T, Yin JH, Zhao YL, Yang J. A novel 55-basepair deletion of hydroxymethylbilane synthase gene found in a Chinese patient with acute intermittent porphyria and her family: A case report. Medicine (Baltimore). 2018; 97:e12295. – reference: 11. Naik H, Stoecker M, Sanderson SC, Balwani M, Desnick RJ. Experiences and concerns of patients with recurrent attacks of acute hepatic porphyria: a qualitative study. Mol Genet Metab. 2016; 119:278-283. – reference: 88. Chen B, Wang M, Gan L, Zhang B, Desnick RJ, Yasuda M. Characterization of the hepatic transcriptome following phenobarbital induction in mice with AIP. Mol Genet Metab. 2019; 128:382-390. – reference: 77. Hu Y, Shen H, Keep RF, Smith DE. Peptide transporter 2 (PEPT2) expression in brain protects against 5-aminolevulinic acid neurotoxicity. J Neurochem. 2007; 103:2058-2065. – reference: 41. Brancaleoni V, Granata F, Colancecco A, Tavazzi D, Cappellini MD, Di Pierro E. Seven novel genetic mutations within the 5'UTR and the housekeeping promoter of HMBS gene responsible for the non-erythroid form of acute intermittent porphyria. Blood Cells Mol Dis. 2012; 49:147-151. – reference: 23. Kauppinen R, Mustajoki P. Prognosis of acute porphyria: Occurrence of acute attacks, precipitating factors, and associated diseases. Medicine (Baltimore). 1992; 71:1-13. – reference: 110. Zheng X, Liu X, Wang Y, Zhao R, Qu L, Pei H, Tuo M, Zhang Y, Song Y, Ji X, Li H, Tang L, Yin X. Acute intermittent porphyria presenting with seizures and posterior reversible encephalopathy syndrome: two case reports and a literature review. Medicine (Baltimore). 2018; 97:e11665. – reference: 12. Gill R, Kolstoe SE, Mohammed F, Al D-Bass A, Mosely JE, Sarwar M, Cooper JB, Wood SP. Structure of human porphobilinogen deaminase at 2.8 A: the molecular basis of acute intermittent porphyria. Biochem J. 2009; 420:17-25. – reference: 94. Janknecht R, Hunter T. Transcription. A growing coactivator network. Nature. 1996; 383:22-23. – reference: 27. Bylesjö I, Wikberg A, Andersson C. Clinical aspects of acute intermittent porphyria in northern Sweden: a population-based study. Scand J Clin Lab Invest. 2009; 69:612-618. – reference: 87. De Matteis F, Marks GS. Cytochrome P450 and its interactions with the heme biosynthetic pathway. Can J Physiol Pharmacol. 1996; 74:1-8. – reference: 111. Zheng Y, Xu J, Liang S, Lin D, Banerjee S. HMBS whole exome sequencing identified a novel heterozygous mutation in gene in a Chinese patient with acute intermittent porphyria with rare type of mild anemia. Front Genet. 2018; 9:129. – reference: 83. Sobin C, Flores-Montoya MG, Gutierrez M, Parisi N, Schaub T. δ-Aminolevulinic acid dehydratase single nucleotide polymorphism 2 (ALAD2) and peptide transporter 2*2 haplotype (hPEPT2*2) differently influence neurobehavior in low-level lead exposed children. Neurotoxicol Teratol. 2015; 47:137-145. – reference: 80. Pinsonneault J, Nielsen CU, Sadée W. Genetic variants of the human H+/dipeptide transporter PEPT2: analysis of haplotype functions. J Pharmacol Exp Ther. 2004; 311:1088-1096. – reference: 44. Youssoufian H, Antonarakis SE, Bell W, Griffin AM, Kazazian HH. Nonsense and missense mutations in hemophilia A: estimate of the relative mutation rate at CG dinucleotides. Am J Hum Genet. 1988; 42:718-725. – reference: 67. Anderson KE, Bradlow HL, Sassa S, Kappas A. Studies in porphyria. VIII. Relationship of the 5 alpha-reductive metabolism of steroid hormones to clinical expression of the genetic defect in acute intermittent porphyria. Am J Med. 1979; 66:644-650. – reference: 113. Yang J, Wang H, Yin K, Hua B, Zhu T, Zhao Y, Guo S, Yu X, Wu W, Zhou Z. A novel mutation in the porphobilinogen deaminase gene in an extended Chinese family with acute intermittent porphyria. Gene. 2015; 565:288-290. – reference: 46. Solis C, Lopez-Echaniz I, Sefarty-Graneda D, Astrin KH, Desnick RJ. Identification and expression of mutations in the hydroxymethylbilane synthase gene causing acute intermittent porphyria (AIP). Mol Med. 1999; 5:664-671. – reference: 72. Fu Y, Jia J, Yue L, Yang R, Guo Y, Ni X, Shi T. Systematically analyzing the pathogenic variations for acute intermittent porphyria. Front Pharmacol. 2019; 10:1018. – reference: 15. Nordmann Y, Puy H, Da Silva V, Simonin S, Robreau AM, Bonaiti C, Phung LN, Deybach JC. Acute intermittent porphyria: prevalence of mutations in the porphobilinogen deaminase gene in blood donors in France. J Intern Med. 1997; 242:213-217. – reference: 14. Chen B, Solis-Villa C, Hakenberg J, Qiao W, Srinivasan RR, Yasuda M, Balwani M, Doheny D, Peter I, Chen R, Desnick RJ. Acute intermittent porphyria: predicted pathogenicity of HMBS variants indicates extremely low penetrance of the autosomal dominant disease. Hum Mutat. 2016; 37:1215-1222. – reference: 91. Cavaillès V, Dauvois S, Danielian PS, Parker MG. Interaction of proteins with transcriptionally active estrogen receptors. Proc Natl Acad Sci U.S.A. 1994; 91:10009-10013. – reference: 20. Kauppinen R. Porphyrias. Lancet. 2005; 365:241-252. – reference: 86. Manceau H, Gouya L, Puy H. Acute hepatic and erythropoietic porphyrias: from ALA synthases 1 and 2 to new molecular bases and treatments. Curr Opin Hematol. 2017; 24:198-207. – reference: 39. Grandchamp B, Picat C, Kauppinen R, Mignotte V, Peltonen L, Mustajoki P, Roméo PH, Goossens M, Nordmann Y. Molecular analysis of acute intermittent porphyria in a Finnish family with normal erythrocyte porphobilinogen deaminase. Eur J Clin Invest. 1989; 19:415-418. – reference: 58. Goncharova M, Pshenichnikova O, Luchinina Y, Pustovoit Y, Karpova I, Surin V. Molecular genetic study of acute intermittent porphyria in Russia: HMBS gene mutation spectrum and problem of penetrance. Clin Genet. 2019; 96:91-97. – reference: 117. Yang J, Chen Q, Yang H, Hua B, Zhu T, Zhao Y, Zhu H, Yu X, Zhang L, Zhou Z. Clinical and laboratory features of acute porphyria: A study of 36 subjects in a Chinese tertiary referral center. Biomed Res Int. 2016; 2016:3927635. – reference: 16. To-Figueras J, Badenas C, Carrera C, Muñoz C, Milá M, Lecha M, Herrero C. Genetic and biochemical characterization of 16 acute intermittent porphyria cases with a high prevalence of the R173W mutation. J Inherit Metab Dis. 2006; 29:580-585. – reference: 104. Thomas M, Winter S, Klumpp B, Turpeinen M, Klein K, Schwab M, Zanger UM. Peroxisome proliferator-activated receptor alpha, PPARα, directly regulates transcription of cytochrome P450 CYP2C8. Front Pharmacol. 2015; 6:261. – reference: 42. Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Hussain M, Phillips AD, Cooper DN. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. 2017; 136:665-677. – reference: 43. Cooper DN, Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988; 78:151-155. – reference: 97. Tudor C, Feige JN, Pingali H, Lohray VB, Wahli W, Desvergne B, Engelborghs Y, Gelman L. Association with coregulators is the major determinant governing peroxisome proliferator-activated receptor mobility in living cells. J Biol Chem. 2007; 282:4417-4426. – reference: 21. Stein PE, Badminton MN, Barth JH, Rees DC, Sarkany R, Stewart MF, Cox TM. Acute intermittent porphyria: fatal complications of treatment. Clin Med (Lond). 2012; 12:293-294. – reference: 85. Phillips JD. Heme biosynthesis and the porphyrias. Mol Genet Metab. 2019; 128:164-177. – reference: 114. Li Y, Qu H, Wang H, Deng H, Liu Z. Novel A219P mutation of hydroxymethylbilane synthase identified in a Chinese woman with acute intermittent porphyria and syndrome of inappropriate antidiuretic hormone. Ann Hum Genet. 2015; 79:310-312. – reference: 93. Halachmi S, Marden E, Martin G, MacKay H, Abbondanza C, Brown M. Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science. 1994; 264:1455-1458. – reference: 13. Shen, Y. Next-generation sequencing based molecular testing is an equalizer for diagnostic service of rare genetic disorders in China. Pediatr Invest. 2018; 2:96-97. – reference: 5. Bung N, Roy A, Chen B, Das D, Pradhan M, Yasuda M, New MI, Desnick RJ, Bulusu G. Human hydroxymethylbilane synthase: Molecular dynamics of the pyrrole chain elongation identifies step-specific residues that cause AIP. Proc Natl Acad Sci U.S.A. 2018; 115:E4071-E4080. – reference: 66. Bonkovsky HL, Dixon N, Rudnick S. Pathogenesis and clinical features of the acute hepatic porphyrias (AHPs). Mol Genet Metab. 2019; 128:213-218. – reference: 55. Lee JS, Anvret M. Identification of the most common mutation within the porphobilinogen deaminase gene in Swedish patients with acute intermittent porphyria. Proc Natl Acad Sci U.S.A. 1991; 88:10912-10915. – reference: 9. Bissell DM, Anderson KE, Bonkovsky HL. Porphyria. N Engl J Med. 2017; 377:2101. – reference: 90. Degenhardt T, Väisänen S, Rakhshandehroo M, Kersten S, Carlberg C. Peroxisome proliferator-activated receptor alpha controls hepatic heme biosynthesis through ALAS1.J Mol Biol. 2009; 388:225-238. – reference: 48. Grandchamp B. Acute intermittent porphyria. Semin Liver Dis. 1998; 18:17-24. – reference: 116. Wang Y, Chen XY, Li Y, Dong XH, Xu F. Clinical characteristics of 50 patients with acute intermittent porphyria. Zhonghua Nei Ke Za Zhi. 2019; 58:520-524. (in Chinese). – reference: 101. Barbier O, Fontaine C, Fruchart JC, Staels B. Genomic and non-genomic interactions of PPARalpha with xenobiotic-metabolizing enzymes. Trends Endocrinol Metab. 2004; 15:324-330. – reference: 7. Floderus Y, Sardh E, Möller C, Andersson C, Rejkjaer L, Andersson DE, Harper P. Variations in porphobilinogen and 5-aminolevulinic acid concentrations in plasma and urine from symptomatic carriers of the acute intermittent porphyria gene with increased porphyrin precursor excretion. Clin Chem. 2006; 52: 701-707. – reference: 24. von und zu Fraunberg M, Pischik E, Udd L, Kauppinen R. Clinical and biochemical characteristics and genotype-phenotype correlation in 143 Finnish and Russian patients with acute intermittent porphyria. Medicine (Baltimore). 2005; 84:35-47. – reference: 106. Li C, Zhang J, Li S, Han T, Kuang W, Zhou Y, Deng J, Tan X. Gene mutations and clinical phenotypes in Chinese children with Blau syndrome. Sci China Life Sci. 2017; 60:758-762. – reference: 38. Chen CH, Astrin KH, Lee G, Anderson KE, Desnick RJ. Acute intermittent porphyria: Identification and expression of exonic mutations in the hydroxymethylbilane synthase gene. An initiation codon missense mutation in the housekeeping transcript causes "variant acute intermittent porphyria" with normal expression of the erythroid-specific enzyme. J Clin Invest. 1994; 94:1927-1937. – reference: 99. Thomas M, Burk O, Klumpp B, Kandel BA, Damm G, Weiss TS, Klein K, Schwab M, Zanger UM. Direct transcriptional regulation of human hepatic cytochrome P450 3A4 (CYP3A4) by peroxisome proliferator-activated receptor alpha (PPARα). Mol Pharmacol. 2013; 83:709-718. – reference: 103. Rakhshandehroo M, Hooiveld G, Müller M, Kersten S. Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human. PLoS ONE. 2009; 4:e6796. – reference: 36. Chretien S, Dubart A, Beaupain D, Raich N, Grandchamp B, Rosa J, Goossens M, Romeo PH. Alternative transcription and splicing of the human porphobilinogen deaminase gene result either in tissue-specific or in housekeeping expression. Proc Natl Acad Sci U.S.A. 1988; 85:6-10. – ident: 86 doi: 10.1097/MOH.0000000000000330 – ident: 10 doi: 10.1007/s11920-018-0867-1 – ident: 111 doi: 10.3389/fgene.2018.00129 – ident: 89 doi: 10.1097/00008571-200401000-00001 – ident: 33 doi: 10.1097/MD.0000000000012295 – ident: 67 doi: 10.1016/0002-9343(79)91176-8 – ident: 73 doi: 10.1002/jimd.12040 – ident: 74 doi: 10.33549/physiolres.930000.55.S2.43 – ident: 87 doi: 10.1139/y95-234 – ident: 15 doi: 10.1046/j.1365-2796.1997.00189.x – ident: 58 doi: 10.1111/cge.13558 – ident: 71 doi: 10.1097/01.md.0000152454.56435.f3 – ident: 97 doi: 10.1074/jbc.M608172200 – ident: 104 doi: 10.3389/fphar.2015.00261 – ident: 75 doi: 10.1007/s10545-005-8050-3 – ident: 57 doi: 10.1046/j.1529-8817.2003.00114.x – ident: 60 doi: 10.1007/BF03401859 – ident: 5 doi: 10.1073/pnas.1719267115 – ident: 92 – ident: 96 doi: 10.1128/MCB.20.5.1868-1876.2000 – ident: 106 doi: 10.1007/s11427-017-9090-6 – ident: 62 doi: 10.1111/j.1469-1809.2008.00463.x – ident: 12 doi: 10.1042/BJ20082077 – ident: 40 doi: 10.1016/j.ymgme.2018.09.002 – ident: 113 doi: 10.1016/j.gene.2015.04.027 – ident: 30 doi: 10.1034/j.1399-0004.2002.620406.x – ident: 116 – ident: 11 doi: 10.1016/j.ymgme.2016.08.006 – ident: 80 doi: 10.1124/jpet.104.073098 – ident: 93 doi: 10.1126/science.8197458 – ident: 7 doi: 10.1373/clinchem.2005.058198 – ident: 34 doi: 10.1159/000133123 – ident: 114 doi: 10.1111/ahg.12107 – ident: 49 doi: 10.1002/(SICI)1098-1004(200005)15:5<480::AID-HUMU12>3.0.CO;2-J – ident: 59 doi: 10.1002/humu.9020 – ident: 22 doi: 10.1002/0471142905.hg1720s86 – ident: 41 doi: 10.1016/j.bcmd.2012.06.002 – ident: 119 doi: 10.1155/2018/3216802 – ident: 91 – ident: 38 doi: 10.1172/JCI117543 – ident: 42 doi: 10.1007/s00439-017-1779-6 – ident: 17 doi: 10.2147/TCRM.S180161 – ident: 4 doi: 10.1002/hep4.1297 – ident: 28 doi: 10.1016/S0009-8981(99)00139-4 – ident: 25 doi: 10.1093/hmg/ddy030 – ident: 100 doi: 10.1053/j.gastro.2004.08.023 – ident: 101 doi: 10.1016/j.tem.2004.07.007 – ident: 54 doi: 10.1002/(SICI)1096-8628(19991008)86:4<366::AID-AJMG11>3.0.CO;2-# – ident: 3 doi: 10.3390/metabo4040977 – ident: 63 doi: 10.1016/j.amjmed.2014.06.036 – ident: 94 doi: 10.1038/383022a0 – ident: 51 doi: 10.1007/BF00222712 – ident: 98 doi: 10.1016/j.cell.2005.06.040 – ident: 56 doi: 10.1016/S0009-9120(97)00114-8 – ident: 110 doi: 10.1097/MD.0000000000011665 – ident: 70 doi: 10.1053/j.gastro.2019.04.050 – ident: 18 doi: 10.1111/bjh.14459 – ident: 23 doi: 10.1097/00005792-199201000-00001 – ident: 29 – ident: 102 doi: 10.1016/S0041-008X(03)00231-X – ident: 109 doi: 10.1186/s13023-020-01375-y – ident: 35 doi: 10.1006/geno.1993.1005 – ident: 52 doi: 10.1007/s004390050995 – ident: 68 doi: 10.1007/s12664-016-0698-0 – ident: 31 doi: 10.1159/000022924 – ident: 64 doi: 10.17219/acem/58955 – ident: 16 doi: 10.1007/s10545-006-0344-6 – ident: 2 – ident: 1 doi: 10.1016/S0140-6736(09)61925-5 – ident: 85 doi: 10.1016/j.ymgme.2019.04.008 – ident: 53 doi: 10.1093/clinchem/44.8.1766 – ident: 95 doi: 10.1038/377451a0 – ident: 82 doi: 10.1016/S0006-8993(02)03749-6 – ident: 55 – ident: 112 – ident: 90 doi: 10.1016/j.jmb.2009.03.024 – ident: 24 doi: 10.1097/01.md.0000152455.38510.af – ident: 26 doi: 10.1186/s13023-019-1031-7 – ident: 8 doi: 10.1016/j.jemermed.2015.04.034 – ident: 99 doi: 10.1124/mol.112.082503 – ident: 21 doi: 10.7861/clinmedicine.12-3-293 – ident: 45 doi: 10.1016/j.bcmd.2008.11.001 – ident: 69 – ident: 50 doi: 10.1093/hmg/4.2.215 – ident: 6 doi: 10.1016/j.ymgme.2018.11.012 – ident: 105 doi: 10.1038/ncomms12353 – ident: 13 doi: 10.1002/ped4.12036 – ident: 32 doi: 10.1016/j.ymgme.2020.02.003 – ident: 14 doi: 10.1002/humu.23067 – ident: 84 doi: 10.1016/j.ymgme.2019.01.015 – ident: 78 doi: 10.1046/j.1471-4159.2000.0750321.x – ident: 9 doi: 10.1056/NEJMra1608634 – ident: 44 – ident: 118 doi: 10.1111/j.1552-6569.2010.00497.x – ident: 117 doi: 10.1155/2016/3927635 – ident: 48 doi: 10.1055/s-2007-1007136 – ident: 83 doi: 10.1016/j.ntt.2014.12.001 – ident: 65 doi: 10.1046/j.1365-2796.2003.01172.x – ident: 88 doi: 10.1016/j.ymgme.2018.12.010 – ident: 76 doi: 10.1681/ASN.2016080918 – ident: 107 doi: 10.1007/s11427-017-9100-1 – ident: 39 doi: 10.1111/j.1365-2362.1989.tb00252.x – ident: 43 doi: 10.1007/BF00278187 – ident: 61 doi: 10.1093/clinchem/48.11.1891 – ident: 115 doi: 10.1016/j.pediatrneurol.2014.05.016 – ident: 108 doi: 10.3892/mmr.2020.11117 – ident: 77 doi: 10.1111/j.1471-4159.2007.04905.x – ident: 36 – ident: 20 doi: 10.1016/S0140-6736(05)70154-9 – ident: 47 doi: 10.1086/515455 – ident: 79 doi: 10.1172/JCI1909 – ident: 72 doi: 10.3389/fphar.2019.01018 – ident: 46 doi: 10.1007/BF03401985 – ident: 66 doi: 10.1016/j.ymgme.2019.03.002 – ident: 81 doi: 10.1016/j.ymgme.2019.10.011 – ident: 19 doi: 10.1007/s10545-012-9544-4 – ident: 27 doi: 10.1080/00365510902935979 – ident: 37 doi: 10.1111/j.1432-1033.1987.tb10548.x – ident: 103 doi: 10.1371/journal.pone.0006796 |
SSID | ssj0000702594 |
Score | 2.235563 |
SecondaryResourceType | review_article |
Snippet | Acute intermittent porphyria (AIP) is a dominant inherited disorder with a low penetrance that is caused by mutations in the gene coding for... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 196 |
SubjectTerms | acute intermittent porphyria genetic traits genotype-phenotype correlation modifying genes penetrance prevalence Review |
Title | Recent advances in the epidemiology and genetics of acute intermittent porphyria |
URI | https://www.jstage.jst.go.jp/article/irdr/9/4/9_2020.03082/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/33139978 https://www.proquest.com/docview/2457302942 https://pubmed.ncbi.nlm.nih.gov/PMC7586877 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Intractable & Rare Diseases Research, 2020/10/31, Vol.9(4), pp.196-204 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF_qKXIvovjV84MVfBCO1GazyWbBl7Mop1C5hzu4ewppMvEiXlLaFNQ_1b_G2Y9sN-UEvYeGNt3NpjO_TmZm54OQ16xiRcgLGQBqywEHUQZpIqogzKVKRhAAXGUjz78kx2f883l8Phr99qKWNt1iUvy6Nq_kJlzFc8hXlSX7H5x1F8UT-B75i0fkMB7_iceo8-kQcbOPv-5jFmHb9dVUV8ILgC7HrDb9CxUZoKpEqFT-Ts1HFRyJbeKNnab6SXl9i05nVukYdBUiZrdzDm2JIOdKnufGvv-Ze3G9xrV6sdlKXyNXZpfQ_OifmL7P-qJe2fnWDYE2ZzhwQwz9l33UoL6_WdsuwcLZw5wOo3xftzYuqKjbwIqz9eGRoZuL_dHyUHXPCqLElIucgH9Od91xAl16uOWecA5l4j3nmWl7vPsIieNUlaStV6WqFsumE13Qxx-JGFheaURFEerP0rQg2qnafTKfoSWWpELcIrcZmjCR50nSWoJAbVP36XS_y1SeUjfwdmf5fXK3X2ugP935hibEV7jOOtoN8vW0ptP75J41d-iRwe4DMoLmITkxuKU9bmndUMQt9XFLkae0xy1tK6pxS33cUofbR-Ts44fT2XFgO3sEBSrYXZALGUMiwiqcRrGIRIVGBH5IUx6GWg1fABccqmIhIwlJWkqARRVFwATL4zyPHpO9pm3gKaGCTSsR8rwqk5JLKCWLWQliWuLMSpbxmEx6emWFLXuvuq98z9D8VbTOFK0zRetM03pM3rgJS1Px5e9D3xkGuIFWFJiBMuP42g5336qESpRfY_KqZ1uGQl3t1OUNtJt1xjhSZcokxyWeGDa6JXogjIkYMNgNUAXjh9809aUuHG8ReXDjmc_I_va__5zsdasNvEClvFu81Oj-AyDK6d8 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+advances+in+the+epidemiology+and+genetics+of+acute+intermittent+porphyria&rft.jtitle=Intractable+and+rare+disease+research&rft.au=Ma%2C+Liyan&rft.au=Tian%2C+Yu&rft.au=Peng%2C+Chenxing&rft.au=Zhang%2C+Yiran&rft.date=2020-11-01&rft.pub=International+Research+and+Cooperation+Association+for+Bio+%26+Socio-Sciences+Advancement&rft.issn=2186-3644&rft.eissn=2186-361X&rft.volume=9&rft.issue=4&rft.spage=196&rft.epage=204&rft_id=info:doi/10.5582%2Firdr.2020.03082&rft_id=info%3Apmid%2F33139978&rft.externalDocID=PMC7586877 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2186-3644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2186-3644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2186-3644&client=summon |