Engineered knottin peptide enables noninvasive optical imaging of intracranial medulloblastoma
Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 36; pp. 14598 - 14603 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
03.09.2013
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to αvß₃,αvß₅, and α₅ß₁, integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α₅ß₁ integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrinbinding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging. |
---|---|
AbstractList | Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to ..., ..., and ... integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to ... integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging. (ProQuest: ... denotes formulae/symbols omitted.) Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to α v β 3 , α v β 5 , and α 5 β 1 integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α 5 β 1 integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F–Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F–Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5–Fc as targeted molecular probes for brain tumor imaging. Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α5β1 integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging. Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to αvß₃,αvß₅, and α₅ß₁, integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α₅ß₁ integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrinbinding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging. Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α5β1 integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging.Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α5β1 integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging. Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to α v β 3 , α v β 5 , and α 5 β 1 integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α 5 β 1 integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F–Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F–Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5–Fc as targeted molecular probes for brain tumor imaging. Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to α ᵥβ ₃, α ᵥβ ₅, and α ₅β ₁ integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α ₅β ₁ integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F–Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F–Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5–Fc as targeted molecular probes for brain tumor imaging. |
Author | Cochran, Jennifer R. Su, YouRong S. Scott, Matthew P. Gephart, Melanie G. Hayden Moore, Sarah J. Rayburn, Helen Bergen, Jamie M. |
Author_xml | – sequence: 1 givenname: Sarah J. surname: Moore fullname: Moore, Sarah J. – sequence: 2 givenname: Melanie G. Hayden surname: Gephart fullname: Gephart, Melanie G. Hayden – sequence: 3 givenname: Jamie M. surname: Bergen fullname: Bergen, Jamie M. – sequence: 4 givenname: YouRong S. surname: Su fullname: Su, YouRong S. – sequence: 5 givenname: Helen surname: Rayburn fullname: Rayburn, Helen – sequence: 6 givenname: Matthew P. surname: Scott fullname: Scott, Matthew P. – sequence: 7 givenname: Jennifer R. surname: Cochran fullname: Cochran, Jennifer R. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23950221$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1v1DAQhi1URLeFMydQJC69pB1_JrkgVVUpSJW4wBXLcSaLl6wd7GQl_j2OdrtAJQQXW_I88_qdjzNy4oNHQl5SuKRQ8avRm3RJOaWc5wOekBWFhpZKNHBCVgCsKmvBxCk5S2kDAI2s4Rk5ZbyRwBhdkS-3fu08YsSu-ObDNDlfjDhOrsMCvWkHTEX-0_mdSW6HRcgha4bCbU3OWxehL5yforHReJfft9jNwxDawaQpbM1z8rQ3Q8IXh_ucfH53--nmfXn_8e7DzfV9aRXAVBrFLGdUMdGZXiIDZuoGJdIWEdvegBSK1dh0vVK1oD20tlXQGcmlbXhb83Pydq87zm22YHHxNOgxZp_xhw7G6T8j3n3V67DTvFKVaFQWuDgIxPB9xjTprUsWh8F4DHPStIbcYFoB_zcqRM0YF-J_UA55FEqyjL55hG7CHH1u2kJlzYoymanXv9d5LPBhoBmQe8DGkFLEXls3mcmFpWw3aAp6WRy9LI7-tTg57-pR3oP03zOKg5UlcKQzzlW2LJtlKq_2yCYvQzwyglVZRwH_Cc9S2oc |
CitedBy_id | crossref_primary_10_1038_nm_4200 crossref_primary_10_1016_j_biotechadv_2016_03_008 crossref_primary_10_1093_chemse_bjy054 crossref_primary_10_1021_acs_biochem_7b00722 crossref_primary_10_3171_2013_11_FOCUS13484 crossref_primary_10_1021_acschembio_6b01006 crossref_primary_10_18097_PBMC20166204353 crossref_primary_10_4049_jimmunol_2200950 crossref_primary_10_1038_s41467_019_13948_y crossref_primary_10_1016_j_cnd_2015_02_003 crossref_primary_10_1002_advs_201800383 crossref_primary_10_1002_cbic_201402290 crossref_primary_10_1016_j_ijpharm_2019_05_001 crossref_primary_10_1016_j_copbio_2017_07_007 crossref_primary_10_1007_s12551_023_01084_3 crossref_primary_10_1016_j_bmc_2017_08_052 crossref_primary_10_3390_pharmaceutics14061235 crossref_primary_10_1002_ange_202210883 crossref_primary_10_1016_j_omto_2017_09_005 crossref_primary_10_1039_C4CS00034J crossref_primary_10_1007_s11307_015_0880_2 crossref_primary_10_1016_j_bmc_2016_05_006 crossref_primary_10_1016_j_celrep_2021_110021 crossref_primary_10_1002_psc_2782 crossref_primary_10_1016_j_cbpa_2016_08_022 crossref_primary_10_1016_j_chembiol_2021_10_012 crossref_primary_10_1016_j_jmb_2023_168339 crossref_primary_10_1146_annurev_anchem_061516_045205 crossref_primary_10_1021_ja508416e crossref_primary_10_1002_anie_202210883 crossref_primary_10_1371_journal_pone_0197029 crossref_primary_10_3390_pharmaceutics13122065 crossref_primary_10_1002_cbic_201700153 crossref_primary_10_1016_j_str_2019_06_011 crossref_primary_10_1021_jacs_6b03765 crossref_primary_10_1158_1535_7163_MCT_24_0163 crossref_primary_10_1016_j_bbrc_2025_151623 crossref_primary_10_1093_neuonc_nov169 crossref_primary_10_1016_j_tips_2017_09_002 crossref_primary_10_1039_C6CC00405A crossref_primary_10_1021_bc500584t crossref_primary_10_1073_pnas_1420380112 crossref_primary_10_1084_jem_20160831 crossref_primary_10_1016_j_actbio_2013_12_028 crossref_primary_10_1586_14789450_2014_932251 crossref_primary_10_1002_anie_201603488 crossref_primary_10_1111_bcp_12932 crossref_primary_10_1016_j_drudis_2015_09_004 crossref_primary_10_3390_ijms242417565 crossref_primary_10_1002_ange_201603488 crossref_primary_10_1038_s41598_018_26749_y crossref_primary_10_1158_1535_7163_MCT_15_0881 |
Cites_doi | 10.1038/nature09587 10.2174/138161211798999375 10.1007/s11307-006-0059-y 10.3171/jns.2000.93.6.1003 10.1016/S0002-9440(10)65005-5 10.1158/0008-5472.CAN-06-3948 10.1016/S1470-2045(06)70665-9 10.1126/science.285.5430.1028 10.1007/s10555-008-9158-3 10.2174/138920110792246546 10.3171/jns.2001.95.2.0190 10.1200/JCO.2010.28.5148 10.1158/0008-5472.CAN-11-4199 10.3171/jns.1993.78.5.0767 10.2174/138161211798999465 10.1158/1078-0432.CCR-06-2854 10.1038/nrd3266 10.1158/0008-5472.CAN-05-3521 10.1016/S1567-133X(03)00089-9 10.1016/j.jmb.2008.11.004 10.2174/187152010794728639 10.1021/ja9603721 10.1158/0008-5472.CAN-09-2724 10.1158/0008-5472.CAN-04-1956 10.1002/cncr.25601 10.1016/j.ddtec.2011.07.003 10.1162/1535350042973481 10.1021/jm970832g 10.1021/bc0501698 10.1002/prot.22441 10.1038/nrc2818 10.1016/S0092-8674(00)81268-4 10.1016/B978-0-12-396962-0.00010-0 10.1523/JNEUROSCI.22-05-01562.2002 10.1016/j.nbd.2009.07.028 10.1126/science.272.5268.1668 10.1021/bc9003102 10.1158/0008-5472.CAN-08-2495 10.1200/JCO.2006.10.0677 10.1007/s00259-010-1503-4 10.1158/1535-7163.MCT-09-0195 10.1016/j.jneuroim.2008.04.023 10.1126/science.270.5241.1500 10.1158/1078-0432.CCR-10-1564 10.1016/0092-8674(94)90007-8 10.1038/nature10825 10.1215/15228517-2009-024 10.1016/j.tips.2012.04.002 10.1200/JCO.2009.27.4324 10.3171/2011.5.PEDS1178 10.1016/j.pediatrneurol.2010.07.004 10.1038/nrc2748 10.1158/1078-0432.CCR-11-2390 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Copyright National Academy of Sciences Sep 3, 2013 |
Copyright_xml | – notice: Copyright National Academy of Sciences – notice: Copyright National Academy of Sciences Sep 3, 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
DOI | 10.1073/pnas.1311333110 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Neurosciences Abstracts CrossRef Virology and AIDS Abstracts MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Engineered peptide for brain tumor imaging |
EISSN | 1091-6490 |
EndPage | 14603 |
ExternalDocumentID | PMC3767496 3068664731 23950221 10_1073_pnas_1311333110 110_36_14598 42713160 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute – fundername: NCRR NIH HHS grantid: UL1 RR025744 – fundername: NCATS NIH HHS grantid: UL1 TR001085 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT ADXHL AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD AJYGW ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c600t-a62c321624daf5e202a89e5e1beeebfa054628e9df66841f0bcb60da535c93b83 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:11:18 EDT 2025 Fri Jul 11 10:46:53 EDT 2025 Fri Jul 11 16:42:32 EDT 2025 Fri Jul 11 00:07:36 EDT 2025 Mon Jun 30 07:55:23 EDT 2025 Mon Jul 21 06:04:01 EDT 2025 Tue Jul 01 03:39:49 EDT 2025 Thu Apr 24 23:02:01 EDT 2025 Wed Nov 11 00:30:25 EST 2020 Thu May 29 08:40:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 36 |
Keywords | protein engineering tumor targeting miniprotein Hedgehog pathway |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c600t-a62c321624daf5e202a89e5e1beeebfa054628e9df66841f0bcb60da535c93b83 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Contributed by Matthew P. Scott, June 17, 2013 (sent for review February 25, 2013) Author contributions: S.J.M., M.G.H.G., M.P.S., and J.R.C. designed research; S.J.M., M.G.H.G., J.M.B., Y.S.S., and H.R. performed research; S.J.M., M.G.H.G., J.M.B., M.P.S., and J.R.C. analyzed data; and S.J.M., M.G.H.G., J.M.B., M.P.S., and J.R.C. wrote the paper. 1S.J.M. and M.G.H.G. contributed equally to this work. |
OpenAccessLink | https://www.pnas.org/content/pnas/110/36/14598.full.pdf |
PMID | 23950221 |
PQID | 1431447125 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | jstor_primary_42713160 proquest_miscellaneous_1448223443 crossref_citationtrail_10_1073_pnas_1311333110 proquest_miscellaneous_1803111703 pubmed_primary_23950221 crossref_primary_10_1073_pnas_1311333110 pnas_primary_110_36_14598 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3767496 proquest_journals_1431447125 proquest_miscellaneous_1430395652 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-03 |
PublicationDateYYYYMMDD | 2013-09-03 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2013 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_30_2 e_1_3_3_53_2 Gaertner FC (e_1_3_3_11_2) 2010; 54 e_1_3_3_6_2 Albert FK (e_1_3_3_7_2) 1994; 34 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 20845476 - Cancer. 2011 Feb 1;117(3):635-41 20131753 - Bioconjug Chem. 2010 Mar 17;21(3):436-44 11880486 - J Neurosci. 2002 Mar 1;22(5):1562-72 8658145 - Science. 1996 Jun 14;272(5268):1668-71 22472177 - Clin Cancer Res. 2012 May 15;18(10):2930-42 10446041 - Science. 1999 Aug 13;285(5430):1028-32 10751360 - Am J Pathol. 2000 Apr;156(4):1345-62 8121569 - Neurosurgery. 1994 Jan;34(1):45-60; discussion 60-1 22204431 - Curr Pharm Des. 2011 Dec;17(38):4329-36 17538177 - J Clin Oncol. 2007 Jun 1;25(16):2306-12 18523730 - Cancer Metastasis Rev. 2008 Dec;27(4):631-44 19664710 - Neurobiol Dis. 2010 Jan;37(1):48-57 18534690 - J Neuroimmunol. 2008 Jul 31;198(1-2):20-6 17638899 - Cancer Res. 2007 Jul 15;67(14):6882-8 19401596 - Neuro Oncol. 2009 Dec;11(6):861-70 16648043 - Lancet Oncol. 2006 May;7(5):392-401 20823417 - J Clin Oncol. 2011 Apr 10;29(11):1408-14 17053862 - Mol Imaging Biol. 2006 Nov-Dec;8(6):315-23 22230572 - Methods Enzymol. 2012;503:255-68 22343890 - Nature. 2012 Feb 23;482(7386):529-33 16618759 - Cancer Res. 2006 Apr 15;66(8):4339-48 11780887 - J Neurosurg. 2001 Aug;95(2):190-8 19038268 - J Mol Biol. 2009 Jan 30;385(4):1064-75 8468607 - J Neurosurg. 1993 May;78(5):767-75 12915300 - Gene Expr Patterns. 2003 Aug;3(4):389-95 21150899 - Nature. 2010 Dec 23;468(7327):1095-9 19276378 - Cancer Res. 2009 Mar 15;69(6):2435-42 15802051 - Mol Imaging. 2004 Oct;3(4):343-51 22204434 - Curr Pharm Des. 2011 Dec;17(38):4362-71 20497116 - Curr Pharm Biotechnol. 2010 Sep 1;11(6):610-9 22633092 - Trends Pharmacol Sci. 2012 Jul;33(7):405-12 11117842 - J Neurosurg. 2000 Dec;93(6):1003-13 21806354 - J Neurosurg Pediatr. 2011 Aug;8(2):135-48 20124480 - Cancer Res. 2010 Feb 15;70(4):1595-605 15520209 - Cancer Res. 2004 Nov 1;64(21):8009-14 20559632 - Eur J Nucl Med Mol Imaging. 2010 Aug;37 Suppl 1:S86-103 17363519 - Clin Cancer Res. 2007 Mar 15;13(6):1663-74 16287239 - Bioconjug Chem. 2005 Nov-Dec;16(6):1433-41 20829328 - Clin Cancer Res. 2010 Dec 1;16(23):5664-78 21147383 - Pediatr Neurol. 2011 Jan;44(1):21-30 20414201 - Nat Rev Cancer. 2010 May;10(5):319-31 19825804 - Mol Cancer Ther. 2009 Oct;8(10):2861-71 20639816 - Q J Nucl Med Mol Imaging. 2010 Jun;54(3):309-26 7491498 - Science. 1995 Dec 1;270(5241):1500-2 20029421 - Nat Rev Cancer. 2010 Jan;10(1):9-22 21269250 - Anticancer Agents Med Chem. 2010 Dec;10(10):753-68 7528107 - Cell. 1994 Dec 30;79(7):1157-64 22593187 - Cancer Res. 2012 Jul 15;72(14):3463-70 21098324 - J Clin Oncol. 2011 Apr 10;29(11):1424-30 19452550 - Proteins. 2009 Nov 1;77(2):359-69 20885411 - Nat Rev Drug Discov. 2010 Oct;9(10):804-20 8681379 - Cell. 1996 Jun 14;85(6):841-51 10447947 - J Med Chem. 1999 Aug 12;42(16):3033-40 |
References_xml | – ident: e_1_3_3_2_2 doi: 10.1038/nature09587 – ident: e_1_3_3_46_2 doi: 10.2174/138161211798999375 – ident: e_1_3_3_43_2 doi: 10.1007/s11307-006-0059-y – ident: e_1_3_3_48_2 doi: 10.3171/jns.2000.93.6.1003 – ident: e_1_3_3_17_2 doi: 10.1016/S0002-9440(10)65005-5 – ident: e_1_3_3_47_2 doi: 10.1158/0008-5472.CAN-06-3948 – ident: e_1_3_3_51_2 doi: 10.1016/S1470-2045(06)70665-9 – ident: e_1_3_3_15_2 doi: 10.1126/science.285.5430.1028 – ident: e_1_3_3_39_2 doi: 10.1007/s10555-008-9158-3 – ident: e_1_3_3_22_2 doi: 10.2174/138920110792246546 – ident: e_1_3_3_9_2 doi: 10.3171/jns.2001.95.2.0190 – ident: e_1_3_3_30_2 doi: 10.1200/JCO.2010.28.5148 – ident: e_1_3_3_16_2 doi: 10.1158/0008-5472.CAN-11-4199 – ident: e_1_3_3_8_2 doi: 10.3171/jns.1993.78.5.0767 – ident: e_1_3_3_24_2 doi: 10.2174/138161211798999465 – ident: e_1_3_3_52_2 doi: 10.1158/1078-0432.CCR-06-2854 – ident: e_1_3_3_10_2 doi: 10.1038/nrd3266 – ident: e_1_3_3_37_2 doi: 10.1158/0008-5472.CAN-05-3521 – volume: 54 start-page: 309 year: 2010 ident: e_1_3_3_11_2 article-title: Molecular imaging of αvß3 expression in cancer patients publication-title: Q J Nucl Med Mol Imaging – ident: e_1_3_3_27_2 doi: 10.1016/S1567-133X(03)00089-9 – ident: e_1_3_3_32_2 doi: 10.1016/j.jmb.2008.11.004 – ident: e_1_3_3_45_2 doi: 10.2174/187152010794728639 – ident: e_1_3_3_33_2 doi: 10.1021/ja9603721 – ident: e_1_3_3_38_2 doi: 10.1158/0008-5472.CAN-09-2724 – ident: e_1_3_3_40_2 doi: 10.1158/0008-5472.CAN-04-1956 – ident: e_1_3_3_5_2 doi: 10.1002/cncr.25601 – ident: e_1_3_3_26_2 doi: 10.1016/j.ddtec.2011.07.003 – ident: e_1_3_3_41_2 doi: 10.1162/1535350042973481 – ident: e_1_3_3_20_2 doi: 10.1021/jm970832g – ident: e_1_3_3_42_2 doi: 10.1021/bc0501698 – ident: e_1_3_3_23_2 doi: 10.1002/prot.22441 – ident: e_1_3_3_1_2 doi: 10.1038/nrc2818 – ident: e_1_3_3_28_2 doi: 10.1016/S0092-8674(00)81268-4 – ident: e_1_3_3_36_2 doi: 10.1016/B978-0-12-396962-0.00010-0 – ident: e_1_3_3_50_2 doi: 10.1523/JNEUROSCI.22-05-01562.2002 – ident: e_1_3_3_55_2 doi: 10.1016/j.nbd.2009.07.028 – ident: e_1_3_3_29_2 doi: 10.1126/science.272.5268.1668 – volume: 34 start-page: 45 year: 1994 ident: e_1_3_3_7_2 article-title: Early postoperative magnetic resonance imaging after resection of malignant glioma: Objective evaluation of residual tumor and its influence on regrowth and prognosis publication-title: Neurosurgery – ident: e_1_3_3_44_2 doi: 10.1021/bc9003102 – ident: e_1_3_3_25_2 doi: 10.1158/0008-5472.CAN-08-2495 – ident: e_1_3_3_53_2 doi: 10.1200/JCO.2006.10.0677 – ident: e_1_3_3_21_2 doi: 10.1007/s00259-010-1503-4 – ident: e_1_3_3_35_2 doi: 10.1158/1535-7163.MCT-09-0195 – ident: e_1_3_3_49_2 doi: 10.1016/j.jneuroim.2008.04.023 – ident: e_1_3_3_14_2 doi: 10.1126/science.270.5241.1500 – ident: e_1_3_3_54_2 doi: 10.1158/1078-0432.CCR-10-1564 – ident: e_1_3_3_12_2 doi: 10.1016/0092-8674(94)90007-8 – ident: e_1_3_3_6_2 doi: 10.1038/nature10825 – ident: e_1_3_3_34_2 doi: 10.1215/15228517-2009-024 – ident: e_1_3_3_19_2 doi: 10.1016/j.tips.2012.04.002 – ident: e_1_3_3_31_2 doi: 10.1200/JCO.2009.27.4324 – ident: e_1_3_3_3_2 doi: 10.3171/2011.5.PEDS1178 – ident: e_1_3_3_4_2 doi: 10.1016/j.pediatrneurol.2010.07.004 – ident: e_1_3_3_18_2 doi: 10.1038/nrc2748 – ident: e_1_3_3_13_2 doi: 10.1158/1078-0432.CCR-11-2390 – reference: 8121569 - Neurosurgery. 1994 Jan;34(1):45-60; discussion 60-1 – reference: 10447947 - J Med Chem. 1999 Aug 12;42(16):3033-40 – reference: 15802051 - Mol Imaging. 2004 Oct;3(4):343-51 – reference: 11880486 - J Neurosci. 2002 Mar 1;22(5):1562-72 – reference: 19276378 - Cancer Res. 2009 Mar 15;69(6):2435-42 – reference: 17538177 - J Clin Oncol. 2007 Jun 1;25(16):2306-12 – reference: 22230572 - Methods Enzymol. 2012;503:255-68 – reference: 19401596 - Neuro Oncol. 2009 Dec;11(6):861-70 – reference: 11780887 - J Neurosurg. 2001 Aug;95(2):190-8 – reference: 22593187 - Cancer Res. 2012 Jul 15;72(14):3463-70 – reference: 20559632 - Eur J Nucl Med Mol Imaging. 2010 Aug;37 Suppl 1:S86-103 – reference: 10751360 - Am J Pathol. 2000 Apr;156(4):1345-62 – reference: 19825804 - Mol Cancer Ther. 2009 Oct;8(10):2861-71 – reference: 18534690 - J Neuroimmunol. 2008 Jul 31;198(1-2):20-6 – reference: 8658145 - Science. 1996 Jun 14;272(5268):1668-71 – reference: 21150899 - Nature. 2010 Dec 23;468(7327):1095-9 – reference: 8681379 - Cell. 1996 Jun 14;85(6):841-51 – reference: 10446041 - Science. 1999 Aug 13;285(5430):1028-32 – reference: 16648043 - Lancet Oncol. 2006 May;7(5):392-401 – reference: 22204434 - Curr Pharm Des. 2011 Dec;17(38):4362-71 – reference: 21098324 - J Clin Oncol. 2011 Apr 10;29(11):1424-30 – reference: 11117842 - J Neurosurg. 2000 Dec;93(6):1003-13 – reference: 20639816 - Q J Nucl Med Mol Imaging. 2010 Jun;54(3):309-26 – reference: 22343890 - Nature. 2012 Feb 23;482(7386):529-33 – reference: 16618759 - Cancer Res. 2006 Apr 15;66(8):4339-48 – reference: 7491498 - Science. 1995 Dec 1;270(5241):1500-2 – reference: 17363519 - Clin Cancer Res. 2007 Mar 15;13(6):1663-74 – reference: 7528107 - Cell. 1994 Dec 30;79(7):1157-64 – reference: 19452550 - Proteins. 2009 Nov 1;77(2):359-69 – reference: 21806354 - J Neurosurg Pediatr. 2011 Aug;8(2):135-48 – reference: 19038268 - J Mol Biol. 2009 Jan 30;385(4):1064-75 – reference: 17638899 - Cancer Res. 2007 Jul 15;67(14):6882-8 – reference: 20885411 - Nat Rev Drug Discov. 2010 Oct;9(10):804-20 – reference: 22204431 - Curr Pharm Des. 2011 Dec;17(38):4329-36 – reference: 21147383 - Pediatr Neurol. 2011 Jan;44(1):21-30 – reference: 20823417 - J Clin Oncol. 2011 Apr 10;29(11):1408-14 – reference: 20497116 - Curr Pharm Biotechnol. 2010 Sep 1;11(6):610-9 – reference: 16287239 - Bioconjug Chem. 2005 Nov-Dec;16(6):1433-41 – reference: 20029421 - Nat Rev Cancer. 2010 Jan;10(1):9-22 – reference: 20845476 - Cancer. 2011 Feb 1;117(3):635-41 – reference: 20131753 - Bioconjug Chem. 2010 Mar 17;21(3):436-44 – reference: 19664710 - Neurobiol Dis. 2010 Jan;37(1):48-57 – reference: 22472177 - Clin Cancer Res. 2012 May 15;18(10):2930-42 – reference: 20829328 - Clin Cancer Res. 2010 Dec 1;16(23):5664-78 – reference: 8468607 - J Neurosurg. 1993 May;78(5):767-75 – reference: 21269250 - Anticancer Agents Med Chem. 2010 Dec;10(10):753-68 – reference: 18523730 - Cancer Metastasis Rev. 2008 Dec;27(4):631-44 – reference: 20124480 - Cancer Res. 2010 Feb 15;70(4):1595-605 – reference: 22633092 - Trends Pharmacol Sci. 2012 Jul;33(7):405-12 – reference: 17053862 - Mol Imaging Biol. 2006 Nov-Dec;8(6):315-23 – reference: 12915300 - Gene Expr Patterns. 2003 Aug;3(4):389-95 – reference: 15520209 - Cancer Res. 2004 Nov 1;64(21):8009-14 – reference: 20414201 - Nat Rev Cancer. 2010 May;10(5):319-31 |
SSID | ssj0009580 |
Score | 2.3544223 |
Snippet | Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14598 |
SubjectTerms | Animals antibodies Biological Sciences brain Brain cancer Brain neoplasms Brain tumors Cancer caudal vein Central nervous system Cerebellar Neoplasms - diagnosis Cerebellar Neoplasms - genetics Cerebellar Neoplasms - metabolism Chemotherapy cystine Cystine-Knot Miniproteins - chemistry Cystine-Knot Miniproteins - genetics Cystine-Knot Miniproteins - metabolism Diagnostic Imaging - methods drug therapy Dyes Female fluorescence fluorescent dyes Fluorescent Dyes - chemistry Fluorescent Dyes - metabolism Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism image analysis Imaging Injection Integrin alpha5beta1 - metabolism Integrins Male Medulloblastoma Medulloblastoma - diagnosis Medulloblastoma - genetics Medulloblastoma - metabolism Mice Mice, Knockout Mice, Nude Mice, Transgenic Microscopy, Fluorescence Molecular imaging Molecular Imaging - methods Molecules neoplasms Nervous system Neuroimaging Patched Receptors Peptides Protein Binding Protein Engineering receptors Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism resection Rodents Sensitivity and Specificity Tissues Tumors |
Title | Engineered knottin peptide enables noninvasive optical imaging of intracranial medulloblastoma |
URI | https://www.jstor.org/stable/42713160 http://www.pnas.org/content/110/36/14598.abstract https://www.ncbi.nlm.nih.gov/pubmed/23950221 https://www.proquest.com/docview/1431447125 https://www.proquest.com/docview/1430395652 https://www.proquest.com/docview/1448223443 https://www.proquest.com/docview/1803111703 https://pubmed.ncbi.nlm.nih.gov/PMC3767496 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFMWBQGChIPAxFCYntOMnjQLBpUquJbdKeiOzE0SpGUq0tEvw6fhrHlzhp2abBS1TFJ46T8_VcnHNB6C2wOMZpTYK85iSgmRABF4IGIq8xK8EHqXR-xWTKDs_o0XlyPhr9HkQtrZYiLH9dm1fyP1yFc8BXlSX7D5x1k8IJ-A38hSNwGI534nFXTBCMxm9NqyKY_bmKUqmkL3VO1MJv1HbrD66D1Nu52biefbetiXS1iCtegr6amSwScEhbAQb1srXy2tqtx07PLbqogmm3jbjfJ6VYSbHwA_942rc4nrQ2mlfvP_tHYS_3foLc8w_k_ILb3CF5qZLe_QNH80Hnh9qIXhiZuJGTlVYg7eqLaph0Eg53MFQ3iTyIyFAqY9CU1ORSh9IIYrBjAkZNK1EnqW0ErIEkGQremCamm7XV4qAAzC3-UhEg01Rf44YvQlVqiBDSTbtWjHtDSbrQRf3RPiWFmqDoJ7iH7mNwVLBWDcOyz5lJgrJP2BWXSsn7jRWs2UUmNFbV2wWi63yfzRDegU10-gg9tM6Mt2-QuY1GsnmMtjsQeHu2pvm7J-hrD1XPQtWzUPUsVL0BVD0LVc9C1WtrbwhVbwOqT9HZ50-nHw8D29ojKMHCXgac4ZLgmGFa8TqROMI8y2UiYyGlFDUHR4LhTOZVzVhG4zoSpWBRxROSlDkRGdlBW7Aq-Rx5AuOKJhnjqaxoXaZZqVo-pFHKcpryJBmjsHuxRWnr3qv2K5fFDawcoz13wdyUfLmZdEdzytFRnMIog4GxJnXXwwSEFRqlY7Tb8bOwwgTmBEOegqGIYb1v3DCIevX9jjeyXWmaiOTggeHbaCiY_IRScgtNBppcdZwCmmcGRm6hGG4AZn08RukawByBKke_PtLMLnRZelUXiubsxd1f30v0oJcHu2hrebWSr8DGX4rX-m_0B6-_-1w |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+knottin+peptide+enables+noninvasive+optical+imaging+of+intracranial+medulloblastoma&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Moore%2C+Sarah+J.&rft.au=Hayden+Gephart%2C+Melanie+G.&rft.au=Bergen%2C+Jamie+M.&rft.au=Su%2C+YouRong+S.&rft.date=2013-09-03&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=110&rft.issue=36&rft.spage=14598&rft.epage=14603&rft_id=info:doi/10.1073%2Fpnas.1311333110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1311333110 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F36.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F36.cover.gif |