High-throughput classification of yeast mutants for functional genomics using metabolic footprinting

Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater ef...

Full description

Saved in:
Bibliographic Details
Published inNature biotechnology Vol. 21; no. 6; pp. 692 - 696
Main Authors Allen, Jess, Davey, Hazel M, Broadhurst, David, Heald, Jim K, Rowland, Jem J, Oliver, Stephen G, Kell, Douglas B
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.06.2003
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes 1 . However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This 'metabolic footprinting' approach recognizes the significance of 'overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming 2 , 3 , 4 , 5 , 6 , 7 , 8 , we show that metabolic footprinting is an effective method to classify 'unknown' mutants by genetic defect.
AbstractList Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes 1 . However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This 'metabolic footprinting' approach recognizes the significance of 'overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming 2 , 3 , 4 , 5 , 6 , 7 , 8 , we show that metabolic footprinting is an effective method to classify 'unknown' mutants by genetic defect.
Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate largescale functional analysis strategies. Yet the metabolome, because it is `downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes. However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This `metabolic footprinting' approach recognizes the significance of `overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming, we show that metabolic footprinting is an effective method to classify `unknown' mutants by genetic defect.
Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes. However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This 'metabolic footprinting' approach recognizes the significance of 'overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming, we show that metabolic footprinting is an effective method to classify 'unknown' mutants by genetic defect.Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes. However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This 'metabolic footprinting' approach recognizes the significance of 'overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming, we show that metabolic footprinting is an effective method to classify 'unknown' mutants by genetic defect.
Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes. However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This 'metabolic footprinting' approach recognizes the significance of 'overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming, we show that metabolic footprinting is an effective method to classify 'unknown' mutants by genetic defect.
Audience Academic
Author Allen, Jess
Broadhurst, David
Heald, Jim K
Rowland, Jem J
Davey, Hazel M
Kell, Douglas B
Oliver, Stephen G
Author_xml – sequence: 1
  givenname: Jess
  surname: Allen
  fullname: Allen, Jess
  organization: Institute of Biological Sciences, Cledwyn Building, University of Wales
– sequence: 2
  givenname: Hazel M
  surname: Davey
  fullname: Davey, Hazel M
  organization: Institute of Biological Sciences, Cledwyn Building, University of Wales
– sequence: 3
  givenname: David
  surname: Broadhurst
  fullname: Broadhurst, David
  organization: Institute of Biological Sciences, Cledwyn Building, University of Wales
– sequence: 4
  givenname: Jim K
  surname: Heald
  fullname: Heald, Jim K
  organization: Institute of Biological Sciences, Cledwyn Building, University of Wales
– sequence: 5
  givenname: Jem J
  surname: Rowland
  fullname: Rowland, Jem J
  organization: Department of Computer Science, University of Wales
– sequence: 6
  givenname: Stephen G
  surname: Oliver
  fullname: Oliver, Stephen G
  organization: School of Biological Sciences, University of Manchester
– sequence: 7
  givenname: Douglas B
  surname: Kell
  fullname: Kell, Douglas B
  email: dbk@umist.ac.uk
  organization: Institute of Biological Sciences, Cledwyn Building, University of Wales
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12740584$$D View this record in MEDLINE/PubMed
BookMark eNqN0l1r3SAYB_AwOtaXbR9hhF10DJbuMRo1l6Vsa6FQ2NutGKM5lkTPfIH128-z07X03JzFi4j-fJDH_3F14LzTVfUawRkCzD-6IfEWP6uOUEdog2hPD8ocOGsAdfSwOo7xFgAoofRFdYhaRqDj5KgaL-20atIq-Dyt1jnVapYxWmOVTNa72pv6TsuY6iUn6VKsjQ-1yU5tduVcT9r5xapY52jdVC86ycHPVhXn0zpYl8ryy-q5kXPUr-7_J9WPz5--X1w21zdfri7OrxtFAVKDcccp43hgWilMNCDZAWNAB0xHzkckMTNUa8oQVpIrzFqDxn5Uox5GQzp8Up1u666D_5V1TGKxUel5lk77HAXDGANDaC8kPcLQ9nwvbAEI9H2_FyLOoQNCCny7A299DqWVpdjmK8WgoLMtmuSshXXGpyBVGaMuzS4vb2xZP0c9IN6yti0H3j85UEzSv9Mkc4zi6tvX_7c3P5_aN_e3zcOiR1FedJHhTvwLUAEftkAFH2PQRiib_kan3NjOAoHY5FNs8_nYpgf-UHEXvtvCuAnRpMNjm3bkH-s_8AM
CitedBy_id crossref_primary_10_1016_j_mib_2016_07_008
crossref_primary_10_1016_j_snb_2018_02_137
crossref_primary_10_1007_s11306_020_01725_8
crossref_primary_10_1007_s11306_007_0064_4
crossref_primary_10_1016_j_foodres_2019_06_008
crossref_primary_10_1016_j_chembiol_2018_09_004
crossref_primary_10_1073_pnas_0503955102
crossref_primary_10_1371_journal_pone_0080121
crossref_primary_10_1586_14737159_7_4_329
crossref_primary_10_1007_s11306_013_0564_3
crossref_primary_10_1186_1471_2105_8_419
crossref_primary_10_1093_jn_137_1_259S
crossref_primary_10_1002_pmic_200600106
crossref_primary_10_3390_metabo11100692
crossref_primary_10_1021_jf061955p
crossref_primary_10_1002_mas_20032
crossref_primary_10_3389_fmicb_2022_958785
crossref_primary_10_1016_j_cell_2011_05_022
crossref_primary_10_1186_2193_1801_2_287
crossref_primary_10_1007_s12161_016_0502_x
crossref_primary_10_1016_j_pnmrs_2017_05_001
crossref_primary_10_1172_JCI35111
crossref_primary_10_1016_j_ymben_2005_05_003
crossref_primary_10_1021_jf402043m
crossref_primary_10_1104_pp_114_252361
crossref_primary_10_1093_humupd_dmt048
crossref_primary_10_1255_nirn_1065
crossref_primary_10_1093_jxb_eraa424
crossref_primary_10_1039_b504480d
crossref_primary_10_1089_ten_tec_2007_0401
crossref_primary_10_1186_1471_2105_7_281
crossref_primary_10_1017_S000711450999300X
crossref_primary_10_1016_j_copbio_2023_103027
crossref_primary_10_1021_acs_analchem_5b03340
crossref_primary_10_1016_j_ab_2015_01_002
crossref_primary_10_1038_nrendo_2016_76
crossref_primary_10_1093_biolre_ioac082
crossref_primary_10_1371_journal_pone_0096038
crossref_primary_10_1089_tec_2007_0401
crossref_primary_10_1111_j_1462_2920_2012_02840_x
crossref_primary_10_1039_b923046g
crossref_primary_10_1080_07388551_2018_1462141
crossref_primary_10_1007_s00216_011_5630_y
crossref_primary_10_1007_s11306_008_0104_8
crossref_primary_10_1111_j_1471_0528_2006_01150_x
crossref_primary_10_1074_mcp_M300082_MCP200
crossref_primary_10_1371_journal_pone_0005328
crossref_primary_10_1128_AEM_05838_11
crossref_primary_10_1161_CIRCULATIONAHA_105_569137
crossref_primary_10_1111_ajgw_12202
crossref_primary_10_1039_C0MB00143K
crossref_primary_10_1074_mcp_M111_011072
crossref_primary_10_1007_s12281_008_0022_2
crossref_primary_10_1016_j_compbiolchem_2009_07_017
crossref_primary_10_1371_journal_pone_0118052
crossref_primary_10_1073_pnas_2217383120
crossref_primary_10_1016_j_plaphy_2008_12_023
crossref_primary_10_1039_c3np70086k
crossref_primary_10_1534_g3_113_008144
crossref_primary_10_1152_physiolgenomics_00009_2008
crossref_primary_10_1007_s11306_014_0748_5
crossref_primary_10_1039_C3MB70599D
crossref_primary_10_1007_s11306_012_0449_x
crossref_primary_10_1073_pnas_0303415101
crossref_primary_10_1155_2014_894296
crossref_primary_10_1007_s10858_011_9492_6
crossref_primary_10_5483_BMBRep_2004_37_1_093
crossref_primary_10_1016_j_jchromb_2021_122567
crossref_primary_10_1101_pdb_prot5222
crossref_primary_10_1021_pr100880y
crossref_primary_10_1002_bit_27243
crossref_primary_10_1039_C7AY02578E
crossref_primary_10_1021_acs_analchem_6b00038
crossref_primary_10_1016_j_copbio_2003_11_001
crossref_primary_10_1002_nbm_1395
crossref_primary_10_1021_ac049146x
crossref_primary_10_1021_pr300318m
crossref_primary_10_1098_rstb_2005_1805
crossref_primary_10_1007_s11306_005_1104_6
crossref_primary_10_1016_j_eswa_2021_116158
crossref_primary_10_1021_ac701703f
crossref_primary_10_1039_C6AN00393A
crossref_primary_10_1111_j_1469_185X_2010_00157_x
crossref_primary_10_1002_mas_20182
crossref_primary_10_1016_j_ab_2005_11_019
crossref_primary_10_1016_j_taap_2011_02_008
crossref_primary_10_1042_BST0381197
crossref_primary_10_1016_j_biosystems_2011_08_002
crossref_primary_10_1073_pnas_1617317113
crossref_primary_10_1016_j_orggeochem_2020_104179
crossref_primary_10_1042_BST0330520
crossref_primary_10_1186_1756_0500_7_406
crossref_primary_10_1016_j_phytochem_2007_05_014
crossref_primary_10_3389_fendo_2018_00180
crossref_primary_10_3109_07420528_2012_699122
crossref_primary_10_1021_ac034716z
crossref_primary_10_1186_1752_0509_3_37
crossref_primary_10_1016_j_ibiod_2019_104722
crossref_primary_10_1038_nmeth_3529
crossref_primary_10_3390_ijms17060816
crossref_primary_10_1007_s11306_011_0348_6
crossref_primary_10_1186_gb_2005_6_6_r49
crossref_primary_10_1016_j_drudis_2006_10_004
crossref_primary_10_1016_j_foodcont_2012_01_003
crossref_primary_10_15252_msb_202110767
crossref_primary_10_1016_j_pt_2013_10_005
crossref_primary_10_1111_acel_12025
crossref_primary_10_1016_j_cell_2016_09_007
crossref_primary_10_1016_j_jchromb_2012_03_034
crossref_primary_10_1186_1752_0509_2_51
crossref_primary_10_3109_13813455_2010_501082
crossref_primary_10_1016_j_ijms_2018_03_004
crossref_primary_10_1016_j_procbio_2006_06_016
crossref_primary_10_1007_s11306_005_0007_x
crossref_primary_10_1111_j_1567_1364_2005_00010_x
crossref_primary_10_1126_science_1218595
crossref_primary_10_1021_ac062446p
crossref_primary_10_1038_s41598_018_22869_7
crossref_primary_10_1074_jbc_M112_442814
crossref_primary_10_1016_j_phytol_2024_04_008
crossref_primary_10_1016_j_jbiosc_2012_12_007
crossref_primary_10_1016_j_cbpa_2016_12_006
crossref_primary_10_1093_bioinformatics_btx458
crossref_primary_10_1360_SSV_2023_0152
crossref_primary_10_1021_bp060272r
crossref_primary_10_1021_acs_analchem_5b03003
crossref_primary_10_1089_omi_2007_0005
crossref_primary_10_4236_fns_2014_59092
crossref_primary_10_1016_j_copbio_2005_02_005
crossref_primary_10_1007_s00216_010_4063_3
crossref_primary_10_1021_acs_analchem_5b01503
crossref_primary_10_1039_b907754e
crossref_primary_10_3724_SP_J_1005_2008_00389
crossref_primary_10_1007_s00216_015_9047_x
crossref_primary_10_1186_jbiol54
crossref_primary_10_3390_nu13062120
crossref_primary_10_1021_ac050601e
crossref_primary_10_1186_1471_2164_14_744
crossref_primary_10_1016_S1359_6446_03_02901_5
crossref_primary_10_1038_s41592_022_01454_x
crossref_primary_10_1002_mas_20011
crossref_primary_10_1002_rcm_3078
crossref_primary_10_1016_j_chroma_2005_08_082
crossref_primary_10_1038_msb4100085
crossref_primary_10_1021_ac8016899
crossref_primary_10_1007_s11306_011_0340_1
crossref_primary_10_1094_MPMI_04_10_0092
crossref_primary_10_1111_j_1567_1364_2007_00302_x
crossref_primary_10_1016_j_drudis_2013_07_014
crossref_primary_10_1038_nrg1293
crossref_primary_10_1163_193724011X615578
crossref_primary_10_1213_01_ane_0000198673_23026_b3
crossref_primary_10_4239_wjd_v14_i6_846
crossref_primary_10_1007_s11306_008_0132_4
crossref_primary_10_1016_j_beem_2019_04_001
crossref_primary_10_1007_s11306_005_1106_4
crossref_primary_10_1177_1934578X0800300419
crossref_primary_10_1007_s11306_010_0247_2
crossref_primary_10_1186_gb_2004_5_12_r99
crossref_primary_10_1002_yea_1136
crossref_primary_10_1002_yea_1499
crossref_primary_10_1002_mas_21354
crossref_primary_10_1002_cfg_302
crossref_primary_10_1016_j_copbio_2015_03_015
crossref_primary_10_1038_nrmicro1177
crossref_primary_10_1021_cb300477w
crossref_primary_10_1186_1471_2105_10_227
crossref_primary_10_1007_s00253_005_0277_2
crossref_primary_10_1002_bit_21194
crossref_primary_10_1073_pnas_0605152103
crossref_primary_10_1186_1752_0509_5_92
crossref_primary_10_1016_j_jbiotec_2007_08_043
crossref_primary_10_1371_journal_pcbi_1002750
crossref_primary_10_1093_bbb_zbab038
crossref_primary_10_1039_b918710c
crossref_primary_10_1021_pr060505
crossref_primary_10_1101_gr_5662207
crossref_primary_10_1186_1752_0509_4_6
crossref_primary_10_3389_fgene_2022_1017340
crossref_primary_10_1016_j_tibtech_2005_08_005
crossref_primary_10_1098_rstb_2003_1411
crossref_primary_10_1016_j_taap_2005_06_021
crossref_primary_10_1371_journal_pone_0010662
crossref_primary_10_1186_s13568_020_01083_7
crossref_primary_10_1038_nprot_2011_366
crossref_primary_10_1016_j_placenta_2010_12_001
crossref_primary_10_1038_nbt1016
crossref_primary_10_1007_s00216_023_04724_5
crossref_primary_10_3390_membranes14030070
crossref_primary_10_1128_msystems_00638_19
crossref_primary_10_1111_j_1742_4658_2006_05136_x
crossref_primary_10_1098_rsif_2008_0221
crossref_primary_10_1111_1753_0407_13018
crossref_primary_10_1016_j_cell_2010_09_048
crossref_primary_10_1186_1471_2105_9_199
crossref_primary_10_3390_nu16142341
crossref_primary_10_1021_pr2002897
crossref_primary_10_1042_BCJ20210535
crossref_primary_10_1016_j_bej_2019_107437
crossref_primary_10_1007_s10616_012_9508_4
crossref_primary_10_1371_journal_pone_0016989
crossref_primary_10_1038_nrd_2016_32
crossref_primary_10_1371_journal_pone_0081500
crossref_primary_10_1039_c1mb05196b
crossref_primary_10_1093_jxb_eri068
crossref_primary_10_1007_s00203_007_0289_7
crossref_primary_10_1016_j_mimet_2009_01_011
crossref_primary_10_3390_metabo10110458
crossref_primary_10_1104_pp_107_112458
crossref_primary_10_1021_ac048323r
crossref_primary_10_1002_biot_201800416
crossref_primary_10_1038_msb_2013_21
crossref_primary_10_1002_14651858_CD011872_pub3
crossref_primary_10_1021_es062796t
crossref_primary_10_1021_jf9009137
crossref_primary_10_1126_scitranslmed_3001006
crossref_primary_10_1186_1471_2105_7_203
crossref_primary_10_1002_14651858_CD011872_pub2
crossref_primary_10_1007_s12263_009_0120_y
crossref_primary_10_1021_ac8014627
crossref_primary_10_3389_fendo_2020_619422
crossref_primary_10_1016_j_placenta_2010_07_002
crossref_primary_10_1016_j_jbiotec_2007_01_031
crossref_primary_10_1128_AEM_70_10_6157_6165_2004
crossref_primary_10_1016_j_febslet_2008_04_020
crossref_primary_10_1016_j_jbiotec_2005_12_002
crossref_primary_10_1007_s00216_011_5556_4
crossref_primary_10_1039_c3an36517d
crossref_primary_10_1017_S1464793104006530
crossref_primary_10_1016_S1359_6446_05_03609_3
crossref_primary_10_1371_journal_pgen_1004142
crossref_primary_10_1016_j_biotechadv_2020_107616
crossref_primary_10_1039_C4AN02223H
crossref_primary_10_1074_jbc_M700549200
crossref_primary_10_1186_s12866_018_1256_y
crossref_primary_10_1039_b705973f
crossref_primary_10_1039_C2MB25512J
crossref_primary_10_1002_ehf2_12133
crossref_primary_10_1161_CIRCULATIONAHA_111_067827
crossref_primary_10_1002_yea_1601
crossref_primary_10_1007_s11306_005_4433_6
crossref_primary_10_1038_nrm1451
crossref_primary_10_1038_nbt1492
crossref_primary_10_1002_pca_1185
crossref_primary_10_1002_mas_20108
crossref_primary_10_1007_s11306_010_0231_x
crossref_primary_10_1016_j_femsle_2004_10_048
crossref_primary_10_1134_S1990750809010016
crossref_primary_10_3389_fmicb_2019_01843
crossref_primary_10_1007_s11306_016_1108_4
crossref_primary_10_1079_BJN20041243
crossref_primary_10_1016_j_tibtech_2007_05_006
crossref_primary_10_1186_1752_0509_6_73
crossref_primary_10_1002_bies_20414
crossref_primary_10_1007_s11306_005_1108_2
crossref_primary_10_1161_HYPERTENSIONAHA_110_157297
crossref_primary_10_12677_AMB_2017_64015
crossref_primary_10_1016_j_ddtec_2004_10_011
crossref_primary_10_1039_b901179j
crossref_primary_10_1016_j_jhazmat_2022_128244
crossref_primary_10_1016_j_trac_2015_08_003
crossref_primary_10_1177_193229680700100413
crossref_primary_10_2217_14622416_7_7_1095
crossref_primary_10_1038_ncpgasthep1125
crossref_primary_10_1002_yea_1612
crossref_primary_10_1021_ac0352427
crossref_primary_10_1093_humupd_dmx023
crossref_primary_10_3390_ijms21030919
crossref_primary_10_1128_AEM_71_9_5420_5426_2005
crossref_primary_10_1016_j_pestbp_2018_03_015
crossref_primary_10_1038_s41540_023_00274_9
crossref_primary_10_1038_nprot_2016_156
crossref_primary_10_1016_j_copbio_2010_10_001
crossref_primary_10_1016_j_cbpa_2004_12_004
crossref_primary_10_1021_acs_analchem_3c01109
crossref_primary_10_1016_j_placenta_2008_05_002
crossref_primary_10_1007_s00216_021_03261_3
crossref_primary_10_1186_1752_0509_6_4
crossref_primary_10_1016_j_jsbmb_2024_106580
crossref_primary_10_1038_nprot_2007_500
crossref_primary_10_1080_10408340600969924
crossref_primary_10_1093_jxb_erw030
crossref_primary_10_1007_s11306_005_0001_3
crossref_primary_10_1002_yea_1545
crossref_primary_10_1371_journal_pone_0016286
crossref_primary_10_1002_biot_201500060
crossref_primary_10_3389_fmicb_2022_855331
crossref_primary_10_1007_s11306_012_0422_8
crossref_primary_10_1111_j_1755_0238_2005_tb00281_x
crossref_primary_10_1016_j_copbio_2005_04_004
crossref_primary_10_1073_pnas_0906039107
crossref_primary_10_1371_journal_pone_0086799
crossref_primary_10_1016_j_jacc_2008_03_043
crossref_primary_10_3389_fmicb_2019_00215
crossref_primary_10_1007_s11306_006_0029_z
crossref_primary_10_1016_j_tibtech_2008_05_008
crossref_primary_10_1007_s11306_010_0216_9
crossref_primary_10_1021_ac0521596
crossref_primary_10_1111_j_1474_9726_2010_00590_x
crossref_primary_10_1002_yea_950
crossref_primary_10_3390_ijms23126555
crossref_primary_10_1007_s10646_012_0885_4
crossref_primary_10_1002_ddr_21043
crossref_primary_10_1584_jpestics_31_245
crossref_primary_10_1016_j_tim_2024_11_009
crossref_primary_10_1016_j_toxlet_2003_09_011
crossref_primary_10_1038_nprot_2011_335
crossref_primary_10_1088_1478_3975_5_1_011001
crossref_primary_10_1093_bfgp_elp053
crossref_primary_10_3390_nu15132871
crossref_primary_10_1373_clinchem_2016_257279
crossref_primary_10_1016_j_pestbp_2011_03_004
crossref_primary_10_1111_j_1365_313X_2010_04154_x
crossref_primary_10_1073_pnas_0609709104
crossref_primary_10_1111_j_1582_4934_2008_00385_x
crossref_primary_10_1186_1471_2105_12_259
crossref_primary_10_1111_1462_2920_13056
crossref_primary_10_1016_S1872_2040_08_60081_X
crossref_primary_10_1038_nbt1041
crossref_primary_10_1186_s12864_017_3816_1
crossref_primary_10_1007_s10462_021_10009_z
crossref_primary_10_1007_s11814_009_0243_2
crossref_primary_10_1016_j_yjmcc_2012_12_001
crossref_primary_10_1016_j_tibtech_2004_03_007
crossref_primary_10_1007_s00248_006_9019_y
crossref_primary_10_1007_s00253_007_1029_2
crossref_primary_10_3390_ijms21218369
crossref_primary_10_2217_bmm_11_87
crossref_primary_10_1021_jf062330u
crossref_primary_10_1016_j_cbpa_2006_06_027
crossref_primary_10_3390_cells13181542
crossref_primary_10_1016_S2213_8587_13_70143_8
crossref_primary_10_1002_rcm_4328
crossref_primary_10_1007_s10858_011_9486_4
crossref_primary_10_1007_s11306_006_0044_0
crossref_primary_10_5487_TR_2009_25_2_059
crossref_primary_10_1016_j_jbiosc_2011_12_013
crossref_primary_10_3923_jms_2013_1_9
crossref_primary_10_1254_fpj_125_213
crossref_primary_10_3390_diagnostics11091602
crossref_primary_10_1021_ac034669a
crossref_primary_10_1007_s11274_024_04128_2
crossref_primary_10_1007_s11306_018_1339_7
crossref_primary_10_1039_D2MO00229A
crossref_primary_10_1093_bioinformatics_btl085
crossref_primary_10_1111_myc_13699
crossref_primary_10_1016_j_copbio_2006_02_001
crossref_primary_10_1186_s12872_023_03171_5
crossref_primary_10_1098_rstb_2005_1734
crossref_primary_10_1038_nprot_2007_512
crossref_primary_10_1002_yea_1418
crossref_primary_10_1016_j_dsx_2021_102250
crossref_primary_10_1038_nprot_2007_511
crossref_primary_10_1111_j_1567_1364_2011_00779_x
crossref_primary_10_1074_mcp_M111_007633
crossref_primary_10_1039_b418288j
crossref_primary_10_1101_gr_105825_110
crossref_primary_10_1007_s11306_006_0017_3
crossref_primary_10_1007_s12975_011_0121_1
crossref_primary_10_1016_j_fertnstert_2018_11_036
crossref_primary_10_1042_BJ20041162
crossref_primary_10_1002_elps_200700517
crossref_primary_10_1002_cfg_231
crossref_primary_10_1111_jam_13244
crossref_primary_10_1038_nm_2307
crossref_primary_10_1128_AEM_01742_08
Cites_doi 10.1023/A:1013713905833
10.1038/83496
10.1007/978-1-4615-5731-9
10.1006/abio.2001.5096
10.1007/978-3-662-04726-2
10.1007/978-0-387-21606-5
10.1006/bbrc.2001.5350
10.1016/S0167-7799(99)01407-9
10.1039/b206037j
10.1007/978-1-4757-1904-8
10.1016/S0168-9525(02)02765-8
10.1099/00221287-144-5-1157
10.1016/S0167-7799(98)01214-1
10.1016/S0003-2670(97)00064-0
10.1021/ac00252a023
10.1007/BFb0055923
10.1104/pp.126.3.943
10.1038/35001165
10.1099/00221287-104-1-67
10.1002/(SICI)1097-0061(199712)13:16<1563::AID-YEA240>3.0.CO;2-6
ContentType Journal Article
Copyright Springer Nature America, Inc. 2003
COPYRIGHT 2003 Nature Publishing Group
Copyright Nature Publishing Group Jun 2003
Copyright_xml – notice: Springer Nature America, Inc. 2003
– notice: COPYRIGHT 2003 Nature Publishing Group
– notice: Copyright Nature Publishing Group Jun 2003
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QO
7QP
7QR
7T7
7TK
7TM
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
L6V
LK8
M0S
M1P
M2O
M2P
M7P
M7S
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
RC3
7S9
L.6
7X8
DOI 10.1038/nbt823
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Research Library
ProQuest Science Database
ProQuest Biological Science Database
Engineering Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
Engineering Research Database
MEDLINE - Academic
MEDLINE
Research Library Prep
Engineering Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Agriculture
Biology
EISSN 1546-1696
EndPage 696
ExternalDocumentID 301763823
1008633651
A190182722
12740584
10_1038_nbt823
Genre Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: E19354
GroupedDBID ---
-~X
.55
.GJ
0R~
123
29M
2FS
2XV
36B
39C
3V.
4.4
4R4
53G
5BI
5RE
70F
7X7
88A
88E
88I
8AO
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
A8Z
AAEEF
AAHBH
AAIKC
AAMNW
AARCD
AAYOK
AAYZH
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABJNI
ABLJU
ABOCM
ABUWG
ACBTR
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHSBF
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BAAKF
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
C0K
CCPQU
D1J
DB5
DU5
DWQXO
EAD
EAP
EAS
EBC
EBS
EE.
EJD
EMB
EMK
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAG
IAO
IEA
IEP
IH2
IHR
INH
INR
IOV
ISR
ITC
KOO
L6V
LK8
M0L
M1P
M2O
M2P
M7P
M7S
ML0
MVM
N95
NEJ
O9-
P2P
PKN
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
QF4
QM4
QN7
QO4
RNS
RNT
RNTTT
RXW
SJN
SNYQT
SOJ
SV3
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
U5U
UKHRP
X7M
XI7
XOL
Y6R
YZZ
ZGI
ZHY
ZXP
~KM
AAYXX
ACMFV
ACSTC
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
5M7
5S5
AFBBN
AHOSX
AIBTJ
ARMCB
BKOMP
CGR
CUY
CVF
ECM
EIF
FA8
LGEZI
LOTEE
NADUK
NFIDA
NNMJJ
NPM
NXXTH
ODYON
PMFND
RVV
SHXYY
SIXXV
7QO
7QP
7QR
7T7
7TK
7TM
7XB
8FD
8FK
C1K
FR3
K9.
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
7S9
L.6
7X8
ID FETCH-LOGICAL-c600t-33586783b7ecc34e01a507706b36d88d1a37f6ee6713ca8c372f1d9dcdebdf453
IEDL.DBID 7X7
ISSN 1087-0156
IngestDate Fri Jul 11 05:25:11 EDT 2025
Fri Jul 11 14:36:41 EDT 2025
Tue Aug 05 10:19:44 EDT 2025
Fri Jul 11 15:28:23 EDT 2025
Fri Jul 25 09:03:44 EDT 2025
Tue Jun 10 21:25:35 EDT 2025
Fri Jun 27 05:43:42 EDT 2025
Fri Jun 27 05:28:27 EDT 2025
Fri May 30 10:50:34 EDT 2025
Tue Jul 01 01:51:35 EDT 2025
Thu Apr 24 22:58:52 EDT 2025
Fri Feb 21 02:43:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c600t-33586783b7ecc34e01a507706b36d88d1a37f6ee6713ca8c372f1d9dcdebdf453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ObjectType-Feature-2
ObjectType-Undefined-1
ObjectType-Feature-3
PMID 12740584
PQID 222229990
PQPubID 23462
PageCount 5
ParticipantIDs proquest_miscellaneous_73330711
proquest_miscellaneous_49130298
proquest_miscellaneous_20040999
proquest_miscellaneous_18805044
proquest_journals_222229990
gale_infotracacademiconefile_A190182722
gale_incontextgauss_ISR_A190182722
gale_incontextgauss_IOV_A190182722
pubmed_primary_12740584
crossref_citationtrail_10_1038_nbt823
crossref_primary_10_1038_nbt823
springer_journals_10_1038_nbt823
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-06-01
PublicationDateYYYYMMDD 2003-06-01
PublicationDate_xml – month: 06
  year: 2003
  text: 2003-06-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Science and Business of Biotechnology
PublicationTitle Nature biotechnology
PublicationTitleAbbrev Nat Biotechnol
PublicationTitleAlternate Nat Biotechnol
PublicationYear 2003
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References R Goodacre (BFnbt823_CR21) 2002; 127
BFJ Manly (BFnbt823_CR26) 1994
O Fiehn (BFnbt823_CR9) 2002; 48
BK Alsberg (BFnbt823_CR18) 1997; 348
W Windig (BFnbt823_CR25) 1983; 55
H Martens (BFnbt823_CR22) 1989
N Aranibar (BFnbt823_CR19) 2001; 286
BFnbt823_CR14
LM Raamsdonk (BFnbt823_CR1) 2001; 19
R Goodacre (BFnbt823_CR27) 1998; 144
JR Quinlan (BFnbt823_CR17) 1993
DB Kell (BFnbt823_CR10) 2000; 18
F Baganz (BFnbt823_CR11) 1997; 13
WB Langdon (BFnbt823_CR8) 2002
DB Kell (BFnbt823_CR28) 2002; 1
W Banzhaf (BFnbt823_CR4) 1998
DB Kell (BFnbt823_CR6) 2001; 126
SG Oliver (BFnbt823_CR15) 2000; 403
BFnbt823_CR5
RO Duda (BFnbt823_CR13) 2001
SG Oliver (BFnbt823_CR12) 1998; 16
JR Koza (BFnbt823_CR3) 1992
HJH MacFie (BFnbt823_CR24) 1978; 104
DB Kell (BFnbt823_CR7) 2002; 18
L Breiman (BFnbt823_CR16) 1984
NL Cramer (BFnbt823_CR2) 1985
JL Griffin (BFnbt823_CR20) 2001; 293
IT Jolliffe (BFnbt823_CR23) 1986
References_xml – volume-title: C4.5: Programs for Machine Learning
  year: 1993
  ident: BFnbt823_CR17
– volume: 48
  start-page: 155
  year: 2002
  ident: BFnbt823_CR9
  publication-title: Plant Mol. Biol.
  doi: 10.1023/A:1013713905833
– volume: 19
  start-page: 45
  year: 2001
  ident: BFnbt823_CR1
  publication-title: Nat. Biotechnol.
  doi: 10.1038/83496
– ident: BFnbt823_CR5
  doi: 10.1007/978-1-4615-5731-9
– volume: 293
  start-page: 16
  year: 2001
  ident: BFnbt823_CR20
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.2001.5096
– volume-title: Foundations of Genetic Programming
  year: 2002
  ident: BFnbt823_CR8
  doi: 10.1007/978-3-662-04726-2
– ident: BFnbt823_CR14
  doi: 10.1007/978-0-387-21606-5
– volume: 1
  start-page: 16
  year: 2002
  ident: BFnbt823_CR28
  publication-title: Bioinformat. World
– volume: 286
  start-page: 150
  year: 2001
  ident: BFnbt823_CR19
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1006/bbrc.2001.5350
– volume: 18
  start-page: 93
  year: 2000
  ident: BFnbt823_CR10
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(99)01407-9
– volume: 127
  start-page: 1457
  year: 2002
  ident: BFnbt823_CR21
  publication-title: Analyst
  doi: 10.1039/b206037j
– volume-title: Principal Component Analysis
  year: 1986
  ident: BFnbt823_CR23
  doi: 10.1007/978-1-4757-1904-8
– volume: 18
  start-page: 555
  year: 2002
  ident: BFnbt823_CR7
  publication-title: Trends Genet.
  doi: 10.1016/S0168-9525(02)02765-8
– volume-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection
  year: 1992
  ident: BFnbt823_CR3
– volume-title: Multivariate Calibration
  year: 1989
  ident: BFnbt823_CR22
– volume: 144
  start-page: 1157
  year: 1998
  ident: BFnbt823_CR27
  publication-title: Microbiology
  doi: 10.1099/00221287-144-5-1157
– start-page: 183
  volume-title: Proceedings of the First International Conference on Genetic Algorithms and their Applications
  year: 1985
  ident: BFnbt823_CR2
– volume: 16
  start-page: 373
  year: 1998
  ident: BFnbt823_CR12
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(98)01214-1
– volume: 348
  start-page: 389
  year: 1997
  ident: BFnbt823_CR18
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(97)00064-0
– volume-title: Classification and Regression Trees
  year: 1984
  ident: BFnbt823_CR16
– volume: 55
  start-page: 81
  year: 1983
  ident: BFnbt823_CR25
  publication-title: Anal. Chem.
  doi: 10.1021/ac00252a023
– volume-title: Genetic Programming: An Introduction
  year: 1998
  ident: BFnbt823_CR4
  doi: 10.1007/BFb0055923
– volume-title: Multivariate Statistical Methods: A Primer
  year: 1994
  ident: BFnbt823_CR26
– volume: 126
  start-page: 943
  year: 2001
  ident: BFnbt823_CR6
  publication-title: Plant Physiol.
  doi: 10.1104/pp.126.3.943
– volume-title: Pattern Classification
  year: 2001
  ident: BFnbt823_CR13
– volume: 403
  start-page: 601
  year: 2000
  ident: BFnbt823_CR15
  publication-title: Nature
  doi: 10.1038/35001165
– volume: 104
  start-page: 67
  year: 1978
  ident: BFnbt823_CR24
  publication-title: J. Gen. Microbiol.
  doi: 10.1099/00221287-104-1-67
– volume: 13
  start-page: 1563
  year: 1997
  ident: BFnbt823_CR11
  publication-title: Yeast
  doi: 10.1002/(SICI)1097-0061(199712)13:16<1563::AID-YEA240>3.0.CO;2-6
SSID ssj0006466
Score 2.3133461
Snippet Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome...
SourceID proquest
gale
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 692
SubjectTerms Agriculture
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Cells, Cultured
classification
Culture Media
Culture Media - metabolism
Energy Metabolism
Energy Metabolism - genetics
Extracellular Space
Extracellular Space - genetics
Extracellular Space - metabolism
Gene Expression Profiling
Gene Expression Profiling - methods
genetics
Genomics
Genomics - methods
letter
Life Sciences
Mass Spectrometry
Mass Spectrometry - methods
metabolism
Metabolites
methods
microbial genetics
Multivariate Analysis
Mutation
Overflow
Physiology
Proteomics
Proteomics - methods
Quality Control
Saccharomyces cerevisiae
Saccharomyces cerevisiae - classification
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Spectrometry, Mass, Electrospray Ionization
Spectrometry, Mass, Electrospray Ionization - methods
Yeasts
Title High-throughput classification of yeast mutants for functional genomics using metabolic footprinting
URI https://link.springer.com/article/10.1038/nbt823
https://www.ncbi.nlm.nih.gov/pubmed/12740584
https://www.proquest.com/docview/222229990
https://www.proquest.com/docview/18805044
https://www.proquest.com/docview/20040999
https://www.proquest.com/docview/49130298
https://www.proquest.com/docview/73330711
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1BKxAcEISvUCgrBOJk1d61vesTKqihILWgQlFu1n5WlRo7YPvQf8-MvU6bopBDLnlS1juzM8-e8TxC3vKEGau5j7xwLkqNVJHSEAxZKuJEWbhz7t_iPzrOD0_Tr_NsHnpzmtBWOcbEPlDb2uAz8j2GH2Az8Yfl7whFo7C4GhQ0bpNtnFyGHV1ivrrfgmTblyqTWGJ3ZZaP0kJc7lW6lYyv5aKbEflaSrpRI-1Tz-wheRA4I90fjPyI3HLVhNwZVCQvJ-T-tZmCE3L3KFTLHxOLTRxRUOJZdi01SJWxN6g3B609vUTpHrroUEu4oUBgKSa64fkgxfmti3PTUGyOP6ML14LHXJwbwNUtrhVbpp-Q09nBz0-HUVBViAyQmzbiPJOQobgWYD2eOjAJcEIR55rnVkqbKC587lwOt69GScMF84ktrLFOW59m_CnZqurKPSc0UxaHvTCVaJUmVsvC-SL3hddZXoALTMm7cX9LE0aOo_LFRdmXvrksBztMyesVbjkM2fgH8QbNU-LEigpbYs5U1zTll2-_yn2kNJIJxjaBfpysgd4HkK9hLUaF1xDginAS1hpyZ_SFMhzsply5Iax59SucSCyzqMrVXVPihLssTtPNCIxMyMw3I9ICC8qF3IwQnEN4TpIpeTa46dXOMQEsXML_09Fvr9a_vq0v_nuJO-QeG8Qm4fi8JFvtn869AgrW6t3-oMG3nH3eJdsfD46_n_wFecM1Iw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIl4HBMtrKVALUXGKmth5OAeEKmDZpd0iQYt6C35WlbrJQhKh_VH8R2by2HaLlltzzSdlbI9nxpnxfIS85gHTRnHnucRaL9RCelKBMWRh4gfSwMm5ucU_PYzHx-Hnk-hkg_zp78JgWWVvExtDbQqN_8h3GT4Qzfjv5j89JI3C5GrPoNFqxb5d_IYTW_l28gGWd4ex0cej92OvIxXwNPj2yuM8EmCguUpAeB5akAhCosSPFY-NECaQPHGxtTGc3rQUmifMBSY12lhlXIgkEWDxb4Scp7ihxOjT0vDHbWo08AVWc0ZxT2XExW6uKsH4iu-76gEuucArOdnG1Y3uk3tdjEr3WqV6QDZsPiA3W9bKxYDcvdTDcEBuTbvs_ENisGjE65h_5nVFNYbmWIvULD8tHF0gVRCd1chdXFIImCk61vZ_JMV-sbMzXVIsxj-lM1uBhp6facAVFcqKJdqPyPG1TPhjspkXuX1KaCQNNpdhMlAyDIwSqXVp7FKnojgFlRuSnX5-M921OEemjfOsSbVzkbXrMCTbS9y8berxD-IVLk-GHTJyLME5lXVZZpMv37M9DKEESxhbB_r2dQX0pgO5AmTRsrv2ACPCzlsryK1eF7LOkJTZUu1B5uVbsACY1pG5Leoyw456kR-G6xFoCfEksB4RppjATsV6RMI5uIMgGJInrZpezBxLIOoX8H3a6-2F_KvT-uy_Q9wmt8dH04PsYHK4v0XusJboErbSc7JZ_artCwj_KvWy2XSU_LjuXf4X0W9vtQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIio4IFheS4FaiIpTtImdxM4BoYqy6lJaEFC0t9Txo6rUTRaSCO1P498xk8e2W7TcmmtGytieZ2Y8HyGvecC0ybjznLDWC7VUnsrAGLJQ-IEykDk3t_iPjuODk_DjNJpukD_9XRhsq-xtYmOoTaHxH_mI4QPRjD9yXVfEl_3xu_lPDwGksNDao2m0EnJoF78heyvfTvbhqHcZG3_4_v7A6wAGPA1-vvI4jyQYa54JWAgPLXAH4ZHw44zHRkoTKC5cbG0MmZxWUnPBXGASo43NjAsRMAKs_y3BowBVTEyXuR44-qZMGvgSOzujuIc14nKUZ5VkfMUPXvcGV9zhtfps4_bG98m9Ll6le62APSAbNh-Q2y2C5WJA7l6ZZzggW0ddpf4hMdhA4nUoQPO6ohrDdOxLakSBFo4uEDaIzmrEMS4pBM8UnWz7b5Li7NjZuS4pNuaf0ZmtQFovzjXQFRXyiu3aj8jJjWz4Y7KZF7l9SmikDA6aYSrIVBiYTCbWJbFLXBbFCYjfkOz2-5vqbtw5om5cpE3Zncu0PYch2VnSzdsBH_9QvMLjSXFaRo6Cd6bqskwnn3-kexhOSSYYW0f07esK0ZuOyBXAi1bdFQhYEU7hWqHc7mUh7YxKmS5VAHhevgVrgCUelduiLlOcrhf5YbieAq0iZgXrKcIEi9mJXE8hOAfXEARD8qQV08udYwIyAAnfp73cXvK_uq3P_rvEHbIF-p1-mhwfbpM7rMW8BE16TjarX7V9AZFglb1sdI6S05tW8r-7Y3Pi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-throughput+classification+of+yeast+mutants+for+functional+genomics+using+metabolic+footprinting&rft.jtitle=Nature+biotechnology&rft.au=Allen%2C+J&rft.au=Davey%2C+H+M&rft.au=Broadhurst%2C+D&rft.au=Heald%2C+J+K&rft.date=2003-06-01&rft.issn=1087-0156&rft.volume=21&rft.issue=6+p.692-696&rft.spage=692&rft.epage=696&rft_id=info:doi/10.1038%2Fnbt823&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon