面向主动学习的模糊核聚类采样算法
针对主动学习中构造初始分类器难以选取代表性样本的问题,提出一种模糊核聚类采样算法。该算法首先通过聚类分析技术将样本集划分,然后分别在类簇中心和类簇边界区域选取样本进行标注,最后依此构造初始分类器。在该算法中,通过高斯核函数将原始样本空间中的点非线性变换到高维特征空间,以达到线性可聚的目的,并引入了一种基于局部密度的初始聚类中心选择方法,从而改善聚类效果。为了提高采样质量,结合划分后各类簇的样本个数设计了一种采样比例分配策略;同时,在采样结束阶段设计了一种后补采样策略,以确保采样个数达标。实验结果分析表明,所提算法可以有效地减少构造初始分类器所需的人工标注负担,并取得了较高的分类正确率。...
Saved in:
Published in | 计算机应用研究 Vol. 34; no. 12; pp. 3564 - 3568 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
大连海事大学交通运输管理学院,辽宁大连,116026
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-3695 |
DOI | 10.3969/j.issn.1001-3695.2017.12.010 |
Cover
Loading…
Summary: | 针对主动学习中构造初始分类器难以选取代表性样本的问题,提出一种模糊核聚类采样算法。该算法首先通过聚类分析技术将样本集划分,然后分别在类簇中心和类簇边界区域选取样本进行标注,最后依此构造初始分类器。在该算法中,通过高斯核函数将原始样本空间中的点非线性变换到高维特征空间,以达到线性可聚的目的,并引入了一种基于局部密度的初始聚类中心选择方法,从而改善聚类效果。为了提高采样质量,结合划分后各类簇的样本个数设计了一种采样比例分配策略;同时,在采样结束阶段设计了一种后补采样策略,以确保采样个数达标。实验结果分析表明,所提算法可以有效地减少构造初始分类器所需的人工标注负担,并取得了较高的分类正确率。 |
---|---|
Bibliography: | 51-1196/TP |
ISSN: | 1001-3695 |
DOI: | 10.3969/j.issn.1001-3695.2017.12.010 |