Airway macrophage-intrinsic TGF-β1 regulates pulmonary immunity during early-life allergen exposure

Early life represents a major risk window for asthma development. However, the mechanisms controlling the threshold for establishment of allergic airway inflammation in early life are incompletely understood. Airway macrophages (AMs) regulate pulmonary allergic responses and undergo TGF-β–dependent...

Full description

Saved in:
Bibliographic Details
Published inJournal of allergy and clinical immunology Vol. 147; no. 5; pp. 1892 - 1906
Main Authors Branchett, William J., Cook, James, Oliver, Robert A., Bruno, Nicoletta, Walker, Simone A., Stölting, Helen, Mack, Matthias, O’Garra, Anne, Saglani, Sejal, Lloyd, Clare M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2021
Elsevier Limited
Mosby
Subjects
Online AccessGet full text
ISSN0091-6749
1097-6825
1097-6825
DOI10.1016/j.jaci.2021.01.026

Cover

Loading…
Abstract Early life represents a major risk window for asthma development. However, the mechanisms controlling the threshold for establishment of allergic airway inflammation in early life are incompletely understood. Airway macrophages (AMs) regulate pulmonary allergic responses and undergo TGF-β–dependent postnatal development, but the role of AM maturation factors such as TGF-β in controlling the threshold for pathogenic immune responses to inhaled allergens remains unclear. Our aim was to test the hypothesis that AM-derived TGF-β1 regulates pathogenic immunity to inhaled allergen in early life. Conditional knockout (Tgfb1ΔCD11c) mice, with TGF-β1 deficiency in AMs and other CD11c+ cells, were analyzed throughout early life and following neonatal house dust mite (HDM) inhalation. The roles of specific chemokine receptors were determined by using in vivo blocking antibodies. AM-intrinsic TGF-β1 was redundant for initial population of the neonatal lung with AMs, but AMs from Tgfb1ΔCD11c mice failed to adopt a mature homeostatic AM phenotype in the first weeks of life. Evidence of constitutive TGF-β1 signaling was also observed in pediatric human AMs. TGF-β1–deficient AMs expressed enhanced levels of monocyte-attractant chemokines, and accordingly, Tgfb1ΔCD11c mice exposed to HDM throughout early life accumulated CCR2-dependent inflammatory CD11c+ mononuclear phagocytes into the airway niche that expressed the proallergic chemokine CCL8. Tgfb1ΔCD11c mice displayed augmented TH2, group 2 innate lymphoid cell, and airway remodeling responses to HDM, which were ameliorated by blockade of the CCL8 receptor CCR8. Our results highlight a causal relationship between AM maturity, chemokines, and pathogenic immunity to environmental stimuli in early life and identify TGF-β1 as a key regulator of this. [Display omitted]
AbstractList Early life represents a major risk window for asthma development. However, the mechanisms controlling the threshold for establishment of allergic airway inflammation in early life are incompletely understood. Airway macrophages (AMs) regulate pulmonary allergic responses and undergo TGF-β–dependent postnatal development, but the role of AM maturation factors such as TGF-β in controlling the threshold for pathogenic immune responses to inhaled allergens remains unclear. Our aim was to test the hypothesis that AM-derived TGF-β1 regulates pathogenic immunity to inhaled allergen in early life. Conditional knockout (Tgfb1ΔCD11c) mice, with TGF-β1 deficiency in AMs and other CD11c+ cells, were analyzed throughout early life and following neonatal house dust mite (HDM) inhalation. The roles of specific chemokine receptors were determined by using in vivo blocking antibodies. AM-intrinsic TGF-β1 was redundant for initial population of the neonatal lung with AMs, but AMs from Tgfb1ΔCD11c mice failed to adopt a mature homeostatic AM phenotype in the first weeks of life. Evidence of constitutive TGF-β1 signaling was also observed in pediatric human AMs. TGF-β1–deficient AMs expressed enhanced levels of monocyte-attractant chemokines, and accordingly, Tgfb1ΔCD11c mice exposed to HDM throughout early life accumulated CCR2-dependent inflammatory CD11c+ mononuclear phagocytes into the airway niche that expressed the proallergic chemokine CCL8. Tgfb1ΔCD11c mice displayed augmented TH2, group 2 innate lymphoid cell, and airway remodeling responses to HDM, which were ameliorated by blockade of the CCL8 receptor CCR8. Our results highlight a causal relationship between AM maturity, chemokines, and pathogenic immunity to environmental stimuli in early life and identify TGF-β1 as a key regulator of this. [Display omitted]
Early life represents a major risk window for asthma development. However, the mechanisms controlling the threshold for establishment of allergic airway inflammation in early life are incompletely understood. Airway macrophages (AMs) regulate pulmonary allergic responses and undergo TGF-β-dependent postnatal development, but the role of AM maturation factors such as TGF-β in controlling the threshold for pathogenic immune responses to inhaled allergens remains unclear.BACKGROUNDEarly life represents a major risk window for asthma development. However, the mechanisms controlling the threshold for establishment of allergic airway inflammation in early life are incompletely understood. Airway macrophages (AMs) regulate pulmonary allergic responses and undergo TGF-β-dependent postnatal development, but the role of AM maturation factors such as TGF-β in controlling the threshold for pathogenic immune responses to inhaled allergens remains unclear.Our aim was to test the hypothesis that AM-derived TGF-β1 regulates pathogenic immunity to inhaled allergen in early life.OBJECTIVEOur aim was to test the hypothesis that AM-derived TGF-β1 regulates pathogenic immunity to inhaled allergen in early life.Conditional knockout (Tgfb1ΔCD11c) mice, with TGF-β1 deficiency in AMs and other CD11c+ cells, were analyzed throughout early life and following neonatal house dust mite (HDM) inhalation. The roles of specific chemokine receptors were determined by using in vivo blocking antibodies.METHODSConditional knockout (Tgfb1ΔCD11c) mice, with TGF-β1 deficiency in AMs and other CD11c+ cells, were analyzed throughout early life and following neonatal house dust mite (HDM) inhalation. The roles of specific chemokine receptors were determined by using in vivo blocking antibodies.AM-intrinsic TGF-β1 was redundant for initial population of the neonatal lung with AMs, but AMs from Tgfb1ΔCD11c mice failed to adopt a mature homeostatic AM phenotype in the first weeks of life. Evidence of constitutive TGF-β1 signaling was also observed in pediatric human AMs. TGF-β1-deficient AMs expressed enhanced levels of monocyte-attractant chemokines, and accordingly, Tgfb1ΔCD11c mice exposed to HDM throughout early life accumulated CCR2-dependent inflammatory CD11c+ mononuclear phagocytes into the airway niche that expressed the proallergic chemokine CCL8. Tgfb1ΔCD11c mice displayed augmented TH2, group 2 innate lymphoid cell, and airway remodeling responses to HDM, which were ameliorated by blockade of the CCL8 receptor CCR8.RESULTSAM-intrinsic TGF-β1 was redundant for initial population of the neonatal lung with AMs, but AMs from Tgfb1ΔCD11c mice failed to adopt a mature homeostatic AM phenotype in the first weeks of life. Evidence of constitutive TGF-β1 signaling was also observed in pediatric human AMs. TGF-β1-deficient AMs expressed enhanced levels of monocyte-attractant chemokines, and accordingly, Tgfb1ΔCD11c mice exposed to HDM throughout early life accumulated CCR2-dependent inflammatory CD11c+ mononuclear phagocytes into the airway niche that expressed the proallergic chemokine CCL8. Tgfb1ΔCD11c mice displayed augmented TH2, group 2 innate lymphoid cell, and airway remodeling responses to HDM, which were ameliorated by blockade of the CCL8 receptor CCR8.Our results highlight a causal relationship between AM maturity, chemokines, and pathogenic immunity to environmental stimuli in early life and identify TGF-β1 as a key regulator of this.CONCLUSIONOur results highlight a causal relationship between AM maturity, chemokines, and pathogenic immunity to environmental stimuli in early life and identify TGF-β1 as a key regulator of this.
Early life represents a major risk window for asthma development. However, the mechanisms controlling the threshold for establishment of allergic airway inflammation in early life are incompletely understood. Airway macrophages (AMs) regulate pulmonary allergic responses and undergo TGF-β-dependent postnatal development, but the role of AM maturation factors such as TGF-β in controlling the threshold for pathogenic immune responses to inhaled allergens remains unclear. Our aim was to test the hypothesis that AM-derived TGF-β1 regulates pathogenic immunity to inhaled allergen in early life. Conditional knockout (Tgfb1 ) mice, with TGF-β1 deficiency in AMs and other CD11c cells, were analyzed throughout early life and following neonatal house dust mite (HDM) inhalation. The roles of specific chemokine receptors were determined by using in vivo blocking antibodies. AM-intrinsic TGF-β1 was redundant for initial population of the neonatal lung with AMs, but AMs from Tgfb1 mice failed to adopt a mature homeostatic AM phenotype in the first weeks of life. Evidence of constitutive TGF-β1 signaling was also observed in pediatric human AMs. TGF-β1-deficient AMs expressed enhanced levels of monocyte-attractant chemokines, and accordingly, Tgfb1 mice exposed to HDM throughout early life accumulated CCR2-dependent inflammatory CD11c mononuclear phagocytes into the airway niche that expressed the proallergic chemokine CCL8. Tgfb1 mice displayed augmented T 2, group 2 innate lymphoid cell, and airway remodeling responses to HDM, which were ameliorated by blockade of the CCL8 receptor CCR8. Our results highlight a causal relationship between AM maturity, chemokines, and pathogenic immunity to environmental stimuli in early life and identify TGF-β1 as a key regulator of this.
BackgroundEarly life represents a major risk window for asthma development. However, the mechanisms controlling the threshold for establishment of allergic airway inflammation in early life are incompletely understood. Airway macrophages (AMs) regulate pulmonary allergic responses and undergo TGF-β–dependent postnatal development, but the role of AM maturation factors such as TGF-β in controlling the threshold for pathogenic immune responses to inhaled allergens remains unclear.ObjectiveOur aim was to test the hypothesis that AM-derived TGF-β1 regulates pathogenic immunity to inhaled allergen in early life.MethodsConditional knockout (Tgfb1ΔCD11c) mice, with TGF-β1 deficiency in AMs and other CD11c+ cells, were analyzed throughout early life and following neonatal house dust mite (HDM) inhalation. The roles of specific chemokine receptors were determined by using in vivo blocking antibodies.ResultsAM-intrinsic TGF-β1 was redundant for initial population of the neonatal lung with AMs, but AMs from Tgfb1ΔCD11c mice failed to adopt a mature homeostatic AM phenotype in the first weeks of life. Evidence of constitutive TGF-β1 signaling was also observed in pediatric human AMs. TGF-β1–deficient AMs expressed enhanced levels of monocyte-attractant chemokines, and accordingly, Tgfb1ΔCD11c mice exposed to HDM throughout early life accumulated CCR2-dependent inflammatory CD11c+ mononuclear phagocytes into the airway niche that expressed the proallergic chemokine CCL8. Tgfb1ΔCD11c mice displayed augmented TH2, group 2 innate lymphoid cell, and airway remodeling responses to HDM, which were ameliorated by blockade of the CCL8 receptor CCR8.ConclusionOur results highlight a causal relationship between AM maturity, chemokines, and pathogenic immunity to environmental stimuli in early life and identify TGF-β1 as a key regulator of this.
Author Bruno, Nicoletta
Cook, James
Walker, Simone A.
Branchett, William J.
Mack, Matthias
O’Garra, Anne
Lloyd, Clare M.
Oliver, Robert A.
Stölting, Helen
Saglani, Sejal
Author_xml – sequence: 1
  givenname: William J.
  surname: Branchett
  fullname: Branchett, William J.
  organization: National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
– sequence: 2
  givenname: James
  surname: Cook
  fullname: Cook, James
  organization: National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
– sequence: 3
  givenname: Robert A.
  surname: Oliver
  fullname: Oliver, Robert A.
  organization: National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
– sequence: 4
  givenname: Nicoletta
  surname: Bruno
  fullname: Bruno, Nicoletta
  organization: National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
– sequence: 5
  givenname: Simone A.
  surname: Walker
  fullname: Walker, Simone A.
  organization: National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
– sequence: 6
  givenname: Helen
  surname: Stölting
  fullname: Stölting, Helen
  organization: National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
– sequence: 7
  givenname: Matthias
  surname: Mack
  fullname: Mack, Matthias
  organization: Department of Internal Medicine II- Nephrology, University Hospital Regensburg, Regensburg, Germany
– sequence: 8
  givenname: Anne
  surname: O’Garra
  fullname: O’Garra, Anne
  organization: National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
– sequence: 9
  givenname: Sejal
  surname: Saglani
  fullname: Saglani, Sejal
  organization: National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
– sequence: 10
  givenname: Clare M.
  surname: Lloyd
  fullname: Lloyd, Clare M.
  email: c.lloyd@imperial.ac.uk
  organization: National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33571538$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAURS1URKeFH2CBIrFhk8F2xk6CUKWqogWpEpuytjzOS_qCYw92Ushv8SF8E46mVDCLIlmyrHfu1X2-J-TIeQeEvGR0zSiTb_t1rw2uOeVsTdPh8glZMVqXuay4OCIrSmuWy3JTH5OTGHua3kVVPyPHRSFKJopqRZpzDN_1nA3aBL-71R3k6MaALqLJbq4u818_WRagm6weIWa7yQ7e6TBnOAyTw3HOminRXQY62Dm32EKmrYXQgcvgx87HKcBz8rTVNsKL-_uUfLn8cHPxMb_-fPXp4vw6N5LSMRcbRre6EFyyWjPgLTRSMimNoWLLq9qYJiHbpoS6EVq0xhQF5WlWStEyrotTcrb33U3bARoDaRNt1S7gkCIrr1H9O3F4qzp_pypaV5XkyeDNvUHw3yaIoxowGrBWO_BTVHxT1VyKsqAJfX2A9n4KLq2nuOApFSulTNSrvxM9RPlTQAL4HkjfH2OA9gFhVC0tq14tLaulZUXT4YtrdSAyOOoR_bIV2sel7_dSSD3cIQQVDYIz0GAAM6rG4-PydwdyY9Gh0fYrzP8T_waGXdhE
CitedBy_id crossref_primary_10_1016_j_intimp_2023_110760
crossref_primary_10_1016_j_phymed_2022_154345
crossref_primary_10_1007_s00018_025_05664_2
crossref_primary_10_3389_fimmu_2021_753940
crossref_primary_10_3389_falgy_2022_981126
crossref_primary_10_1016_j_mucimm_2024_10_002
crossref_primary_10_1084_jem_20210987
crossref_primary_10_1038_s41598_024_64783_1
crossref_primary_10_1111_imcb_12688
crossref_primary_10_3389_fimmu_2021_688879
crossref_primary_10_3389_fimmu_2023_1136780
crossref_primary_10_1111_imm_13745
crossref_primary_10_1093_jleuko_qiad121
crossref_primary_10_3389_fimmu_2022_1012048
crossref_primary_10_1016_j_immuni_2022_08_010
crossref_primary_10_1038_s41385_021_00480_w
crossref_primary_10_1016_j_cellimm_2022_104536
crossref_primary_10_1002_mco2_494
crossref_primary_10_3389_falgy_2021_692841
Cites_doi 10.1016/j.immuni.2019.01.009
10.1016/j.jaci.2012.01.059
10.1016/j.it.2019.07.004
10.1084/jem.20062648
10.1038/nri3070
10.1084/jem.188.1.157
10.1016/j.immuni.2019.03.024
10.1111/all.12536
10.1038/mi.2015.84
10.1002/dvg.20516
10.1084/jem.20162152
10.1016/j.jaci.2019.08.006
10.1164/rccm.200702-212OC
10.1111/imr.12562
10.1016/j.celrep.2017.01.071
10.1016/j.imlet.2009.04.006
10.1016/j.immuni.2013.04.004
10.1136/thoraxjnl-2015-207020
10.1126/sciimmunol.aan4128
10.1002/cti2.1134
10.1016/j.jaci.2012.07.023
10.12688/wellcomeopenres.15875.1
10.1084/jem.20121849
10.1038/ni.3005
10.1182/blood-2013-08-520619
10.1038/ni.1984
10.1016/j.immuni.2012.10.016
10.1126/sciimmunol.aav7638
10.1038/s41590-019-0568-x
10.1084/jem.20131199
10.1016/j.immuni.2018.11.012
10.1165/rcmb.2014-0255OC
10.1016/j.cell.2019.08.009
10.1016/j.cell.2018.06.045
10.1038/mi.2016.92
10.1165/rcmb.2008-0396OC
10.1084/jem.20182111
10.4049/jimmunol.1400580
10.4049/jimmunol.166.7.4697
10.4049/jimmunol.172.3.1872
10.1038/s41467-019-08794-x
10.1038/nri3600
10.3389/fimmu.2017.01570
10.1155/2013/632049
10.1016/j.immuni.2017.10.007
10.1084/jem.20191236
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
2021. The Authors
2021 The Authors 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
– notice: 2021. The Authors
– notice: 2021 The Authors 2021
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7T5
H94
K9.
NAPCQ
7X8
5PM
DOI 10.1016/j.jaci.2021.01.026
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Entomology Abstracts (Full archive)
Immunology Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Entomology Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-6825
EndPage 1906
ExternalDocumentID PMC8098862
33571538
10_1016_j_jaci_2021_01_026
S0091674921001731
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom--UK
Germany
GeographicLocations_xml – name: United Kingdom--UK
– name: Germany
GrantInformation_xml – fundername: Cancer Research UK
  grantid: FC001126
  funderid: https://doi.org/10.13039/501100000289
– fundername: UK Medical Research Council
  grantid: FC001126
– fundername: Wellcome Trust
  grantid: FC001126
  funderid: https://doi.org/10.13039/100010269
– fundername: Cancer Research UK
  grantid: FC001126
– fundername: Wellcome Trust
  grantid: 107059/Z/15/Z
– fundername: Wellcome Trust
  grantid: FC001126
– fundername: Medical Research Council
  grantid: FC001126
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.XZ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
354
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8F7
8FE
8FH
8P~
9JM
AAAJQ
AABNK
AAEDT
AAEDW
AAFWJ
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
ADVLN
ADXHL
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
C45
CAG
CJTIS
COF
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDU
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
LK8
LUGTX
M27
M41
MO0
N4W
N9A
O-L
O9-
O9~
OAUVE
OBH
ODZKP
OHH
OHT
OK0
OK1
OVD
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPCBC
SSH
SSI
SSZ
T5K
TEORI
TWZ
UGJ
UNMZH
UV1
WH7
WOW
WUQ
X7M
XFW
YOC
YQI
YQJ
Z5R
ZGI
ZXP
ZY1
~02
~G-
~KM
6I.
AACTN
AAFTH
RIG
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SS
7T5
H94
K9.
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c600t-5410ba352619a1e2fed66166cc05b289ccd541bd7e9d5a5fcc330205b765f12a3
IEDL.DBID .~1
ISSN 0091-6749
1097-6825
IngestDate Thu Aug 21 13:48:54 EDT 2025
Mon Jul 21 11:52:00 EDT 2025
Wed Aug 13 04:25:19 EDT 2025
Mon Jul 21 05:35:38 EDT 2025
Thu Apr 24 23:11:45 EDT 2025
Tue Jul 01 04:21:50 EDT 2025
Sun Apr 06 06:54:25 EDT 2025
Tue Aug 26 17:44:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords chemokine
cDC
MP
AAD
IM
macrophage
neonate
AM
type 2 immunity
BAL
mLN
Asthma
HDM
ILC2
P
αCCR8
αCCR2
lung immunity
TGF-β
monocyte
T2
Language English
License This is an open access article under the CC BY license.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c600t-5410ba352619a1e2fed66166cc05b289ccd541bd7e9d5a5fcc330205b765f12a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0091674921001731
PMID 33571538
PQID 2522051766
PQPubID 105664
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8098862
proquest_miscellaneous_2489265730
proquest_journals_2522051766
pubmed_primary_33571538
crossref_primary_10_1016_j_jaci_2021_01_026
crossref_citationtrail_10_1016_j_jaci_2021_01_026
elsevier_sciencedirect_doi_10_1016_j_jaci_2021_01_026
elsevier_clinicalkey_doi_10_1016_j_jaci_2021_01_026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: St. Louis
PublicationTitle Journal of allergy and clinical immunology
PublicationTitleAlternate J Allergy Clin Immunol
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Limited
Mosby
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
– name: Mosby
References Lee, Shannon, Amenyogbe, Bennike, Diray-Arce, Idoko (bib1) 2019; 10
Mathie, Dixon, Walker, Tyrrell, Mondhe, O'Donnell (bib9) 2015; 70
Branchett, O'Garra, Lloyd (bib14) 2020; 5
Shi, Pamer (bib33) 2011; 11
Branchett, Stölting, Oliver, Walker, Puttur, Gregory (bib15) 2020; 145
Misharin, Morales-Nebreda, Reyfman, Cuda, Walter, McQuattie-Pimentel (bib17) 2017; 214
Ma, Zhu, Homer, Gerard, Strieter, Elias (bib44) 2004; 172
Saglani, Gregory, Manghera, Branchett, Uwadiae, Entwistle (bib41) 2018; 3
Gundra, Girgis, Ruckerl, Jenkins, Ward, Kurtz (bib31) 2014; 123
Draijer, Robbe, Boorsma, Hylkema, Melgert (bib11) 2013; 2013
Yu, Buttgereit, Lelios, Utz, Cansever, Becher (bib24) 2017; 47
Olin, Henckel, Chen, Lakshmikanth, Pou, Mikes (bib2) 2018; 174
Hashimoto, Chow, Noizat, Teo, Beasley, Leboeuf (bib16) 2013; 38
Duan, Steinfort, Smallwood, Hew, Chen, Ernst (bib29) 2016; 9
Saglani, Mathie, Gregory, Bell, Bush, Lloyd (bib35) 2009; 41
Knipfer, Schulz-Kuhnt, Kindermann, Greif, Symowski, Voehringer (bib37) 2019; 216
Plantinga, Guilliams, Vanheerswynghels, Deswarte, Branco-Madeira, Toussaint (bib22) 2013; 38
Islam, Chang, Colvin, Byrne, McCully, Moser (bib39) 2011; 12
Byrne, Powell, O’Sullivan, Ogger, Hoffland, Cook (bib20) 2020; 217
Lloyd, Saglani (bib4) 2017; 278
Lloyd, Saglani (bib5) 2019; 40
Zaslona, Przybranowski, Wilke, van Rooijen, Teitz-Tennenbaum, Osterholzer (bib10) 2014; 193
Zhang, Saradna, Ratan, Ke, Tu, Do (bib45) 2020; 9
Liu, Gu, Chakarov, Bleriot, Kwok, Chen (bib21) 2019; 178
Staples, Hinks, Ward, Gunn, Smith, Djukanovic (bib13) 2012; 130
Ducreux, Crocker, Vanbever (bib30) 2009; 124
Bachus, Kaur, Papillion, Marquez-Lago, Yu, Ballesteros-Tato (bib40) 2019; 50
Bossley, Fleming, Gupta, Regamey, Frith, Oates (bib36) 2012; 129
Caton, Smith-Raska, Reizis (bib25) 2007; 204
Byrne, Mathie, Gregory, Lloyd (bib7) 2015; 70
Azhar, Yin, Bommireddy, Duffy, Yang, Pawlowski (bib26) 2009; 47
Aegerter, Kulikauskaite, Crotta, Patel, Kelly, Hessel (bib19) 2020; 21
Batlle, Massague (bib23) 2019; 50
Gonzalo, Lloyd, Wen, Albar, Wells, Proudfoot (bib43) 1998; 188
Soroosh, Doherty, Duan, Mehta, Choi, Adams (bib46) 2013; 210
Lambert, Culley (bib3) 2017; 8
Lee, Jeong, Nyenhuis, Berdyshev, Chung, Ranjan (bib18) 2015; 52
Mack, Cihak, Simonis, Luckow, Proudfoot, Plachy (bib27) 2001; 166
Schneider, Nobs, Kurrer, Rehrauer, Thiele, Kopf (bib28) 2014; 15
Dyer, Medina-Ruiz, Bartolini, Schuette, Hughes, Pallas (bib32) 2019; 50
Saglani, Payne, Zhu, Wang, Nicholson, Bush (bib34) 2007; 176
Hussell, Bell (bib8) 2014; 14
Guilliams, De Kleer, Henri, Post, Vanhoutte, De Prijck (bib6) 2013; 210
Byrne, Weiss, Mathie, Walker, Eames, Saliba (bib12) 2017; 10
Puttur, Denney, Gregory, Vuononvirta, Oliver, Entwistle (bib38) 2019; 4
Saluzzo, Gorki, Rana, Martins, Scanlon, Starkl (bib42) 2017; 18
Lee (10.1016/j.jaci.2021.01.026_bib18) 2015; 52
Puttur (10.1016/j.jaci.2021.01.026_bib38) 2019; 4
Knipfer (10.1016/j.jaci.2021.01.026_bib37) 2019; 216
Lloyd (10.1016/j.jaci.2021.01.026_bib4) 2017; 278
Liu (10.1016/j.jaci.2021.01.026_bib21) 2019; 178
Byrne (10.1016/j.jaci.2021.01.026_bib12) 2017; 10
Batlle (10.1016/j.jaci.2021.01.026_bib23) 2019; 50
Saglani (10.1016/j.jaci.2021.01.026_bib41) 2018; 3
Draijer (10.1016/j.jaci.2021.01.026_bib11) 2013; 2013
Mack (10.1016/j.jaci.2021.01.026_bib27) 2001; 166
Plantinga (10.1016/j.jaci.2021.01.026_bib22) 2013; 38
Byrne (10.1016/j.jaci.2021.01.026_bib7) 2015; 70
Staples (10.1016/j.jaci.2021.01.026_bib13) 2012; 130
Gundra (10.1016/j.jaci.2021.01.026_bib31) 2014; 123
Bossley (10.1016/j.jaci.2021.01.026_bib36) 2012; 129
Olin (10.1016/j.jaci.2021.01.026_bib2) 2018; 174
Dyer (10.1016/j.jaci.2021.01.026_bib32) 2019; 50
Zhang (10.1016/j.jaci.2021.01.026_bib45) 2020; 9
Byrne (10.1016/j.jaci.2021.01.026_bib20) 2020; 217
Azhar (10.1016/j.jaci.2021.01.026_bib26) 2009; 47
Ma (10.1016/j.jaci.2021.01.026_bib44) 2004; 172
Saglani (10.1016/j.jaci.2021.01.026_bib35) 2009; 41
Islam (10.1016/j.jaci.2021.01.026_bib39) 2011; 12
Branchett (10.1016/j.jaci.2021.01.026_bib14) 2020; 5
Zaslona (10.1016/j.jaci.2021.01.026_bib10) 2014; 193
Misharin (10.1016/j.jaci.2021.01.026_bib17) 2017; 214
Yu (10.1016/j.jaci.2021.01.026_bib24) 2017; 47
Saglani (10.1016/j.jaci.2021.01.026_bib34) 2007; 176
Mathie (10.1016/j.jaci.2021.01.026_bib9) 2015; 70
Aegerter (10.1016/j.jaci.2021.01.026_bib19) 2020; 21
Saluzzo (10.1016/j.jaci.2021.01.026_bib42) 2017; 18
Lloyd (10.1016/j.jaci.2021.01.026_bib5) 2019; 40
Hashimoto (10.1016/j.jaci.2021.01.026_bib16) 2013; 38
Caton (10.1016/j.jaci.2021.01.026_bib25) 2007; 204
Duan (10.1016/j.jaci.2021.01.026_bib29) 2016; 9
Soroosh (10.1016/j.jaci.2021.01.026_bib46) 2013; 210
Lambert (10.1016/j.jaci.2021.01.026_bib3) 2017; 8
Hussell (10.1016/j.jaci.2021.01.026_bib8) 2014; 14
Ducreux (10.1016/j.jaci.2021.01.026_bib30) 2009; 124
Shi (10.1016/j.jaci.2021.01.026_bib33) 2011; 11
Lee (10.1016/j.jaci.2021.01.026_bib1) 2019; 10
Gonzalo (10.1016/j.jaci.2021.01.026_bib43) 1998; 188
Guilliams (10.1016/j.jaci.2021.01.026_bib6) 2013; 210
Bachus (10.1016/j.jaci.2021.01.026_bib40) 2019; 50
Branchett (10.1016/j.jaci.2021.01.026_bib15) 2020; 145
Schneider (10.1016/j.jaci.2021.01.026_bib28) 2014; 15
References_xml – volume: 5
  start-page: 101
  year: 2020
  ident: bib14
  article-title: Transcriptomic analysis reveals diverse gene expression changes in airway macrophages during experimental allergic airway disease
  publication-title: Wellcome Open Res
– volume: 188
  start-page: 157
  year: 1998
  end-page: 167
  ident: bib43
  article-title: The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness
  publication-title: J Exp Med
– volume: 204
  start-page: 1653
  year: 2007
  end-page: 1664
  ident: bib25
  article-title: Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen
  publication-title: J Exp Med
– volume: 9
  start-page: 550
  year: 2016
  end-page: 563
  ident: bib29
  article-title: CD11b immunophenotyping identifies inflammatory profiles in the mouse and human lungs
  publication-title: Mucosal Immunol
– volume: 176
  start-page: 858
  year: 2007
  end-page: 864
  ident: bib34
  article-title: Early detection of airway wall remodeling and eosinophilic inflammation in preschool wheezers
  publication-title: Am.J.Respir.Crit Care Med
– volume: 172
  start-page: 1872
  year: 2004
  end-page: 1881
  ident: bib44
  article-title: The C10/CCL6 chemokine and CCR1 play critical roles in the pathogenesis of IL-13-Induced inflammation and remodeling
  publication-title: J Immunol
– volume: 50
  start-page: 225
  year: 2019
  end-page: 240.e4
  ident: bib40
  article-title: Impaired tumor-necrosis-factor-alpha-driven dendritic cell activation limits lipopolysaccharide-induced protection from allergic inflammation in infants
  publication-title: Immunity
– volume: 21
  start-page: 145
  year: 2020
  end-page: 157
  ident: bib19
  article-title: Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection
  publication-title: Nat Immunol
– volume: 47
  start-page: 423
  year: 2009
  end-page: 431
  ident: bib26
  article-title: Generation of mice with a conditional allele for transforming growth factor beta 1 gene
  publication-title: Genesis
– volume: 2013
  start-page: 632049
  year: 2013
  ident: bib11
  article-title: Characterization of macrophage phenotypes in three murine models of house-dust-mite-induced asthma
  publication-title: Mediators Inflamm
– volume: 129
  start-page: 974
  year: 2012
  end-page: 982
  ident: bib36
  article-title: Pediatric severe asthma is characterized by eosinophilia and remodeling without T
  publication-title: J Allergy Clin Immunol
– volume: 70
  start-page: 1189
  year: 2015
  end-page: 1196
  ident: bib7
  article-title: Pulmonary macrophages: key players in the innate defence of the airways
  publication-title: Thorax
– volume: 278
  start-page: 101
  year: 2017
  end-page: 115
  ident: bib4
  article-title: Development of allergic immunity in early life
  publication-title: Immunol Rev
– volume: 14
  start-page: 81
  year: 2014
  end-page: 93
  ident: bib8
  article-title: Alveolar macrophages: plasticity in a tissue-specific context
  publication-title: Nat Rev Immunol
– volume: 123
  start-page: e110
  year: 2014
  end-page: e122
  ident: bib31
  article-title: Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct
  publication-title: Blood
– volume: 130
  start-page: 1404
  year: 2012
  end-page: 1412.e7
  ident: bib13
  article-title: Phenotypic characterization of lung macrophages in asthmatic patients: overexpression of CCL17
  publication-title: J Allergy Clin Immunol
– volume: 4
  year: 2019
  ident: bib38
  article-title: Pulmonary environmental cues drive group 2 innate lymphoid cell dynamics in mice and humans
  publication-title: Sci Immunol
– volume: 193
  start-page: 4245
  year: 2014
  end-page: 4253
  ident: bib10
  article-title: Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma
  publication-title: J Immunol
– volume: 18
  start-page: 1893
  year: 2017
  end-page: 1905
  ident: bib42
  article-title: First-breath-induced type 2 pathways shape the lung immune environment
  publication-title: Cell Rep
– volume: 166
  start-page: 4697
  year: 2001
  end-page: 4704
  ident: bib27
  article-title: Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice
  publication-title: J Immunol
– volume: 216
  start-page: 2763
  year: 2019
  end-page: 2777
  ident: bib37
  article-title: A CCL1/CCR8-dependent feed-forward mechanism drives ILC2 functions in type 2-mediated inflammation
  publication-title: J Exp Med
– volume: 145
  start-page: 666
  year: 2020
  end-page: 678.e9
  ident: bib15
  article-title: A T cell–myeloid IL-10 axis regulates pathogenic IFN-γ–dependent immunity in a mouse model of type 2–low asthma
  publication-title: J Allergy Clin Immunol
– volume: 38
  start-page: 322
  year: 2013
  end-page: 335
  ident: bib22
  article-title: Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen
  publication-title: Immunity
– volume: 124
  start-page: 77
  year: 2009
  end-page: 80
  ident: bib30
  article-title: Analysis of sialoadhesin expression on mouse alveolar macrophages
  publication-title: Immunol Lett
– volume: 10
  start-page: 1092
  year: 2019
  ident: bib1
  article-title: Dynamic molecular changes during the first week of human life follow a robust developmental trajectory
  publication-title: Nat Commun
– volume: 50
  start-page: 924
  year: 2019
  end-page: 940
  ident: bib23
  article-title: Transforming growth factor-beta signaling in immunity and cancer
  publication-title: Immunity
– volume: 40
  start-page: 786
  year: 2019
  end-page: 798
  ident: bib5
  article-title: Opening the window of immune opportunity: treating childhood asthma
  publication-title: Trends Immunol
– volume: 52
  start-page: 772
  year: 2015
  end-page: 784
  ident: bib18
  article-title: Recruited alveolar macrophages, in response to airway epithelial-derived monocyte chemoattractant protein 1/CCl2, regulate airway inflammation and remodeling in allergic asthma
  publication-title: Am J Respir Cell Mol Biol
– volume: 214
  start-page: 2387
  year: 2017
  end-page: 2404
  ident: bib17
  article-title: Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span
  publication-title: J Exp Med
– volume: 12
  start-page: 167
  year: 2011
  end-page: 177
  ident: bib39
  article-title: Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ T
  publication-title: Nat Immunol
– volume: 47
  start-page: 903
  year: 2017
  end-page: 913.e4
  ident: bib24
  article-title: The cytokine TGF-beta promotes the development and homeostasis of alveolar macrophages
  publication-title: Immunity
– volume: 8
  start-page: 1570
  year: 2017
  ident: bib3
  article-title: Innate immunity to respiratory infection in early life
  publication-title: Front Immunol
– volume: 10
  start-page: 716
  year: 2017
  end-page: 726
  ident: bib12
  article-title: A critical role for IRF5 in regulating allergic airway inflammation
  publication-title: Mucosal Immunol
– volume: 210
  start-page: 1977
  year: 2013
  end-page: 1992
  ident: bib6
  article-title: Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF
  publication-title: J Exp Med
– volume: 3
  year: 2018
  ident: bib41
  article-title: Inception of early-life allergen-induced airway hyperresponsiveness is reliant on IL-13(+)CD4(+) T cells
  publication-title: Sci Immunol
– volume: 15
  start-page: 1026
  year: 2014
  end-page: 1037
  ident: bib28
  article-title: Induction of the nuclear receptor PPAR-gamma by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages
  publication-title: Nat Immunol
– volume: 38
  start-page: 792
  year: 2013
  end-page: 804
  ident: bib16
  article-title: Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes
  publication-title: Immunity
– volume: 11
  start-page: 762
  year: 2011
  end-page: 774
  ident: bib33
  article-title: Monocyte recruitment during infection and inflammation
  publication-title: Nat Rev Immunol
– volume: 178
  start-page: 1509
  year: 2019
  end-page: 1525.e19
  ident: bib21
  article-title: Fate mapping via Ms4a3-expression history traces monocyte-derived cells
  publication-title: Cell
– volume: 50
  start-page: 378
  year: 2019
  end-page: 389.e5
  ident: bib32
  article-title: Chemokine receptor redundancy and specificity are context dependent
  publication-title: Immunity
– volume: 174
  start-page: 1277
  year: 2018
  end-page: 1292.e14
  ident: bib2
  article-title: Stereotypic immune system development in newborn children
  publication-title: Cell
– volume: 41
  start-page: 281
  year: 2009
  end-page: 289
  ident: bib35
  article-title: Pathophysiological features of asthma develop in parallel in house dust mite-exposed neonatal mice
  publication-title: Am J Respir Cell Mol Biol
– volume: 9
  year: 2020
  ident: bib45
  article-title: RhoA/Rho-kinases in asthma: from pathogenesis to therapeutic targets
  publication-title: Clin Transl Immunol
– volume: 210
  start-page: 775
  year: 2013
  end-page: 788
  ident: bib46
  article-title: Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance
  publication-title: J Exp Med
– volume: 70
  start-page: 80
  year: 2015
  end-page: 89
  ident: bib9
  article-title: Alveolar macrophages are sentinels of murine pulmonary homeostasis following inhaled antigen challenge
  publication-title: Allergy
– volume: 217
  year: 2020
  ident: bib20
  article-title: Dynamics of human monocytes and airway macrophages during healthy aging and after transplant
  publication-title: J Exp Med
– volume: 50
  start-page: 378
  year: 2019
  ident: 10.1016/j.jaci.2021.01.026_bib32
  article-title: Chemokine receptor redundancy and specificity are context dependent
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.01.009
– volume: 129
  start-page: 974
  year: 2012
  ident: 10.1016/j.jaci.2021.01.026_bib36
  article-title: Pediatric severe asthma is characterized by eosinophilia and remodeling without TH2 cytokines
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2012.01.059
– volume: 40
  start-page: 786
  year: 2019
  ident: 10.1016/j.jaci.2021.01.026_bib5
  article-title: Opening the window of immune opportunity: treating childhood asthma
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2019.07.004
– volume: 204
  start-page: 1653
  year: 2007
  ident: 10.1016/j.jaci.2021.01.026_bib25
  article-title: Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen
  publication-title: J Exp Med
  doi: 10.1084/jem.20062648
– volume: 11
  start-page: 762
  year: 2011
  ident: 10.1016/j.jaci.2021.01.026_bib33
  article-title: Monocyte recruitment during infection and inflammation
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3070
– volume: 188
  start-page: 157
  year: 1998
  ident: 10.1016/j.jaci.2021.01.026_bib43
  article-title: The coordinated action of CC chemokines in the lung orchestrates allergic inflammation and airway hyperresponsiveness
  publication-title: J Exp Med
  doi: 10.1084/jem.188.1.157
– volume: 50
  start-page: 924
  year: 2019
  ident: 10.1016/j.jaci.2021.01.026_bib23
  article-title: Transforming growth factor-beta signaling in immunity and cancer
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.03.024
– volume: 70
  start-page: 80
  year: 2015
  ident: 10.1016/j.jaci.2021.01.026_bib9
  article-title: Alveolar macrophages are sentinels of murine pulmonary homeostasis following inhaled antigen challenge
  publication-title: Allergy
  doi: 10.1111/all.12536
– volume: 9
  start-page: 550
  year: 2016
  ident: 10.1016/j.jaci.2021.01.026_bib29
  article-title: CD11b immunophenotyping identifies inflammatory profiles in the mouse and human lungs
  publication-title: Mucosal Immunol
  doi: 10.1038/mi.2015.84
– volume: 47
  start-page: 423
  year: 2009
  ident: 10.1016/j.jaci.2021.01.026_bib26
  article-title: Generation of mice with a conditional allele for transforming growth factor beta 1 gene
  publication-title: Genesis
  doi: 10.1002/dvg.20516
– volume: 214
  start-page: 2387
  year: 2017
  ident: 10.1016/j.jaci.2021.01.026_bib17
  article-title: Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span
  publication-title: J Exp Med
  doi: 10.1084/jem.20162152
– volume: 145
  start-page: 666
  year: 2020
  ident: 10.1016/j.jaci.2021.01.026_bib15
  article-title: A T cell–myeloid IL-10 axis regulates pathogenic IFN-γ–dependent immunity in a mouse model of type 2–low asthma
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2019.08.006
– volume: 176
  start-page: 858
  year: 2007
  ident: 10.1016/j.jaci.2021.01.026_bib34
  article-title: Early detection of airway wall remodeling and eosinophilic inflammation in preschool wheezers
  publication-title: Am.J.Respir.Crit Care Med
  doi: 10.1164/rccm.200702-212OC
– volume: 278
  start-page: 101
  year: 2017
  ident: 10.1016/j.jaci.2021.01.026_bib4
  article-title: Development of allergic immunity in early life
  publication-title: Immunol Rev
  doi: 10.1111/imr.12562
– volume: 18
  start-page: 1893
  year: 2017
  ident: 10.1016/j.jaci.2021.01.026_bib42
  article-title: First-breath-induced type 2 pathways shape the lung immune environment
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.01.071
– volume: 124
  start-page: 77
  year: 2009
  ident: 10.1016/j.jaci.2021.01.026_bib30
  article-title: Analysis of sialoadhesin expression on mouse alveolar macrophages
  publication-title: Immunol Lett
  doi: 10.1016/j.imlet.2009.04.006
– volume: 38
  start-page: 792
  year: 2013
  ident: 10.1016/j.jaci.2021.01.026_bib16
  article-title: Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.04.004
– volume: 70
  start-page: 1189
  year: 2015
  ident: 10.1016/j.jaci.2021.01.026_bib7
  article-title: Pulmonary macrophages: key players in the innate defence of the airways
  publication-title: Thorax
  doi: 10.1136/thoraxjnl-2015-207020
– volume: 3
  year: 2018
  ident: 10.1016/j.jaci.2021.01.026_bib41
  article-title: Inception of early-life allergen-induced airway hyperresponsiveness is reliant on IL-13(+)CD4(+) T cells
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.aan4128
– volume: 9
  year: 2020
  ident: 10.1016/j.jaci.2021.01.026_bib45
  article-title: RhoA/Rho-kinases in asthma: from pathogenesis to therapeutic targets
  publication-title: Clin Transl Immunol
  doi: 10.1002/cti2.1134
– volume: 130
  start-page: 1404
  year: 2012
  ident: 10.1016/j.jaci.2021.01.026_bib13
  article-title: Phenotypic characterization of lung macrophages in asthmatic patients: overexpression of CCL17
  publication-title: J Allergy Clin Immunol
  doi: 10.1016/j.jaci.2012.07.023
– volume: 5
  start-page: 101
  year: 2020
  ident: 10.1016/j.jaci.2021.01.026_bib14
  article-title: Transcriptomic analysis reveals diverse gene expression changes in airway macrophages during experimental allergic airway disease
  publication-title: Wellcome Open Res
  doi: 10.12688/wellcomeopenres.15875.1
– volume: 210
  start-page: 775
  year: 2013
  ident: 10.1016/j.jaci.2021.01.026_bib46
  article-title: Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance
  publication-title: J Exp Med
  doi: 10.1084/jem.20121849
– volume: 15
  start-page: 1026
  year: 2014
  ident: 10.1016/j.jaci.2021.01.026_bib28
  article-title: Induction of the nuclear receptor PPAR-gamma by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages
  publication-title: Nat Immunol
  doi: 10.1038/ni.3005
– volume: 123
  start-page: e110
  year: 2014
  ident: 10.1016/j.jaci.2021.01.026_bib31
  article-title: Alternatively activated macrophages derived from monocytes and tissue macrophages are phenotypically and functionally distinct
  publication-title: Blood
  doi: 10.1182/blood-2013-08-520619
– volume: 12
  start-page: 167
  year: 2011
  ident: 10.1016/j.jaci.2021.01.026_bib39
  article-title: Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ TH2 cells
  publication-title: Nat Immunol
  doi: 10.1038/ni.1984
– volume: 38
  start-page: 322
  year: 2013
  ident: 10.1016/j.jaci.2021.01.026_bib22
  article-title: Conventional and monocyte-derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen
  publication-title: Immunity
  doi: 10.1016/j.immuni.2012.10.016
– volume: 4
  year: 2019
  ident: 10.1016/j.jaci.2021.01.026_bib38
  article-title: Pulmonary environmental cues drive group 2 innate lymphoid cell dynamics in mice and humans
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.aav7638
– volume: 21
  start-page: 145
  year: 2020
  ident: 10.1016/j.jaci.2021.01.026_bib19
  article-title: Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection
  publication-title: Nat Immunol
  doi: 10.1038/s41590-019-0568-x
– volume: 210
  start-page: 1977
  year: 2013
  ident: 10.1016/j.jaci.2021.01.026_bib6
  article-title: Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF
  publication-title: J Exp Med
  doi: 10.1084/jem.20131199
– volume: 50
  start-page: 225
  year: 2019
  ident: 10.1016/j.jaci.2021.01.026_bib40
  article-title: Impaired tumor-necrosis-factor-alpha-driven dendritic cell activation limits lipopolysaccharide-induced protection from allergic inflammation in infants
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.11.012
– volume: 52
  start-page: 772
  year: 2015
  ident: 10.1016/j.jaci.2021.01.026_bib18
  article-title: Recruited alveolar macrophages, in response to airway epithelial-derived monocyte chemoattractant protein 1/CCl2, regulate airway inflammation and remodeling in allergic asthma
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2014-0255OC
– volume: 178
  start-page: 1509
  year: 2019
  ident: 10.1016/j.jaci.2021.01.026_bib21
  article-title: Fate mapping via Ms4a3-expression history traces monocyte-derived cells
  publication-title: Cell
  doi: 10.1016/j.cell.2019.08.009
– volume: 174
  start-page: 1277
  year: 2018
  ident: 10.1016/j.jaci.2021.01.026_bib2
  article-title: Stereotypic immune system development in newborn children
  publication-title: Cell
  doi: 10.1016/j.cell.2018.06.045
– volume: 10
  start-page: 716
  year: 2017
  ident: 10.1016/j.jaci.2021.01.026_bib12
  article-title: A critical role for IRF5 in regulating allergic airway inflammation
  publication-title: Mucosal Immunol
  doi: 10.1038/mi.2016.92
– volume: 41
  start-page: 281
  year: 2009
  ident: 10.1016/j.jaci.2021.01.026_bib35
  article-title: Pathophysiological features of asthma develop in parallel in house dust mite-exposed neonatal mice
  publication-title: Am J Respir Cell Mol Biol
  doi: 10.1165/rcmb.2008-0396OC
– volume: 216
  start-page: 2763
  year: 2019
  ident: 10.1016/j.jaci.2021.01.026_bib37
  article-title: A CCL1/CCR8-dependent feed-forward mechanism drives ILC2 functions in type 2-mediated inflammation
  publication-title: J Exp Med
  doi: 10.1084/jem.20182111
– volume: 193
  start-page: 4245
  year: 2014
  ident: 10.1016/j.jaci.2021.01.026_bib10
  article-title: Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1400580
– volume: 166
  start-page: 4697
  year: 2001
  ident: 10.1016/j.jaci.2021.01.026_bib27
  article-title: Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.7.4697
– volume: 172
  start-page: 1872
  year: 2004
  ident: 10.1016/j.jaci.2021.01.026_bib44
  article-title: The C10/CCL6 chemokine and CCR1 play critical roles in the pathogenesis of IL-13-Induced inflammation and remodeling
  publication-title: J Immunol
  doi: 10.4049/jimmunol.172.3.1872
– volume: 10
  start-page: 1092
  year: 2019
  ident: 10.1016/j.jaci.2021.01.026_bib1
  article-title: Dynamic molecular changes during the first week of human life follow a robust developmental trajectory
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08794-x
– volume: 14
  start-page: 81
  year: 2014
  ident: 10.1016/j.jaci.2021.01.026_bib8
  article-title: Alveolar macrophages: plasticity in a tissue-specific context
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3600
– volume: 8
  start-page: 1570
  year: 2017
  ident: 10.1016/j.jaci.2021.01.026_bib3
  article-title: Innate immunity to respiratory infection in early life
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2017.01570
– volume: 2013
  start-page: 632049
  year: 2013
  ident: 10.1016/j.jaci.2021.01.026_bib11
  article-title: Characterization of macrophage phenotypes in three murine models of house-dust-mite-induced asthma
  publication-title: Mediators Inflamm
  doi: 10.1155/2013/632049
– volume: 47
  start-page: 903
  year: 2017
  ident: 10.1016/j.jaci.2021.01.026_bib24
  article-title: The cytokine TGF-beta promotes the development and homeostasis of alveolar macrophages
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.10.007
– volume: 217
  year: 2020
  ident: 10.1016/j.jaci.2021.01.026_bib20
  article-title: Dynamics of human monocytes and airway macrophages during healthy aging and after transplant
  publication-title: J Exp Med
  doi: 10.1084/jem.20191236
SSID ssj0009389
Score 2.4609766
Snippet Early life represents a major risk window for asthma development. However, the mechanisms controlling the threshold for establishment of allergic airway...
BackgroundEarly life represents a major risk window for asthma development. However, the mechanisms controlling the threshold for establishment of allergic...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1892
SubjectTerms Allergens
Allergens - immunology
Allergies
Animals
Asthma
Blocking antibodies
Bronchoscopy
CC chemokine receptors
CCR2 protein
CCR8 protein
CD11c antigen
chemokine
Chemokine receptors
Chemokines
Chemokines - immunology
Cloning
Environmental effects
Gene expression
Homeostasis
Human subjects
Hypersensitivity
Hypersensitivity - immunology
Immune response
Infections
Inflammation
Inhalation
Laboratory animals
Leukocytes (mononuclear)
Lung - immunology
lung immunity
Lymphocytes T
macrophage
Macrophages
Macrophages, Alveolar - immunology
Maturation
Mechanisms of Allergy/Immunology
Mice
Mice, Inbred C57BL
Mice, Knockout
monocyte
Monocyte chemoattractant protein 1
Monocytes
neonate
Neonates
Newborn babies
Pathogens
Phagocytes
Phenotypes
Pyroglyphidae - immunology
Respiratory tract
Respiratory tract diseases
Software
TGF-β
Transforming Growth Factor beta1 - genetics
Transforming Growth Factor beta1 - immunology
Transforming growth factor-b1
type 2 immunity
Title Airway macrophage-intrinsic TGF-β1 regulates pulmonary immunity during early-life allergen exposure
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0091674921001731
https://dx.doi.org/10.1016/j.jaci.2021.01.026
https://www.ncbi.nlm.nih.gov/pubmed/33571538
https://www.proquest.com/docview/2522051766
https://www.proquest.com/docview/2489265730
https://pubmed.ncbi.nlm.nih.gov/PMC8098862
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIiEuCMpfoFRG4oZME3udxMdVxbIFtadW6i2yHUd1tWRX213BXngoHoRnYiZ2AlvUIiHlkngcJfZ4ZpzM9w0hb1WtC6Mby5RNDQOPlzJdYw0NYbXgpuCNQXDyyWk-PR99upAXO-Sox8JgWmW0_cGmd9Y6XjmMo3m48B4xvgpT6BVHGqGiw1Ijex3o9Pvvv9M8lChDCKwyhtIROBNyvK609bBH5Fmg7sxvc05_B583cyj_cEqTR-RhjCbpODzwY7Lj2j1y_yT-L39C6rFfftUb-kVjpa5LsB3Mw418C3NDzz5O2M8fGV2GcvTumi7WM9BKvdxQ38FGVhsaYIzUIQ8ym_nGUSy-gohN6r4t5vh98Sk5n3w4O5qyWFeBWQhvVkyOstRoJMbPlM4cb1wNXjrPrU2lgQ2YtTWImLpwqpZaNtYKAVGlNEUum4xr8YzstvPWvSCUm1w5lxupSj2yZaqbRhbcGiUhDDS6TEjWD2hlI-k41r6YVX122VWFk1DhJFQpHDxPyLuhzyJQbtwpLfp5qnowKZi_CjzCnb3k0GtL3f7Zb79XhSou9uuKS0QrI9NmQt4MzbBM8d-Lbt18DTKjUvFcgj1NyPOgOcPLCSELdDwJKbZ0ahBACvDtltZfdlTgZapK2JO-_M_XeUUe4FlI4Nwnu6vl2r2GIGtlDrpVdEDujY8_T09_AXWhKRk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELemTgJeEP8JDDASb8ha4sRJ_FhNlI6tfeqkvVm242iZSlp1raBfiw_CZ-KudgIFMSSkPMW-KI7Pd-f4fr8j5J2sdGF0bZm0sWHg8WKmK6yhkVqdclPw2iA4eTLNxxfZp0txeUBOOiwMplUG2-9t-s5ahzvH4WseL5sGMb4SU-glRxqhArHUh8hOlQ3I4fD0bDz9yb2blj4KlglDgYCd8Wle19o2sE3kiWfvzP_mn_6MP39Po_zFL40ekPshoKRD_84PyYFrH5E7k3Bk_phUw2b1RW_pZ43Fuq7AfLAGHtS0MD109nHEvn9L6MpXpHc3dLmZg2Lq1ZY2O-TIeks9kpE6pEJm86Z2FOuvIGiTuq_LBf5ifEIuRh9mJ2MWSiswCxHOmoksiY1GbvxE6sTx2lXgqPPc2lgY2INZW0EXUxVOVkKL2to0hcBSmCIXdcJ1-pQM2kXrnhPKTS6dy42Qpc5sGeu6FgW3RgqIBI0uI5J0H1TZwDuO5S_mqkswu1Y4CQonQcVw8Twi73uZpWfduLV32s2T6vCkYAEVOIVbpUQvtadx_5Q76lRBhfV-o7hAwDKSbUbkbd8MKxWPX3TrFhvok5WS5wJMakSeec3pB5emokDfE5FiT6f6DsgCvt_SNlc7NvAyliVsS1_853DekLvj2eRcnZ9Oz16Se9ji8zmPyGC92rhXEHOtzeuwpn4Ah3Iryg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Airway+macrophage-intrinsic+TGF-%CE%B21+regulates+pulmonary+immunity+during+early-life+allergen+exposure&rft.jtitle=Journal+of+allergy+and+clinical+immunology&rft.au=Branchett%2C+William+J.&rft.au=Cook%2C+James&rft.au=Oliver%2C+Robert+A.&rft.au=Bruno%2C+Nicoletta&rft.date=2021-05-01&rft.pub=Elsevier+Inc&rft.issn=0091-6749&rft.volume=147&rft.issue=5&rft.spage=1892&rft.epage=1906&rft_id=info:doi/10.1016%2Fj.jaci.2021.01.026&rft.externalDocID=S0091674921001731
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-6749&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-6749&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-6749&client=summon