基于角度方差的多层次高维数据异常检测算法

异常检测一直是数据挖掘领域的重要工作之一。基于欧氏距离的异常检测算法在应用于高维数据时存在检测精度无法保证和运行时间过长的问题。在基于角度方差的异常检测算法基础上,提出了一种多层次的高维数据异常检测算法(hybrid outlier detection algorithm based on angle variance for high-dimensional data,HODA)。算法结合了粗糙集理论,分析属性之间的相互作用以排除影响较小的属性;通过分析各维度上的数据分布,对数据进行网格划分,寻找可能存在异常点的网格;最后对可能存在异常点的网格计算角度方差异常因子,筛选异常数据。实验结果表明...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 33; no. 11; pp. 3383 - 3386
Main Author 陈圣楠 钱红燕 李伟
Format Journal Article
LanguageChinese
Published 中国民航大学中国民航信息技术科研基地,天津300300 2016
南京航空航天大学计算机科学与技术学院,南京,210016%南京航空航天大学计算机科学与技术学院,南京210016
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001--3695.2016.11.040

Cover

Abstract 异常检测一直是数据挖掘领域的重要工作之一。基于欧氏距离的异常检测算法在应用于高维数据时存在检测精度无法保证和运行时间过长的问题。在基于角度方差的异常检测算法基础上,提出了一种多层次的高维数据异常检测算法(hybrid outlier detection algorithm based on angle variance for high-dimensional data,HODA)。算法结合了粗糙集理论,分析属性之间的相互作用以排除影响较小的属性;通过分析各维度上的数据分布,对数据进行网格划分,寻找可能存在异常点的网格;最后对可能存在异常点的网格计算角度方差异常因子,筛选异常数据。实验结果表明,与ABOD、Fast VOA和经典LOF算法相比,HODA算法在保证精测精度的前提下,运行时间显著缩短,且可扩展性强。
AbstractList TP301.6; 异常检测一直是数据挖掘领域的重要工作之一。基于欧氏距离的异常检测算法在应用于高维数据时存在检测精度无法保证和运行时间过长的问题。在基于角度方差的异常检测算法基础上,提出了一种多层次的高维数据异常检测算法(hybrid outlier detection algorithm based on angle variance for high-dimensional data,HODA)。算法结合了粗糙集理论,分析属性之间的相互作用以排除影响较小的属性;通过分析各维度上的数据分布,对数据进行网格划分,寻找可能存在异常点的网格;最后对可能存在异常点的网格计算角度方差异常因子,筛选异常数据。实验结果表明,与ABOD、FastVOA和经典LOF算法相比,HODA算法在保证精测精度的前提下,运行时间显著缩短,且可扩展性强。
异常检测一直是数据挖掘领域的重要工作之一。基于欧氏距离的异常检测算法在应用于高维数据时存在检测精度无法保证和运行时间过长的问题。在基于角度方差的异常检测算法基础上,提出了一种多层次的高维数据异常检测算法(hybrid outlier detection algorithm based on angle variance for high-dimensional data,HODA)。算法结合了粗糙集理论,分析属性之间的相互作用以排除影响较小的属性;通过分析各维度上的数据分布,对数据进行网格划分,寻找可能存在异常点的网格;最后对可能存在异常点的网格计算角度方差异常因子,筛选异常数据。实验结果表明,与ABOD、Fast VOA和经典LOF算法相比,HODA算法在保证精测精度的前提下,运行时间显著缩短,且可扩展性强。
Abstract_FL Outlier detection is a major task of data mining.Outlier detection methods based on Euclidean distances are not ca-pable for high-dimensional data because they can hardly ensure the cost of the computation and the accuracy.After analyzing angle-based outlier detection method,this paper proposed a novel approach called hybrid outlier detection algorithm based on angle variance for high-dimensional data.The algorithm first utilized rough set theory to analyze the impact between the attri-butes and abandoned less important ones.Then it divided data into different cubes according to the distribution of data on every attribute.It only focused on the cubes with high possibility to contain outliers.At last,through the calculation of angle-based outlier factor,it was able to detect outliers.Compared to conventional algorithms,such as ABOD,FastVOA and LOF, the experimental results verify the feasibility of the proposed approach in terms of both efficiency and accuracy.
Author 陈圣楠 钱红燕 李伟
AuthorAffiliation 南京航空航天大学计算机科学与技术学院,南京210016 中国民航大学中国民航信息技术科研基地,天津300300
AuthorAffiliation_xml – name: 南京航空航天大学计算机科学与技术学院,南京,210016%南京航空航天大学计算机科学与技术学院,南京210016; 中国民航大学中国民航信息技术科研基地,天津300300
Author_FL Qian Hongyan
Chen Shengnan
Li Wei
Author_FL_xml – sequence: 1
  fullname: Chen Shengnan
– sequence: 2
  fullname: Qian Hongyan
– sequence: 3
  fullname: Li Wei
Author_xml – sequence: 1
  fullname: 陈圣楠 钱红燕 李伟
BookMark eNotj89LAkEcxedgkFr_RBB02e07M-usA11C-gVCF--y7syYS43lErG3kG6Rh8AKLxFFHQopKjLrz2nG-i9as9OD9z68x8uhjG5qidA8BpdyxhcjtxHH2sUA2HEo4wWXAGYuxi54kEHZv2DsT6NcHEcAHsEcsmjJXA6_hp3vu1MzvLVn7-atP-odmZueeWrbh6uf-4vRx4vtPtqTvvlsm8HAXh_a1-NR_9w-d2fQlAq2Yzn7r3lUWV2plNad8ubaRmm57IQMwPFqAlMRFpXPocB9THwVMskoF4JL8JQSpOiFvlAABUKowhKUpFTUSECE5Izm0cKk9iDQKtD1atTcb-l0sBrFUZIk0fgqxunRFJ2boOFWU9f3Gim822rsBK2kynygjFGC6S8pKG92
ClassificationCodes TP301.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001--3695.2016.11.040
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Hybrid outlier detection algorithm based on angle variance for high-dimensional data
DocumentTitle_FL Hybrid outlier detection algorithm based on angle variance for high-dimensional data
EndPage 3386
ExternalDocumentID jsjyyyj201611040
670366321
GrantInformation_xml – fundername: 中国民航大学中国民航信息技术科研基地资质项目
  funderid: (CCAC-ITRB-201301)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c600-4bd13dc8f790597127fc6e639dd9e04ffd284c7df005223f1e0fe33db2a2de963
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 10:09:48 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 11
Keywords 网格
降维
高维数据
grid
high-dimensional data
dimensional reduction
angle variance
outlier detection
异常检测
角度方差
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c600-4bd13dc8f790597127fc6e639dd9e04ffd284c7df005223f1e0fe33db2a2de963
Notes 51-1196/TP
Chen Shengnan1, Qian Hongyan1,2, Li Wei1 ( 1. College of Computer Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China; 2. Information Tech- nology Research Base of Civil Aviation Administration of China, Civil Aviation University of China, Tianjin 300300, China)
high-dimensional data; outlier detection ; dimensional reduction; grid; angle variance
Outlier detection is a major task of data mining. Outlier detection methods based on Euclidean distances are not ca- pable for high-dimensional data because they can hardly ensure the cost of the computation and the accuracy. After analyzing angle-based outlier detection method, this paper proposed a novel approach called hybrid outlier detection algorithm based .on angle variance for high-dimensional data. The algorithm first utilized rough set theory to analyze the impact between the attri- butes and abandoned less important ones. Then it divided data into different cubes according to the distribution of data on ev
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201611040
chongqing_primary_670366321
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2016
Publisher 中国民航大学中国民航信息技术科研基地,天津300300
南京航空航天大学计算机科学与技术学院,南京,210016%南京航空航天大学计算机科学与技术学院,南京210016
Publisher_xml – name: 南京航空航天大学计算机科学与技术学院,南京,210016%南京航空航天大学计算机科学与技术学院,南京210016
– name: 中国民航大学中国民航信息技术科研基地,天津300300
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.020258
Snippet 异常检测一直是数据挖掘领域的重要工作之一。基于欧氏距离的异常检测算法在应用于高维数据时存在检测精度无法保证和运行时间过长的问题。在基于角度方差的异常检测算法基础上,提出了一种多层次的高维数据异常检测算法(hybrid outlier detection algorithm based on angle...
TP301.6; 异常检测一直是数据挖掘领域的重要工作之一。基于欧氏距离的异常检测算法在应用于高维数据时存在检测精度无法保证和运行时间过长的问题。在基于角度方差的异常检测算法基础上,提出了一种多层次的高维数据异常检测算法(hybrid outlier detection algorithm based on...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 3383
SubjectTerms 异常检测
网格
角度方差
降维
高维数据
Title 基于角度方差的多层次高维数据异常检测算法
URI http://lib.cqvip.com/qk/93231X/201611/670366321.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201611040
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1PaxQxFA-lBfHif7FWpYI5lakzmUwmAS-Z7SxF0FOF3pbZnaTSw1Zte2hPUryJHoSq9CKi6EEpioq1-hn8FM5Uv4XvZabbQUpRYQmZl5fk5b2Z5CWb_ELIJSmsFYrhTNVwjxtrPGWV9LI8FoJ1jcoZnka-dl1M3-BXZ6PZoaHvjV1Ly0vdyd7qvudK_seqQAO74inZf7DsoFAgQBzsCyFYGMK_sjFNI6raNNE05RjKlKaS6pgqhklA0YKmgipBE-UoMdXAAwzAzJGiOcYxKaCSIbNuUR3QVFGdUCWROUlowl05wOZjRE65cuCx5XJBROIPs4e4eQIiSURlgtmBU8WOEtLqqstdb9hJm7rqGmyq5Vrk5FfcScupdpJov6ZoRZPBmiIKqxSV0umjhSKgINA4f8KlMWwdNgQUwjAiocxowlU25bTGsSWq3VwDqQ5n1h02bgkLRS193aNX0Bq7b27Q6J9xQt4Y6-FR7DeOhEooN45gHQ6mynOV4FZAMYmorxXG1B9Q3QLRzESIuAYjLI6DaJiM6GQqae85qODPNQELGWIB7U0IEc1fNHpgvGIQhpRBDxwFYRy5-woqX4NDYoW3UWvhEKG1-JcPFB6RRG4u9Odug3_kjqv1bdafa3hWM8fIkXpKNK6r9_s4GVq9eYIc3b1uZLwefU6SK8Wz7R_bD3--flRsvyoffyk-b-5s3CtebhTv18q3z3-9ebrz9WO5_q58sFl8Wyu2tsoXd8tP93c2n5Qf1k-RmXY605r26ss_vB744B7v5kGY96RFADkVByy2PWHAnc5zZXxubQ5-VS_OLf6vwUIbGN-aMMy7LGO5gVHlNBnuL_TNGTKe90wcSmuyyEY8s0ZaKNk30ogM5jomGyVjA110blUYL52BKUfJxVo7nfrLX-zML86vrKzMoz7BoNw_e2AJY-QwclbrdufI8NKdZXMePNml7oX69fgNatJ9fw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%A7%92%E5%BA%A6%E6%96%B9%E5%B7%AE%E7%9A%84%E5%A4%9A%E5%B1%82%E6%AC%A1%E9%AB%98%E7%BB%B4%E6%95%B0%E6%8D%AE%E5%BC%82%E5%B8%B8%E6%A3%80%E6%B5%8B%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E9%99%88%E5%9C%A3%E6%A5%A0+%E9%92%B1%E7%BA%A2%E7%87%95+%E6%9D%8E%E4%BC%9F&rft.date=2016&rft.issn=1001-3695&rft.volume=33&rft.issue=11&rft.spage=3383&rft.epage=3386&rft_id=info:doi/10.3969%2Fj.issn.1001--3695.2016.11.040&rft.externalDocID=670366321
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg