Effects of different forms of nitrogen addition on microbial extracellular enzyme activity in temperate grassland soil

Background Nitrogen (N) deposition alters litter decomposition and soil carbon (C) sequestration by influencing the microbial community and its enzyme activity. Natural atmospheric N deposition comprises of inorganic N (IN) and organic N (ON) compounds. However, most studies have focused on IN and i...

Full description

Saved in:
Bibliographic Details
Published inEcological processes Vol. 11; no. 1; p. 36
Main Authors Dong, Lili, Berg, Björn, Gu, Weiping, Wang, Zhengwen, Sun, Tao
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 03.05.2022
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background Nitrogen (N) deposition alters litter decomposition and soil carbon (C) sequestration by influencing the microbial community and its enzyme activity. Natural atmospheric N deposition comprises of inorganic N (IN) and organic N (ON) compounds. However, most studies have focused on IN and its effect on soil C cycling, whereas the effect of ON on microbial enzyme activity is poorly understood. Here we studied the effects of different forms of externally supplied N on soil enzyme activities related to decomposition in a temperate steppe. Ammonium nitrate was chosen as IN source, whereas urea and glycine were chosen as ON sources. Different ratios of IN to ON (Control, 10:0, 7:3, 5:5, 3:7, and 0:10) were mixed with equal total amounts of N and then used to fertilize the grassland soils for 6 years. Results Our results show that IN deposition inhibited lignin-degrading enzyme activity, such as phenol oxidase (POX) and peroxidase (PER), which may restrain decomposition and thus induce accumulation of recalcitrant organic C in grassland soils. By contrast, deposition of ON and mixed ON and IN enhanced most of the C-degrading enzyme activities, which may promote the organic matter decomposition in grassland soils. In addition, the β- N -acetyl-glucosaminidase (NAG) activity was remarkably stimulated by fertilization with both IN and ON, maybe because of the elevated N availability and the lack of N limitation after long-term N fertilization at the grassland site. Meanwhile, differences in soil pH, soil dissolved organic carbon (DOC), and microbial biomass partially explained the differential effects on soil enzyme activity under different forms of N treatments. Conclusions Our results emphasize the importance of organic N deposition in controlling soil processes, which are regulated by microbial enzyme activities, and may consequently change the ecological effect of N deposition. Thus, more ON deposition may promote the decomposition of soil organic matter thus converting C sequestration in grassland soils into a C source.
AbstractList BACKGROUND: Nitrogen (N) deposition alters litter decomposition and soil carbon (C) sequestration by influencing the microbial community and its enzyme activity. Natural atmospheric N deposition comprises of inorganic N (IN) and organic N (ON) compounds. However, most studies have focused on IN and its effect on soil C cycling, whereas the effect of ON on microbial enzyme activity is poorly understood. Here we studied the effects of different forms of externally supplied N on soil enzyme activities related to decomposition in a temperate steppe. Ammonium nitrate was chosen as IN source, whereas urea and glycine were chosen as ON sources. Different ratios of IN to ON (Control, 10:0, 7:3, 5:5, 3:7, and 0:10) were mixed with equal total amounts of N and then used to fertilize the grassland soils for 6 years. RESULTS: Our results show that IN deposition inhibited lignin-degrading enzyme activity, such as phenol oxidase (POX) and peroxidase (PER), which may restrain decomposition and thus induce accumulation of recalcitrant organic C in grassland soils. By contrast, deposition of ON and mixed ON and IN enhanced most of the C-degrading enzyme activities, which may promote the organic matter decomposition in grassland soils. In addition, the β-N-acetyl-glucosaminidase (NAG) activity was remarkably stimulated by fertilization with both IN and ON, maybe because of the elevated N availability and the lack of N limitation after long-term N fertilization at the grassland site. Meanwhile, differences in soil pH, soil dissolved organic carbon (DOC), and microbial biomass partially explained the differential effects on soil enzyme activity under different forms of N treatments. CONCLUSIONS: Our results emphasize the importance of organic N deposition in controlling soil processes, which are regulated by microbial enzyme activities, and may consequently change the ecological effect of N deposition. Thus, more ON deposition may promote the decomposition of soil organic matter thus converting C sequestration in grassland soils into a C source.
Background Nitrogen (N) deposition alters litter decomposition and soil carbon (C) sequestration by influencing the microbial community and its enzyme activity. Natural atmospheric N deposition comprises of inorganic N (IN) and organic N (ON) compounds. However, most studies have focused on IN and its effect on soil C cycling, whereas the effect of ON on microbial enzyme activity is poorly understood. Here we studied the effects of different forms of externally supplied N on soil enzyme activities related to decomposition in a temperate steppe. Ammonium nitrate was chosen as IN source, whereas urea and glycine were chosen as ON sources. Different ratios of IN to ON (Control, 10:0, 7:3, 5:5, 3:7, and 0:10) were mixed with equal total amounts of N and then used to fertilize the grassland soils for 6 years. Results Our results show that IN deposition inhibited lignin-degrading enzyme activity, such as phenol oxidase (POX) and peroxidase (PER), which may restrain decomposition and thus induce accumulation of recalcitrant organic C in grassland soils. By contrast, deposition of ON and mixed ON and IN enhanced most of the C-degrading enzyme activities, which may promote the organic matter decomposition in grassland soils. In addition, the β- N -acetyl-glucosaminidase (NAG) activity was remarkably stimulated by fertilization with both IN and ON, maybe because of the elevated N availability and the lack of N limitation after long-term N fertilization at the grassland site. Meanwhile, differences in soil pH, soil dissolved organic carbon (DOC), and microbial biomass partially explained the differential effects on soil enzyme activity under different forms of N treatments. Conclusions Our results emphasize the importance of organic N deposition in controlling soil processes, which are regulated by microbial enzyme activities, and may consequently change the ecological effect of N deposition. Thus, more ON deposition may promote the decomposition of soil organic matter thus converting C sequestration in grassland soils into a C source.
Abstract Background Nitrogen (N) deposition alters litter decomposition and soil carbon (C) sequestration by influencing the microbial community and its enzyme activity. Natural atmospheric N deposition comprises of inorganic N (IN) and organic N (ON) compounds. However, most studies have focused on IN and its effect on soil C cycling, whereas the effect of ON on microbial enzyme activity is poorly understood. Here we studied the effects of different forms of externally supplied N on soil enzyme activities related to decomposition in a temperate steppe. Ammonium nitrate was chosen as IN source, whereas urea and glycine were chosen as ON sources. Different ratios of IN to ON (Control, 10:0, 7:3, 5:5, 3:7, and 0:10) were mixed with equal total amounts of N and then used to fertilize the grassland soils for 6 years. Results Our results show that IN deposition inhibited lignin-degrading enzyme activity, such as phenol oxidase (POX) and peroxidase (PER), which may restrain decomposition and thus induce accumulation of recalcitrant organic C in grassland soils. By contrast, deposition of ON and mixed ON and IN enhanced most of the C-degrading enzyme activities, which may promote the organic matter decomposition in grassland soils. In addition, the β-N-acetyl-glucosaminidase (NAG) activity was remarkably stimulated by fertilization with both IN and ON, maybe because of the elevated N availability and the lack of N limitation after long-term N fertilization at the grassland site. Meanwhile, differences in soil pH, soil dissolved organic carbon (DOC), and microbial biomass partially explained the differential effects on soil enzyme activity under different forms of N treatments. Conclusions Our results emphasize the importance of organic N deposition in controlling soil processes, which are regulated by microbial enzyme activities, and may consequently change the ecological effect of N deposition. Thus, more ON deposition may promote the decomposition of soil organic matter thus converting C sequestration in grassland soils into a C source.
BackgroundNitrogen (N) deposition alters litter decomposition and soil carbon (C) sequestration by influencing the microbial community and its enzyme activity. Natural atmospheric N deposition comprises of inorganic N (IN) and organic N (ON) compounds. However, most studies have focused on IN and its effect on soil C cycling, whereas the effect of ON on microbial enzyme activity is poorly understood. Here we studied the effects of different forms of externally supplied N on soil enzyme activities related to decomposition in a temperate steppe. Ammonium nitrate was chosen as IN source, whereas urea and glycine were chosen as ON sources. Different ratios of IN to ON (Control, 10:0, 7:3, 5:5, 3:7, and 0:10) were mixed with equal total amounts of N and then used to fertilize the grassland soils for 6 years.ResultsOur results show that IN deposition inhibited lignin-degrading enzyme activity, such as phenol oxidase (POX) and peroxidase (PER), which may restrain decomposition and thus induce accumulation of recalcitrant organic C in grassland soils. By contrast, deposition of ON and mixed ON and IN enhanced most of the C-degrading enzyme activities, which may promote the organic matter decomposition in grassland soils. In addition, the β-N-acetyl-glucosaminidase (NAG) activity was remarkably stimulated by fertilization with both IN and ON, maybe because of the elevated N availability and the lack of N limitation after long-term N fertilization at the grassland site. Meanwhile, differences in soil pH, soil dissolved organic carbon (DOC), and microbial biomass partially explained the differential effects on soil enzyme activity under different forms of N treatments.ConclusionsOur results emphasize the importance of organic N deposition in controlling soil processes, which are regulated by microbial enzyme activities, and may consequently change the ecological effect of N deposition. Thus, more ON deposition may promote the decomposition of soil organic matter thus converting C sequestration in grassland soils into a C source.
Background Nitrogen (N) deposition alters litter decomposition and soil carbon (C) sequestration by influencing the microbial community and its enzyme activity. Natural atmospheric N deposition comprises of inorganic N (IN) and organic N (ON) compounds. However, most studies have focused on IN and its effect on soil C cycling, whereas the effect of ON on microbial enzyme activity is poorly understood. Here we studied the effects of different forms of externally supplied N on soil enzyme activities related to decomposition in a temperate steppe. Ammonium nitrate was chosen as IN source, whereas urea and glycine were chosen as ON sources. Different ratios of IN to ON (Control, 10:0, 7:3, 5:5, 3:7, and 0:10) were mixed with equal total amounts of N and then used to fertilize the grassland soils for 6 years. Results Our results show that IN deposition inhibited lignin-degrading enzyme activity, such as phenol oxidase (POX) and peroxidase (PER), which may restrain decomposition and thus induce accumulation of recalcitrant organic C in grassland soils. By contrast, deposition of ON and mixed ON and IN enhanced most of the C-degrading enzyme activities, which may promote the organic matter decomposition in grassland soils. In addition, the beta-N-acetyl-glucosaminidase (NAG) activity was remarkably stimulated by fertilization with both IN and ON, maybe because of the elevated N availability and the lack of N limitation after long-term N fertilization at the grassland site. Meanwhile, differences in soil pH, soil dissolved organic carbon (DOC), and microbial biomass partially explained the differential effects on soil enzyme activity under different forms of N treatments. Conclusions Our results emphasize the importance of organic N deposition in controlling soil processes, which are regulated by microbial enzyme activities, and may consequently change the ecological effect of N deposition. Thus, more ON deposition may promote the decomposition of soil organic matter thus converting C sequestration in grassland soils into a C source.
ArticleNumber 36
Author Gu, Weiping
Sun, Tao
Wang, Zhengwen
Berg, Björn
Dong, Lili
Author_xml – sequence: 1
  givenname: Lili
  surname: Dong
  fullname: Dong, Lili
  organization: Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences
– sequence: 2
  givenname: Björn
  surname: Berg
  fullname: Berg, Björn
  organization: Department of Forest Sciences, University of Helsinki, Section of Biology, University of Gävle
– sequence: 3
  givenname: Weiping
  surname: Gu
  fullname: Gu, Weiping
  organization: Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences
– sequence: 4
  givenname: Zhengwen
  surname: Wang
  fullname: Wang, Zhengwen
  organization: Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences
– sequence: 5
  givenname: Tao
  surname: Sun
  fullname: Sun, Tao
  email: suntao28329@163.com
  organization: Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-38501$$DView record from Swedish Publication Index
BookMark eNp9Uk1v1DAQjVCRKKV_gJMlLhwI-CNZO8eqFKhUiQtwtSbxOHiV2IvttCy_Hu-m4qOHWpY8Gr33ZjzznlcnPnisqpeMvmVMbd4lJiSTNeW8plQoWvMn1SlnHa-ZpN3JP_Gz6jylLS2na1jTydPq9spaHHIiwRLjShzRZ2JDnI8p73IMI3oCxrjsgiflzm6IoXcwEfyZIww4TcsEkaD_tZ-RwJDdrct74jzJOO8wQkYyRkhpAm9ICm56UT21MCU8v3_Pqq8frr5cfqpvPn-8vry4qYcNpbmWQvFNC8AGqXrsVGdB2KZvUfQgUDZKcmq5VIpaKw3bGMMVbww3smNNj1KcVderrgmw1bvoZoh7HcDpYyLEUUPMbphQi77lgtoeezANMgQchKSDpQKZsLYtWm9WrXSHu6X_T-29-3ZxVPvuRi1US1mBv17huxh-LJiynl06zAo8hiVpvpFtKzvR0gJ99QC6DUv0ZTAF1apOybLfguIrqkw_pYj2TweM6oMR9GoEXYygj0bQvJDUA9LgMhw2WTbnpsep4v6_pY4fMf7t6hHWb4iUy3w
CitedBy_id crossref_primary_10_1016_j_agee_2024_109368
crossref_primary_10_3390_min13010012
crossref_primary_10_1111_ejss_13491
crossref_primary_10_3389_fpls_2023_1175946
crossref_primary_10_3390_agriculture13061121
crossref_primary_10_1016_j_apsoil_2025_105990
crossref_primary_10_1016_j_orggeochem_2025_104983
crossref_primary_10_1016_j_apsoil_2023_104970
crossref_primary_10_1016_j_pedsph_2024_08_002
crossref_primary_10_3390_f14102049
crossref_primary_10_1016_j_apsoil_2024_105459
crossref_primary_10_3390_su17051797
crossref_primary_10_3389_ffgc_2023_1129681
crossref_primary_10_3390_nitrogen6010004
crossref_primary_10_1007_s42729_025_02325_y
crossref_primary_10_3390_agronomy13123010
crossref_primary_10_3389_fmicb_2024_1377338
crossref_primary_10_1016_j_scitotenv_2023_167757
crossref_primary_10_7717_peerj_18582
crossref_primary_10_3389_fpls_2022_1048153
crossref_primary_10_1016_j_soilbio_2023_109164
crossref_primary_10_1186_s13717_024_00565_x
Cites_doi 10.1016/j.geoderma.2011.07.020
10.1016/j.envpol.2010.11.014
10.1016/j.soilbio.2018.05.024
10.1023/A:1015791622742
10.1016/j.soilbio.2012.07.012
10.1007/s11104-010-0550-8
10.1016/j.scitotenv.2017.12.313
10.1016/j.soilbio.2007.09.013
10.1007/s00442-007-0836-6
10.1016/0038-0717(85)90144-0
10.1016/j.apsoil.2009.05.003
10.1371/journal.pone.0144689
10.1038/nature11917
10.1016/S0269-7491(02)00235-X
10.1016/j.soilbio.2009.10.014
10.1007/s11284-011-0805-8
10.1007/s00248-005-5156-y
10.1146/annurev.mi.41.100187.002341
10.1016/j.soilbio.2019.107657
10.1007/s00248-007-9308-0
10.1016/j.soilbio.2020.107845
10.1007/s00248-003-9001-x
10.1016/j.tree.2015.03.015
10.1007/s10482-006-9069-7
10.1016/j.soilbio.2015.10.023
10.1016/S0038-0717(97)00030-8
10.1038/s41396-018-0096-y
10.1016/j.chemgeo.2018.10.009
10.1007/s10021-008-9199-z
10.1016/j.atmosenv.2011.09.080
10.1021/acs.est.7b04554
10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2
10.1890/11-1600.1
10.1016/j.soilbio.2019.03.016
10.1111/gcb.12555
10.1890/05-0150
10.1016/j.apsoil.2017.06.041
10.1016/j.apsoil.2006.09.011
10.1016/S0038-0717(02)00074-3
10.1007/978-1-4615-9412-3_6
10.3390/ijms19113373
10.1007/s00374-017-1233-x
10.4319/lo.1997.42.8.1819
10.1111/j.1365-2486.2009.02135.x
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FH
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
F1W
GNUQQ
H95
HCIFZ
L.G
LK8
M7P
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7S9
L.6
ADTPV
ALQMA
AOWAS
D8T
D8W
ZZAVC
DOA
DOI 10.1186/s13717-022-00380-2
DatabaseName SpringerOpen
CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Biological Science Collection
Biological Science Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
SwePub
SWEPUB Högskolan i Gävle full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Högskolan i Gävle
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 2192-1709
EndPage 36
ExternalDocumentID oai_doaj_org_article_3b5230fbebad4e1eaec370cf03e13ff5
oai_DiVA_org_hig_38501
10_1186_s13717_022_00380_2
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 31901137
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -A0
0R~
4.4
40G
5VS
7XC
8FE
8FH
AAFWJ
AAJSJ
AAKKN
ABEEZ
ACACY
ACGFO
ACGFS
ACPRK
ACULB
ADBBV
ADINQ
AEGXH
AEUYN
AFGXO
AFKRA
AFPKN
AFRAH
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ATCPS
BAPOH
BBNVY
BCNDV
BENPR
BHPHI
C24
C6C
CCPQU
EBLON
EBS
EDH
GROUPED_DOAJ
GX1
HCIFZ
IAO
IEP
ISR
ITC
KQ8
LK8
M7P
M~E
OK1
PATMY
PIMPY
PROAC
PYCSY
RNS
RSV
SEV
SOJ
-SB
-S~
AASML
AAXDM
AAYXX
CAJEB
CITATION
PHGZM
PHGZT
Q--
U1G
U5L
ABUWG
AZQEC
DWQXO
F1W
GNUQQ
H95
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7S9
L.6
2VQ
ADTPV
AHSBF
ALQMA
AOWAS
D8T
D8W
EJD
H13
HZ~
O9-
ZZAVC
PUEGO
ID FETCH-LOGICAL-c600t-738265aa1c78be989fa3f4b5e3ba3e748720f27880ff7d16dd2824d2d7914be73
IEDL.DBID DOA
ISSN 2192-1709
IngestDate Wed Aug 27 01:29:28 EDT 2025
Thu Aug 21 07:01:12 EDT 2025
Fri Jul 11 00:45:46 EDT 2025
Fri Jul 25 11:10:56 EDT 2025
Tue Jul 01 04:32:00 EDT 2025
Thu Apr 24 23:11:27 EDT 2025
Fri Feb 21 02:45:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Grassland
Microbial enzyme activity
Decomposition
Organic N deposition
Soil microbial biomass
Inorganic N deposition
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c600t-738265aa1c78be989fa3f4b5e3ba3e748720f27880ff7d16dd2824d2d7914be73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/3b5230fbebad4e1eaec370cf03e13ff5
PQID 2658987717
PQPubID 2034775
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_3b5230fbebad4e1eaec370cf03e13ff5
swepub_primary_oai_DiVA_org_hig_38501
proquest_miscellaneous_2675579350
proquest_journals_2658987717
crossref_primary_10_1186_s13717_022_00380_2
crossref_citationtrail_10_1186_s13717_022_00380_2
springer_journals_10_1186_s13717_022_00380_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-03
PublicationDateYYYYMMDD 2022-05-03
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-03
  day: 03
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Ecological processes
PublicationTitleAbbrev Ecol Process
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Dong, Berg, Sun, Wang, Han (CR8) 2020; 147
Du, Guo, Liu, Wang, Yang, Jiao (CR9) 2014; 20
Hobbie, Eddy, Buyarski, Adair, Ogdahl, Weisenhorn (CR16) 2012; 82
Saiya-Cork, Sinsabaugh, Zak (CR35) 2002; 34
Jiang, Wang, Yu (CR17) 2018; 501
Liu, Zhang, Han, Tang, Shen, Cui, Vitousek, Erisman, Goulding, Christie, Fangmeier, Zhang (CR26) 2013; 494
Mason-Jonesa, Schmückera, Yakov (CR29) 2018; 124
Brookes, Landrnan, Pruden (CR4) 1985; 17
Hobbie (CR15) 2015; 30
Kirk, Bellamy, Lark (CR22) 2010; 16
Cusack (CR6) 2013; 57
Treseder, Vitousek (CR39) 2001; 82
Guo, Wang, Jia, Wang, Han, Tian (CR14) 2011; 338
Gallo, Amonette, Lauber, Sinsabaugh, Zak (CR13) 2004; 48
Keeler, Hobbie, Kellogg (CR19) 2009; 12
Ljungdahl, Eriksson (CR27) 1985; 8
Sinsabaugh (CR36) 2010; 42
Stursova, Crenshaw, Sinsabaugh (CR37) 2006; 51
Li, Shi, Xu, Liu, Wang, Hou (CR25) 2015; 10
Zhang, Chen, Ruan (CR47) 2018; 12
Kirk, Farrell (CR21) 1987; 41
Paul, Clark (CR33) 1996
Sun, Dong, Wang, Lü, Mao (CR38) 2016; 93
Krusche, De Camargo, Cerri, Ballester, Lara, Victoria, Martinelli (CR24) 2003; 121
Dong, Sun, Berg, Zhang, Zhang, Wang (CR7) 2019; 134
McErlean, Marchant, Banat (CR30) 2006; 90
Ai, Liang, Sun, Wang, Zhou (CR1) 2012; 173–174
Cornell (CR5) 2011; 159
Van Groenigen (CR40) 2017; 51
Knorr, Frey, Curtis (CR23) 2005; 86
Neff, Holland, Dentener, McDowell, Russell (CR31) 2002; 57
Zhang, Song, Liu (CR46) 2012; 46
Vitousek, Farrington (CR41) 1997; 37
Zeglin, Stursova, Sinsabaugh, Collins (CR45) 2007; 154
Bastida, Kandeler, Hernández, García (CR2) 2007; 55
Enowashu, Poll, Lamersdorf, Kandeler (CR11) 2009; 43
Yang, Xu, Wang (CR44) 2017; 119
Jing, Chen, Fang, Ji, Shen, Zheng, Zhu (CR18) 2020; 141
Elfstrand, Hedlund, Martensson (CR10) 2007; 35
Kellner, Luis, Zimdars, Kiesel, Buscot (CR20) 2008; 40
Luo, Gong, Yang (CR28) 2017; 53
Olsen, Sommers, Page, Miller, Keeney (CR32) 1982
Fenn, Bytnerowicz, Schilling, Vallano, Zavaleta, Weiss, Morozumi, Geiser, Hanks (CR12) 2018; 625
Beck, Joergensen, Kandeler, Makeschin, Nuss, Oberholzer, Scheu (CR3) 1997; 29
Wang, Han, Jia, Feng, Guo, Tian (CR42) 2011; 26
Wang, Yao, Su (CR43) 2018; 19
Peierls, Paerl (CR34) 1997; 42
K Mason-Jonesa (380_CR29) 2018; 124
TK Kirk (380_CR21) 1987; 41
KK Treseder (380_CR39) 2001; 82
BL Peierls (380_CR34) 1997; 42
E Enowashu (380_CR11) 2009; 43
M Gallo (380_CR13) 2004; 48
X Wang (380_CR43) 2018; 19
BL Keeler (380_CR19) 2009; 12
LG Ljungdahl (380_CR27) 1985; 8
T Sun (380_CR38) 2016; 93
EA Paul (380_CR33) 1996
TA Zhang (380_CR47) 2018; 12
SE Hobbie (380_CR15) 2015; 30
AV Krusche (380_CR24) 2003; 121
C Wang (380_CR42) 2011; 26
S Yang (380_CR44) 2017; 119
C Ai (380_CR1) 2012; 173–174
GJD Kirk (380_CR22) 2010; 16
L Dong (380_CR8) 2020; 147
JW Van Groenigen (380_CR40) 2017; 51
F Bastida (380_CR2) 2007; 55
RL Sinsabaugh (380_CR36) 2010; 42
JC Neff (380_CR31) 2002; 57
M Stursova (380_CR37) 2006; 51
YH Du (380_CR9) 2014; 20
DF Cusack (380_CR6) 2013; 57
PM Vitousek (380_CR41) 1997; 37
S Elfstrand (380_CR10) 2007; 35
M Knorr (380_CR23) 2005; 86
XJ Liu (380_CR26) 2013; 494
Y Zhang (380_CR46) 2012; 46
ME Fenn (380_CR12) 2018; 625
SE Cornell (380_CR5) 2011; 159
J Jiang (380_CR17) 2018; 501
KR Saiya-Cork (380_CR35) 2002; 34
P Guo (380_CR14) 2011; 338
SE Hobbie (380_CR16) 2012; 82
C McErlean (380_CR30) 2006; 90
L Dong (380_CR7) 2019; 134
Q Luo (380_CR28) 2017; 53
LH Zeglin (380_CR45) 2007; 154
T Beck (380_CR3) 1997; 29
S Olsen (380_CR32) 1982
X Jing (380_CR18) 2020; 141
PC Brookes (380_CR4) 1985; 17
X Li (380_CR25) 2015; 10
H Kellner (380_CR20) 2008; 40
References_xml – volume: 173–174
  start-page: 330
  year: 2012
  end-page: 338
  ident: CR1
  article-title: Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.07.020
– volume: 159
  start-page: 2214
  year: 2011
  end-page: 2222
  ident: CR5
  article-title: Atmospheric nitrogen deposition: revisiting the question of the importance of the organic component
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2010.11.014
– volume: 124
  start-page: 38
  year: 2018
  end-page: 46
  ident: CR29
  article-title: Contrasting effects of organic and mineral nitrogen challenge the N-Mining Hypothesis for soil organic matter priming
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.05.024
– volume: 57
  start-page: 99
  year: 2002
  end-page: 136
  ident: CR31
  article-title: The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle?
  publication-title: Biogeochemistry
  doi: 10.1023/A:1015791622742
– volume: 57
  start-page: 192
  year: 2013
  end-page: 203
  ident: CR6
  article-title: Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.07.012
– volume: 338
  start-page: 355
  year: 2011
  end-page: 366
  ident: CR14
  article-title: Responses of soil microbial biomass and enzymatic activities to fertilizations of mixed inorganic and organic nitrogen at a subtropical forest in East China
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0550-8
– volume: 625
  start-page: 909
  year: 2018
  end-page: 919
  ident: CR12
  article-title: On-road emissions of ammonia: an underappreciated source of atmospheric nitrogen deposition
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.12.313
– volume: 40
  start-page: 638
  issue: 3
  year: 2008
  end-page: 648
  ident: CR20
  article-title: Diversity of bacterial laccase-like multicopper oxidase genes in forest and grassland Cambisol soil samples
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2007.09.013
– volume: 154
  start-page: 349
  year: 2007
  end-page: 359
  ident: CR45
  article-title: Microbial responses to nitrogen addition in three contrasting grassland ecosystems
  publication-title: Oecologia
  doi: 10.1007/s00442-007-0836-6
– volume: 17
  start-page: 837
  year: 1985
  end-page: 842
  ident: CR4
  article-title: Chloroformfumigation and the release of soil nitrogen: a rapiddirect extraction method to measure microbial biomassnitrogen in soil
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(85)90144-0
– volume: 43
  start-page: 11
  year: 2009
  end-page: 21
  ident: CR11
  article-title: Microbial biomass and enzyme activities under reduced nitrogen deposition in a spruce forest soil
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2009.05.003
– volume: 10
  start-page: e0144689
  issue: 12
  year: 2015
  ident: CR25
  article-title: Seasonal and spatial variations of bulk nitrogen deposition and the impacts on the carbon cycle in the arid/semiarid grassland of Inner Mongolia, China
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0144689
– volume: 494
  start-page: 459
  year: 2013
  end-page: 462
  ident: CR26
  article-title: Enhanced nitrogen deposition over China
  publication-title: Nature
  doi: 10.1038/nature11917
– volume: 121
  start-page: 389
  year: 2003
  end-page: 399
  ident: CR24
  article-title: Acid rain and nitrogen deposition in a subtropical watershed (Piracicaba): ecosystem consequences
  publication-title: Environ Pollut
  doi: 10.1016/S0269-7491(02)00235-X
– volume: 42
  start-page: 391
  year: 2010
  end-page: 404
  ident: CR36
  article-title: Phenol oxidase, peroxidase and organic matter dynamics of soil
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.10.014
– volume: 26
  start-page: 505
  year: 2011
  end-page: 513
  ident: CR42
  article-title: Response of litter decomposition and related soil enzyme activities to different forms of nitrogen fertilization in a subtropical forest
  publication-title: Ecol Res
  doi: 10.1007/s11284-011-0805-8
– volume: 51
  start-page: 90
  year: 2006
  end-page: 98
  ident: CR37
  article-title: Microbial responses to long-term N deposition in a semiarid grassland
  publication-title: Microb Ecol
  doi: 10.1007/s00248-005-5156-y
– volume: 41
  start-page: 465
  year: 1987
  end-page: 505
  ident: CR21
  article-title: Enzymatic “combustion”: the microbial degradation of lignin
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.mi.41.100187.002341
– volume: 141
  start-page: 107657
  year: 2020
  ident: CR18
  article-title: Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2019.107657
– volume: 55
  start-page: 651
  year: 2007
  end-page: 661
  ident: CR2
  article-title: Long-term effect of municipal solid waste amendment on microbial abundance and humus-associated enzyme activities under semiarid conditions
  publication-title: Microb Ecol
  doi: 10.1007/s00248-007-9308-0
– volume: 147
  start-page: 107845
  year: 2020
  ident: CR8
  article-title: Response of fine root decomposition to different forms of N deposition in a temperate grassland
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2020.107845
– year: 1982
  ident: CR32
  article-title: Phosphorus
  publication-title: Methods of soil analysis. Part 2. Chemical and microbiological properties
– volume: 48
  start-page: 218
  year: 2004
  end-page: 229
  ident: CR13
  article-title: Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils
  publication-title: Microb Ecol
  doi: 10.1007/s00248-003-9001-x
– volume: 30
  start-page: 357
  issue: 6
  year: 2015
  end-page: 363
  ident: CR15
  article-title: Plant species effects on nutrient cycling: revisiting litter feedbacks
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2015.03.015
– volume: 90
  start-page: 147
  year: 2006
  end-page: 158
  ident: CR30
  article-title: An evaluation of soil colonisation potential of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-006-9069-7
– volume: 93
  start-page: 50
  year: 2016
  end-page: 59
  ident: CR38
  article-title: Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.10.023
– volume: 29
  start-page: 1023
  year: 1997
  end-page: 1032
  ident: CR3
  article-title: An inter-laboratory comparison of ten different ways of measuring soil microbial biomassC
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(97)00030-8
– start-page: 340
  year: 1996
  ident: CR33
  publication-title: Soil microbiology and biochemistry
– volume: 12
  start-page: 1817
  year: 2018
  end-page: 1825
  ident: CR47
  article-title: Global negative effects of nitrogen deposition on soil microbes
  publication-title: ISME J
  doi: 10.1038/s41396-018-0096-y
– volume: 501
  start-page: 86
  year: 2018
  end-page: 94
  ident: CR17
  article-title: Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils
  publication-title: Chem Geol
  doi: 10.1016/j.chemgeo.2018.10.009
– volume: 12
  start-page: 1
  year: 2009
  end-page: 15
  ident: CR19
  article-title: Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition
  publication-title: Ecosystems
  doi: 10.1007/s10021-008-9199-z
– volume: 46
  start-page: 195
  year: 2012
  end-page: 204
  ident: CR46
  article-title: Atmospheric organic nitrogen deposition in China
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2011.09.080
– volume: 51
  start-page: 11503
  year: 2017
  end-page: 11504
  ident: CR40
  article-title: Sequestering soil organic carbon: a nitrogen dilemma
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b04554
– volume: 82
  start-page: 946
  year: 2001
  end-page: 954
  ident: CR39
  article-title: Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests
  publication-title: Ecology
  doi: 10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2
– volume: 16
  start-page: 3111
  year: 2010
  end-page: 3119
  ident: CR22
  article-title: Changes in soil pH across England and Wales in response to decreased acid deposition
  publication-title: Glob Change Biol
– volume: 37
  start-page: 63
  year: 1997
  end-page: 75
  ident: CR41
  article-title: Nutrient limitation and soil development: experimental test of a biogeochemical theory
  publication-title: Biochemistry
– volume: 82
  start-page: 389
  year: 2012
  end-page: 405
  ident: CR16
  article-title: Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment
  publication-title: Ecol Monogr
  doi: 10.1890/11-1600.1
– volume: 134
  start-page: 78
  year: 2019
  end-page: 80
  ident: CR7
  article-title: Effects of different forms of N deposition on leaf litter decomposition and extracellular enzyme activities in a temperate grassland
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2019.03.016
– volume: 20
  start-page: 3222
  issue: 10
  year: 2014
  end-page: 3228
  ident: CR9
  article-title: Different types of nitrogen deposition show variable effects on the soil carbon cycle process of temperate forests
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.12555
– volume: 86
  start-page: 3252
  year: 2005
  end-page: 3257
  ident: CR23
  article-title: Nitrogen additions and litter decomposition: a meta-analysis
  publication-title: Ecology
  doi: 10.1890/05-0150
– volume: 119
  start-page: 275
  year: 2017
  end-page: 285
  ident: CR44
  article-title: Variations in soil microbial community composition and enzymatic activities in response to increased N deposition and precipitation in Inner Mongolian grassland
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2017.06.041
– volume: 35
  start-page: 610
  year: 2007
  end-page: 621
  ident: CR10
  article-title: Soil enzyme activities, microbial community composition and function after 47 years of continuous green manuring
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2006.09.011
– volume: 34
  start-page: 1309
  year: 2002
  end-page: 1315
  ident: CR35
  article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(02)00074-3
– volume: 8
  start-page: 237
  year: 1985
  end-page: 299
  ident: CR27
  article-title: Ecology of microbial cellulose degradation
  publication-title: Adv Microb Ecol
  doi: 10.1007/978-1-4615-9412-3_6
– volume: 19
  start-page: 3373
  year: 2018
  ident: CR43
  article-title: Linking enzymatic oxidative degradation of lignin to organics detoxification
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19113373
– volume: 53
  start-page: 911
  year: 2017
  end-page: 927
  ident: CR28
  article-title: Impacts of nitrogen addition on the carbon balance in a temperate semiarid grassland ecosystem
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-017-1233-x
– volume: 42
  start-page: 1819
  year: 1997
  end-page: 1823
  ident: CR34
  article-title: Bioavailability of atmospheric organic nitrogen deposition to coastal phytoplankton
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.1997.42.8.1819
– volume: 147
  start-page: 107845
  year: 2020
  ident: 380_CR8
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2020.107845
– volume: 8
  start-page: 237
  year: 1985
  ident: 380_CR27
  publication-title: Adv Microb Ecol
  doi: 10.1007/978-1-4615-9412-3_6
– volume: 35
  start-page: 610
  year: 2007
  ident: 380_CR10
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2006.09.011
– volume: 501
  start-page: 86
  year: 2018
  ident: 380_CR17
  publication-title: Chem Geol
  doi: 10.1016/j.chemgeo.2018.10.009
– volume: 20
  start-page: 3222
  issue: 10
  year: 2014
  ident: 380_CR9
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.12555
– volume: 159
  start-page: 2214
  year: 2011
  ident: 380_CR5
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2010.11.014
– volume: 141
  start-page: 107657
  year: 2020
  ident: 380_CR18
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2019.107657
– volume: 51
  start-page: 90
  year: 2006
  ident: 380_CR37
  publication-title: Microb Ecol
  doi: 10.1007/s00248-005-5156-y
– volume: 41
  start-page: 465
  year: 1987
  ident: 380_CR21
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.mi.41.100187.002341
– volume: 16
  start-page: 3111
  year: 2010
  ident: 380_CR22
  publication-title: Glob Change Biol
  doi: 10.1111/j.1365-2486.2009.02135.x
– volume: 82
  start-page: 946
  year: 2001
  ident: 380_CR39
  publication-title: Ecology
  doi: 10.1890/0012-9658(2001)082[0946:EOSNAO]2.0.CO;2
– start-page: 340
  volume-title: Soil microbiology and biochemistry
  year: 1996
  ident: 380_CR33
– volume-title: Methods of soil analysis. Part 2. Chemical and microbiological properties
  year: 1982
  ident: 380_CR32
– volume: 46
  start-page: 195
  year: 2012
  ident: 380_CR46
  publication-title: Atmos Environ
  doi: 10.1016/j.atmosenv.2011.09.080
– volume: 134
  start-page: 78
  year: 2019
  ident: 380_CR7
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2019.03.016
– volume: 12
  start-page: 1
  year: 2009
  ident: 380_CR19
  publication-title: Ecosystems
  doi: 10.1007/s10021-008-9199-z
– volume: 90
  start-page: 147
  year: 2006
  ident: 380_CR30
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-006-9069-7
– volume: 17
  start-page: 837
  year: 1985
  ident: 380_CR4
  publication-title: Soil Biol Biochem
  doi: 10.1016/0038-0717(85)90144-0
– volume: 53
  start-page: 911
  year: 2017
  ident: 380_CR28
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-017-1233-x
– volume: 43
  start-page: 11
  year: 2009
  ident: 380_CR11
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2009.05.003
– volume: 121
  start-page: 389
  year: 2003
  ident: 380_CR24
  publication-title: Environ Pollut
  doi: 10.1016/S0269-7491(02)00235-X
– volume: 30
  start-page: 357
  issue: 6
  year: 2015
  ident: 380_CR15
  publication-title: Trends Ecol Evol
  doi: 10.1016/j.tree.2015.03.015
– volume: 93
  start-page: 50
  year: 2016
  ident: 380_CR38
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.10.023
– volume: 625
  start-page: 909
  year: 2018
  ident: 380_CR12
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.12.313
– volume: 82
  start-page: 389
  year: 2012
  ident: 380_CR16
  publication-title: Ecol Monogr
  doi: 10.1890/11-1600.1
– volume: 124
  start-page: 38
  year: 2018
  ident: 380_CR29
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.05.024
– volume: 26
  start-page: 505
  year: 2011
  ident: 380_CR42
  publication-title: Ecol Res
  doi: 10.1007/s11284-011-0805-8
– volume: 86
  start-page: 3252
  year: 2005
  ident: 380_CR23
  publication-title: Ecology
  doi: 10.1890/05-0150
– volume: 12
  start-page: 1817
  year: 2018
  ident: 380_CR47
  publication-title: ISME J
  doi: 10.1038/s41396-018-0096-y
– volume: 34
  start-page: 1309
  year: 2002
  ident: 380_CR35
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(02)00074-3
– volume: 55
  start-page: 651
  year: 2007
  ident: 380_CR2
  publication-title: Microb Ecol
  doi: 10.1007/s00248-007-9308-0
– volume: 494
  start-page: 459
  year: 2013
  ident: 380_CR26
  publication-title: Nature
  doi: 10.1038/nature11917
– volume: 51
  start-page: 11503
  year: 2017
  ident: 380_CR40
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.7b04554
– volume: 173–174
  start-page: 330
  year: 2012
  ident: 380_CR1
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.07.020
– volume: 42
  start-page: 391
  year: 2010
  ident: 380_CR36
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.10.014
– volume: 40
  start-page: 638
  issue: 3
  year: 2008
  ident: 380_CR20
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2007.09.013
– volume: 48
  start-page: 218
  year: 2004
  ident: 380_CR13
  publication-title: Microb Ecol
  doi: 10.1007/s00248-003-9001-x
– volume: 29
  start-page: 1023
  year: 1997
  ident: 380_CR3
  publication-title: Soil Biol Biochem
  doi: 10.1016/S0038-0717(97)00030-8
– volume: 338
  start-page: 355
  year: 2011
  ident: 380_CR14
  publication-title: Plant Soil
  doi: 10.1007/s11104-010-0550-8
– volume: 57
  start-page: 99
  year: 2002
  ident: 380_CR31
  publication-title: Biogeochemistry
  doi: 10.1023/A:1015791622742
– volume: 19
  start-page: 3373
  year: 2018
  ident: 380_CR43
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19113373
– volume: 119
  start-page: 275
  year: 2017
  ident: 380_CR44
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2017.06.041
– volume: 154
  start-page: 349
  year: 2007
  ident: 380_CR45
  publication-title: Oecologia
  doi: 10.1007/s00442-007-0836-6
– volume: 37
  start-page: 63
  year: 1997
  ident: 380_CR41
  publication-title: Biochemistry
– volume: 57
  start-page: 192
  year: 2013
  ident: 380_CR6
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2012.07.012
– volume: 42
  start-page: 1819
  year: 1997
  ident: 380_CR34
  publication-title: Limnol Oceanogr
  doi: 10.4319/lo.1997.42.8.1819
– volume: 10
  start-page: e0144689
  issue: 12
  year: 2015
  ident: 380_CR25
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0144689
SSID ssj0000941497
Score 2.3565016
Snippet Background Nitrogen (N) deposition alters litter decomposition and soil carbon (C) sequestration by influencing the microbial community and its enzyme...
BackgroundNitrogen (N) deposition alters litter decomposition and soil carbon (C) sequestration by influencing the microbial community and its enzyme activity....
BACKGROUND: Nitrogen (N) deposition alters litter decomposition and soil carbon (C) sequestration by influencing the microbial community and its enzyme...
Background Nitrogen (N) deposition alters litter decomposition and soil carbon (C) sequestration by influencing the microbial community and its enzyme...
Abstract Background Nitrogen (N) deposition alters litter decomposition and soil carbon (C) sequestration by influencing the microbial community and its enzyme...
SourceID doaj
swepub
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 36
SubjectTerms Ammonium
Ammonium compounds
Ammonium nitrate
Biological fertilization
Carbon
Decomposition
Deposition
Dissolved organic carbon
Earth and Environmental Science
Ecological effects
Environment
environmental impact
Enzymatic activity
Enzyme activity
Enzymes
Extracellular
extracellular enzymes
Fertilization
Glucosaminidase
Glycine
Glycine (amino acid)
Grassland
grassland soils
Grasslands
Inorganic N deposition
microbial biomass
microbial communities
Microbial enzyme activity
Microorganisms
monophenol monooxygenase
Nitrogen
organic carbon
Organic matter
Organic N deposition
Peroxidase
Phenoloxidase
Phenols
Soil
soil carbon
Soil chemistry
soil enzymes
Soil microbial biomass
Soil organic matter
Soil pH
Soils
Steppes
Urea
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA-6IfgifmLdlAj6pGFp0zS9T7LpHUNwiDjZW0ia5FrY2tneDeZf7znpx7g-XOhTm4TQc05yficnv0PIO3A6UiecYakt8UqOypkFR4AVBuCE4crZSKbz7bQ4Ocu_nsvzMeDWj2mV05oYF2rXVhgjP8hgqwR8DOjj09UfhlWj8HR1LKFxn-zCElwC-No9Wp5-_zFHWQC8AARQ022ZsjjoUwFjMExix1MxzrKNHSkS9294m_MB6X9konEDOn5MHo2eIz0cRP2E3PPNU_JgGVmnb5-Rm4GHuKdtoFPVkzVFlzS-AsvtWlAWiglEKAwKz2UdaZhgVFiiO4NBfMxKpb75e3vpKd55wNIStG4oUlgh_7Knqw78bcyHpH1bXzwnZ8fLn59P2FhUgVXg26yZEgAopDFppUrrF-UiGBFyK72wRngF-CXjIQNgzENQLi2cA1CWu8ypRZpbr8QLstO0jX9JqPDcxm4BfJJK2tILZRYG-rpgiipPSDr9WF2NjONY-OJCR-RRFnoQhgZh6CgMnSXkw9znauDb2Nr6COU1t0Su7Pii7VZ6ND0tLEa-g_XWuNyn3vhKKF4FLnwqQpAJ2Z-krUcD7vWduiXk7fwZTA9FYRrfXmMbJSWsb5In5OOkJXdDbJv2-0GTNib-pf51GCf-u15pUUqevto-sz3yMIt6LBkX-2Rn3V371-Aire2b0Q7-AYLTEEs
  priority: 102
  providerName: ProQuest
– databaseName: Springer Journals Complete - Open Access
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ra9YwEA8yEXwRNxU7N4mgT1pMmqZJH-fcGII-OdlbSJrks7K10n4T5l_vXdp-8okMBn1KkzTk7tLfJXe_EPIaQAf3wtucO40pOarMHQCBvLLgTlimvEtkOp-_VGfn5acLeTEnhY1LtPtyJJlW6mTWuno_cgGuR47R53icxXJYeO9L8N1Rr4_nHIcfU6wcwH61ZMj8t-nWXyiR9W8hzM2h6D8Eoumnc_qYPJrRIj2axLtL7oVujzw4SUzTN0_Ir4l7eKR9pMtNJ2uKMDQVgbUOPSgIxaAhFACF56pN1EvQKyzLg8WNe4xEpaH7fXMVKOY54HUStO0o0lYh53KgqwEwNsZA0rFvL5-S89OTr8dn-XyRQt4AnlnnSoATIa3ljdIu1LqOVsTSySCcFUGBz1KwWIAzzGJUnlfegyNW-sKrmpcuKPGM7HR9F54TKgJzqVkEHNJIp4NQtrbQ1kdbNWVG-DKxpplZxvGyi0uTvA1dmUkYBoRhkjBMkZG3mzY_J46NW2t_QHltaiI_diroh5WZzc0Ih7vd0QVnfRl4sKERijWRicBFjDIjB4u0zWy0o4E50rVW8L2MvNq8BnNDUdgu9NdYR0kJa5pkGXm3aMnfLm4b9ptJk7YG_rH9dpQG_r1dGaEl4_t36_YFeVgkvZY5EwdkZz1ch0OASWv3MlnFHz3rC2s
  priority: 102
  providerName: Springer Nature
Title Effects of different forms of nitrogen addition on microbial extracellular enzyme activity in temperate grassland soil
URI https://link.springer.com/article/10.1186/s13717-022-00380-2
https://www.proquest.com/docview/2658987717
https://www.proquest.com/docview/2675579350
https://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-38501
https://doaj.org/article/3b5230fbebad4e1eaec370cf03e13ff5
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgCIkL4lMEyspIcIKoduzEyXG7bKlWokJAUW-WHdttUJug3S1S-fXMOMnS5VAuSFEiOXbieMbxG3v8hpDXADq4E86k3Ja4JUfJ1AIQSAsD5oRhytlIpvPxqDg8louT_ORaqC_0CevpgfuG2xMW5y2D9dY46bk3vhaK1YEJz0UIkb0UxrxrxtT33l8OoL8ad8mUxd6KC7BcUnRex9UwlmZbI1Ek7N9CmZuF0b9IROPAc_CA3B8QI532NX1Ibvn2Ebk7j2zTV4_Jz55_eEW7QMdoJ2uKUDQmQY9ddqAkFB2HUAgUjosm0i_BU-HXvDQ4eY_eqNS3v64uPMW9DhhSgjYtReoq5F329HQJOBv9IOmqa86fkOOD-dfZYToEU0hrwDTrVAkwJHJjeK1K66uyCkYEaXMvrBFegd2SsZCBQcxCUI4XzoExJl3mVMWl9Uo8JTtt1_pnhArPbCwWAIvUuS29UKYyUNYFU9QyIXxsWF0PTOMY8OJcR4ujLHQvDA3C0FEYOkvI202ZHz3Pxo2591Fem5zIkR0TQHP0oDn6X5qTkN1R2nrouCsNbVRWpYL3JeTV5jZ0ORSFaX13iXlUnsN_LWcJeTdqyZ9H3FTtN70mbVX8ffNtGit-1pxqUeaMP_8fn_eC3MuitucpE7tkZ7289C8BQK3thNyW7MOE3JlOF18WcN2fH336DKmzTOK5mE1ib_oNAikepQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NTgheED9F2QAjsSeIlsRJnD4gtLFOHdsqhDa0N8-O7VJpS7a2A5U_ir-ROyfpVB76NilPiW1ZufPdd_b5O4D3CDoiw40KIp3TlRyRBBqBQJApDCdUKIz2ZDrHw2xwmnw9S8_W4G97F4bSKlub6A21qQraI9-O0VVifIzRx-er64CqRtHpaltCo1aLQzv_jSHb9NPBHsp3K473-ydfBkFTVSAo0LnPAsERUadKRYXIte3lPae4S3RquVbcCgTwcehijAxD54SJMmMwKklMbEQvSrQVHMe9B-sJx1CmA-u7_eG374tdHQyWMOQQ7e2cPNueRhznHFDSPJ3ChUG85AF9oYAldLs4kP2PvNQ7vP3H8KhBqmynVq0nsGbLp3C_71mu58_gV817PGWVY22VlRkjCOxfoaWYVKicjBKWSPgMn8uxp33CUdElTBQdGlAWLLPln_mlZXTHgkpZsHHJiDKL-J4tG00Q31P-JZtW44vncHonv_sFdMqqtC-BcRtq380hBipSnVsuVE9hX-NUViRdiNofK4uG4ZwKbVxIH-nkmayFIVEY0gtDxl34sOhzVfN7rGy9S_JatCRubv-imoxks9Ql17TT7rTVyiQ2ssoWXISFC7mNuHNpFzZbacvGYEzlrXp34d3iMy51EoUqbXVDbUSaoj1Nwy58bLXkdohV096qNWlp4nvjHzt-4j_HI8nzNIxerZ7ZW3gwODk-kkcHw8MNeBh7nU6DkG9CZza5sa8Rns30m2ZNMDi_62X4D6BVTLo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxFMEChiJnmAV73p3vTkg1JJELYWoQhT15tprO0Rqd8smBYWfxq9jxvuowiG3SjltbMvyPPx99niGkDcAOkLDjQpCneGTHBEHGoBAkCqgE4oJo30ynS_T9OAk_nSanG6Rv-1bGAyrbH2id9SmzPGMfBDBVgn8GNjHwDVhEcejyYfLnwFWkMKb1racRq0iR3b1G-jb4v3hCGS9G0WT8bePB0FTYSDIYaNfBoIDuk6UCnORaTvMhk5xF-vEcq24FQDmI-YiYInMOWHC1BhgKLGJjBiGsbaCw7i3yLYAVsR6ZHt_PD3-2p3wAHEC-iHalzpZOliEHOYfYAA93sixIFrbDX3RgDWk213O_pfI1G9-k_vkXoNa6V6tZg_Ili0ekttjn_F69Yj8qnMgL2jpaFtxZUkRDvtP4DWqEhSVYvASKgKF38Xcp4CCUWGNK4UXCBgRS23xZ3VhKb63wLIWdF5QTJ-FuZ8tnVWA9TEWky7K-fljcnIjy_2E9IqysE8J5ZZp380BHsoTnVku1FBBX-NUmsd9ErYLK_Mm2zkW3TiXnvVkqayFIUEY0gtDRn3ytutzWef62Nh6H-XVtcQ83f5DWc1kY_aSazx1d9pqZWIbWmVzLljuGLchdy7pk51W2rJxHgt5rep98rr7G8weRaEKW15hG5Ek4FsT1ifvWi25HmLTtHdrTVqb-Gj-fc9P_Md8JnmWsPDZ5pm9InfA_OTnw-nRc3I38iqdBIzvkN6yurIvAKkt9cvGJCg5u2kr_AcX91Dv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+different+forms+of+nitrogen+addition+on+microbial+extracellular+enzyme+activity+in+temperate+grassland+soil&rft.jtitle=Ecological+processes&rft.au=Dong%2C+Lili&rft.au=Berg%2C+Bj%C3%B6rn&rft.au=Gu%2C+Weiping&rft.au=Wang%2C+Zhengwen&rft.date=2022-05-03&rft.issn=2192-1709&rft.eissn=2192-1709&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1186%2Fs13717-022-00380-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13717_022_00380_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-1709&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-1709&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-1709&client=summon