基于艾宾浩斯遗忘曲线的零售商品模糊关联分析

针对消费者对商品的偏好存在时序变化特征,而传统关联规则方法未考虑时间因素的影响,且对海量数据集进行关联挖掘时存在效率低下的问题,提出了基于艾宾浩斯遗忘曲线的模糊关联规则算法。该方法通过FCM聚类算法对商品进行聚类,并用艾宾浩斯遗忘曲线来修正聚类的距离度量方法,从而得到商品类及各类的代表点商品;然后将各代表点商品作为属性,消费记录小票作为样本,利用模糊关联规则算法得到代表点商品间的规则;最后将某大型超市一个月的销售记录作为关联规则的事务数据来挖掘潜在规律,结果显示所提算法先对商品模糊关联分析,与传统直接对商品进行关联分析相比,该算法可以显著提高关联挖掘的效率和规则的正确率。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 35; no. 2; pp. 462 - 465
Main Author 李桃迎;张鑫;陈燕
Format Journal Article
LanguageChinese
Published 大连海事大学交通运输管理学院,辽宁大连,116026 2018
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2018.02.030

Cover

Abstract 针对消费者对商品的偏好存在时序变化特征,而传统关联规则方法未考虑时间因素的影响,且对海量数据集进行关联挖掘时存在效率低下的问题,提出了基于艾宾浩斯遗忘曲线的模糊关联规则算法。该方法通过FCM聚类算法对商品进行聚类,并用艾宾浩斯遗忘曲线来修正聚类的距离度量方法,从而得到商品类及各类的代表点商品;然后将各代表点商品作为属性,消费记录小票作为样本,利用模糊关联规则算法得到代表点商品间的规则;最后将某大型超市一个月的销售记录作为关联规则的事务数据来挖掘潜在规律,结果显示所提算法先对商品模糊关联分析,与传统直接对商品进行关联分析相比,该算法可以显著提高关联挖掘的效率和规则的正确率。
AbstractList TP391%C931.9; 针对消费者对商品的偏好存在时序变化特征,而传统关联规则方法未考虑时间因素的影响,且对海量数据集进行关联挖掘时存在效率低下的问题,提出了基于艾宾浩斯遗忘曲线的模糊关联规则算法.该方法通过FCM聚类算法对商品进行聚类,并用艾宾浩斯遗忘曲线来修正聚类的距离度量方法,从而得到商品类及各类的代表点商品;然后将各代表点商品作为属性,消费记录小票作为样本,利用模糊关联规则算法得到代表点商品间的规则;最后将某大型超市一个月的销售记录作为关联规则的事务数据来挖掘潜在规律,结果显示所提算法先对商品模糊关联分析,与传统直接对商品进行关联分析相比,该算法可以显著提高关联挖掘的效率和规则的正确率.
针对消费者对商品的偏好存在时序变化特征,而传统关联规则方法未考虑时间因素的影响,且对海量数据集进行关联挖掘时存在效率低下的问题,提出了基于艾宾浩斯遗忘曲线的模糊关联规则算法。该方法通过FCM聚类算法对商品进行聚类,并用艾宾浩斯遗忘曲线来修正聚类的距离度量方法,从而得到商品类及各类的代表点商品;然后将各代表点商品作为属性,消费记录小票作为样本,利用模糊关联规则算法得到代表点商品间的规则;最后将某大型超市一个月的销售记录作为关联规则的事务数据来挖掘潜在规律,结果显示所提算法先对商品模糊关联分析,与传统直接对商品进行关联分析相比,该算法可以显著提高关联挖掘的效率和规则的正确率。
Abstract_FL Consumers' preference for goods has the characteristics of sequential variation.However,the traditional association rule method has not considered the influence of time factor,and there is the problem of low efficiency in the association mining of massive data sets.Therefore,this paper proposed a fuzzy association rule algorithm based on Ebbinghaus forgetting curve.First of all,this algorithm employed the FCM clustering algorithm to cluster the goods,and introduced the Ebbinghaus forgetting curve for revising the clustering distance metrics,so that to get the goods clusters and all kinds of representative point goods.And then,it used each representative point as the attribute,and used the shopping receipt as the sample,and utilized fuzzy association rules algorithm to get the rules of the representative points.Finally,this paper used the sales records of a large supermarket as the transaction data of the association rules to mine the potential rules.The results show that the proposed algorithm can not only consider the time factor,but also apparently improve the efficiency and accuracy of association mining.
Author 李桃迎;张鑫;陈燕
AuthorAffiliation 大连海事大学交通运输管理学院,辽宁大连116026
AuthorAffiliation_xml – name: 大连海事大学交通运输管理学院,辽宁大连,116026
Author_FL Chen Yan
Li Taoying
Zhang Xin
Author_FL_xml – sequence: 1
  fullname: Li Taoying
– sequence: 2
  fullname: Zhang Xin
– sequence: 3
  fullname: Chen Yan
Author_xml – sequence: 1
  fullname: 李桃迎;张鑫;陈燕
BookMark eNo9j8tKw0AYhWdRwbb6EuLCTeL_z0ymmZVI8QYFN92XpElqg061QSTLghZ1IYL1ggXFnW4qWHTRRfsyTtq-hZGKqw8OH-dwciSjGsonZBnBZFLI1dCsR5EyEQANJqRlUkDbBGoCgwzJ_ufzJBdFIQCnKCFL1vTz4HtwNbkY6t4w-XxL7t6nrXs9eki6H-PBaPx4Ou1-6U5P37b1TSt5fRn3L_VZf9Lq6PN28nS9QOYCZz_yF_-YJ-XNjXJx2yjtbu0U10tGVQAYHCXansQCx4Ayyh3qgWNj4CHaEl0ppc8lRZeltBxapQw93_XB5VIUqHBZnqzMak8cFTiqVgkbx02VDlbCKIzjOPx9CzT9mqpLM7W611C1o3oqHzbrB04zrogC51RYlmQ_AgxvZw
ClassificationCodes TP391%C931.9
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2018.02.030
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Fuzzy association rules model of retail goods based on Ebbinghaus forgetting curve
DocumentTitle_FL Fuzzy association rules model of retail goods based on Ebbinghaus forgetting curve
EndPage 465
ExternalDocumentID jsjyyyj201802030
674426559
GrantInformation_xml – fundername: 国家社会科学基金资助项目; 国家自然科学基金资助项目; 中央高校基础科研业务费专项基金资助项目
  funderid: (15CGL031); (71271034); (3132016212)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c600-41918d91741f2324a2d0a81fd11891b999e4921b39e45a2c231debe0b496726b3
ISSN 1001-3695
IngestDate Thu May 29 03:54:52 EDT 2025
Wed Feb 14 10:09:56 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords 模糊关联规则
association rules
fuzzy association rules
艾宾浩斯遗忘曲线
cluster analysis
聚类分析
Ebbinghaus forgetting curve
关联规则
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c600-41918d91741f2324a2d0a81fd11891b999e4921b39e45a2c231debe0b496726b3
Notes 51-1196/TP
Ebbinghaus forgetting curve; cluster analysis; association rules; fuzzy association rules
Consumers' preference for goods has the characteristics of sequential variation. However, the traditional associa- tion rule method has not considered the influence of time factor, and there is the problem of low efficiency in the association mining of massive data sets. Therefore, this paper proposed a fuzzy association rule algorithm based on Ebbinghaus forgetting curve. First of all, this algorithm employed the FCM clustering algorithm to cluster the goods, and introduced the Ebbinghaus forgetting curve for revising the clustering distance metrics, so that to get the goods clusters and all kinds of representative point goods. And then, it used each representative point as the attribute, and used the shopping receipt as the sample, and utilized fuzzy association rules algorithm to get the rules of the representative points. Finally, this paper used the sales records of a large supermarket as the transaction da
PageCount 4
ParticipantIDs wanfang_journals_jsjyyyj201802030
chongqing_primary_674426559
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2018
Publisher 大连海事大学交通运输管理学院,辽宁大连,116026
Publisher_xml – name: 大连海事大学交通运输管理学院,辽宁大连,116026
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.1011872
Snippet ...
TP391%C931.9;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 462
SubjectTerms 关联规则
模糊关联规则
聚类分析
艾宾浩斯遗忘曲线
Title 基于艾宾浩斯遗忘曲线的零售商品模糊关联分析
URI http://lib.cqvip.com/qk/93231X/201802/674426559.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201802030
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT9RAdIKQePJbI6IGE-a42E4705mTme52Qzx4woTbZrrdhXBYVOAANxIl6sGYiGgk0XjTCyYSPXCAP2MX-Be-N53drUoMeum-ffPem5n32r732ukbQiY844XghpsV5TVFBfINU1GpCCombAtuMhMFTVvt856Yuh_eneEzQ6c2S6uWlpfSyebqsd-V_I9VAQd2xa9k_8GyfaGAABjsC0ewMBxPZGOacKrqNNY0CfEoE5pIKhWNE2zSiQUEjQFWCChBdZ0mCuJHqiKkietUSdsU05jRJEI5gARAgcAQibFJ2L5ClIkAp7LABCgK2LWk2rfsgNHYJDnCOB4fGREjLRf0ldBi985eWIxkILmQAACODciqdmocjyghsgOQlsZzGJhX3H-4aJlqVg0ChUnbP8xGJgMSEFdFfpyYT3U8aAGEwkGCWAl98fITEXf7xrPXqhYGEjnhqqfjOOrZIS7RAFCjWrgmbTWKy0t0j92zQIK6LGZfqAHwhY4dux2dZnBNOPq45oyMFvhjSKzq-7jxV8nr4Lq2QLh5ObdUVHFxlx8r-ZjQua-W-8eP84SBEsp6Quxgst8BrmWUtkitexv2a63x-cX5lZWVeSTCN9TeKTLCosjnw2REx7W4Pgi0IS4tF15kWNNokNjirgSi5Elwq0RwjX1Pwv0g4nbfhSJmCqGxqBvixnmaTLhJ3P7bFLAgytxCZ_YhhHn2q7tO23RmSwHi9Hly1mV247q4TC-QodW5i-Rcb9eUcedEL5E7-YfdH7svDp_t5dt73W-fu5tfjtbe5Ptvu1tfD3b3D949Ptr6nm9s56_X81dr3U8fD3ae5092Dtc28qfr3fcvL5PpejJdnaq4bUwqTcgmcJmFLzMFmb_fxvTFsMwz0m9nkNorP4UErRUq5qcB_HLDmpBwZXBn9dJQiYiJNLhChjsLndZVMp6pNg8MCwyW722bSKYtFskMH1sa8KvZKBnrq6PxoKhW0xCgZyY4V6PkllNQw93DFhu_G_zaCWjGyBmGb2hxcRfWdhDXyfDSo-XWDYjOl9Kb7lT5CfAPrVs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E8%89%BE%E5%AE%BE%E6%B5%A9%E6%96%AF%E9%81%97%E5%BF%98%E6%9B%B2%E7%BA%BF%E7%9A%84%E9%9B%B6%E5%94%AE%E5%95%86%E5%93%81%E6%A8%A1%E7%B3%8A%E5%85%B3%E8%81%94%E5%88%86%E6%9E%90&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E6%9D%8E%E6%A1%83%E8%BF%8E&rft.au=%E5%BC%A0%E9%91%AB&rft.au=%E9%99%88%E7%87%95&rft.date=2018&rft.pub=%E5%A4%A7%E8%BF%9E%E6%B5%B7%E4%BA%8B%E5%A4%A7%E5%AD%A6%E4%BA%A4%E9%80%9A%E8%BF%90%E8%BE%93%E7%AE%A1%E7%90%86%E5%AD%A6%E9%99%A2%2C%E8%BE%BD%E5%AE%81%E5%A4%A7%E8%BF%9E%2C116026&rft.issn=1001-3695&rft.volume=35&rft.issue=2&rft.spage=462&rft.epage=465&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2018.02.030&rft.externalDocID=jsjyyyj201802030
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg