Engineered knottin peptide enables noninvasive optical imaging of intracranial medulloblastoma

Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 110; no. 36; pp. 14598 - 14603
Main Authors Moore, Sarah J., Gephart, Melanie G. Hayden, Bergen, Jamie M., Su, YouRong S., Rayburn, Helen, Scott, Matthew P., Cochran, Jennifer R.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 03.09.2013
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to αvß₃,αvß₅, and α₅ß₁, integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α₅ß₁ integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrinbinding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging.
AbstractList Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to ..., ..., and ... integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to ... integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging. (ProQuest: ... denotes formulae/symbols omitted.)
Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to α v β 3 , α v β 5 , and α 5 β 1 integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α 5 β 1 integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F–Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F–Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5–Fc as targeted molecular probes for brain tumor imaging.
Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α5β1 integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging.
Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to αvß₃,αvß₅, and α₅ß₁, integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α₅ß₁ integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrinbinding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging.
Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α5β1 integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging.Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α5β1 integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F-Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F-Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5-Fc as targeted molecular probes for brain tumor imaging.
Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to α v β 3 , α v β 5 , and α 5 β 1 integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α 5 β 1 integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F–Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F–Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5–Fc as targeted molecular probes for brain tumor imaging.
Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. We demonstrate that mouse cerebellar medulloblastoma (MB) can be targeted and illuminated with a fluorescent, engineered cystine knot (knottin) peptide that binds with high affinity to α ᵥβ ₃, α ᵥβ ₅, and α ₅β ₁ integrin receptors. This integrin-binding knottin peptide, denoted EETI 2.5F, was evaluated as a molecular imaging probe in both orthotopic and genetic models of MB. Following tail vein injection, fluorescence arising from dye-conjugated EETI 2.5F was localized to the tumor compared with the normal surrounding brain tissue, as measured by optical imaging. The imaging signal intensity correlated with tumor volume. Due to its unique ability to bind to α ₅β ₁ integrin, EETI 2.5F showed superior in vivo and ex vivo brain tumor imaging contrast compared with other engineered integrin-binding knottin peptides and with c(RGDfK), a well-studied integrin-binding peptidomimetic. Next, EETI 2.5F was fused to an antibody fragment crystallizable (Fc) domain (EETI 2.5F–Fc) to determine if a larger integrin-binding protein could also target intracranial brain tumors. EETI 2.5F–Fc, conjugated to a fluorescent dye, illuminated MB following i.v. injection and was able to distribute throughout the tumor parenchyma. In contrast, brain tumor imaging signals were not detected in mice injected with EETI 2.5F proteins containing a scrambled integrin-binding sequence, demonstrating the importance of target specificity. These results highlight the potential of using EETI 2.5F and EETI 2.5–Fc as targeted molecular probes for brain tumor imaging.
Author Cochran, Jennifer R.
Su, YouRong S.
Scott, Matthew P.
Gephart, Melanie G. Hayden
Moore, Sarah J.
Rayburn, Helen
Bergen, Jamie M.
Author_xml – sequence: 1
  givenname: Sarah J.
  surname: Moore
  fullname: Moore, Sarah J.
– sequence: 2
  givenname: Melanie G. Hayden
  surname: Gephart
  fullname: Gephart, Melanie G. Hayden
– sequence: 3
  givenname: Jamie M.
  surname: Bergen
  fullname: Bergen, Jamie M.
– sequence: 4
  givenname: YouRong S.
  surname: Su
  fullname: Su, YouRong S.
– sequence: 5
  givenname: Helen
  surname: Rayburn
  fullname: Rayburn, Helen
– sequence: 6
  givenname: Matthew P.
  surname: Scott
  fullname: Scott, Matthew P.
– sequence: 7
  givenname: Jennifer R.
  surname: Cochran
  fullname: Cochran, Jennifer R.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23950221$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFMydQJC69pB1_JrkgVVUpSJW4wBXLcSaLl6wd7GQl_j2OdrtAJQQXW_I88_qdjzNy4oNHQl5SuKRQ8avRm3RJOaWc5wOekBWFhpZKNHBCVgCsKmvBxCk5S2kDAI2s4Rk5ZbyRwBhdkS-3fu08YsSu-ObDNDlfjDhOrsMCvWkHTEX-0_mdSW6HRcgha4bCbU3OWxehL5yforHReJfft9jNwxDawaQpbM1z8rQ3Q8IXh_ucfH53--nmfXn_8e7DzfV9aRXAVBrFLGdUMdGZXiIDZuoGJdIWEdvegBSK1dh0vVK1oD20tlXQGcmlbXhb83Pydq87zm22YHHxNOgxZp_xhw7G6T8j3n3V67DTvFKVaFQWuDgIxPB9xjTprUsWh8F4DHPStIbcYFoB_zcqRM0YF-J_UA55FEqyjL55hG7CHH1u2kJlzYoymanXv9d5LPBhoBmQe8DGkFLEXls3mcmFpWw3aAp6WRy9LI7-tTg57-pR3oP03zOKg5UlcKQzzlW2LJtlKq_2yCYvQzwyglVZRwH_Cc9S2oc
CitedBy_id crossref_primary_10_1038_nm_4200
crossref_primary_10_1016_j_biotechadv_2016_03_008
crossref_primary_10_1093_chemse_bjy054
crossref_primary_10_1021_acs_biochem_7b00722
crossref_primary_10_3171_2013_11_FOCUS13484
crossref_primary_10_1021_acschembio_6b01006
crossref_primary_10_18097_PBMC20166204353
crossref_primary_10_4049_jimmunol_2200950
crossref_primary_10_1038_s41467_019_13948_y
crossref_primary_10_1016_j_cnd_2015_02_003
crossref_primary_10_1002_advs_201800383
crossref_primary_10_1002_cbic_201402290
crossref_primary_10_1016_j_ijpharm_2019_05_001
crossref_primary_10_1016_j_copbio_2017_07_007
crossref_primary_10_1007_s12551_023_01084_3
crossref_primary_10_1016_j_bmc_2017_08_052
crossref_primary_10_3390_pharmaceutics14061235
crossref_primary_10_1002_ange_202210883
crossref_primary_10_1016_j_omto_2017_09_005
crossref_primary_10_1039_C4CS00034J
crossref_primary_10_1007_s11307_015_0880_2
crossref_primary_10_1016_j_bmc_2016_05_006
crossref_primary_10_1016_j_celrep_2021_110021
crossref_primary_10_1002_psc_2782
crossref_primary_10_1016_j_cbpa_2016_08_022
crossref_primary_10_1016_j_chembiol_2021_10_012
crossref_primary_10_1016_j_jmb_2023_168339
crossref_primary_10_1146_annurev_anchem_061516_045205
crossref_primary_10_1021_ja508416e
crossref_primary_10_1002_anie_202210883
crossref_primary_10_1371_journal_pone_0197029
crossref_primary_10_3390_pharmaceutics13122065
crossref_primary_10_1002_cbic_201700153
crossref_primary_10_1016_j_str_2019_06_011
crossref_primary_10_1021_jacs_6b03765
crossref_primary_10_1158_1535_7163_MCT_24_0163
crossref_primary_10_1016_j_bbrc_2025_151623
crossref_primary_10_1093_neuonc_nov169
crossref_primary_10_1016_j_tips_2017_09_002
crossref_primary_10_1039_C6CC00405A
crossref_primary_10_1021_bc500584t
crossref_primary_10_1073_pnas_1420380112
crossref_primary_10_1084_jem_20160831
crossref_primary_10_1016_j_actbio_2013_12_028
crossref_primary_10_1586_14789450_2014_932251
crossref_primary_10_1002_anie_201603488
crossref_primary_10_1111_bcp_12932
crossref_primary_10_1016_j_drudis_2015_09_004
crossref_primary_10_3390_ijms242417565
crossref_primary_10_1002_ange_201603488
crossref_primary_10_1038_s41598_018_26749_y
crossref_primary_10_1158_1535_7163_MCT_15_0881
Cites_doi 10.1038/nature09587
10.2174/138161211798999375
10.1007/s11307-006-0059-y
10.3171/jns.2000.93.6.1003
10.1016/S0002-9440(10)65005-5
10.1158/0008-5472.CAN-06-3948
10.1016/S1470-2045(06)70665-9
10.1126/science.285.5430.1028
10.1007/s10555-008-9158-3
10.2174/138920110792246546
10.3171/jns.2001.95.2.0190
10.1200/JCO.2010.28.5148
10.1158/0008-5472.CAN-11-4199
10.3171/jns.1993.78.5.0767
10.2174/138161211798999465
10.1158/1078-0432.CCR-06-2854
10.1038/nrd3266
10.1158/0008-5472.CAN-05-3521
10.1016/S1567-133X(03)00089-9
10.1016/j.jmb.2008.11.004
10.2174/187152010794728639
10.1021/ja9603721
10.1158/0008-5472.CAN-09-2724
10.1158/0008-5472.CAN-04-1956
10.1002/cncr.25601
10.1016/j.ddtec.2011.07.003
10.1162/1535350042973481
10.1021/jm970832g
10.1021/bc0501698
10.1002/prot.22441
10.1038/nrc2818
10.1016/S0092-8674(00)81268-4
10.1016/B978-0-12-396962-0.00010-0
10.1523/JNEUROSCI.22-05-01562.2002
10.1016/j.nbd.2009.07.028
10.1126/science.272.5268.1668
10.1021/bc9003102
10.1158/0008-5472.CAN-08-2495
10.1200/JCO.2006.10.0677
10.1007/s00259-010-1503-4
10.1158/1535-7163.MCT-09-0195
10.1016/j.jneuroim.2008.04.023
10.1126/science.270.5241.1500
10.1158/1078-0432.CCR-10-1564
10.1016/0092-8674(94)90007-8
10.1038/nature10825
10.1215/15228517-2009-024
10.1016/j.tips.2012.04.002
10.1200/JCO.2009.27.4324
10.3171/2011.5.PEDS1178
10.1016/j.pediatrneurol.2010.07.004
10.1038/nrc2748
10.1158/1078-0432.CCR-11-2390
ContentType Journal Article
Copyright Copyright National Academy of Sciences
Copyright National Academy of Sciences Sep 3, 2013
Copyright_xml – notice: Copyright National Academy of Sciences
– notice: Copyright National Academy of Sciences Sep 3, 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1073/pnas.1311333110
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Neurosciences Abstracts
CrossRef
Virology and AIDS Abstracts
MEDLINE

MEDLINE - Academic


AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Engineered peptide for brain tumor imaging
EISSN 1091-6490
EndPage 14603
ExternalDocumentID PMC3767496
3068664731
23950221
10_1073_pnas_1311333110
110_36_14598
42713160
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: Howard Hughes Medical Institute
– fundername: NCRR NIH HHS
  grantid: UL1 RR025744
– fundername: NCATS NIH HHS
  grantid: UL1 TR001085
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
ADXHL
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
AJYGW
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c600t-a62c321624daf5e202a89e5e1beeebfa054628e9df66841f0bcb60da535c93b83
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:11:18 EDT 2025
Fri Jul 11 10:46:53 EDT 2025
Fri Jul 11 16:42:32 EDT 2025
Fri Jul 11 00:07:36 EDT 2025
Mon Jun 30 07:55:23 EDT 2025
Mon Jul 21 06:04:01 EDT 2025
Tue Jul 01 03:39:49 EDT 2025
Thu Apr 24 23:02:01 EDT 2025
Wed Nov 11 00:30:25 EST 2020
Thu May 29 08:40:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords protein engineering
tumor targeting
miniprotein
Hedgehog pathway
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c600t-a62c321624daf5e202a89e5e1beeebfa054628e9df66841f0bcb60da535c93b83
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Contributed by Matthew P. Scott, June 17, 2013 (sent for review February 25, 2013)
Author contributions: S.J.M., M.G.H.G., M.P.S., and J.R.C. designed research; S.J.M., M.G.H.G., J.M.B., Y.S.S., and H.R. performed research; S.J.M., M.G.H.G., J.M.B., M.P.S., and J.R.C. analyzed data; and S.J.M., M.G.H.G., J.M.B., M.P.S., and J.R.C. wrote the paper.
1S.J.M. and M.G.H.G. contributed equally to this work.
OpenAccessLink https://www.pnas.org/content/pnas/110/36/14598.full.pdf
PMID 23950221
PQID 1431447125
PQPubID 42026
PageCount 6
ParticipantIDs jstor_primary_42713160
proquest_miscellaneous_1448223443
crossref_citationtrail_10_1073_pnas_1311333110
proquest_miscellaneous_1803111703
pubmed_primary_23950221
crossref_primary_10_1073_pnas_1311333110
pnas_primary_110_36_14598
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3767496
proquest_journals_1431447125
proquest_miscellaneous_1430395652
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-03
PublicationDateYYYYMMDD 2013-09-03
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_30_2
e_1_3_3_53_2
Gaertner FC (e_1_3_3_11_2) 2010; 54
e_1_3_3_6_2
Albert FK (e_1_3_3_7_2) 1994; 34
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
20845476 - Cancer. 2011 Feb 1;117(3):635-41
20131753 - Bioconjug Chem. 2010 Mar 17;21(3):436-44
11880486 - J Neurosci. 2002 Mar 1;22(5):1562-72
8658145 - Science. 1996 Jun 14;272(5268):1668-71
22472177 - Clin Cancer Res. 2012 May 15;18(10):2930-42
10446041 - Science. 1999 Aug 13;285(5430):1028-32
10751360 - Am J Pathol. 2000 Apr;156(4):1345-62
8121569 - Neurosurgery. 1994 Jan;34(1):45-60; discussion 60-1
22204431 - Curr Pharm Des. 2011 Dec;17(38):4329-36
17538177 - J Clin Oncol. 2007 Jun 1;25(16):2306-12
18523730 - Cancer Metastasis Rev. 2008 Dec;27(4):631-44
19664710 - Neurobiol Dis. 2010 Jan;37(1):48-57
18534690 - J Neuroimmunol. 2008 Jul 31;198(1-2):20-6
17638899 - Cancer Res. 2007 Jul 15;67(14):6882-8
19401596 - Neuro Oncol. 2009 Dec;11(6):861-70
16648043 - Lancet Oncol. 2006 May;7(5):392-401
20823417 - J Clin Oncol. 2011 Apr 10;29(11):1408-14
17053862 - Mol Imaging Biol. 2006 Nov-Dec;8(6):315-23
22230572 - Methods Enzymol. 2012;503:255-68
22343890 - Nature. 2012 Feb 23;482(7386):529-33
16618759 - Cancer Res. 2006 Apr 15;66(8):4339-48
11780887 - J Neurosurg. 2001 Aug;95(2):190-8
19038268 - J Mol Biol. 2009 Jan 30;385(4):1064-75
8468607 - J Neurosurg. 1993 May;78(5):767-75
12915300 - Gene Expr Patterns. 2003 Aug;3(4):389-95
21150899 - Nature. 2010 Dec 23;468(7327):1095-9
19276378 - Cancer Res. 2009 Mar 15;69(6):2435-42
15802051 - Mol Imaging. 2004 Oct;3(4):343-51
22204434 - Curr Pharm Des. 2011 Dec;17(38):4362-71
20497116 - Curr Pharm Biotechnol. 2010 Sep 1;11(6):610-9
22633092 - Trends Pharmacol Sci. 2012 Jul;33(7):405-12
11117842 - J Neurosurg. 2000 Dec;93(6):1003-13
21806354 - J Neurosurg Pediatr. 2011 Aug;8(2):135-48
20124480 - Cancer Res. 2010 Feb 15;70(4):1595-605
15520209 - Cancer Res. 2004 Nov 1;64(21):8009-14
20559632 - Eur J Nucl Med Mol Imaging. 2010 Aug;37 Suppl 1:S86-103
17363519 - Clin Cancer Res. 2007 Mar 15;13(6):1663-74
16287239 - Bioconjug Chem. 2005 Nov-Dec;16(6):1433-41
20829328 - Clin Cancer Res. 2010 Dec 1;16(23):5664-78
21147383 - Pediatr Neurol. 2011 Jan;44(1):21-30
20414201 - Nat Rev Cancer. 2010 May;10(5):319-31
19825804 - Mol Cancer Ther. 2009 Oct;8(10):2861-71
20639816 - Q J Nucl Med Mol Imaging. 2010 Jun;54(3):309-26
7491498 - Science. 1995 Dec 1;270(5241):1500-2
20029421 - Nat Rev Cancer. 2010 Jan;10(1):9-22
21269250 - Anticancer Agents Med Chem. 2010 Dec;10(10):753-68
7528107 - Cell. 1994 Dec 30;79(7):1157-64
22593187 - Cancer Res. 2012 Jul 15;72(14):3463-70
21098324 - J Clin Oncol. 2011 Apr 10;29(11):1424-30
19452550 - Proteins. 2009 Nov 1;77(2):359-69
20885411 - Nat Rev Drug Discov. 2010 Oct;9(10):804-20
8681379 - Cell. 1996 Jun 14;85(6):841-51
10447947 - J Med Chem. 1999 Aug 12;42(16):3033-40
References_xml – ident: e_1_3_3_2_2
  doi: 10.1038/nature09587
– ident: e_1_3_3_46_2
  doi: 10.2174/138161211798999375
– ident: e_1_3_3_43_2
  doi: 10.1007/s11307-006-0059-y
– ident: e_1_3_3_48_2
  doi: 10.3171/jns.2000.93.6.1003
– ident: e_1_3_3_17_2
  doi: 10.1016/S0002-9440(10)65005-5
– ident: e_1_3_3_47_2
  doi: 10.1158/0008-5472.CAN-06-3948
– ident: e_1_3_3_51_2
  doi: 10.1016/S1470-2045(06)70665-9
– ident: e_1_3_3_15_2
  doi: 10.1126/science.285.5430.1028
– ident: e_1_3_3_39_2
  doi: 10.1007/s10555-008-9158-3
– ident: e_1_3_3_22_2
  doi: 10.2174/138920110792246546
– ident: e_1_3_3_9_2
  doi: 10.3171/jns.2001.95.2.0190
– ident: e_1_3_3_30_2
  doi: 10.1200/JCO.2010.28.5148
– ident: e_1_3_3_16_2
  doi: 10.1158/0008-5472.CAN-11-4199
– ident: e_1_3_3_8_2
  doi: 10.3171/jns.1993.78.5.0767
– ident: e_1_3_3_24_2
  doi: 10.2174/138161211798999465
– ident: e_1_3_3_52_2
  doi: 10.1158/1078-0432.CCR-06-2854
– ident: e_1_3_3_10_2
  doi: 10.1038/nrd3266
– ident: e_1_3_3_37_2
  doi: 10.1158/0008-5472.CAN-05-3521
– volume: 54
  start-page: 309
  year: 2010
  ident: e_1_3_3_11_2
  article-title: Molecular imaging of αvß3 expression in cancer patients
  publication-title: Q J Nucl Med Mol Imaging
– ident: e_1_3_3_27_2
  doi: 10.1016/S1567-133X(03)00089-9
– ident: e_1_3_3_32_2
  doi: 10.1016/j.jmb.2008.11.004
– ident: e_1_3_3_45_2
  doi: 10.2174/187152010794728639
– ident: e_1_3_3_33_2
  doi: 10.1021/ja9603721
– ident: e_1_3_3_38_2
  doi: 10.1158/0008-5472.CAN-09-2724
– ident: e_1_3_3_40_2
  doi: 10.1158/0008-5472.CAN-04-1956
– ident: e_1_3_3_5_2
  doi: 10.1002/cncr.25601
– ident: e_1_3_3_26_2
  doi: 10.1016/j.ddtec.2011.07.003
– ident: e_1_3_3_41_2
  doi: 10.1162/1535350042973481
– ident: e_1_3_3_20_2
  doi: 10.1021/jm970832g
– ident: e_1_3_3_42_2
  doi: 10.1021/bc0501698
– ident: e_1_3_3_23_2
  doi: 10.1002/prot.22441
– ident: e_1_3_3_1_2
  doi: 10.1038/nrc2818
– ident: e_1_3_3_28_2
  doi: 10.1016/S0092-8674(00)81268-4
– ident: e_1_3_3_36_2
  doi: 10.1016/B978-0-12-396962-0.00010-0
– ident: e_1_3_3_50_2
  doi: 10.1523/JNEUROSCI.22-05-01562.2002
– ident: e_1_3_3_55_2
  doi: 10.1016/j.nbd.2009.07.028
– ident: e_1_3_3_29_2
  doi: 10.1126/science.272.5268.1668
– volume: 34
  start-page: 45
  year: 1994
  ident: e_1_3_3_7_2
  article-title: Early postoperative magnetic resonance imaging after resection of malignant glioma: Objective evaluation of residual tumor and its influence on regrowth and prognosis
  publication-title: Neurosurgery
– ident: e_1_3_3_44_2
  doi: 10.1021/bc9003102
– ident: e_1_3_3_25_2
  doi: 10.1158/0008-5472.CAN-08-2495
– ident: e_1_3_3_53_2
  doi: 10.1200/JCO.2006.10.0677
– ident: e_1_3_3_21_2
  doi: 10.1007/s00259-010-1503-4
– ident: e_1_3_3_35_2
  doi: 10.1158/1535-7163.MCT-09-0195
– ident: e_1_3_3_49_2
  doi: 10.1016/j.jneuroim.2008.04.023
– ident: e_1_3_3_14_2
  doi: 10.1126/science.270.5241.1500
– ident: e_1_3_3_54_2
  doi: 10.1158/1078-0432.CCR-10-1564
– ident: e_1_3_3_12_2
  doi: 10.1016/0092-8674(94)90007-8
– ident: e_1_3_3_6_2
  doi: 10.1038/nature10825
– ident: e_1_3_3_34_2
  doi: 10.1215/15228517-2009-024
– ident: e_1_3_3_19_2
  doi: 10.1016/j.tips.2012.04.002
– ident: e_1_3_3_31_2
  doi: 10.1200/JCO.2009.27.4324
– ident: e_1_3_3_3_2
  doi: 10.3171/2011.5.PEDS1178
– ident: e_1_3_3_4_2
  doi: 10.1016/j.pediatrneurol.2010.07.004
– ident: e_1_3_3_18_2
  doi: 10.1038/nrc2748
– ident: e_1_3_3_13_2
  doi: 10.1158/1078-0432.CCR-11-2390
– reference: 8121569 - Neurosurgery. 1994 Jan;34(1):45-60; discussion 60-1
– reference: 10447947 - J Med Chem. 1999 Aug 12;42(16):3033-40
– reference: 15802051 - Mol Imaging. 2004 Oct;3(4):343-51
– reference: 11880486 - J Neurosci. 2002 Mar 1;22(5):1562-72
– reference: 19276378 - Cancer Res. 2009 Mar 15;69(6):2435-42
– reference: 17538177 - J Clin Oncol. 2007 Jun 1;25(16):2306-12
– reference: 22230572 - Methods Enzymol. 2012;503:255-68
– reference: 19401596 - Neuro Oncol. 2009 Dec;11(6):861-70
– reference: 11780887 - J Neurosurg. 2001 Aug;95(2):190-8
– reference: 22593187 - Cancer Res. 2012 Jul 15;72(14):3463-70
– reference: 20559632 - Eur J Nucl Med Mol Imaging. 2010 Aug;37 Suppl 1:S86-103
– reference: 10751360 - Am J Pathol. 2000 Apr;156(4):1345-62
– reference: 19825804 - Mol Cancer Ther. 2009 Oct;8(10):2861-71
– reference: 18534690 - J Neuroimmunol. 2008 Jul 31;198(1-2):20-6
– reference: 8658145 - Science. 1996 Jun 14;272(5268):1668-71
– reference: 21150899 - Nature. 2010 Dec 23;468(7327):1095-9
– reference: 8681379 - Cell. 1996 Jun 14;85(6):841-51
– reference: 10446041 - Science. 1999 Aug 13;285(5430):1028-32
– reference: 16648043 - Lancet Oncol. 2006 May;7(5):392-401
– reference: 22204434 - Curr Pharm Des. 2011 Dec;17(38):4362-71
– reference: 21098324 - J Clin Oncol. 2011 Apr 10;29(11):1424-30
– reference: 11117842 - J Neurosurg. 2000 Dec;93(6):1003-13
– reference: 20639816 - Q J Nucl Med Mol Imaging. 2010 Jun;54(3):309-26
– reference: 22343890 - Nature. 2012 Feb 23;482(7386):529-33
– reference: 16618759 - Cancer Res. 2006 Apr 15;66(8):4339-48
– reference: 7491498 - Science. 1995 Dec 1;270(5241):1500-2
– reference: 17363519 - Clin Cancer Res. 2007 Mar 15;13(6):1663-74
– reference: 7528107 - Cell. 1994 Dec 30;79(7):1157-64
– reference: 19452550 - Proteins. 2009 Nov 1;77(2):359-69
– reference: 21806354 - J Neurosurg Pediatr. 2011 Aug;8(2):135-48
– reference: 19038268 - J Mol Biol. 2009 Jan 30;385(4):1064-75
– reference: 17638899 - Cancer Res. 2007 Jul 15;67(14):6882-8
– reference: 20885411 - Nat Rev Drug Discov. 2010 Oct;9(10):804-20
– reference: 22204431 - Curr Pharm Des. 2011 Dec;17(38):4329-36
– reference: 21147383 - Pediatr Neurol. 2011 Jan;44(1):21-30
– reference: 20823417 - J Clin Oncol. 2011 Apr 10;29(11):1408-14
– reference: 20497116 - Curr Pharm Biotechnol. 2010 Sep 1;11(6):610-9
– reference: 16287239 - Bioconjug Chem. 2005 Nov-Dec;16(6):1433-41
– reference: 20029421 - Nat Rev Cancer. 2010 Jan;10(1):9-22
– reference: 20845476 - Cancer. 2011 Feb 1;117(3):635-41
– reference: 20131753 - Bioconjug Chem. 2010 Mar 17;21(3):436-44
– reference: 19664710 - Neurobiol Dis. 2010 Jan;37(1):48-57
– reference: 22472177 - Clin Cancer Res. 2012 May 15;18(10):2930-42
– reference: 20829328 - Clin Cancer Res. 2010 Dec 1;16(23):5664-78
– reference: 8468607 - J Neurosurg. 1993 May;78(5):767-75
– reference: 21269250 - Anticancer Agents Med Chem. 2010 Dec;10(10):753-68
– reference: 18523730 - Cancer Metastasis Rev. 2008 Dec;27(4):631-44
– reference: 20124480 - Cancer Res. 2010 Feb 15;70(4):1595-605
– reference: 22633092 - Trends Pharmacol Sci. 2012 Jul;33(7):405-12
– reference: 17053862 - Mol Imaging Biol. 2006 Nov-Dec;8(6):315-23
– reference: 12915300 - Gene Expr Patterns. 2003 Aug;3(4):389-95
– reference: 15520209 - Cancer Res. 2004 Nov 1;64(21):8009-14
– reference: 20414201 - Nat Rev Cancer. 2010 May;10(5):319-31
SSID ssj0009580
Score 2.3544223
Snippet Central nervous system tumors carry grave clinical prognoses due to limited effectiveness of surgical resection, radiation, and chemotherapy. Thus, improved...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14598
SubjectTerms Animals
antibodies
Biological Sciences
brain
Brain cancer
Brain neoplasms
Brain tumors
Cancer
caudal vein
Central nervous system
Cerebellar Neoplasms - diagnosis
Cerebellar Neoplasms - genetics
Cerebellar Neoplasms - metabolism
Chemotherapy
cystine
Cystine-Knot Miniproteins - chemistry
Cystine-Knot Miniproteins - genetics
Cystine-Knot Miniproteins - metabolism
Diagnostic Imaging - methods
drug therapy
Dyes
Female
fluorescence
fluorescent dyes
Fluorescent Dyes - chemistry
Fluorescent Dyes - metabolism
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
image analysis
Imaging
Injection
Integrin alpha5beta1 - metabolism
Integrins
Male
Medulloblastoma
Medulloblastoma - diagnosis
Medulloblastoma - genetics
Medulloblastoma - metabolism
Mice
Mice, Knockout
Mice, Nude
Mice, Transgenic
Microscopy, Fluorescence
Molecular imaging
Molecular Imaging - methods
Molecules
neoplasms
Nervous system
Neuroimaging
Patched Receptors
Peptides
Protein Binding
Protein Engineering
receptors
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
resection
Rodents
Sensitivity and Specificity
Tissues
Tumors
Title Engineered knottin peptide enables noninvasive optical imaging of intracranial medulloblastoma
URI https://www.jstor.org/stable/42713160
http://www.pnas.org/content/110/36/14598.abstract
https://www.ncbi.nlm.nih.gov/pubmed/23950221
https://www.proquest.com/docview/1431447125
https://www.proquest.com/docview/1430395652
https://www.proquest.com/docview/1448223443
https://www.proquest.com/docview/1803111703
https://pubmed.ncbi.nlm.nih.gov/PMC3767496
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFMWBQGChIPAxFCYntOMnjQLBpUquJbdKeiOzE0SpGUq0tEvw6fhrHlzhp2abBS1TFJ46T8_VcnHNB6C2wOMZpTYK85iSgmRABF4IGIq8xK8EHqXR-xWTKDs_o0XlyPhr9HkQtrZYiLH9dm1fyP1yFc8BXlSX7D5x1k8IJ-A38hSNwGI534nFXTBCMxm9NqyKY_bmKUqmkL3VO1MJv1HbrD66D1Nu52biefbetiXS1iCtegr6amSwScEhbAQb1srXy2tqtx07PLbqogmm3jbjfJ6VYSbHwA_942rc4nrQ2mlfvP_tHYS_3foLc8w_k_ILb3CF5qZLe_QNH80Hnh9qIXhiZuJGTlVYg7eqLaph0Eg53MFQ3iTyIyFAqY9CU1ORSh9IIYrBjAkZNK1EnqW0ErIEkGQremCamm7XV4qAAzC3-UhEg01Rf44YvQlVqiBDSTbtWjHtDSbrQRf3RPiWFmqDoJ7iH7mNwVLBWDcOyz5lJgrJP2BWXSsn7jRWs2UUmNFbV2wWi63yfzRDegU10-gg9tM6Mt2-QuY1GsnmMtjsQeHu2pvm7J-hrD1XPQtWzUPUsVL0BVD0LVc9C1WtrbwhVbwOqT9HZ50-nHw8D29ojKMHCXgac4ZLgmGFa8TqROMI8y2UiYyGlFDUHR4LhTOZVzVhG4zoSpWBRxROSlDkRGdlBW7Aq-Rx5AuOKJhnjqaxoXaZZqVo-pFHKcpryJBmjsHuxRWnr3qv2K5fFDawcoz13wdyUfLmZdEdzytFRnMIog4GxJnXXwwSEFRqlY7Tb8bOwwgTmBEOegqGIYb1v3DCIevX9jjeyXWmaiOTggeHbaCiY_IRScgtNBppcdZwCmmcGRm6hGG4AZn08RukawByBKke_PtLMLnRZelUXiubsxd1f30v0oJcHu2hrebWSr8DGX4rX-m_0B6-_-1w
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineered+knottin+peptide+enables+noninvasive+optical+imaging+of+intracranial+medulloblastoma&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Moore%2C+Sarah+J.&rft.au=Hayden+Gephart%2C+Melanie+G.&rft.au=Bergen%2C+Jamie+M.&rft.au=Su%2C+YouRong+S.&rft.date=2013-09-03&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=110&rft.issue=36&rft.spage=14598&rft.epage=14603&rft_id=info:doi/10.1073%2Fpnas.1311333110&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1311333110
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F36.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F110%2F36.cover.gif