Thermal Denaturation Studies of Collagen by Microthermal Analysis and Atomic Force Microscopy
The structural properties of collagen have been the subject of numerous studies over past decades, but with the arrival of new technologies, such as the atomic force microscope and related techniques, a new era of research has emerged. Using microthermal analysis, it is now possible to image samples...
Saved in:
Published in | Biophysical journal Vol. 101; no. 1; pp. 228 - 236 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
06.07.2011
Biophysical Society The Biophysical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The structural properties of collagen have been the subject of numerous studies over past decades, but with the arrival of new technologies, such as the atomic force microscope and related techniques, a new era of research has emerged. Using microthermal analysis, it is now possible to image samples as well as performing localized thermal measurements without damaging or destroying the sample itself. This technique was successfully applied to characterize the thermal response between native collagen fibrils and their denatured form, gelatin. Thermal transitions identified at (150 ± 10)°C and (220 ± 10)°C can be related to the process of gelatinization of the collagen fibrils, whereas at higher temperatures, both the gelatin and collagen samples underwent two-stage transitions with a common initial degradation temperature at (300 ± 10)°C and a secondary degradation temperature of (340 ± 10)°C for the collagen and of (420 ± 10)°C for the gelatin, respectively. The broadening and shift in the secondary degradation temperature was linked to the spread of thermal degradation within the gelatin and collagen fibrils matrix further away from the point of contact between probe and sample. Finally, similar measurements were performed inside a bone resorption lacuna, suggesting that microthermal analysis is a viable technique for investigating the thermomechanical response of collagen for in situ samples that would be, otherwise, too challenging or not possible using bulk techniques. |
---|---|
AbstractList | The structural properties of collagen have been the subject of numerous studies over past decades, but with the arrival of new technologies, such as the atomic force microscope and related techniques, a new era of research has emerged. Using microthermal analysis, it is now possible to image samples as well as performing localized thermal measurements without damaging or destroying the sample itself. This technique was successfully applied to characterize the thermal response between native collagen fibrils and their denatured form, gelatin. Thermal transitions identified at (150 ± 10)°C and (220 ± 10)°C can be related to the process of gelatinization of the collagen fibrils, whereas at higher temperatures, both the gelatin and collagen samples underwent two-stage transitions with a common initial degradation temperature at (300 ± 10)°C and a secondary degradation temperature of (340 ± 10)°C for the collagen and of (420 ± 10)°C for the gelatin, respectively. The broadening and shift in the secondary degradation temperature was linked to the spread of thermal degradation within the gelatin and collagen fibrils matrix further away from the point of contact between probe and sample. Finally, similar measurements were performed inside a bone resorption lacuna, suggesting that microthermal analysis is a viable technique for investigating the thermomechanical response of collagen for in situ samples that would be, otherwise, too challenging or not possible using bulk techniques. The structural properties of collagen have been the subject of numerous studies over past decades, but with the arrival of new technologies, such as the atomic force microscope and related techniques, a new era of research has emerged. Using microthermal analysis, it is now possible to image samples as well as performing localized thermal measurements without damaging or destroying the sample itself. This technique was successfully applied to characterize the thermal response between native collagen fibrils and their denatured form, gelatin. Thermal transitions identified at (150 ± 10)°C and (220 ± 10)°C can be related to the process of gelatinization of the collagen fibrils, whereas at higher temperatures, both the gelatin and collagen samples underwent two-stage transitions with a common initial degradation temperature at (300 ± 10)°C and a secondary degradation temperature of (340 ± 10)°C for the collagen and of (420 ± 10)°C for the gelatin, respectively. The broadening and shift in the secondary degradation temperature was linked to the spread of thermal degradation within the gelatin and collagen fibrils matrix further away from the point of contact between probe and sample. Finally, similar measurements were performed inside a bone resorption lacuna, suggesting that microthermal analysis is a viable technique for investigating the thermomechanical response of collagen for in situ samples that would be, otherwise, too challenging or not possible using bulk techniques. The structural properties of collagen have been the subject of numerous studies over past decades, but with the arrival of new technologies, such as the atomic force microscope and related techniques, a new era of research has emerged. Using microthermal analysis, it is now possible to image samples as well as performing localized thermal measurements without damaging or destroying the sample itself. This technique was successfully applied to characterize the thermal response between native collagen fibrils and their denatured form, gelatin. Thermal transitions identified at (150 ± 10)...C and (220 ± 10)...C can be related to the process of gelatinization of the collagen fibrils, whereas at higher temperatures, both the gelatin and collagen samples underwent two-stage transitions with a common initial degradation temperature at (300 ± 10)...C and a secondary degradation temperature of (340 ± 10)...C for the collagen and of (420 ± 10)...C for the gelatin, respectively. The broadening and shift in the secondary degradation temperature was linked to the spread of thermal degradation within the gelatin and collagen fibrils matrix further away from the point of contact between probe and sample. Finally, similar measurements were performed inside a bone resorption lacuna, suggesting that microthermal analysis is a viable technique for investigating the thermomechanical response of collagen for in situ samples that would be, otherwise, too challenging or not possible using bulk techniques. (ProQuest: ... denotes formulae/symbols omitted.) The structural properties of collagen have been the subject of numerous studies over past decades, but with the arrival of new technologies, such as the atomic force microscope and related techniques, a new era of research has emerged. Using microthermal analysis, it is now possible to image samples as well as performing localized thermal measurements without damaging or destroying the sample itself. This technique was successfully applied to characterize the thermal response between native collagen fibrils and their denatured form, gelatin. Thermal transitions identified at (150 ± 10)°C and (220 ± 10)°C can be related to the process of gelatinization of the collagen fibrils, whereas at higher temperatures, both the gelatin and collagen samples underwent two-stage transitions with a common initial degradation temperature at (300 ± 10)°C and a secondary degradation temperature of (340 ± 10)°C for the collagen and of (420 ± 10)°C for the gelatin, respectively. The broadening and shift in the secondary degradation temperature was linked to the spread of thermal degradation within the gelatin and collagen fibrils matrix further away from the point of contact between probe and sample. Finally, similar measurements were performed inside a bone resorption lacuna, suggesting that microthermal analysis is a viable technique for investigating the thermomechanical response of collagen for in situ samples that would be, otherwise, too challenging or not possible using bulk techniques.The structural properties of collagen have been the subject of numerous studies over past decades, but with the arrival of new technologies, such as the atomic force microscope and related techniques, a new era of research has emerged. Using microthermal analysis, it is now possible to image samples as well as performing localized thermal measurements without damaging or destroying the sample itself. This technique was successfully applied to characterize the thermal response between native collagen fibrils and their denatured form, gelatin. Thermal transitions identified at (150 ± 10)°C and (220 ± 10)°C can be related to the process of gelatinization of the collagen fibrils, whereas at higher temperatures, both the gelatin and collagen samples underwent two-stage transitions with a common initial degradation temperature at (300 ± 10)°C and a secondary degradation temperature of (340 ± 10)°C for the collagen and of (420 ± 10)°C for the gelatin, respectively. The broadening and shift in the secondary degradation temperature was linked to the spread of thermal degradation within the gelatin and collagen fibrils matrix further away from the point of contact between probe and sample. Finally, similar measurements were performed inside a bone resorption lacuna, suggesting that microthermal analysis is a viable technique for investigating the thermomechanical response of collagen for in situ samples that would be, otherwise, too challenging or not possible using bulk techniques. |
Author | Bozec, Laurent Odlyha, Marianne |
AuthorAffiliation | Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, United Kingdom Institute of Structural and Molecular Biology, Department of Biological Sciences at Birkbeck College, University of London, London, United Kingdom |
AuthorAffiliation_xml | – name: Institute of Structural and Molecular Biology, Department of Biological Sciences at Birkbeck College, University of London, London, United Kingdom – name: Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, United Kingdom |
Author_xml | – sequence: 1 givenname: Laurent surname: Bozec fullname: Bozec, Laurent email: l.bozec@ucl.ac.uk organization: Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, United Kingdom – sequence: 2 givenname: Marianne surname: Odlyha fullname: Odlyha, Marianne organization: Institute of Structural and Molecular Biology, Department of Biological Sciences at Birkbeck College, University of London, London, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21723833$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kkFv1DAQhS1URLeFH8AFIi5wSZiJk9gREtJqoYBUxKHtEVmO7Wy9ytpbO6m0_x5vd4ughz354O89zcx7Z-TEeWcIeY1QIGDzcVV0m1VRAmIBVQGUPiMzrKsyB-DNCZkBQJPTqq1PyVmMKwAsa8AX5LREVlJO6Yz8vr41YS2H7ItxcpyCHK132dU4aWti5vts4YdBLo3Lum3206rgx4Ng7uSwjTZm0ulsPvq1VdmFD8rssaj8ZvuSPO_lEM2rw3tObi6-Xi--55e_vv1YzC9z1QCMedto6DmTRvFWMco7Cn2pZd1p7BvKZYu61K1umWpRNR3KXirDKUdZSWA9o-fk8953M3Vro5VxY5CD2AS7lmErvLTi_x9nb8XS3wuKJUNeJYP3B4Pg7yYTR7G2UZm0ujN-ioKzqgWosUzkh6MkNozXVQXVDn33BF35KaSz7fw4sIY3PEFv_h3978yPESWA7YHdUWMwvVB2fIgpbWIHgSB2ZRArkcogdmUQUAl4UOIT5aP5Mc3bvaaXXshlsFHcXCWgTuVB5BwS8WlPmBTovTVBRGWNU0bbYNQotLdH_P8ApNjWPw |
CitedBy_id | crossref_primary_10_1016_j_micron_2022_103293 crossref_primary_10_1260_2047_4970_1_0_319 crossref_primary_10_1038_s41598_023_47350_y crossref_primary_10_1038_s41598_018_28293_1 crossref_primary_10_1021_acs_analchem_3c00612 crossref_primary_10_1039_D3AN00527E crossref_primary_10_1177_09544119241259071 crossref_primary_10_4028_www_scientific_net_MSF_1000_107 crossref_primary_10_1039_C7SM00561J crossref_primary_10_1088_2057_1976_aab92b crossref_primary_10_1016_j_mtbio_2023_100786 crossref_primary_10_1080_02656736_2017_1342873 crossref_primary_10_1016_j_matdes_2025_113872 crossref_primary_10_1177_0263617420956893 crossref_primary_10_1177_0022034518763051 crossref_primary_10_1080_10408398_2023_2211671 crossref_primary_10_1016_j_foodchem_2020_128393 crossref_primary_10_3389_fcvm_2021_728577 crossref_primary_10_3390_molecules22081368 crossref_primary_10_1016_j_jaip_2020_04_063 crossref_primary_10_1590_s1517_707620180002_0424 crossref_primary_10_1002_term_3030 crossref_primary_10_1016_j_actbio_2021_11_031 crossref_primary_10_3390_pharmaceutics12121173 crossref_primary_10_1002_adfm_202004227 crossref_primary_10_1680_jbibn_16_00018 crossref_primary_10_1016_j_dental_2014_12_008 crossref_primary_10_1038_s41467_020_15028_y crossref_primary_10_1016_j_bone_2023_116920 crossref_primary_10_1016_j_foodres_2020_109225 crossref_primary_10_1021_acsami_9b18256 crossref_primary_10_1016_j_msec_2019_110394 crossref_primary_10_1002_chem_201903925 crossref_primary_10_1038_s41598_021_02993_7 crossref_primary_10_1002_mma_6855 crossref_primary_10_1007_s10973_017_6713_6 crossref_primary_10_1016_j_foodres_2017_02_018 crossref_primary_10_1002_adfm_201900892 crossref_primary_10_1364_AO_418805 crossref_primary_10_1007_s11947_023_03227_6 crossref_primary_10_1007_s12221_019_9341_x crossref_primary_10_1002_admi_202300023 crossref_primary_10_1007_s10973_012_2453_9 crossref_primary_10_1007_s10973_013_3116_1 crossref_primary_10_1016_j_asmr_2023_100813 crossref_primary_10_3390_polym15051079 crossref_primary_10_1016_j_jmbbm_2022_105405 crossref_primary_10_2110_palo_2022_002 crossref_primary_10_1016_j_optlastec_2023_110471 crossref_primary_10_1016_j_bpj_2012_07_055 crossref_primary_10_1039_D4NJ00109E crossref_primary_10_3390_nano12101627 crossref_primary_10_1080_25740881_2022_2029887 crossref_primary_10_1007_s12520_018_0765_9 crossref_primary_10_1021_acssuschemeng_8b00954 crossref_primary_10_1016_j_chemgeo_2022_121060 crossref_primary_10_1186_s40494_021_00638_6 crossref_primary_10_1016_j_joca_2018_06_004 crossref_primary_10_1016_j_colsurfb_2014_03_014 crossref_primary_10_54548_njps_v37i1_12 crossref_primary_10_1021_acsbiomaterials_3c01072 crossref_primary_10_1016_j_actbio_2021_07_005 crossref_primary_10_3390_bios14080371 crossref_primary_10_1021_acs_langmuir_9b01685 crossref_primary_10_1016_j_colsurfb_2018_01_011 crossref_primary_10_1016_j_bpj_2013_12_016 crossref_primary_10_1089_ten_tea_2018_0083 crossref_primary_10_1002_btm2_10283 crossref_primary_10_1111_srt_13240 crossref_primary_10_1016_j_colsurfb_2015_05_017 crossref_primary_10_3390_pharmaceutics13101697 crossref_primary_10_1016_j_apradiso_2021_109758 crossref_primary_10_3390_biomedicines10092307 crossref_primary_10_1071_AN20349 crossref_primary_10_1038_s41598_021_89181_9 crossref_primary_10_1021_acsabm_8b00208 crossref_primary_10_3390_pharmaceutics15020312 crossref_primary_10_1039_C3AN00609C crossref_primary_10_3390_cancers13020227 crossref_primary_10_3390_jfb8010007 crossref_primary_10_3390_ijms22147725 crossref_primary_10_1016_j_eurpolymj_2023_112129 crossref_primary_10_1111_arcm_12178 crossref_primary_10_1016_j_msec_2018_06_021 crossref_primary_10_1146_annurev_marine_040623_082617 crossref_primary_10_1039_C5NR08463F crossref_primary_10_1002_jbm_b_33418 crossref_primary_10_1093_asj_sjz079 crossref_primary_10_1002_jbm_a_34977 crossref_primary_10_1016_j_apsusc_2020_145881 crossref_primary_10_1016_j_jeurceramsoc_2014_10_021 crossref_primary_10_1039_C9SM00832B crossref_primary_10_1016_j_msec_2017_03_118 crossref_primary_10_1016_j_eurpolymj_2021_110813 crossref_primary_10_1007_s40032_024_01096_2 crossref_primary_10_1016_j_inoche_2025_113954 crossref_primary_10_1016_j_actbio_2022_11_033 crossref_primary_10_1080_1539445X_2024_2413063 crossref_primary_10_1016_j_ultrasmedbio_2023_09_004 crossref_primary_10_3233_BME_230027 crossref_primary_10_3390_jfb14070351 crossref_primary_10_5252_geodiversitas2020v42a24 crossref_primary_10_1016_j_burns_2021_09_011 crossref_primary_10_1016_j_jasrep_2023_103985 crossref_primary_10_1007_s10973_018_7076_3 crossref_primary_10_1371_journal_pone_0246180 crossref_primary_10_1002_ange_201411386 crossref_primary_10_3390_polym12030590 crossref_primary_10_1007_s11630_022_1654_1 crossref_primary_10_1016_j_bpj_2012_09_017 crossref_primary_10_1016_j_carbpol_2020_116159 crossref_primary_10_1155_2018_9853765 crossref_primary_10_3389_fbioe_2021_660453 crossref_primary_10_3390_ma15031155 crossref_primary_10_1016_j_heliyon_2024_e39186 crossref_primary_10_3390_biomimetics7040218 crossref_primary_10_1016_j_ijpharm_2017_08_071 crossref_primary_10_1039_C5AY03234B crossref_primary_10_1115_1_4007105 crossref_primary_10_1016_j_cartre_2024_100392 crossref_primary_10_1126_sciadv_adg8292 crossref_primary_10_3390_biomimetics8070548 crossref_primary_10_3762_bjnano_15_97 crossref_primary_10_1002_lsm_23209 crossref_primary_10_1016_j_microc_2016_06_013 crossref_primary_10_3390_nano12213878 crossref_primary_10_1021_acsomega_2c00772 crossref_primary_10_1016_j_ijbiomac_2021_03_057 crossref_primary_10_1186_s40494_019_0292_8 crossref_primary_10_1002_jbm_a_35222 crossref_primary_10_1039_D3MA01111A crossref_primary_10_1021_acsami_8b06585 crossref_primary_10_3390_polym14081550 crossref_primary_10_1016_j_actbio_2020_07_038 crossref_primary_10_1016_j_foodcont_2018_04_060 crossref_primary_10_3390_foods12152867 crossref_primary_10_1002_jsp2_1065 crossref_primary_10_1039_D4CP03754E crossref_primary_10_17116_klinderma202322031346 crossref_primary_10_1039_D2NJ04259B crossref_primary_10_1016_j_yacs_2018_03_001 crossref_primary_10_1007_s10856_022_06643_w crossref_primary_10_1007_s10924_020_01727_6 crossref_primary_10_1016_j_carbpol_2024_122640 crossref_primary_10_1039_D2FO00582D crossref_primary_10_1016_j_polymer_2022_124943 crossref_primary_10_1039_D0NA01013H crossref_primary_10_1021_acsomega_1c01903 crossref_primary_10_1016_j_jddst_2021_102697 crossref_primary_10_1016_j_colsurfa_2016_09_040 crossref_primary_10_1016_j_colsurfa_2014_05_025 crossref_primary_10_1016_j_foodhyd_2013_12_019 crossref_primary_10_1186_s40494_024_01537_2 crossref_primary_10_1007_s11837_023_05852_0 crossref_primary_10_3390_ma15248802 crossref_primary_10_1016_j_ijbiomac_2023_126735 crossref_primary_10_1002_wjo2_122 crossref_primary_10_1016_j_vibspec_2021_103250 crossref_primary_10_1016_j_joen_2019_05_017 crossref_primary_10_1021_acsami_0c13712 crossref_primary_10_1021_acsbiomaterials_1c00990 crossref_primary_10_1016_j_jasrep_2021_102954 crossref_primary_10_1016_j_cscee_2023_100481 crossref_primary_10_1038_srep17203 crossref_primary_10_3390_jfb11040085 crossref_primary_10_1016_j_jacbts_2016_08_009 crossref_primary_10_1016_j_ejpb_2015_05_017 crossref_primary_10_1002_mrc_5024 crossref_primary_10_1080_13645706_2021_1871630 crossref_primary_10_3390_ijerph20021522 crossref_primary_10_1007_s10924_023_02809_x crossref_primary_10_1016_j_jallcom_2022_165795 crossref_primary_10_1371_journal_pone_0176179 crossref_primary_10_1007_s12221_015_0181_z crossref_primary_10_1097_GOX_0000000000002498 crossref_primary_10_5812_jjcmb_102775 crossref_primary_10_1111_ijfs_13073 crossref_primary_10_1016_j_cps_2018_06_003 crossref_primary_10_1038_s42003_021_02350_4 crossref_primary_10_3390_polym11030569 crossref_primary_10_1177_1934578X19866288 crossref_primary_10_1021_acsabm_4c01509 crossref_primary_10_1016_j_ijbiomac_2016_12_068 crossref_primary_10_1088_2057_1976_aada23 crossref_primary_10_1016_j_quascirev_2024_109056 crossref_primary_10_1002_jsfa_13006 crossref_primary_10_1177_1534734618802899 crossref_primary_10_1016_j_lwt_2017_02_038 crossref_primary_10_1016_j_meatsci_2020_108375 crossref_primary_10_3389_fbioe_2024_1469733 crossref_primary_10_1177_0022034518822826 crossref_primary_10_3390_ma13143149 crossref_primary_10_1134_S0006350917040145 crossref_primary_10_1016_j_xcrp_2024_101852 crossref_primary_10_1016_j_jmbbm_2019_05_042 crossref_primary_10_1038_s41598_017_13873_4 crossref_primary_10_1016_j_bioadv_2022_213157 crossref_primary_10_1002_anie_201411386 crossref_primary_10_1016_j_apsusc_2021_149571 crossref_primary_10_1111_wrr_12827 crossref_primary_10_1295_koron_2015_0033 crossref_primary_10_1177_14644207241241156 crossref_primary_10_1021_acsami_2c18837 |
Cites_doi | 10.1002/bip.1974.360131208 10.1088/0957-4484/19/38/384006 10.1007/978-1-4613-2831-5_2 10.1046/j.1365-2818.2000.00730.x 10.1016/0142-9612(96)00047-6 10.1088/0022-3727/34/9/201 10.1016/j.tca.2004.06.005 10.1006/jsbi.2002.4450 10.1126/science.7695699 10.1002/app.22711 10.1016/S0040-6031(99)00068-4 10.1016/j.ijbiomac.2005.07.004 10.1002/adfm.200500042 10.1038/nnano.2009.254 10.1042/bj3160001 10.1016/j.ultramic.2005.06.021 10.1016/0221-8747(84)90057-2 10.3109/02844318409052849 10.1016/S0032-3861(00)00726-6 10.1006/jsbi.1998.3976 10.1016/j.tca.2004.04.021 10.1016/S0969-2126(01)00224-6 10.1006/jmbi.1994.0035 10.1126/science.7892604 10.1021/ma00200a054 10.1038/33573 10.1063/1.1145474 10.1002/bip.1970.360090202 10.1126/science.276.5310.266 10.1016/0022-2836(79)90507-2 10.1073/pnas.51.5.871 10.1016/S0301-0104(00)00080-X 10.1042/bj3220535 10.1038/174269c0 10.1116/1.589124 10.1007/s00402-007-0427-3 10.1117/1.2209959 10.1073/pnas.032307099 10.1038/sj.bdj.4805313 10.1016/S0021-9258(19)45663-9 10.1529/biophysj.106.085704 10.1016/0141-8130(87)90010-9 10.1016/S0022-5320(70)80027-2 10.1063/1.109335 |
ContentType | Journal Article |
Copyright | 2011 Biophysical Society Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved. Copyright Biophysical Society Jul 6, 2011 2011 by the Biophysical Society. 2011 Biophysical Society |
Copyright_xml | – notice: 2011 Biophysical Society – notice: Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved. – notice: Copyright Biophysical Society Jul 6, 2011 – notice: 2011 by the Biophysical Society. 2011 Biophysical Society |
DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7QP 7TK 7TM 7U9 8FD FR3 H94 K9. P64 7S9 L.6 7X8 5PM |
DOI | 10.1016/j.bpj.2011.04.033 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE AGRICOLA Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1542-0086 |
EndPage | 236 |
ExternalDocumentID | PMC3127184 2402847551 21723833 10_1016_j_bpj_2011_04_033 US201500111880 S0006349511004796 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 23N 2WC 4.4 457 5GY 5RE 62- 6I. 6J9 AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKRW AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACBEA ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AEXQZ AFRAH AFTJW AGHFR AGKMS AHMBA AHPSJ AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AYCSE AZFZN BAWUL CS3 D0L DIK DU5 E3Z EBS EJD F5P FCP FDB FRP HYE HZ~ IH2 IXB JIG KQ8 L7B M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG RNS ROL RPM RWL SES SSZ TAE TBP TN5 WH7 WOQ WOW WQ6 X7M YNY YWH ZA5 ~02 --K .GJ 3O- 3V. 53G 6TJ 7X2 7X7 88A 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 AAQXK ABUWG ADMUD AEQTP AFKRA AI. ARAPS ASPBG ATCPS AVWKF AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU DWQXO F20 FBQ FEDTE FGOYB FYUFA G-2 GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HX~ LK8 M0K M0L M1P M2O M2P M2Q M7P MVM OZT P62 PQQKQ PRG PROAC PSQYO Q2X R2- S0X UKHRP UKR VH1 YYP ZGI ZXP ~KM AAMRU AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN ADXHL AEUPX AEUYN AFPUW AGCQF AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP ALIPV APXCP CITATION H13 PHGZM PHGZT CGR CUY CVF ECM EFKBS EIF NPM 7QO 7QP 7TK 7TM 7U9 8FD FR3 H94 K9. P64 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c600t-96d0f87aec89c738b30f2da5bd1f638a91d2d9d97c91c6b1aface8381a4a07f73 |
IEDL.DBID | IXB |
ISSN | 0006-3495 1542-0086 |
IngestDate | Thu Aug 21 18:28:47 EDT 2025 Mon Jul 21 09:18:28 EDT 2025 Fri Jul 11 05:28:56 EDT 2025 Fri Jul 25 11:00:16 EDT 2025 Mon Jul 21 06:02:08 EDT 2025 Tue Jul 01 03:33:15 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Wed Dec 27 19:14:46 EST 2023 Fri Feb 23 02:32:53 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c600t-96d0f87aec89c738b30f2da5bd1f638a91d2d9d97c91c6b1aface8381a4a07f73 |
Notes | http://dx.doi.org/10.1016/j.bpj.2011.04.033 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0006349511004796 |
PMID | 21723833 |
PQID | 878076868 |
PQPubID | 7454 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3127184 proquest_miscellaneous_874900512 proquest_miscellaneous_1678544042 proquest_journals_878076868 pubmed_primary_21723833 crossref_citationtrail_10_1016_j_bpj_2011_04_033 crossref_primary_10_1016_j_bpj_2011_04_033 fao_agris_US201500111880 elsevier_sciencedirect_doi_10_1016_j_bpj_2011_04_033 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-06 |
PublicationDateYYYYMMDD | 2011-07-06 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Biophysical journal |
PublicationTitleAlternate | Biophys J |
PublicationYear | 2011 |
Publisher | Elsevier Inc Biophysical Society The Biophysical Society |
Publisher_xml | – name: Elsevier Inc – name: Biophysical Society – name: The Biophysical Society |
References | Wenger, Horton, Mesquida (bib18) 2008; 19 Privalov, Tiktopulo (bib46) 1970; 9 Ramachandran, Kartha (bib2) 1954; 174 Ernst, Clubb, Clore (bib40) 1995; 267 Brown, Wiseman, Nazhat (bib29) 2005; 15 Prockop, Fertala (bib27) 1998; 122 Lin, Lo, Dong (bib35) 2006; 11 Pollock, Hammiche (bib13) 2001; 34 Dinwiddie, Pylkki, West (bib22) 1994 Bozec, van der Heijden, Horton (bib1) 2007; 92 Friess, Lee (bib47) 1996; 17 Bonar, Glimcher (bib55) 1970; 32 Ultrastructure of the Connective Tissue Matrix. A. Ruggeri and P.M. Motta, editors. Boston, MA. 34–64. Renugopalakrishnan, Chandrakasan, Bhatnagar (bib38) 1989; 22 Holmgren, Taylor, Raines (bib41) 1998; 392 Bozec (bib36) 2002 Luescher, Rüegg, Schindler (bib44) 1974; 13 Reference deleted in proof. Liu, De Yao (bib39) 2001; 42 Wang (bib50) 2004; 423 McClain, Wiley (bib14) 1972; 247 Samouillan, Lamure, Lacabanne (bib49) 2000; 255 Currey (bib28) 2002 Price, Reading, Branch (bib17) 1999; 332 Knott, Tarlton, Bailey (bib15) 1997; 322 Parry, D. A. D., and A. S. Craig. 1984. Growth and development of collagen fibrils in connective tissue. Hammiche, Price, Pollock (bib10) 2000; 199 Dai, Chen, Liu (bib16) 2006; 99 Fraser, MacRae, Suzuki (bib31) 1979; 129 Majumdar, Carrejo, Lai (bib11) 1993; 62 Majumdar, Lai, Shi (bib12) 1995; 66 Hulmes (bib3) 2002; 137 Odlyha, M., C. Theodorakopoulos, …, M.A. Horton. 2009. Fourier transform infra-red spectroscopy (ATR/FTIR) and scanning probe microscopy of parchment. [In Russian]. e-Preservation Science. 6:138–144. Bigi, Cojazzi, Koch (bib45) 1987; 9 Fischer (bib23) 2005; 425 Nesbitt, Horton (bib53) 1997; 276 de Groot (bib33) 2007 Miles, Burjanadze, Bailey (bib34) 1995; 245 Hodge, Petruska (bib5) 1963 Larsen, Poulsen, Vest (bib8) 2002 Bella, Eaton, Berman (bib43) 1994; 266 Fenwick, Bozec, Cacialli (bib51) 2009; 4 Chambers, Revell, Athanasou (bib20) 1984; 5 Petruska, Hodge (bib26) 1964; 51 Hammiche, Hourston, Song (bib9) 1996; 14 Glimcher, Krane (bib52) 1968 Kadler, Holmes, Chapman (bib4) 1996; 316 Pietrucha (bib48) 2005; 36 Miles, Bailey (bib30) 1999; 111 Robins, Bailey (bib32) 1975; 149 Boyde, Ali, Jones (bib19) 1984; 156 Nesbitt, Horton (bib54) 2003; 80 Eriksson, Albrektsson, Magnusson (bib57) 1984; 18 Leikina, Mertts, Leikin (bib6) 2002; 99 Bella, Brodsky, Berman (bib42) 1995; 3 Commission, E. 2007. IDAP—Improved Damage Assessment of Parchment. Report No. 18. European Commission, Brussels, Belgium. 120. Bozec, de Groot, Horton (bib21) 2005; 105 Augustin, Davila, Antabak (bib56) 2008; 128 Kadler (10.1016/j.bpj.2011.04.033_bib4) 1996; 316 Bella (10.1016/j.bpj.2011.04.033_bib42) 1995; 3 Liu (10.1016/j.bpj.2011.04.033_bib39) 2001; 42 Wenger (10.1016/j.bpj.2011.04.033_bib18) 2008; 19 Dinwiddie (10.1016/j.bpj.2011.04.033_bib22) 1994 Miles (10.1016/j.bpj.2011.04.033_bib34) 1995; 245 Renugopalakrishnan (10.1016/j.bpj.2011.04.033_bib38) 1989; 22 Bella (10.1016/j.bpj.2011.04.033_bib43) 1994; 266 McClain (10.1016/j.bpj.2011.04.033_bib14) 1972; 247 Boyde (10.1016/j.bpj.2011.04.033_bib19) 1984; 156 Price (10.1016/j.bpj.2011.04.033_bib17) 1999; 332 Majumdar (10.1016/j.bpj.2011.04.033_bib12) 1995; 66 Prockop (10.1016/j.bpj.2011.04.033_bib27) 1998; 122 Privalov (10.1016/j.bpj.2011.04.033_bib46) 1970; 9 Leikina (10.1016/j.bpj.2011.04.033_bib6) 2002; 99 Hodge (10.1016/j.bpj.2011.04.033_bib5) 1963 Augustin (10.1016/j.bpj.2011.04.033_bib56) 2008; 128 Miles (10.1016/j.bpj.2011.04.033_bib30) 1999; 111 Bonar (10.1016/j.bpj.2011.04.033_bib55) 1970; 32 Bozec (10.1016/j.bpj.2011.04.033_bib1) 2007; 92 Lin (10.1016/j.bpj.2011.04.033_bib35) 2006; 11 Ramachandran (10.1016/j.bpj.2011.04.033_bib2) 1954; 174 Chambers (10.1016/j.bpj.2011.04.033_bib20) 1984; 5 Bozec (10.1016/j.bpj.2011.04.033_bib21) 2005; 105 Eriksson (10.1016/j.bpj.2011.04.033_bib57) 1984; 18 Brown (10.1016/j.bpj.2011.04.033_bib29) 2005; 15 Wang (10.1016/j.bpj.2011.04.033_bib50) 2004; 423 Glimcher (10.1016/j.bpj.2011.04.033_bib52) 1968 Currey (10.1016/j.bpj.2011.04.033_bib28) 2002 Bigi (10.1016/j.bpj.2011.04.033_bib45) 1987; 9 Friess (10.1016/j.bpj.2011.04.033_bib47) 1996; 17 Luescher (10.1016/j.bpj.2011.04.033_bib44) 1974; 13 Nesbitt (10.1016/j.bpj.2011.04.033_bib53) 1997; 276 Fraser (10.1016/j.bpj.2011.04.033_bib31) 1979; 129 Majumdar (10.1016/j.bpj.2011.04.033_bib11) 1993; 62 Bozec (10.1016/j.bpj.2011.04.033_bib36) 2002 Pietrucha (10.1016/j.bpj.2011.04.033_bib48) 2005; 36 Holmgren (10.1016/j.bpj.2011.04.033_bib41) 1998; 392 10.1016/j.bpj.2011.04.033_bib37 Nesbitt (10.1016/j.bpj.2011.04.033_bib54) 2003; 80 Robins (10.1016/j.bpj.2011.04.033_bib32) 1975; 149 Ernst (10.1016/j.bpj.2011.04.033_bib40) 1995; 267 Fischer (10.1016/j.bpj.2011.04.033_bib23) 2005; 425 Samouillan (10.1016/j.bpj.2011.04.033_bib49) 2000; 255 Dai (10.1016/j.bpj.2011.04.033_bib16) 2006; 99 Larsen (10.1016/j.bpj.2011.04.033_bib8) 2002 Hammiche (10.1016/j.bpj.2011.04.033_bib10) 2000; 199 Hammiche (10.1016/j.bpj.2011.04.033_bib9) 1996; 14 de Groot (10.1016/j.bpj.2011.04.033_bib33) 2007 10.1016/j.bpj.2011.04.033_bib7 Hulmes (10.1016/j.bpj.2011.04.033_bib3) 2002; 137 Knott (10.1016/j.bpj.2011.04.033_bib15) 1997; 322 Pollock (10.1016/j.bpj.2011.04.033_bib13) 2001; 34 10.1016/j.bpj.2011.04.033_bib25 Petruska (10.1016/j.bpj.2011.04.033_bib26) 1964; 51 10.1016/j.bpj.2011.04.033_bib24 Fenwick (10.1016/j.bpj.2011.04.033_bib51) 2009; 4 |
References_xml | – volume: 99 start-page: 1795 year: 2006 end-page: 1801 ident: bib16 article-title: Thermal properties measurements of renatured gelatin using conventional and temperature modulated differential scanning calorimetry publication-title: J. Appl. Polym. Sci. – volume: 18 start-page: 261 year: 1984 end-page: 268 ident: bib57 article-title: Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit publication-title: Scand. J. Plast. Reconstr. Surg. – volume: 137 start-page: 2 year: 2002 end-page: 10 ident: bib3 article-title: Building collagen molecules, fibrils, and suprafibrillar structures publication-title: J. Struct. Biol. – reference: Odlyha, M., C. Theodorakopoulos, …, M.A. Horton. 2009. Fourier transform infra-red spectroscopy (ATR/FTIR) and scanning probe microscopy of parchment. [In Russian]. e-Preservation Science. 6:138–144. – volume: 247 start-page: 692 year: 1972 end-page: 697 ident: bib14 article-title: Differential scanning calorimeter studies of the thermal transitions of collagen. Implications on structure and stability publication-title: J. Biol. Chem. – volume: 425 start-page: 69 year: 2005 end-page: 74 ident: bib23 article-title: Quantitative determination of heat conductivities by scanning thermal microscopy publication-title: Thermochim. Acta – volume: 92 start-page: 70 year: 2007 end-page: 75 ident: bib1 article-title: Collagen fibrils: nanoscale ropes publication-title: Biophys. J. – volume: 174 start-page: 269 year: 1954 end-page: 270 ident: bib2 article-title: Structure of collagen publication-title: Nature – volume: 15 start-page: 1762 year: 2005 end-page: 1770 ident: bib29 article-title: Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression publication-title: Adv. Funct. Mater. – start-page: 67 year: 1968 ident: bib52 article-title: A treatise on collagen publication-title: Biology of Collagen – start-page: 3 year: 2002 end-page: 26 ident: bib28 article-title: Bone at the molecular level publication-title: Bones: Structure and Mechanics – volume: 111 start-page: 71 year: 1999 end-page: 80 ident: bib30 article-title: Thermal denaturation of collagen revisited publication-title: J. Chem. Sci. – volume: 36 start-page: 299 year: 2005 end-page: 304 ident: bib48 article-title: Changes in denaturation and rheological properties of collagen-hyaluronic acid scaffolds as a result of temperature dependencies publication-title: Int. J. Biol. Macromol. – volume: 11 start-page: 34020 year: 2006 ident: bib35 article-title: Prediction of heat-induced collagen shrinkage by use of second harmonic generation microscopy publication-title: J. Biomed. Opt. – volume: 32 start-page: 545 year: 1970 end-page: 548 ident: bib55 article-title: Thermal denaturation of mineralized and demineralized bone collagens publication-title: J. Ultrastruct. Res. – volume: 5 start-page: 212 year: 1984 ident: bib20 article-title: Resorption of bone by isolated rabbit osteoclasts publication-title: Metab. Bone Dis. Relat. – start-page: 289 year: 1963 end-page: 300 ident: bib5 article-title: Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule publication-title: Aspects of Protein Structure – reference: Reference deleted in proof. – volume: 392 start-page: 666 year: 1998 end-page: 667 ident: bib41 article-title: Code for collagen's stability deciphered publication-title: Nature – volume: 19 start-page: 384006 year: 2008 ident: bib18 article-title: Nanoscale scraping and dissection of collagen fibrils publication-title: Nanotechnology – volume: 51 start-page: 871 year: 1964 end-page: 876 ident: bib26 article-title: Subunit model for tropocollagen macromolecule publication-title: Proc. Natl. Acad. Sci. USA – volume: 129 start-page: 463 year: 1979 end-page: 481 ident: bib31 article-title: Chain conformation in the collagen molecule publication-title: J. Mol. Biol. – volume: 322 start-page: 535 year: 1997 end-page: 542 ident: bib15 article-title: Chemistry of collagen cross-linking: biochemical changes in collagen during the partial mineralization of turkey leg tendon publication-title: Biochem. J. – volume: 128 start-page: 71 year: 2008 end-page: 77 ident: bib56 article-title: Thermal osteonecrosis and bone drilling parameters revisited publication-title: Arch. Orthop. Trauma Surg. – volume: 332 start-page: 143 year: 1999 end-page: 149 ident: bib17 article-title: Localized thermal analysis of a packaging film publication-title: Thermochim. Acta – volume: 149 start-page: 381 year: 1975 end-page: 385 ident: bib32 article-title: The chemistry of the collagen cross-links. The mechanism of stabilization of the reducible intermediate cross-links publication-title: Biochem. J. – start-page: 55 year: 2002 end-page: 62 ident: bib8 article-title: The hydrothermal stability (shrinkage activity) of parchment measured by the micro hot table method (MHT) publication-title: MicroAnalysis of Parchment (MAP) – volume: 66 start-page: 3584 year: 1995 end-page: 3592 ident: bib12 article-title: Thermal imaging by atomic force microscopy using thermocouple cantilever probes publication-title: Rev. Sci. Instrum. – volume: 42 start-page: 3943 year: 2001 end-page: 3947 ident: bib39 article-title: What causes the unfrozen water in polymers: hydrogen bonds between water and polymer chains? publication-title: Polymer (Guildf.) – volume: 266 start-page: 75 year: 1994 end-page: 81 ident: bib43 article-title: Crystal and molecular structure of a collagen-like peptide at 1.9-Ångstrom resolution publication-title: Science – volume: 3 start-page: 893 year: 1995 end-page: 906 ident: bib42 article-title: Hydration structure of a collagen peptide publication-title: Structure – volume: 13 start-page: 2489 year: 1974 end-page: 2503 ident: bib44 article-title: Effect of hydration upon the thermal stability of tropocollagen and its dependence on the presence of neutral salts publication-title: Biopolymers – volume: 17 start-page: 2289 year: 1996 end-page: 2294 ident: bib47 article-title: Basic thermoanalytical studies of insoluble collagen matrices publication-title: Biomaterials – volume: 255 start-page: 259 year: 2000 end-page: 271 ident: bib49 article-title: Dielectric relaxations of collagen and elastin in the dehydrated state publication-title: Chem. Phys. – volume: 423 start-page: 89 year: 2004 end-page: 97 ident: bib50 article-title: The principle of micro thermal analysis using atomic force microscope publication-title: Thermochim. Acta – volume: 9 start-page: 127 year: 1970 end-page: 139 ident: bib46 article-title: Thermal conformational transformation of tropocollagen. I. Calorimetric study publication-title: Biopolymers – volume: 316 start-page: 1 year: 1996 end-page: 11 ident: bib4 article-title: Collagen fibril formation publication-title: Biochem. J. – volume: 105 start-page: 79 year: 2005 end-page: 89 ident: bib21 article-title: Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption publication-title: Ultramicroscopy – volume: 9 start-page: 363 year: 1987 end-page: 367 ident: bib45 article-title: Differential scanning calorimetry and x-ray-diffraction study of tendon collagen thermal-denaturation publication-title: Int. J. Biol. Macromol. – year: 2007 ident: bib33 article-title: Damage Assessment of Parchment with Scanning Probe Microscopy – reference: Parry, D. A. D., and A. S. Craig. 1984. Growth and development of collagen fibrils in connective tissue. – volume: 122 start-page: 111 year: 1998 end-page: 118 ident: bib27 article-title: The collagen fibril: the almost crystalline structure publication-title: J. Struct. Biol. – volume: 276 start-page: 266 year: 1997 end-page: 269 ident: bib53 article-title: Trafficking of matrix collagens through bone-resorbing osteoclasts publication-title: Science – volume: 62 start-page: 2501 year: 1993 end-page: 2503 ident: bib11 article-title: Thermal imaging using the atomic force microscope publication-title: Appl. Phys. Lett. – year: 2002 ident: bib36 article-title: Near-Field Photothermal Fourier-Transform Infrared Micro-Spectrometry – volume: 80 start-page: 259 year: 2003 end-page: 281 ident: bib54 article-title: Fluorescence imaging of bone-resorbing osteoclasts by confocal microscopy publication-title: Methods Mol. Med. – reference: Commission, E. 2007. IDAP—Improved Damage Assessment of Parchment. Report No. 18. European Commission, Brussels, Belgium. 120. – volume: 4 start-page: 664 year: 2009 end-page: 668 ident: bib51 article-title: Thermochemical nanopatterning of organic semiconductors publication-title: Nat. Nanotechnol. – reference: Ultrastructure of the Connective Tissue Matrix. A. Ruggeri and P.M. Motta, editors. Boston, MA. 34–64. – start-page: 668 year: 1994 end-page: 677 ident: bib22 article-title: Thermal Conductivity 22 – volume: 34 start-page: R23 year: 2001 end-page: R53 ident: bib13 article-title: Micro-thermal analysis: techniques and applications publication-title: J. Phys. D Appl. Phys. – volume: 99 start-page: 1314 year: 2002 end-page: 1318 ident: bib6 article-title: Type I collagen is thermally unstable at body temperature publication-title: Proc. Natl. Acad. Sci. USA – volume: 156 start-page: 216 year: 1984 end-page: 220 ident: bib19 article-title: Resorption of dentine by isolated osteoclasts in vitro publication-title: Br. Dent. J. – volume: 199 start-page: 180 year: 2000 end-page: 190 ident: bib10 article-title: Two new microscopical variants of thermomechanical modulation: scanning thermal expansion microscopy and dynamic localized thermomechanical analysis publication-title: J. Microsc. Oxf. – volume: 245 start-page: 437 year: 1995 end-page: 446 ident: bib34 article-title: The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry publication-title: J. Mol. Biol. – volume: 14 start-page: 1486 year: 1996 end-page: 1491 ident: bib9 article-title: Scanning thermal microscopy: Subsurface imaging, thermal mapping of polymer blends, and localized calorimetry publication-title: J. Vac. Sci. Technol. B – volume: 22 start-page: 4121 year: 1989 end-page: 4124 ident: bib38 article-title: Bound water in collagen—evidence from Fourier-transform infrared and Fourier-transform infrared photoacoustic spectroscopic study publication-title: Macromolecules – volume: 267 start-page: 1813 year: 1995 end-page: 1817 ident: bib40 article-title: Demonstration of positionally disordered water within a protein hydrophobic cavity by NMR publication-title: Science – year: 2002 ident: 10.1016/j.bpj.2011.04.033_bib36 – start-page: 67 year: 1968 ident: 10.1016/j.bpj.2011.04.033_bib52 article-title: A treatise on collagen – start-page: 3 year: 2002 ident: 10.1016/j.bpj.2011.04.033_bib28 article-title: Bone at the molecular level – volume: 13 start-page: 2489 year: 1974 ident: 10.1016/j.bpj.2011.04.033_bib44 article-title: Effect of hydration upon the thermal stability of tropocollagen and its dependence on the presence of neutral salts publication-title: Biopolymers doi: 10.1002/bip.1974.360131208 – volume: 19 start-page: 384006 year: 2008 ident: 10.1016/j.bpj.2011.04.033_bib18 article-title: Nanoscale scraping and dissection of collagen fibrils publication-title: Nanotechnology doi: 10.1088/0957-4484/19/38/384006 – ident: 10.1016/j.bpj.2011.04.033_bib24 doi: 10.1007/978-1-4613-2831-5_2 – volume: 111 start-page: 71 year: 1999 ident: 10.1016/j.bpj.2011.04.033_bib30 article-title: Thermal denaturation of collagen revisited publication-title: J. Chem. Sci. – volume: 199 start-page: 180 year: 2000 ident: 10.1016/j.bpj.2011.04.033_bib10 article-title: Two new microscopical variants of thermomechanical modulation: scanning thermal expansion microscopy and dynamic localized thermomechanical analysis publication-title: J. Microsc. Oxf. doi: 10.1046/j.1365-2818.2000.00730.x – ident: 10.1016/j.bpj.2011.04.033_bib7 – volume: 17 start-page: 2289 year: 1996 ident: 10.1016/j.bpj.2011.04.033_bib47 article-title: Basic thermoanalytical studies of insoluble collagen matrices publication-title: Biomaterials doi: 10.1016/0142-9612(96)00047-6 – volume: 34 start-page: R23 year: 2001 ident: 10.1016/j.bpj.2011.04.033_bib13 article-title: Micro-thermal analysis: techniques and applications publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/34/9/201 – volume: 425 start-page: 69 year: 2005 ident: 10.1016/j.bpj.2011.04.033_bib23 article-title: Quantitative determination of heat conductivities by scanning thermal microscopy publication-title: Thermochim. Acta doi: 10.1016/j.tca.2004.06.005 – volume: 137 start-page: 2 year: 2002 ident: 10.1016/j.bpj.2011.04.033_bib3 article-title: Building collagen molecules, fibrils, and suprafibrillar structures publication-title: J. Struct. Biol. doi: 10.1006/jsbi.2002.4450 – volume: 266 start-page: 75 year: 1994 ident: 10.1016/j.bpj.2011.04.033_bib43 article-title: Crystal and molecular structure of a collagen-like peptide at 1.9-Ångstrom resolution publication-title: Science doi: 10.1126/science.7695699 – volume: 99 start-page: 1795 year: 2006 ident: 10.1016/j.bpj.2011.04.033_bib16 article-title: Thermal properties measurements of renatured gelatin using conventional and temperature modulated differential scanning calorimetry publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.22711 – volume: 332 start-page: 143 year: 1999 ident: 10.1016/j.bpj.2011.04.033_bib17 article-title: Localized thermal analysis of a packaging film publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(99)00068-4 – volume: 36 start-page: 299 year: 2005 ident: 10.1016/j.bpj.2011.04.033_bib48 article-title: Changes in denaturation and rheological properties of collagen-hyaluronic acid scaffolds as a result of temperature dependencies publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2005.07.004 – volume: 80 start-page: 259 year: 2003 ident: 10.1016/j.bpj.2011.04.033_bib54 article-title: Fluorescence imaging of bone-resorbing osteoclasts by confocal microscopy publication-title: Methods Mol. Med. – volume: 15 start-page: 1762 year: 2005 ident: 10.1016/j.bpj.2011.04.033_bib29 article-title: Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano- and microstructures by plastic compression publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200500042 – volume: 4 start-page: 664 year: 2009 ident: 10.1016/j.bpj.2011.04.033_bib51 article-title: Thermochemical nanopatterning of organic semiconductors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.254 – volume: 316 start-page: 1 year: 1996 ident: 10.1016/j.bpj.2011.04.033_bib4 article-title: Collagen fibril formation publication-title: Biochem. J. doi: 10.1042/bj3160001 – volume: 149 start-page: 381 year: 1975 ident: 10.1016/j.bpj.2011.04.033_bib32 article-title: The chemistry of the collagen cross-links. The mechanism of stabilization of the reducible intermediate cross-links publication-title: Biochem. J. – volume: 105 start-page: 79 year: 2005 ident: 10.1016/j.bpj.2011.04.033_bib21 article-title: Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2005.06.021 – volume: 5 start-page: 212 year: 1984 ident: 10.1016/j.bpj.2011.04.033_bib20 article-title: Resorption of bone by isolated rabbit osteoclasts publication-title: Metab. Bone Dis. Relat. doi: 10.1016/0221-8747(84)90057-2 – ident: 10.1016/j.bpj.2011.04.033_bib37 – volume: 18 start-page: 261 year: 1984 ident: 10.1016/j.bpj.2011.04.033_bib57 article-title: Assessment of bone viability after heat trauma. A histological, histochemical and vital microscopic study in the rabbit publication-title: Scand. J. Plast. Reconstr. Surg. doi: 10.3109/02844318409052849 – start-page: 668 year: 1994 ident: 10.1016/j.bpj.2011.04.033_bib22 article-title: Thermal Conductivity 22 – volume: 42 start-page: 3943 year: 2001 ident: 10.1016/j.bpj.2011.04.033_bib39 article-title: What causes the unfrozen water in polymers: hydrogen bonds between water and polymer chains? publication-title: Polymer (Guildf.) doi: 10.1016/S0032-3861(00)00726-6 – volume: 122 start-page: 111 year: 1998 ident: 10.1016/j.bpj.2011.04.033_bib27 article-title: The collagen fibril: the almost crystalline structure publication-title: J. Struct. Biol. doi: 10.1006/jsbi.1998.3976 – volume: 423 start-page: 89 year: 2004 ident: 10.1016/j.bpj.2011.04.033_bib50 article-title: The principle of micro thermal analysis using atomic force microscope publication-title: Thermochim. Acta doi: 10.1016/j.tca.2004.04.021 – volume: 3 start-page: 893 year: 1995 ident: 10.1016/j.bpj.2011.04.033_bib42 article-title: Hydration structure of a collagen peptide publication-title: Structure doi: 10.1016/S0969-2126(01)00224-6 – volume: 245 start-page: 437 year: 1995 ident: 10.1016/j.bpj.2011.04.033_bib34 article-title: The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1994.0035 – ident: 10.1016/j.bpj.2011.04.033_bib25 – volume: 267 start-page: 1813 year: 1995 ident: 10.1016/j.bpj.2011.04.033_bib40 article-title: Demonstration of positionally disordered water within a protein hydrophobic cavity by NMR publication-title: Science doi: 10.1126/science.7892604 – year: 2007 ident: 10.1016/j.bpj.2011.04.033_bib33 – volume: 22 start-page: 4121 year: 1989 ident: 10.1016/j.bpj.2011.04.033_bib38 article-title: Bound water in collagen—evidence from Fourier-transform infrared and Fourier-transform infrared photoacoustic spectroscopic study publication-title: Macromolecules doi: 10.1021/ma00200a054 – volume: 392 start-page: 666 year: 1998 ident: 10.1016/j.bpj.2011.04.033_bib41 article-title: Code for collagen's stability deciphered publication-title: Nature doi: 10.1038/33573 – start-page: 289 year: 1963 ident: 10.1016/j.bpj.2011.04.033_bib5 article-title: Recent studies with the electron microscope on ordered aggregates of the tropocollagen macromolecule – volume: 66 start-page: 3584 year: 1995 ident: 10.1016/j.bpj.2011.04.033_bib12 article-title: Thermal imaging by atomic force microscopy using thermocouple cantilever probes publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1145474 – volume: 9 start-page: 127 year: 1970 ident: 10.1016/j.bpj.2011.04.033_bib46 article-title: Thermal conformational transformation of tropocollagen. I. Calorimetric study publication-title: Biopolymers doi: 10.1002/bip.1970.360090202 – volume: 276 start-page: 266 year: 1997 ident: 10.1016/j.bpj.2011.04.033_bib53 article-title: Trafficking of matrix collagens through bone-resorbing osteoclasts publication-title: Science doi: 10.1126/science.276.5310.266 – volume: 129 start-page: 463 year: 1979 ident: 10.1016/j.bpj.2011.04.033_bib31 article-title: Chain conformation in the collagen molecule publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(79)90507-2 – volume: 51 start-page: 871 year: 1964 ident: 10.1016/j.bpj.2011.04.033_bib26 article-title: Subunit model for tropocollagen macromolecule publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.51.5.871 – volume: 255 start-page: 259 year: 2000 ident: 10.1016/j.bpj.2011.04.033_bib49 article-title: Dielectric relaxations of collagen and elastin in the dehydrated state publication-title: Chem. Phys. doi: 10.1016/S0301-0104(00)00080-X – volume: 322 start-page: 535 year: 1997 ident: 10.1016/j.bpj.2011.04.033_bib15 article-title: Chemistry of collagen cross-linking: biochemical changes in collagen during the partial mineralization of turkey leg tendon publication-title: Biochem. J. doi: 10.1042/bj3220535 – volume: 174 start-page: 269 year: 1954 ident: 10.1016/j.bpj.2011.04.033_bib2 article-title: Structure of collagen publication-title: Nature doi: 10.1038/174269c0 – volume: 14 start-page: 1486 year: 1996 ident: 10.1016/j.bpj.2011.04.033_bib9 article-title: Scanning thermal microscopy: Subsurface imaging, thermal mapping of polymer blends, and localized calorimetry publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.589124 – volume: 128 start-page: 71 year: 2008 ident: 10.1016/j.bpj.2011.04.033_bib56 article-title: Thermal osteonecrosis and bone drilling parameters revisited publication-title: Arch. Orthop. Trauma Surg. doi: 10.1007/s00402-007-0427-3 – volume: 11 start-page: 34020 year: 2006 ident: 10.1016/j.bpj.2011.04.033_bib35 article-title: Prediction of heat-induced collagen shrinkage by use of second harmonic generation microscopy publication-title: J. Biomed. Opt. doi: 10.1117/1.2209959 – volume: 99 start-page: 1314 year: 2002 ident: 10.1016/j.bpj.2011.04.033_bib6 article-title: Type I collagen is thermally unstable at body temperature publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.032307099 – volume: 156 start-page: 216 year: 1984 ident: 10.1016/j.bpj.2011.04.033_bib19 article-title: Resorption of dentine by isolated osteoclasts in vitro publication-title: Br. Dent. J. doi: 10.1038/sj.bdj.4805313 – volume: 247 start-page: 692 year: 1972 ident: 10.1016/j.bpj.2011.04.033_bib14 article-title: Differential scanning calorimeter studies of the thermal transitions of collagen. Implications on structure and stability publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)45663-9 – start-page: 55 year: 2002 ident: 10.1016/j.bpj.2011.04.033_bib8 article-title: The hydrothermal stability (shrinkage activity) of parchment measured by the micro hot table method (MHT) – volume: 92 start-page: 70 year: 2007 ident: 10.1016/j.bpj.2011.04.033_bib1 article-title: Collagen fibrils: nanoscale ropes publication-title: Biophys. J. doi: 10.1529/biophysj.106.085704 – volume: 9 start-page: 363 year: 1987 ident: 10.1016/j.bpj.2011.04.033_bib45 article-title: Differential scanning calorimetry and x-ray-diffraction study of tendon collagen thermal-denaturation publication-title: Int. J. Biol. Macromol. doi: 10.1016/0141-8130(87)90010-9 – volume: 32 start-page: 545 year: 1970 ident: 10.1016/j.bpj.2011.04.033_bib55 article-title: Thermal denaturation of mineralized and demineralized bone collagens publication-title: J. Ultrastruct. Res. doi: 10.1016/S0022-5320(70)80027-2 – volume: 62 start-page: 2501 year: 1993 ident: 10.1016/j.bpj.2011.04.033_bib11 article-title: Thermal imaging using the atomic force microscope publication-title: Appl. Phys. Lett. doi: 10.1063/1.109335 |
SSID | ssj0012501 |
Score | 2.4849086 |
Snippet | The structural properties of collagen have been the subject of numerous studies over past decades, but with the arrival of new technologies, such as the atomic... |
SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 228 |
SubjectTerms | Animals atomic force microscopy Biophysics bone resorption Collagen Collagen - chemistry Collagen - ultrastructure denaturation Fibrillar Collagens - chemistry gelatin Gelatin - chemistry Gelatin - ultrastructure gelatinization High temperature image analysis Microscopy Microscopy, Atomic Force - methods Minerals - metabolism Molecular structure Protein Denaturation Rabbits Rats Spectroscopy, Imaging, and Other Techniques technology Temperature thermal degradation Transition Temperature |
Title | Thermal Denaturation Studies of Collagen by Microthermal Analysis and Atomic Force Microscopy |
URI | https://dx.doi.org/10.1016/j.bpj.2011.04.033 https://www.ncbi.nlm.nih.gov/pubmed/21723833 https://www.proquest.com/docview/878076868 https://www.proquest.com/docview/1678544042 https://www.proquest.com/docview/874900512 https://pubmed.ncbi.nlm.nih.gov/PMC3127184 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1UPBF1Ko9qxKhT4W1m01ukzzWtkdRWhA9uBcJ-Vq9UnaPdvtw_70zu9mlJ7YPvuzDZgJJZjIzZGZ-Q8hBFI5ZH1jmudSZ8L7MrPU6i1pF5kTMo8JC4YvL8nwuviymiy1yMtTCYFpl0v29Tu-0dfpzlE7zaLVcYo0vmFfw7zvQM6kRdpsL1RXxLT6PkQQw8alrXpkh9RDZ7HK83OoqoXiKTznnD9mmJ5Vt_uWB_p1Iec8yzZ6TZ8mlpMf9ql-QrVi_JDt9k8n1LvkJkgDa95qexg7Fs2MFTfmDtKkovh2AVqmpW9MLzM9r04QBsITaOtDjFuuX6ay58bEnw4KW9Ssyn539ODnPUlOFzINv02a6DHmlpI1eaS-5cjyvimCnLrAK7qLVLBRBBy29Zr4ERlbWRwV23Qqby0ry12S7buq4RygC0ThZ-qCrAjsYuykYXFEGzbRH0J8JyYfjND4hjmPji2szpJZdGeCAQQ6YXBjgwIQcjlNWPdzGY8Ri4JHZkBkD5uCxaXvAT2N_gRY18-8FvvnAKALTTcj-wGST7vKtUVJhuLKE_XwcR-ESYmTF1rG5uzUMTP4UkRaLCaEP0CgpNKpAIHnTS824Q2wSxhWuTG7I00iAGOCbI_Xyd4cFzlkB3oV4-39HsU-e9m_kmAL5jmy3N3fxPThZrfvQ3SL4fv2m_gBymiU6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbaIgSXineX8jASJ6TQOPH6cSyF1Ra6vdCV9oIsx3bKVlWyatPD_vvOJE7EItoD13gsOZ6nPDPfEPIx8IJZ51nicqkT7pxIrHU6CVoFVvCQBoWNwrNTMZ3z74vxYosc9b0wWFYZbX9n01trHb8cxNs8WC2X2OML7hXi-xb0TGqxTR5ANCBxfsPx4suQSgAfH8fmiQTJ-9RmW-RVrC4ijCf_nOb5Xc5pu7T1v0LQvysp_3BNkydkN8aU9LA79lOyFapn5GE3ZXL9nPwCUQDze0m_hhbGs-UFjQWEtC4pPh6AWalosaYzLNBr4oYesYTaytPDBhuY6aS-cqEjw46W9Qsyn3w7O5omcapC4iC4aRItfFoqaYNT2slcFXlaZt6OC89KUEarmc-89lo6zZwATpbWBQWO3XKbylLmL8lOVVdhj1BEoimkcF6XGY4wLsbgcbnwmmmHqD8jkvbXaVyEHMfJF5emry27MMABgxwwKTfAgRH5NGxZdXgb9xHznkdmQ2gM-IP7tu0BP409BzNq5j8zfPSBVUSmG5H9nskmKvO1UVJhvlLA_3wYVkELMbViq1DfXBsGPn-MUIvZiNA7aJTkGm0gkLzqpGb4Q5wSlis8mdyQp4EAQcA3V6rl7xYMPGcZhBf89f9dxXvyaHo2OzEnx6c_9snj7sEc6yHfkJ3m6ia8hYirKd61GnULQLEnZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+denaturation+studies+of+collagen+by+microthermal+analysis+and+atomic+force+microscopy&rft.jtitle=Biophysical+journal&rft.au=Bozec%2C+Laurent&rft.au=Odlyha%2C+Marianne&rft.date=2011-07-06&rft.issn=1542-0086&rft.eissn=1542-0086&rft.volume=101&rft.issue=1&rft.spage=228&rft_id=info:doi/10.1016%2Fj.bpj.2011.04.033&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon |