High-throughput classification of yeast mutants for functional genomics using metabolic footprinting
Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater ef...
Saved in:
Published in | Nature biotechnology Vol. 21; no. 6; pp. 692 - 696 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.06.2003
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes
1
. However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This 'metabolic footprinting' approach recognizes the significance of 'overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming
2
,
3
,
4
,
5
,
6
,
7
,
8
, we show that metabolic footprinting is an effective method to classify 'unknown' mutants by genetic defect. |
---|---|
AbstractList | Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes
1
. However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This 'metabolic footprinting' approach recognizes the significance of 'overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming
2
,
3
,
4
,
5
,
6
,
7
,
8
, we show that metabolic footprinting is an effective method to classify 'unknown' mutants by genetic defect. Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate largescale functional analysis strategies. Yet the metabolome, because it is `downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes. However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This `metabolic footprinting' approach recognizes the significance of `overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming, we show that metabolic footprinting is an effective method to classify `unknown' mutants by genetic defect. Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes. However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This 'metabolic footprinting' approach recognizes the significance of 'overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming, we show that metabolic footprinting is an effective method to classify 'unknown' mutants by genetic defect.Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes. However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This 'metabolic footprinting' approach recognizes the significance of 'overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming, we show that metabolic footprinting is an effective method to classify 'unknown' mutants by genetic defect. Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome studies dominate large-scale functional analysis strategies. Yet the metabolome, because it is 'downstream', should show greater effects of genetic or physiological changes and thus should be much closer to the phenotype of the organism. We earlier presented a functional analysis strategy that used metabolic fingerprinting to reveal the phenotype of silent mutations of yeast genes. However, this is difficult to scale up for high-throughput screening. Here we present an alternative that has the required throughput (2 min per sample). This 'metabolic footprinting' approach recognizes the significance of 'overflow metabolism' in appropriate media. Measuring intracellular metabolites is time-consuming and subject to technical difficulties caused by the rapid turnover of intracellular metabolites and the need to quench metabolism and separate metabolites from the extracellular space. We therefore focused instead on direct, noninvasive, mass spectrometric monitoring of extracellular metabolites in spent culture medium. Metabolic footprinting can distinguish between different physiological states of wild-type yeast and between yeast single-gene deletion mutants even from related areas of metabolism. By using appropriate clustering and machine learning techniques, the latter based on genetic programming, we show that metabolic footprinting is an effective method to classify 'unknown' mutants by genetic defect. |
Audience | Academic |
Author | Allen, Jess Broadhurst, David Heald, Jim K Rowland, Jem J Davey, Hazel M Kell, Douglas B Oliver, Stephen G |
Author_xml | – sequence: 1 givenname: Jess surname: Allen fullname: Allen, Jess organization: Institute of Biological Sciences, Cledwyn Building, University of Wales – sequence: 2 givenname: Hazel M surname: Davey fullname: Davey, Hazel M organization: Institute of Biological Sciences, Cledwyn Building, University of Wales – sequence: 3 givenname: David surname: Broadhurst fullname: Broadhurst, David organization: Institute of Biological Sciences, Cledwyn Building, University of Wales – sequence: 4 givenname: Jim K surname: Heald fullname: Heald, Jim K organization: Institute of Biological Sciences, Cledwyn Building, University of Wales – sequence: 5 givenname: Jem J surname: Rowland fullname: Rowland, Jem J organization: Department of Computer Science, University of Wales – sequence: 6 givenname: Stephen G surname: Oliver fullname: Oliver, Stephen G organization: School of Biological Sciences, University of Manchester – sequence: 7 givenname: Douglas B surname: Kell fullname: Kell, Douglas B email: dbk@umist.ac.uk organization: Institute of Biological Sciences, Cledwyn Building, University of Wales |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/12740584$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0l1r3SAYB_AwOtaXbR9hhF10DJbuMRo1l6Vsa6FQ2NutGKM5lkTPfIH128-z07X03JzFi4j-fJDH_3F14LzTVfUawRkCzD-6IfEWP6uOUEdog2hPD8ocOGsAdfSwOo7xFgAoofRFdYhaRqDj5KgaL-20atIq-Dyt1jnVapYxWmOVTNa72pv6TsuY6iUn6VKsjQ-1yU5tduVcT9r5xapY52jdVC86ycHPVhXn0zpYl8ryy-q5kXPUr-7_J9WPz5--X1w21zdfri7OrxtFAVKDcccp43hgWilMNCDZAWNAB0xHzkckMTNUa8oQVpIrzFqDxn5Uox5GQzp8Up1u666D_5V1TGKxUel5lk77HAXDGANDaC8kPcLQ9nwvbAEI9H2_FyLOoQNCCny7A299DqWVpdjmK8WgoLMtmuSshXXGpyBVGaMuzS4vb2xZP0c9IN6yti0H3j85UEzSv9Mkc4zi6tvX_7c3P5_aN_e3zcOiR1FedJHhTvwLUAEftkAFH2PQRiib_kan3NjOAoHY5FNs8_nYpgf-UHEXvtvCuAnRpMNjm3bkH-s_8AM |
CitedBy_id | crossref_primary_10_1016_j_mib_2016_07_008 crossref_primary_10_1016_j_snb_2018_02_137 crossref_primary_10_1007_s11306_020_01725_8 crossref_primary_10_1007_s11306_007_0064_4 crossref_primary_10_1016_j_foodres_2019_06_008 crossref_primary_10_1016_j_chembiol_2018_09_004 crossref_primary_10_1073_pnas_0503955102 crossref_primary_10_1371_journal_pone_0080121 crossref_primary_10_1586_14737159_7_4_329 crossref_primary_10_1007_s11306_013_0564_3 crossref_primary_10_1186_1471_2105_8_419 crossref_primary_10_1093_jn_137_1_259S crossref_primary_10_1002_pmic_200600106 crossref_primary_10_3390_metabo11100692 crossref_primary_10_1021_jf061955p crossref_primary_10_1002_mas_20032 crossref_primary_10_3389_fmicb_2022_958785 crossref_primary_10_1016_j_cell_2011_05_022 crossref_primary_10_1186_2193_1801_2_287 crossref_primary_10_1007_s12161_016_0502_x crossref_primary_10_1016_j_pnmrs_2017_05_001 crossref_primary_10_1172_JCI35111 crossref_primary_10_1016_j_ymben_2005_05_003 crossref_primary_10_1021_jf402043m crossref_primary_10_1104_pp_114_252361 crossref_primary_10_1093_humupd_dmt048 crossref_primary_10_1255_nirn_1065 crossref_primary_10_1093_jxb_eraa424 crossref_primary_10_1039_b504480d crossref_primary_10_1089_ten_tec_2007_0401 crossref_primary_10_1186_1471_2105_7_281 crossref_primary_10_1017_S000711450999300X crossref_primary_10_1016_j_copbio_2023_103027 crossref_primary_10_1021_acs_analchem_5b03340 crossref_primary_10_1016_j_ab_2015_01_002 crossref_primary_10_1038_nrendo_2016_76 crossref_primary_10_1093_biolre_ioac082 crossref_primary_10_1371_journal_pone_0096038 crossref_primary_10_1089_tec_2007_0401 crossref_primary_10_1111_j_1462_2920_2012_02840_x crossref_primary_10_1039_b923046g crossref_primary_10_1080_07388551_2018_1462141 crossref_primary_10_1007_s00216_011_5630_y crossref_primary_10_1007_s11306_008_0104_8 crossref_primary_10_1111_j_1471_0528_2006_01150_x crossref_primary_10_1074_mcp_M300082_MCP200 crossref_primary_10_1371_journal_pone_0005328 crossref_primary_10_1128_AEM_05838_11 crossref_primary_10_1161_CIRCULATIONAHA_105_569137 crossref_primary_10_1111_ajgw_12202 crossref_primary_10_1039_C0MB00143K crossref_primary_10_1074_mcp_M111_011072 crossref_primary_10_1007_s12281_008_0022_2 crossref_primary_10_1016_j_compbiolchem_2009_07_017 crossref_primary_10_1371_journal_pone_0118052 crossref_primary_10_1073_pnas_2217383120 crossref_primary_10_1016_j_plaphy_2008_12_023 crossref_primary_10_1039_c3np70086k crossref_primary_10_1534_g3_113_008144 crossref_primary_10_1152_physiolgenomics_00009_2008 crossref_primary_10_1007_s11306_014_0748_5 crossref_primary_10_1039_C3MB70599D crossref_primary_10_1007_s11306_012_0449_x crossref_primary_10_1073_pnas_0303415101 crossref_primary_10_1155_2014_894296 crossref_primary_10_1007_s10858_011_9492_6 crossref_primary_10_5483_BMBRep_2004_37_1_093 crossref_primary_10_1016_j_jchromb_2021_122567 crossref_primary_10_1101_pdb_prot5222 crossref_primary_10_1021_pr100880y crossref_primary_10_1002_bit_27243 crossref_primary_10_1039_C7AY02578E crossref_primary_10_1021_acs_analchem_6b00038 crossref_primary_10_1016_j_copbio_2003_11_001 crossref_primary_10_1002_nbm_1395 crossref_primary_10_1021_ac049146x crossref_primary_10_1021_pr300318m crossref_primary_10_1098_rstb_2005_1805 crossref_primary_10_1007_s11306_005_1104_6 crossref_primary_10_1016_j_eswa_2021_116158 crossref_primary_10_1021_ac701703f crossref_primary_10_1039_C6AN00393A crossref_primary_10_1111_j_1469_185X_2010_00157_x crossref_primary_10_1002_mas_20182 crossref_primary_10_1016_j_ab_2005_11_019 crossref_primary_10_1016_j_taap_2011_02_008 crossref_primary_10_1042_BST0381197 crossref_primary_10_1016_j_biosystems_2011_08_002 crossref_primary_10_1073_pnas_1617317113 crossref_primary_10_1016_j_orggeochem_2020_104179 crossref_primary_10_1042_BST0330520 crossref_primary_10_1186_1756_0500_7_406 crossref_primary_10_1016_j_phytochem_2007_05_014 crossref_primary_10_3389_fendo_2018_00180 crossref_primary_10_3109_07420528_2012_699122 crossref_primary_10_1021_ac034716z crossref_primary_10_1186_1752_0509_3_37 crossref_primary_10_1016_j_ibiod_2019_104722 crossref_primary_10_1038_nmeth_3529 crossref_primary_10_3390_ijms17060816 crossref_primary_10_1007_s11306_011_0348_6 crossref_primary_10_1186_gb_2005_6_6_r49 crossref_primary_10_1016_j_drudis_2006_10_004 crossref_primary_10_1016_j_foodcont_2012_01_003 crossref_primary_10_15252_msb_202110767 crossref_primary_10_1016_j_pt_2013_10_005 crossref_primary_10_1111_acel_12025 crossref_primary_10_1016_j_cell_2016_09_007 crossref_primary_10_1016_j_jchromb_2012_03_034 crossref_primary_10_1186_1752_0509_2_51 crossref_primary_10_3109_13813455_2010_501082 crossref_primary_10_1016_j_ijms_2018_03_004 crossref_primary_10_1016_j_procbio_2006_06_016 crossref_primary_10_1007_s11306_005_0007_x crossref_primary_10_1111_j_1567_1364_2005_00010_x crossref_primary_10_1126_science_1218595 crossref_primary_10_1021_ac062446p crossref_primary_10_1038_s41598_018_22869_7 crossref_primary_10_1074_jbc_M112_442814 crossref_primary_10_1016_j_phytol_2024_04_008 crossref_primary_10_1016_j_jbiosc_2012_12_007 crossref_primary_10_1016_j_cbpa_2016_12_006 crossref_primary_10_1093_bioinformatics_btx458 crossref_primary_10_1360_SSV_2023_0152 crossref_primary_10_1021_bp060272r crossref_primary_10_1021_acs_analchem_5b03003 crossref_primary_10_1089_omi_2007_0005 crossref_primary_10_4236_fns_2014_59092 crossref_primary_10_1016_j_copbio_2005_02_005 crossref_primary_10_1007_s00216_010_4063_3 crossref_primary_10_1021_acs_analchem_5b01503 crossref_primary_10_1039_b907754e crossref_primary_10_3724_SP_J_1005_2008_00389 crossref_primary_10_1007_s00216_015_9047_x crossref_primary_10_1186_jbiol54 crossref_primary_10_3390_nu13062120 crossref_primary_10_1021_ac050601e crossref_primary_10_1186_1471_2164_14_744 crossref_primary_10_1016_S1359_6446_03_02901_5 crossref_primary_10_1038_s41592_022_01454_x crossref_primary_10_1002_mas_20011 crossref_primary_10_1002_rcm_3078 crossref_primary_10_1016_j_chroma_2005_08_082 crossref_primary_10_1038_msb4100085 crossref_primary_10_1021_ac8016899 crossref_primary_10_1007_s11306_011_0340_1 crossref_primary_10_1094_MPMI_04_10_0092 crossref_primary_10_1111_j_1567_1364_2007_00302_x crossref_primary_10_1016_j_drudis_2013_07_014 crossref_primary_10_1038_nrg1293 crossref_primary_10_1163_193724011X615578 crossref_primary_10_1213_01_ane_0000198673_23026_b3 crossref_primary_10_4239_wjd_v14_i6_846 crossref_primary_10_1007_s11306_008_0132_4 crossref_primary_10_1016_j_beem_2019_04_001 crossref_primary_10_1007_s11306_005_1106_4 crossref_primary_10_1177_1934578X0800300419 crossref_primary_10_1007_s11306_010_0247_2 crossref_primary_10_1186_gb_2004_5_12_r99 crossref_primary_10_1002_yea_1136 crossref_primary_10_1002_yea_1499 crossref_primary_10_1002_mas_21354 crossref_primary_10_1002_cfg_302 crossref_primary_10_1016_j_copbio_2015_03_015 crossref_primary_10_1038_nrmicro1177 crossref_primary_10_1021_cb300477w crossref_primary_10_1186_1471_2105_10_227 crossref_primary_10_1007_s00253_005_0277_2 crossref_primary_10_1002_bit_21194 crossref_primary_10_1073_pnas_0605152103 crossref_primary_10_1186_1752_0509_5_92 crossref_primary_10_1016_j_jbiotec_2007_08_043 crossref_primary_10_1371_journal_pcbi_1002750 crossref_primary_10_1093_bbb_zbab038 crossref_primary_10_1039_b918710c crossref_primary_10_1021_pr060505 crossref_primary_10_1101_gr_5662207 crossref_primary_10_1186_1752_0509_4_6 crossref_primary_10_3389_fgene_2022_1017340 crossref_primary_10_1016_j_tibtech_2005_08_005 crossref_primary_10_1098_rstb_2003_1411 crossref_primary_10_1016_j_taap_2005_06_021 crossref_primary_10_1371_journal_pone_0010662 crossref_primary_10_1186_s13568_020_01083_7 crossref_primary_10_1038_nprot_2011_366 crossref_primary_10_1016_j_placenta_2010_12_001 crossref_primary_10_1038_nbt1016 crossref_primary_10_1007_s00216_023_04724_5 crossref_primary_10_3390_membranes14030070 crossref_primary_10_1128_msystems_00638_19 crossref_primary_10_1111_j_1742_4658_2006_05136_x crossref_primary_10_1098_rsif_2008_0221 crossref_primary_10_1111_1753_0407_13018 crossref_primary_10_1016_j_cell_2010_09_048 crossref_primary_10_1186_1471_2105_9_199 crossref_primary_10_3390_nu16142341 crossref_primary_10_1021_pr2002897 crossref_primary_10_1042_BCJ20210535 crossref_primary_10_1016_j_bej_2019_107437 crossref_primary_10_1007_s10616_012_9508_4 crossref_primary_10_1371_journal_pone_0016989 crossref_primary_10_1038_nrd_2016_32 crossref_primary_10_1371_journal_pone_0081500 crossref_primary_10_1039_c1mb05196b crossref_primary_10_1093_jxb_eri068 crossref_primary_10_1007_s00203_007_0289_7 crossref_primary_10_1016_j_mimet_2009_01_011 crossref_primary_10_3390_metabo10110458 crossref_primary_10_1104_pp_107_112458 crossref_primary_10_1021_ac048323r crossref_primary_10_1002_biot_201800416 crossref_primary_10_1038_msb_2013_21 crossref_primary_10_1002_14651858_CD011872_pub3 crossref_primary_10_1021_es062796t crossref_primary_10_1021_jf9009137 crossref_primary_10_1126_scitranslmed_3001006 crossref_primary_10_1186_1471_2105_7_203 crossref_primary_10_1002_14651858_CD011872_pub2 crossref_primary_10_1007_s12263_009_0120_y crossref_primary_10_1021_ac8014627 crossref_primary_10_3389_fendo_2020_619422 crossref_primary_10_1016_j_placenta_2010_07_002 crossref_primary_10_1016_j_jbiotec_2007_01_031 crossref_primary_10_1128_AEM_70_10_6157_6165_2004 crossref_primary_10_1016_j_febslet_2008_04_020 crossref_primary_10_1016_j_jbiotec_2005_12_002 crossref_primary_10_1007_s00216_011_5556_4 crossref_primary_10_1039_c3an36517d crossref_primary_10_1017_S1464793104006530 crossref_primary_10_1016_S1359_6446_05_03609_3 crossref_primary_10_1371_journal_pgen_1004142 crossref_primary_10_1016_j_biotechadv_2020_107616 crossref_primary_10_1039_C4AN02223H crossref_primary_10_1074_jbc_M700549200 crossref_primary_10_1186_s12866_018_1256_y crossref_primary_10_1039_b705973f crossref_primary_10_1039_C2MB25512J crossref_primary_10_1002_ehf2_12133 crossref_primary_10_1161_CIRCULATIONAHA_111_067827 crossref_primary_10_1002_yea_1601 crossref_primary_10_1007_s11306_005_4433_6 crossref_primary_10_1038_nrm1451 crossref_primary_10_1038_nbt1492 crossref_primary_10_1002_pca_1185 crossref_primary_10_1002_mas_20108 crossref_primary_10_1007_s11306_010_0231_x crossref_primary_10_1016_j_femsle_2004_10_048 crossref_primary_10_1134_S1990750809010016 crossref_primary_10_3389_fmicb_2019_01843 crossref_primary_10_1007_s11306_016_1108_4 crossref_primary_10_1079_BJN20041243 crossref_primary_10_1016_j_tibtech_2007_05_006 crossref_primary_10_1186_1752_0509_6_73 crossref_primary_10_1002_bies_20414 crossref_primary_10_1007_s11306_005_1108_2 crossref_primary_10_1161_HYPERTENSIONAHA_110_157297 crossref_primary_10_12677_AMB_2017_64015 crossref_primary_10_1016_j_ddtec_2004_10_011 crossref_primary_10_1039_b901179j crossref_primary_10_1016_j_jhazmat_2022_128244 crossref_primary_10_1016_j_trac_2015_08_003 crossref_primary_10_1177_193229680700100413 crossref_primary_10_2217_14622416_7_7_1095 crossref_primary_10_1038_ncpgasthep1125 crossref_primary_10_1002_yea_1612 crossref_primary_10_1021_ac0352427 crossref_primary_10_1093_humupd_dmx023 crossref_primary_10_3390_ijms21030919 crossref_primary_10_1128_AEM_71_9_5420_5426_2005 crossref_primary_10_1016_j_pestbp_2018_03_015 crossref_primary_10_1038_s41540_023_00274_9 crossref_primary_10_1038_nprot_2016_156 crossref_primary_10_1016_j_copbio_2010_10_001 crossref_primary_10_1016_j_cbpa_2004_12_004 crossref_primary_10_1021_acs_analchem_3c01109 crossref_primary_10_1016_j_placenta_2008_05_002 crossref_primary_10_1007_s00216_021_03261_3 crossref_primary_10_1186_1752_0509_6_4 crossref_primary_10_1016_j_jsbmb_2024_106580 crossref_primary_10_1038_nprot_2007_500 crossref_primary_10_1080_10408340600969924 crossref_primary_10_1093_jxb_erw030 crossref_primary_10_1007_s11306_005_0001_3 crossref_primary_10_1002_yea_1545 crossref_primary_10_1371_journal_pone_0016286 crossref_primary_10_1002_biot_201500060 crossref_primary_10_3389_fmicb_2022_855331 crossref_primary_10_1007_s11306_012_0422_8 crossref_primary_10_1111_j_1755_0238_2005_tb00281_x crossref_primary_10_1016_j_copbio_2005_04_004 crossref_primary_10_1073_pnas_0906039107 crossref_primary_10_1371_journal_pone_0086799 crossref_primary_10_1016_j_jacc_2008_03_043 crossref_primary_10_3389_fmicb_2019_00215 crossref_primary_10_1007_s11306_006_0029_z crossref_primary_10_1016_j_tibtech_2008_05_008 crossref_primary_10_1007_s11306_010_0216_9 crossref_primary_10_1021_ac0521596 crossref_primary_10_1111_j_1474_9726_2010_00590_x crossref_primary_10_1002_yea_950 crossref_primary_10_3390_ijms23126555 crossref_primary_10_1007_s10646_012_0885_4 crossref_primary_10_1002_ddr_21043 crossref_primary_10_1584_jpestics_31_245 crossref_primary_10_1016_j_tim_2024_11_009 crossref_primary_10_1016_j_toxlet_2003_09_011 crossref_primary_10_1038_nprot_2011_335 crossref_primary_10_1088_1478_3975_5_1_011001 crossref_primary_10_1093_bfgp_elp053 crossref_primary_10_3390_nu15132871 crossref_primary_10_1373_clinchem_2016_257279 crossref_primary_10_1016_j_pestbp_2011_03_004 crossref_primary_10_1111_j_1365_313X_2010_04154_x crossref_primary_10_1073_pnas_0609709104 crossref_primary_10_1111_j_1582_4934_2008_00385_x crossref_primary_10_1186_1471_2105_12_259 crossref_primary_10_1111_1462_2920_13056 crossref_primary_10_1016_S1872_2040_08_60081_X crossref_primary_10_1038_nbt1041 crossref_primary_10_1186_s12864_017_3816_1 crossref_primary_10_1007_s10462_021_10009_z crossref_primary_10_1007_s11814_009_0243_2 crossref_primary_10_1016_j_yjmcc_2012_12_001 crossref_primary_10_1016_j_tibtech_2004_03_007 crossref_primary_10_1007_s00248_006_9019_y crossref_primary_10_1007_s00253_007_1029_2 crossref_primary_10_3390_ijms21218369 crossref_primary_10_2217_bmm_11_87 crossref_primary_10_1021_jf062330u crossref_primary_10_1016_j_cbpa_2006_06_027 crossref_primary_10_3390_cells13181542 crossref_primary_10_1016_S2213_8587_13_70143_8 crossref_primary_10_1002_rcm_4328 crossref_primary_10_1007_s10858_011_9486_4 crossref_primary_10_1007_s11306_006_0044_0 crossref_primary_10_5487_TR_2009_25_2_059 crossref_primary_10_1016_j_jbiosc_2011_12_013 crossref_primary_10_3923_jms_2013_1_9 crossref_primary_10_1254_fpj_125_213 crossref_primary_10_3390_diagnostics11091602 crossref_primary_10_1021_ac034669a crossref_primary_10_1007_s11274_024_04128_2 crossref_primary_10_1007_s11306_018_1339_7 crossref_primary_10_1039_D2MO00229A crossref_primary_10_1093_bioinformatics_btl085 crossref_primary_10_1111_myc_13699 crossref_primary_10_1016_j_copbio_2006_02_001 crossref_primary_10_1186_s12872_023_03171_5 crossref_primary_10_1098_rstb_2005_1734 crossref_primary_10_1038_nprot_2007_512 crossref_primary_10_1002_yea_1418 crossref_primary_10_1016_j_dsx_2021_102250 crossref_primary_10_1038_nprot_2007_511 crossref_primary_10_1111_j_1567_1364_2011_00779_x crossref_primary_10_1074_mcp_M111_007633 crossref_primary_10_1039_b418288j crossref_primary_10_1101_gr_105825_110 crossref_primary_10_1007_s11306_006_0017_3 crossref_primary_10_1007_s12975_011_0121_1 crossref_primary_10_1016_j_fertnstert_2018_11_036 crossref_primary_10_1042_BJ20041162 crossref_primary_10_1002_elps_200700517 crossref_primary_10_1002_cfg_231 crossref_primary_10_1111_jam_13244 crossref_primary_10_1038_nm_2307 crossref_primary_10_1128_AEM_01742_08 |
Cites_doi | 10.1023/A:1013713905833 10.1038/83496 10.1007/978-1-4615-5731-9 10.1006/abio.2001.5096 10.1007/978-3-662-04726-2 10.1007/978-0-387-21606-5 10.1006/bbrc.2001.5350 10.1016/S0167-7799(99)01407-9 10.1039/b206037j 10.1007/978-1-4757-1904-8 10.1016/S0168-9525(02)02765-8 10.1099/00221287-144-5-1157 10.1016/S0167-7799(98)01214-1 10.1016/S0003-2670(97)00064-0 10.1021/ac00252a023 10.1007/BFb0055923 10.1104/pp.126.3.943 10.1038/35001165 10.1099/00221287-104-1-67 10.1002/(SICI)1097-0061(199712)13:16<1563::AID-YEA240>3.0.CO;2-6 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2003 COPYRIGHT 2003 Nature Publishing Group Copyright Nature Publishing Group Jun 2003 |
Copyright_xml | – notice: Springer Nature America, Inc. 2003 – notice: COPYRIGHT 2003 Nature Publishing Group – notice: Copyright Nature Publishing Group Jun 2003 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QO 7QP 7QR 7T7 7TK 7TM 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. L6V LK8 M0S M1P M2O M2P M7P M7S MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS Q9U RC3 7S9 L.6 7X8 |
DOI | 10.1038/nbt823 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library SciTech Premium Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Research Library ProQuest Science Database ProQuest Biological Science Database Engineering Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic MEDLINE Research Library Prep Engineering Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Agriculture Biology |
EISSN | 1546-1696 |
EndPage | 696 |
ExternalDocumentID | 301763823 1008633651 A190182722 12740584 10_1038_nbt823 |
Genre | Research Support, Non-U.S. Gov't Evaluation Study Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: E19354 |
GroupedDBID | --- -~X .55 .GJ 0R~ 123 29M 2FS 2XV 36B 39C 3V. 4.4 4R4 53G 5BI 5RE 70F 7X7 88A 88E 88I 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AAEEF AAHBH AAIKC AAMNW AARCD AAYOK AAYZH ABAWZ ABDBF ABDPE ABEFU ABJCF ABJNI ABLJU ABOCM ABUWG ACBTR ACBWK ACGFO ACGFS ACGOD ACIWK ACMJI ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFFNX AFKRA AFRAH AFSHS AGAYW AGHTU AHBCP AHMBA AHSBF ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ASPBG AVWKF AXYYD AZFZN AZQEC BAAKF BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI C0K CCPQU D1J DB5 DU5 DWQXO EAD EAP EAS EBC EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAG IAO IEA IEP IH2 IHR INH INR IOV ISR ITC KOO L6V LK8 M0L M1P M2O M2P M7P M7S ML0 MVM N95 NEJ O9- P2P PKN PQQKQ PROAC PSQYO PTHSS Q2X QF4 QM4 QN7 QO4 RNS RNT RNTTT RXW SJN SNYQT SOJ SV3 TAE TAOOD TBHMF TDRGL TN5 TSG TUS U5U UKHRP X7M XI7 XOL Y6R YZZ ZGI ZHY ZXP ~KM AAYXX ACMFV ACSTC AFANA ALPWD ATHPR CITATION PHGZM PHGZT 5M7 5S5 AFBBN AHOSX AIBTJ ARMCB BKOMP CGR CUY CVF ECM EIF FA8 LGEZI LOTEE NADUK NFIDA NNMJJ NPM NXXTH ODYON PMFND RVV SHXYY SIXXV 7QO 7QP 7QR 7T7 7TK 7TM 7XB 8FD 8FK C1K FR3 K9. MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U RC3 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c600t-33586783b7ecc34e01a507706b36d88d1a37f6ee6713ca8c372f1d9dcdebdf453 |
IEDL.DBID | 7X7 |
ISSN | 1087-0156 |
IngestDate | Fri Jul 11 05:25:11 EDT 2025 Fri Jul 11 14:36:41 EDT 2025 Tue Aug 05 10:19:44 EDT 2025 Fri Jul 11 15:28:23 EDT 2025 Fri Jul 25 09:03:44 EDT 2025 Tue Jun 10 21:25:35 EDT 2025 Fri Jun 27 05:43:42 EDT 2025 Fri Jun 27 05:28:27 EDT 2025 Fri May 30 10:50:34 EDT 2025 Tue Jul 01 01:51:35 EDT 2025 Thu Apr 24 22:58:52 EDT 2025 Fri Feb 21 02:43:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c600t-33586783b7ecc34e01a507706b36d88d1a37f6ee6713ca8c372f1d9dcdebdf453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 ObjectType-Feature-2 ObjectType-Undefined-1 ObjectType-Feature-3 |
PMID | 12740584 |
PQID | 222229990 |
PQPubID | 23462 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_73330711 proquest_miscellaneous_49130298 proquest_miscellaneous_20040999 proquest_miscellaneous_18805044 proquest_journals_222229990 gale_infotracacademiconefile_A190182722 gale_incontextgauss_ISR_A190182722 gale_incontextgauss_IOV_A190182722 pubmed_primary_12740584 crossref_citationtrail_10_1038_nbt823 crossref_primary_10_1038_nbt823 springer_journals_10_1038_nbt823 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2003-06-01 |
PublicationDateYYYYMMDD | 2003-06-01 |
PublicationDate_xml | – month: 06 year: 2003 text: 2003-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | The Science and Business of Biotechnology |
PublicationTitle | Nature biotechnology |
PublicationTitleAbbrev | Nat Biotechnol |
PublicationTitleAlternate | Nat Biotechnol |
PublicationYear | 2003 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | R Goodacre (BFnbt823_CR21) 2002; 127 BFJ Manly (BFnbt823_CR26) 1994 O Fiehn (BFnbt823_CR9) 2002; 48 BK Alsberg (BFnbt823_CR18) 1997; 348 W Windig (BFnbt823_CR25) 1983; 55 H Martens (BFnbt823_CR22) 1989 N Aranibar (BFnbt823_CR19) 2001; 286 BFnbt823_CR14 LM Raamsdonk (BFnbt823_CR1) 2001; 19 R Goodacre (BFnbt823_CR27) 1998; 144 JR Quinlan (BFnbt823_CR17) 1993 DB Kell (BFnbt823_CR10) 2000; 18 F Baganz (BFnbt823_CR11) 1997; 13 WB Langdon (BFnbt823_CR8) 2002 DB Kell (BFnbt823_CR28) 2002; 1 W Banzhaf (BFnbt823_CR4) 1998 DB Kell (BFnbt823_CR6) 2001; 126 SG Oliver (BFnbt823_CR15) 2000; 403 BFnbt823_CR5 RO Duda (BFnbt823_CR13) 2001 SG Oliver (BFnbt823_CR12) 1998; 16 JR Koza (BFnbt823_CR3) 1992 HJH MacFie (BFnbt823_CR24) 1978; 104 DB Kell (BFnbt823_CR7) 2002; 18 L Breiman (BFnbt823_CR16) 1984 NL Cramer (BFnbt823_CR2) 1985 JL Griffin (BFnbt823_CR20) 2001; 293 IT Jolliffe (BFnbt823_CR23) 1986 |
References_xml | – volume-title: C4.5: Programs for Machine Learning year: 1993 ident: BFnbt823_CR17 – volume: 48 start-page: 155 year: 2002 ident: BFnbt823_CR9 publication-title: Plant Mol. Biol. doi: 10.1023/A:1013713905833 – volume: 19 start-page: 45 year: 2001 ident: BFnbt823_CR1 publication-title: Nat. Biotechnol. doi: 10.1038/83496 – ident: BFnbt823_CR5 doi: 10.1007/978-1-4615-5731-9 – volume: 293 start-page: 16 year: 2001 ident: BFnbt823_CR20 publication-title: Anal. Biochem. doi: 10.1006/abio.2001.5096 – volume-title: Foundations of Genetic Programming year: 2002 ident: BFnbt823_CR8 doi: 10.1007/978-3-662-04726-2 – ident: BFnbt823_CR14 doi: 10.1007/978-0-387-21606-5 – volume: 1 start-page: 16 year: 2002 ident: BFnbt823_CR28 publication-title: Bioinformat. World – volume: 286 start-page: 150 year: 2001 ident: BFnbt823_CR19 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1006/bbrc.2001.5350 – volume: 18 start-page: 93 year: 2000 ident: BFnbt823_CR10 publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(99)01407-9 – volume: 127 start-page: 1457 year: 2002 ident: BFnbt823_CR21 publication-title: Analyst doi: 10.1039/b206037j – volume-title: Principal Component Analysis year: 1986 ident: BFnbt823_CR23 doi: 10.1007/978-1-4757-1904-8 – volume: 18 start-page: 555 year: 2002 ident: BFnbt823_CR7 publication-title: Trends Genet. doi: 10.1016/S0168-9525(02)02765-8 – volume-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection year: 1992 ident: BFnbt823_CR3 – volume-title: Multivariate Calibration year: 1989 ident: BFnbt823_CR22 – volume: 144 start-page: 1157 year: 1998 ident: BFnbt823_CR27 publication-title: Microbiology doi: 10.1099/00221287-144-5-1157 – start-page: 183 volume-title: Proceedings of the First International Conference on Genetic Algorithms and their Applications year: 1985 ident: BFnbt823_CR2 – volume: 16 start-page: 373 year: 1998 ident: BFnbt823_CR12 publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(98)01214-1 – volume: 348 start-page: 389 year: 1997 ident: BFnbt823_CR18 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(97)00064-0 – volume-title: Classification and Regression Trees year: 1984 ident: BFnbt823_CR16 – volume: 55 start-page: 81 year: 1983 ident: BFnbt823_CR25 publication-title: Anal. Chem. doi: 10.1021/ac00252a023 – volume-title: Genetic Programming: An Introduction year: 1998 ident: BFnbt823_CR4 doi: 10.1007/BFb0055923 – volume-title: Multivariate Statistical Methods: A Primer year: 1994 ident: BFnbt823_CR26 – volume: 126 start-page: 943 year: 2001 ident: BFnbt823_CR6 publication-title: Plant Physiol. doi: 10.1104/pp.126.3.943 – volume-title: Pattern Classification year: 2001 ident: BFnbt823_CR13 – volume: 403 start-page: 601 year: 2000 ident: BFnbt823_CR15 publication-title: Nature doi: 10.1038/35001165 – volume: 104 start-page: 67 year: 1978 ident: BFnbt823_CR24 publication-title: J. Gen. Microbiol. doi: 10.1099/00221287-104-1-67 – volume: 13 start-page: 1563 year: 1997 ident: BFnbt823_CR11 publication-title: Yeast doi: 10.1002/(SICI)1097-0061(199712)13:16<1563::AID-YEA240>3.0.CO;2-6 |
SSID | ssj0006466 |
Score | 2.3133461 |
Snippet | Many technologies have been developed to help explain the function of genes discovered by systematic genome sequencing. At present, transcriptome and proteome... |
SourceID | proquest gale pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 692 |
SubjectTerms | Agriculture Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Cells, Cultured classification Culture Media Culture Media - metabolism Energy Metabolism Energy Metabolism - genetics Extracellular Space Extracellular Space - genetics Extracellular Space - metabolism Gene Expression Profiling Gene Expression Profiling - methods genetics Genomics Genomics - methods letter Life Sciences Mass Spectrometry Mass Spectrometry - methods metabolism Metabolites methods microbial genetics Multivariate Analysis Mutation Overflow Physiology Proteomics Proteomics - methods Quality Control Saccharomyces cerevisiae Saccharomyces cerevisiae - classification Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Spectrometry, Mass, Electrospray Ionization Spectrometry, Mass, Electrospray Ionization - methods Yeasts |
Title | High-throughput classification of yeast mutants for functional genomics using metabolic footprinting |
URI | https://link.springer.com/article/10.1038/nbt823 https://www.ncbi.nlm.nih.gov/pubmed/12740584 https://www.proquest.com/docview/222229990 https://www.proquest.com/docview/18805044 https://www.proquest.com/docview/20040999 https://www.proquest.com/docview/49130298 https://www.proquest.com/docview/73330711 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1BKxAcEISvUCgrBOJk1d61vesTKqihILWgQlFu1n5WlRo7YPvQf8-MvU6bopBDLnlS1juzM8-e8TxC3vKEGau5j7xwLkqNVJHSEAxZKuJEWbhz7t_iPzrOD0_Tr_NsHnpzmtBWOcbEPlDb2uAz8j2GH2Az8Yfl7whFo7C4GhQ0bpNtnFyGHV1ivrrfgmTblyqTWGJ3ZZaP0kJc7lW6lYyv5aKbEflaSrpRI-1Tz-wheRA4I90fjPyI3HLVhNwZVCQvJ-T-tZmCE3L3KFTLHxOLTRxRUOJZdi01SJWxN6g3B609vUTpHrroUEu4oUBgKSa64fkgxfmti3PTUGyOP6ML14LHXJwbwNUtrhVbpp-Q09nBz0-HUVBViAyQmzbiPJOQobgWYD2eOjAJcEIR55rnVkqbKC587lwOt69GScMF84ktrLFOW59m_CnZqurKPSc0UxaHvTCVaJUmVsvC-SL3hddZXoALTMm7cX9LE0aOo_LFRdmXvrksBztMyesVbjkM2fgH8QbNU-LEigpbYs5U1zTll2-_yn2kNJIJxjaBfpysgd4HkK9hLUaF1xDginAS1hpyZ_SFMhzsply5Iax59SucSCyzqMrVXVPihLssTtPNCIxMyMw3I9ICC8qF3IwQnEN4TpIpeTa46dXOMQEsXML_09Fvr9a_vq0v_nuJO-QeG8Qm4fi8JFvtn869AgrW6t3-oMG3nH3eJdsfD46_n_wFecM1Iw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIl4HBMtrKVALUXGKmth5OAeEKmDZpd0iQYt6C35WlbrJQhKh_VH8R2by2HaLlltzzSdlbI9nxpnxfIS85gHTRnHnucRaL9RCelKBMWRh4gfSwMm5ucU_PYzHx-Hnk-hkg_zp78JgWWVvExtDbQqN_8h3GT4Qzfjv5j89JI3C5GrPoNFqxb5d_IYTW_l28gGWd4ex0cej92OvIxXwNPj2yuM8EmCguUpAeB5akAhCosSPFY-NECaQPHGxtTGc3rQUmifMBSY12lhlXIgkEWDxb4Scp7ihxOjT0vDHbWo08AVWc0ZxT2XExW6uKsH4iu-76gEuucArOdnG1Y3uk3tdjEr3WqV6QDZsPiA3W9bKxYDcvdTDcEBuTbvs_ENisGjE65h_5nVFNYbmWIvULD8tHF0gVRCd1chdXFIImCk61vZ_JMV-sbMzXVIsxj-lM1uBhp6facAVFcqKJdqPyPG1TPhjspkXuX1KaCQNNpdhMlAyDIwSqXVp7FKnojgFlRuSnX5-M921OEemjfOsSbVzkbXrMCTbS9y8berxD-IVLk-GHTJyLME5lXVZZpMv37M9DKEESxhbB_r2dQX0pgO5AmTRsrv2ACPCzlsryK1eF7LOkJTZUu1B5uVbsACY1pG5Leoyw456kR-G6xFoCfEksB4RppjATsV6RMI5uIMgGJInrZpezBxLIOoX8H3a6-2F_KvT-uy_Q9wmt8dH04PsYHK4v0XusJboErbSc7JZ_artCwj_KvWy2XSU_LjuXf4X0W9vtQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIio4IFheS4FaiIpTtImdxM4BoYqy6lJaEFC0t9Txo6rUTRaSCO1P498xk8e2W7TcmmtGytieZ2Y8HyGvecC0ybjznLDWC7VUnsrAGLJQ-IEykDk3t_iPjuODk_DjNJpukD_9XRhsq-xtYmOoTaHxH_mI4QPRjD9yXVfEl_3xu_lPDwGksNDao2m0EnJoF78heyvfTvbhqHcZG3_4_v7A6wAGPA1-vvI4jyQYa54JWAgPLXAH4ZHw44zHRkoTKC5cbG0MmZxWUnPBXGASo43NjAsRMAKs_y3BowBVTEyXuR44-qZMGvgSOzujuIc14nKUZ5VkfMUPXvcGV9zhtfps4_bG98m9Ll6le62APSAbNh-Q2y2C5WJA7l6ZZzggW0ddpf4hMdhA4nUoQPO6ohrDdOxLakSBFo4uEDaIzmrEMS4pBM8UnWz7b5Li7NjZuS4pNuaf0ZmtQFovzjXQFRXyiu3aj8jJjWz4Y7KZF7l9SmikDA6aYSrIVBiYTCbWJbFLXBbFCYjfkOz2-5vqbtw5om5cpE3Zncu0PYch2VnSzdsBH_9QvMLjSXFaRo6Cd6bqskwnn3-kexhOSSYYW0f07esK0ZuOyBXAi1bdFQhYEU7hWqHc7mUh7YxKmS5VAHhevgVrgCUelduiLlOcrhf5YbieAq0iZgXrKcIEi9mJXE8hOAfXEARD8qQV08udYwIyAAnfp73cXvK_uq3P_rvEHbIF-p1-mhwfbpM7rMW8BE16TjarX7V9AZFglb1sdI6S05tW8r-7Y3Pi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-throughput+classification+of+yeast+mutants+for+functional+genomics+using+metabolic+footprinting&rft.jtitle=Nature+biotechnology&rft.au=Allen%2C+J&rft.au=Davey%2C+H+M&rft.au=Broadhurst%2C+D&rft.au=Heald%2C+J+K&rft.date=2003-06-01&rft.issn=1087-0156&rft.volume=21&rft.issue=6+p.692-696&rft.spage=692&rft.epage=696&rft_id=info:doi/10.1038%2Fnbt823&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1087-0156&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1087-0156&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1087-0156&client=summon |