面向主动学习的模糊核聚类采样算法

针对主动学习中构造初始分类器难以选取代表性样本的问题,提出一种模糊核聚类采样算法。该算法首先通过聚类分析技术将样本集划分,然后分别在类簇中心和类簇边界区域选取样本进行标注,最后依此构造初始分类器。在该算法中,通过高斯核函数将原始样本空间中的点非线性变换到高维特征空间,以达到线性可聚的目的,并引入了一种基于局部密度的初始聚类中心选择方法,从而改善聚类效果。为了提高采样质量,结合划分后各类簇的样本个数设计了一种采样比例分配策略;同时,在采样结束阶段设计了一种后补采样策略,以确保采样个数达标。实验结果分析表明,所提算法可以有效地减少构造初始分类器所需的人工标注负担,并取得了较高的分类正确率。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 12; pp. 3564 - 3568
Main Author 王勇臻;陈燕;张金松
Format Journal Article
LanguageChinese
Published 大连海事大学交通运输管理学院,辽宁大连,116026 2017
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.12.010

Cover

Abstract 针对主动学习中构造初始分类器难以选取代表性样本的问题,提出一种模糊核聚类采样算法。该算法首先通过聚类分析技术将样本集划分,然后分别在类簇中心和类簇边界区域选取样本进行标注,最后依此构造初始分类器。在该算法中,通过高斯核函数将原始样本空间中的点非线性变换到高维特征空间,以达到线性可聚的目的,并引入了一种基于局部密度的初始聚类中心选择方法,从而改善聚类效果。为了提高采样质量,结合划分后各类簇的样本个数设计了一种采样比例分配策略;同时,在采样结束阶段设计了一种后补采样策略,以确保采样个数达标。实验结果分析表明,所提算法可以有效地减少构造初始分类器所需的人工标注负担,并取得了较高的分类正确率。
AbstractList TP301.6; 针对主动学习中构造初始分类器难以选取代表性样本的问题,提出一种模糊核聚类采样算法.该算法首先通过聚类分析技术将样本集划分,然后分别在类簇中心和类簇边界区域选取样本进行标注,最后依此构造初始分类器.在该算法中,通过高斯核函数将原始样本空间中的点非线性变换到高维特征空间,以达到线性可聚的目的,并引入了一种基于局部密度的初始聚类中心选择方法,从而改善聚类效果.为了提高采样质量,结合划分后各类簇的样本个数设计了一种采样比例分配策略;同时,在采样结束阶段设计了一种后补采样策略,以确保采样个数达标.实验结果分析表明,所提算法可以有效地减少构造初始分类器所需的人工标注负担,并取得了较高的分类正确率.
针对主动学习中构造初始分类器难以选取代表性样本的问题,提出一种模糊核聚类采样算法。该算法首先通过聚类分析技术将样本集划分,然后分别在类簇中心和类簇边界区域选取样本进行标注,最后依此构造初始分类器。在该算法中,通过高斯核函数将原始样本空间中的点非线性变换到高维特征空间,以达到线性可聚的目的,并引入了一种基于局部密度的初始聚类中心选择方法,从而改善聚类效果。为了提高采样质量,结合划分后各类簇的样本个数设计了一种采样比例分配策略;同时,在采样结束阶段设计了一种后补采样策略,以确保采样个数达标。实验结果分析表明,所提算法可以有效地减少构造初始分类器所需的人工标注负担,并取得了较高的分类正确率。
Abstract_FL Since it is difficult to select representative samples for active learning when constructing the initial classifier,this paper proposed a sampling algorithm using kernel-based fuzzy clustering.This algorithm began with dividing the sample set via clustering analysis technology,then it extracted samples from regions near the center and the boundary of clusters respectively and labeled them.And in the final phase it constructed the initial classifier using these labeled samples.In this algorithm,it transformed the point in the original sample space into a high dimensional feature space by Gaussian kernel function with the aim of linear clustering,and it introduced an initial cluster center selection method based on local density to improve its cluster performance.In order to ameliorate its sampling quality,this paper designed a sampling proportion allocation strategy utilizing the number of samples of divided each cluster.At the end of sampling,it used a fallback sampling strategy to ensure that the number of samples was up to the standard.The experimental results have demonstrated that the proposed algorithm can effectively reduce the cost of labeling samples when constructing the initial classifier,and get a higher classification accuracy.
Author 王勇臻;陈燕;张金松
AuthorAffiliation 大连海事大学交通运输管理学院,辽宁大连116026
AuthorAffiliation_xml – name: 大连海事大学交通运输管理学院,辽宁大连,116026
Author_FL Wang Yongzhen
Chen Yan
Zhang Jinsong
Author_FL_xml – sequence: 1
  fullname: Wang Yongzhen
– sequence: 2
  fullname: Chen Yan
– sequence: 3
  fullname: Zhang Jinsong
Author_xml – sequence: 1
  fullname: 王勇臻;陈燕;张金松
BookMark eNo9j71KA0EUhaeIYBJ9CbGw2fXOz87ulBL8g4BN-mUymYlZdKJZRLYUhEAqLYIQEFYLSaMgKYzkdZJd8xZuiNicA4ePc--poJLtWo3QLgaXCi72I7cTx9bFANihXHguAey7mLiAoYTK__kmqsRxBMAIFlBGsHx-XTw8zqezxWC8eH-bf6f56D4bv-STQZZOf-5G-eds2e9n6Vf-8ZRNhltow8iLWG__eRU1jg4btROnfnZ8WjuoO4oDOB4OKPWDljFYUE5Mk3FPt5paMT8gSgFnTGNCDPNbigVCkOIfbQKqtJZaGqBVtLeuvZXWSNsOo-5NzxYHwyiOkiSJVvNwISt0Z42q865tX3cK-KrXuZS9JOQ-DQgBj9JfsjBmCQ
ClassificationCodes TP301.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.12.010
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitle_FL Sampling algorithm using kernel-based fuzzy clustering for active learning
EndPage 3568
ExternalDocumentID jsjyyyj201712010
673822053
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 辽宁省自然科学基金资助项目; 青年骨干教师基金资助项目
  funderid: (71271034); (2014025015); (3132016045)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c600-5183378dff19362fb465edbec4782cc0644e122f47dc48992042ef83ceeaeaf03
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 09:56:10 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords 采样
active learning
高斯核函数
主动学习
sampling
Gaussian kernel function
classification
聚类分析
clustering analysis
分类
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c600-5183378dff19362fb465edbec4782cc0644e122f47dc48992042ef83ceeaeaf03
Notes 51-1196/TP
PageCount 5
ParticipantIDs wanfang_journals_jsjyyyj201712010
chongqing_primary_673822053
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 大连海事大学交通运输管理学院,辽宁大连,116026
Publisher_xml – name: 大连海事大学交通运输管理学院,辽宁大连,116026
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.061093
Snippet ...
TP301.6;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 3564
SubjectTerms 主动学习
分类
聚类分析
采样
高斯核函数
Title 面向主动学习的模糊核聚类采样算法
URI http://lib.cqvip.com/qk/93231X/201712/673822053.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201712010
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PaxQxFA_rFsSL_8ValRWa49SZSWaSHGe2U4oHTyv0tszMTlp62KrdHrY3QSj0pAcRCsLqQXqpID1Y6dfp7tpv4XuZdDpCKSosYebl7ctLXibvl5C8EDIvha-LQjGnCPLU4VqGTpoLD159gKdCp15mNsg-D5df8GcrwUqjcVDbtbQ1yBby7QvPlfyPVYEGdsVTsv9g2UooEOAZ7AspWBjSv7IxTRRVizTyaRJQ5VLl0YTTWNI4RoqMaCTxIQKe0GQpGrk0EVRFVHKahMgQeUiJGfIjxUUJiQSMiWyY5RmBikqBP8sjMCtKqDIU-Ht5jeUZ0kUJkFsKr9hUm8YRqgSp4kYTbpQUKLOkRIrG1XohEmRCZVmh2JQvMQWNmFFKgV5GABBVYIggvm0qalTGVgmxneKkvsZRHua0AzJu-WKhrYEdse3yp-2Zfm38ZUEZE936cniVF_kJpkJl_ASWsVCVgTv9hFkdtltt_4zEjRek4rlkdoXM-EJ4QZPMRPFivHSOPwGu1eMR-hjq53y-h8H6w9oAizcIgseoBtjAY_B9IN4qoQSHzDKchlXwKpm32j-9THeME7K20V99BejHHEbr67S_WsNNnZvkup3wtKKy994ije212-TG2WUiLetb7hD39NOX8bv3J0fH49398cHXk5-j6d7byf7n6eHuZHT0683e9Pvx6c7OZPRj-u3j5PDDXdJZSjrtZcde5-HkgKqdAJwHE7KnNcwZQl9nPAyKHgwhHEBqngM05oXn-5qLXs6lUj5Uv9CSAYpLi1S77B5p9jf6xX3SAswtCh1mnhQ572VBxrnL8jQFb6K5J8Qsmavq331ZRm3pVtabJU9si3Ttt7zZXd9cHw6H69iGHu4PeXCphDlyDTnLlbiHpDl4vVU8Amw6yB7bHvEblxlr1A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%A2%E5%90%91%E4%B8%BB%E5%8A%A8%E5%AD%A6%E4%B9%A0%E7%9A%84%E6%A8%A1%E7%B3%8A%E6%A0%B8%E8%81%9A%E7%B1%BB%E9%87%87%E6%A0%B7%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E7%8E%8B%E5%8B%87%E8%87%BB%3B%E9%99%88%E7%87%95%3B%E5%BC%A0%E9%87%91%E6%9D%BE&rft.date=2017&rft.issn=1001-3695&rft.volume=34&rft.issue=12&rft.spage=3564&rft.epage=3568&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.12.010&rft.externalDocID=673822053
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg