Balancing Selection Maintains a Form of ERAP2 that Undergoes Nonsense-Mediated Decay and Affects Antigen Presentation
A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and b...
Saved in:
Published in | PLoS genetics Vol. 6; no. 10; p. e1001157 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
14.10.2010
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection. |
---|---|
AbstractList |
A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection. A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection. A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection. It has long been known that the extremely high levels of genetic diversity present in the major histocompatibility locus (MHC) are due to balancing selection, a type of natural selection that maintains advantageous genetic diversity in populations. The MHC encodes for molecules required for a type of antigen presentation that mediates detection of infected and cancerous cells by the immune system; the genetic diversity of the MHC thus ensures an adequate response to the wide variety of pathogens that humans encounter. Here, we show that other genes involved in the same antigen-presentation pathway are also subject to balancing selection in humans. Specifically, we show that balancing selection acts to maintain two forms of the endoplasmic reticulum aminopeptidase 2 gene (ERAP2), which encodes a protein also involved in antigen presentation. Although the two ERAP2 forms are present in a similar frequency (close to 0.5), they are associated with differences with respect to the levels of MHC molecules on the cell surface of immune cells. In summary, our findings show that natural selection maintains variants of ERAP2 that affect immune surveillance; they also establish ERAP2 as one of the few examples of balancing selection in humans where the selected variant, its functional consequences, and its influence in interpersonal diversity are known. A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection.A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection. A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 ( ERAP2 ), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2 . This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 ( ERAP1 ), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection. It has long been known that the extremely high levels of genetic diversity present in the major histocompatibility locus (MHC) are due to balancing selection, a type of natural selection that maintains advantageous genetic diversity in populations. The MHC encodes for molecules required for a type of antigen presentation that mediates detection of infected and cancerous cells by the immune system; the genetic diversity of the MHC thus ensures an adequate response to the wide variety of pathogens that humans encounter. Here, we show that other genes involved in the same antigen-presentation pathway are also subject to balancing selection in humans. Specifically, we show that balancing selection acts to maintain two forms of the endoplasmic reticulum aminopeptidase 2 gene ( ERAP2 ), which encodes a protein also involved in antigen presentation. Although the two ERAP2 forms are present in a similar frequency (close to 0.5), they are associated with differences with respect to the levels of MHC molecules on the cell surface of immune cells. In summary, our findings show that natural selection maintains variants of ERAP2 that affect immune surveillance; they also establish ERAP2 as one of the few examples of balancing selection in humans where the selected variant, its functional consequences, and its influence in interpersonal diversity are known. |
Author | Green, Eric D. Dennis, Megan Y. Cannons, Jennifer L. Hurle, Belen Williamson, Scott H. Clark, Andrew G. Andrés, Aida M. Kretzschmar, Warren W. Lee-Lin, Shih-Queen Schwartzberg, Pamela L. Nielsen, Rasmus Bustamante, Carlos D. |
AuthorAffiliation | 4 Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America 3 NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America 2 Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America National Institute of Genetics, Japan 5 Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America 6 Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America 1 Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America |
AuthorAffiliation_xml | – name: 2 Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America – name: 6 Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America – name: 4 Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America – name: 3 NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America – name: 5 Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America – name: 1 Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America – name: National Institute of Genetics, Japan |
Author_xml | – sequence: 1 givenname: Aida M. surname: Andrés fullname: Andrés, Aida M. – sequence: 2 givenname: Megan Y. surname: Dennis fullname: Dennis, Megan Y. – sequence: 3 givenname: Warren W. surname: Kretzschmar fullname: Kretzschmar, Warren W. – sequence: 4 givenname: Jennifer L. surname: Cannons fullname: Cannons, Jennifer L. – sequence: 5 givenname: Shih-Queen surname: Lee-Lin fullname: Lee-Lin, Shih-Queen – sequence: 6 givenname: Belen surname: Hurle fullname: Hurle, Belen – sequence: 7 givenname: Pamela L. surname: Schwartzberg fullname: Schwartzberg, Pamela L. – sequence: 8 givenname: Scott H. surname: Williamson fullname: Williamson, Scott H. – sequence: 9 givenname: Carlos D. surname: Bustamante fullname: Bustamante, Carlos D. – sequence: 10 givenname: Rasmus surname: Nielsen fullname: Nielsen, Rasmus – sequence: 11 givenname: Andrew G. surname: Clark fullname: Clark, Andrew G. – sequence: 12 givenname: Eric D. surname: Green fullname: Green, Eric D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20976248$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUl1vFCEUnZga-6H_wChvPs0KAwyDDyZrbbVJq43aZwLMZctmFrYwa9J_L-vOmtYHTSAQOPfcc-89x9VBiAGq6iXBM0IFebuMmxT0MFsvIMwIxoRw8aQ6IpzTWjDMDh7cD6vjnJcYU95J8aw6bLAUbcO6o2rzQQ86WB8W6DsMYEcfA7rSPoxlZ6TReUwrFB06-za_btB4q0d0E3pIiwgZfYkhQ1n1FfRej9Cjj2D1PdKhR3PnCl1G8zD6IhFdJyjYUW8zPK-eOj1keDGdJ9XN-dmP08_15ddPF6fzy9pyKccajNYdZ47SXhpCiHMMG0YaIkjHJRGUQuNYbxiTWFAuKTPOdsYR05jO0I6eVK93vOshZjV1LCtCCeXlG7cFcbFD9FEv1Tr5lU73Kmqvfj_EtFA6jd4OoHprOZbGSWJaBo4aIljXMI1tg4XB22zvp2wbs4LelmqTHh6RPv4J_lYt4k_VSF6YeCF4MxGkeLeBPKqVzxaGMiGIm6wKrBTZtP9HihaXGUvJCvLVQ1F_1OwtUADvdgCbYs4JnLJ-N6Wi0Q-KYLX12757aus3NfmtBLO_gvf8_wz7BS9b3RI |
CitedBy_id | crossref_primary_10_1371_journal_pone_0069054 crossref_primary_10_1073_pnas_1804506115 crossref_primary_10_3390_genes11030276 crossref_primary_10_1016_j_humimm_2020_02_011 crossref_primary_10_1016_j_jid_2023_01_012 crossref_primary_10_1007_s00439_011_1025_6 crossref_primary_10_1371_journal_pgen_1004681 crossref_primary_10_3389_fimmu_2020_01576 crossref_primary_10_1186_s12885_020_06832_2 crossref_primary_10_1093_gbe_evt198 crossref_primary_10_3389_fimmu_2021_634441 crossref_primary_10_1038_ng_2614 crossref_primary_10_1093_molbev_msw215 crossref_primary_10_1093_molbev_msv007 crossref_primary_10_1097_QAD_0b013e3283601cee crossref_primary_10_1186_1471_2148_11_202 crossref_primary_10_1093_gbe_evad032 crossref_primary_10_1074_jbc_M115_685909 crossref_primary_10_1074_mcp_RA119_001710 crossref_primary_10_1038_nbt_4042 crossref_primary_10_1002_art_38980 crossref_primary_10_1093_rheumatology_kez212 crossref_primary_10_1371_journal_ppat_1012359 crossref_primary_10_1093_molbev_msaa134 crossref_primary_10_1186_1471_2350_12_64 crossref_primary_10_1002_1878_0261_13541 crossref_primary_10_1371_journal_pgen_1002410 crossref_primary_10_3390_ijms24043454 crossref_primary_10_1016_j_humimm_2019_02_004 crossref_primary_10_3389_fimmu_2022_1002375 crossref_primary_10_1007_s00005_016_0444_4 crossref_primary_10_1371_journal_pgen_1008485 crossref_primary_10_3389_fimmu_2024_1519159 crossref_primary_10_1080_2162402X_2017_1336594 crossref_primary_10_1016_j_berh_2018_09_005 crossref_primary_10_1016_j_cbpa_2014_08_007 crossref_primary_10_1016_j_jbc_2021_100443 crossref_primary_10_1038_gene_2016_39 crossref_primary_10_1016_j_coi_2023_102337 crossref_primary_10_1136_annrheumdis_2015_207416 crossref_primary_10_2174_0929867325666180214111849 crossref_primary_10_1038_ng_2205 crossref_primary_10_1097_BOR_0000000000000297 crossref_primary_10_1038_s41598_018_28799_8 crossref_primary_10_1101_gr_111211_110 crossref_primary_10_1186_gb_2013_14_7_r74 crossref_primary_10_1080_08820139_2020_1869253 crossref_primary_10_1093_biolre_ioy001 crossref_primary_10_1016_j_molimm_2016_08_005 crossref_primary_10_4049_jimmunol_2000991 crossref_primary_10_1016_j_humimm_2019_02_014 crossref_primary_10_3390_ijms22168585 crossref_primary_10_1016_j_gde_2014_08_001 crossref_primary_10_7759_cureus_48806 crossref_primary_10_1016_j_preteyeres_2014_11_003 crossref_primary_10_1038_srep33363 crossref_primary_10_1016_j_tree_2012_08_012 crossref_primary_10_1038_s41598_021_86240_z crossref_primary_10_1371_journal_pone_0126911 crossref_primary_10_3390_cancers13030414 crossref_primary_10_1016_j_humimm_2017_11_010 crossref_primary_10_1016_j_autrev_2012_04_007 crossref_primary_10_1016_j_humimm_2019_02_010 crossref_primary_10_1016_j_humimm_2019_02_011 crossref_primary_10_1021_bi201230p crossref_primary_10_1016_j_ajhg_2017_11_002 crossref_primary_10_1016_j_molimm_2018_03_026 crossref_primary_10_1111_tan_12410 crossref_primary_10_2478_aite_2024_0008 crossref_primary_10_1038_gene_2014_46 crossref_primary_10_1038_s41435_023_00225_8 crossref_primary_10_1074_mcp_RA117_000565 crossref_primary_10_1016_j_ajhg_2017_01_028 crossref_primary_10_1042_BSR20171503 crossref_primary_10_1016_j_humimm_2020_11_004 crossref_primary_10_1186_s12967_024_05532_w crossref_primary_10_3390_biom10101461 crossref_primary_10_1002_art_40369 crossref_primary_10_3389_fimmu_2022_902567 crossref_primary_10_1093_gbe_evy054 crossref_primary_10_1371_journal_pgen_1002355 crossref_primary_10_1080_14397595_2016_1206174 crossref_primary_10_7554_eLife_79111 crossref_primary_10_1093_jb_mvt066 crossref_primary_10_1101_gr_240390_118 crossref_primary_10_1080_14728222_2020_1751821 crossref_primary_10_1038_ng_2467 crossref_primary_10_1073_pnas_1501475112 crossref_primary_10_1016_j_placenta_2017_03_012 crossref_primary_10_1002_mgg3_13 crossref_primary_10_1371_journal_pone_0260692 crossref_primary_10_1016_j_molimm_2013_06_013 crossref_primary_10_3390_ijms25116081 crossref_primary_10_3389_fimmu_2020_599558 crossref_primary_10_20411_pai_v8i1_597 crossref_primary_10_3389_fimmu_2019_00035 crossref_primary_10_1111_1756_185X_14079 crossref_primary_10_1111_jeb_13745 crossref_primary_10_1016_j_imlet_2020_04_015 crossref_primary_10_1038_s41588_019_0487_7 crossref_primary_10_1093_rheumatology_kev218 crossref_primary_10_1074_mcp_RA119_001515 crossref_primary_10_1186_s13059_016_1093_y crossref_primary_10_1016_j_ajhg_2023_02_008 crossref_primary_10_1093_molbev_msv043 crossref_primary_10_1038_s41413_019_0057_8 crossref_primary_10_3389_fonc_2014_00363 crossref_primary_10_1186_s12859_017_1844_0 crossref_primary_10_3389_fimmu_2021_755624 crossref_primary_10_1016_j_mehy_2013_04_034 crossref_primary_10_3389_fimmu_2021_664474 crossref_primary_10_3390_cells9030720 crossref_primary_10_1038_s41559_023_02053_5 crossref_primary_10_1136_annrheumdis_2015_207467 crossref_primary_10_1016_j_humimm_2018_11_002 crossref_primary_10_1080_1744666X_2020_1732820 crossref_primary_10_1111_mec_16238 crossref_primary_10_1016_j_humimm_2018_11_001 crossref_primary_10_3389_fimmu_2018_02463 crossref_primary_10_4049_jimmunol_1100525 crossref_primary_10_1021_acs_jmedchem_4c00840 crossref_primary_10_1038_nrrheum_2017_80 crossref_primary_10_3390_ijms23094961 crossref_primary_10_1167_iovs_62_14_3 crossref_primary_10_1111_mec_13085 crossref_primary_10_3390_cells9091951 crossref_primary_10_25208_vdv1260 crossref_primary_10_1016_j_humimm_2019_01_003 crossref_primary_10_1371_journal_pone_0161011 crossref_primary_10_1111_cei_13020 crossref_primary_10_1016_j_molimm_2022_12_010 crossref_primary_10_1016_j_immuni_2024_10_013 crossref_primary_10_1093_molbev_msw023 crossref_primary_10_4049_jimmunol_1200918 crossref_primary_10_1186_s12862_016_0842_6 crossref_primary_10_1016_j_humimm_2021_05_003 crossref_primary_10_1053_j_gastro_2022_11_036 crossref_primary_10_1002_art_40033 crossref_primary_10_1093_jb_mvab009 crossref_primary_10_1093_ced_llae128 crossref_primary_10_1371_journal_pgen_1004189 crossref_primary_10_1534_genetics_111_137117 crossref_primary_10_3390_ijms21165861 crossref_primary_10_1111_mec_12425 crossref_primary_10_1016_j_meegid_2017_12_014 crossref_primary_10_1016_j_berh_2015_02_002 crossref_primary_10_1111_j_1558_5646_2012_01744_x crossref_primary_10_1186_s12920_020_0662_9 crossref_primary_10_1074_jbc_RA119_010102 crossref_primary_10_1074_mcp_M115_048959 crossref_primary_10_17352_jvi_000007 crossref_primary_10_1097_MD_0000000000038666 crossref_primary_10_1074_jbc_M117_789180 crossref_primary_10_1097_BOR_0000000000000188 crossref_primary_10_1038_s41586_022_05349_x crossref_primary_10_1093_hmg_ddu307 crossref_primary_10_1155_2013_204240 crossref_primary_10_1002_wrna_120 crossref_primary_10_3389_fcell_2024_1506216 crossref_primary_10_1007_s00018_011_0662_1 crossref_primary_10_1586_eci_13_16 crossref_primary_10_1007_s11926_016_0612_x crossref_primary_10_1093_molbev_mss329 crossref_primary_10_1016_j_xgen_2023_100460 crossref_primary_10_1371_journal_pgen_1003404 crossref_primary_10_1002_art_39734 crossref_primary_10_1093_rheumatology_ker199 crossref_primary_10_1016_j_jaut_2016_12_008 crossref_primary_10_1016_j_berh_2021_101691 crossref_primary_10_1038_nrrheum_2015_133 crossref_primary_10_1038_s41586_024_08497_4 crossref_primary_10_1016_j_pan_2021_09_012 crossref_primary_10_1038_nrg3502 crossref_primary_10_1016_j_molimm_2020_02_020 crossref_primary_10_1007_s00251_013_0746_1 crossref_primary_10_1038_ng_835 crossref_primary_10_1016_j_humimm_2019_03_011 crossref_primary_10_1126_science_abj5117 crossref_primary_10_1101_gr_205070_116 crossref_primary_10_1126_sciadv_abi4476 crossref_primary_10_1038_ng_2667 crossref_primary_10_1016_j_humimm_2017_10_005 crossref_primary_10_1074_mcp_RA118_000778 crossref_primary_10_3390_ijms13078338 crossref_primary_10_1186_1471_2393_11_74 crossref_primary_10_1074_mcp_RA120_002014 |
Cites_doi | 10.1073/pnas.0906051106 10.1038/nrrheum.2010.85 10.1038/ni1208 10.1371/journal.pbio.0040072 10.1126/science.1139247 10.1002/gcc.20441 10.4049/jimmunol.176.8.4869 10.1101/gr.073254.107 10.1371/journal.pgen.0030090 10.1084/jem.20052271 10.1073/pnas.0603095103 10.1038/ng2077 10.1007/s00262-007-0362-8 10.1101/gr.088336.108 10.1016/j.molimm.2006.10.015 10.1371/journal.pgen.1000666 10.1146/annurev.genet.32.1.415 10.1016/j.coi.2003.11.004 10.1038/nature02168 10.1523/JNEUROSCI.1671-06.2006 10.1111/j.1742-4658.2004.04521.x 10.1093/genetics/123.3.585 10.1002/jcp.21454 10.1016/S0962-8924(01)02030-X 10.1016/j.coi.2007.12.004 10.4049/jimmunol.0903399 10.1093/bioinformatics/18.2.337 10.1093/bioinformatics/btg316 10.1073/pnas.88.13.5897 10.1017/S0016672397002954 10.1002/humu.10047 10.1086/503116 10.4049/jimmunol.0903712 10.1056/NEJMoa031884 10.1038/nature04244 10.1016/j.cub.2005.04.050 10.1002/art.24467 10.1101/gr.10.4.511 10.4049/jimmunol.181.9.6275 10.4049/jimmunol.178.4.2241 10.1016/j.placenta.2008.09.015 10.1089/1066527041410418 10.1093/genetics/116.1.153 10.1111/j.0105-2896.2005.00313.x 10.1126/science.7524148 10.1002/gcc.20648 10.1038/ni1409 10.1371/journal.pgen.0030079 10.1038/ni860 10.1093/oxfordjournals.jbchem.a022812 10.1007/s00439-009-0714-x 10.1038/ni1286 10.1186/gb-2009-10-11-r130 10.1016/j.tig.2004.11.001 10.1038/ng2111 10.1073/pnas.86.3.958 10.1086/319501 10.1093/genetics/120.3.831 10.1038/335167a0 10.1371/journal.pbio.0030170 10.1038/ng.513 10.1038/nature04240 10.1073/pnas.162046399 10.1038/nature04072 10.1093/genetics/124.4.967 10.1016/1055-7903(92)90021-8 10.1038/88099 10.1084/jem.20031982 10.2174/138161209789271816 10.1074/jbc.M305076200 10.1371/journal.pgen.1000436 10.1534/genetics.106.055715 10.1016/j.immuni.2007.04.003 10.1371/journal.pgen.1000695 10.1038/ng.78 10.1038/ng.2007.17 10.1093/molbev/msp190 10.1093/hmg/ddp371 10.1038/ng.2007.57 10.1371/journal.pgen.1000766 10.1038/nature08835 10.1248/bpb.27.777 10.1038/ni.1728 10.1182/blood-2006-11-057208 |
ContentType | Journal Article |
Copyright | This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010 2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Andrés AM, Dennis MY, Kretzschmar WW, Cannons JL, Lee-Lin S-Q, et al. (2010) Balancing Selection Maintains a Form of ERAP2 that Undergoes Nonsense-Mediated Decay and Affects Antigen Presentation. PLoS Genet 6(10): e1001157. doi:10.1371/journal.pgen.1001157 |
Copyright_xml | – notice: This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010 – notice: 2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Andrés AM, Dennis MY, Kretzschmar WW, Cannons JL, Lee-Lin S-Q, et al. (2010) Balancing Selection Maintains a Form of ERAP2 that Undergoes Nonsense-Mediated Decay and Affects Antigen Presentation. PLoS Genet 6(10): e1001157. doi:10.1371/journal.pgen.1001157 |
CorporateAuthor | NISC Comparative Sequencing Program |
CorporateAuthor_xml | – name: NISC Comparative Sequencing Program |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM DOA |
DOI | 10.1371/journal.pgen.1001157 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Balancing Selection of ERAP2 |
EISSN | 1553-7404 |
ExternalDocumentID | 1313538306 oai_doaj_org_article_dcc509bf91b64ef3b174824a0c207b08 PMC2954825 20976248 10_1371_journal_pgen_1001157 |
Genre | Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Intramural NIH HHS |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM C1A CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS IHR IHW INH INR IOV ISN ISR ITC KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO QN7 RNS RPM SV3 TR2 TUS UKHRP WOW XSB ~8M 3V. CGR CUY CVF ECM EIF M~E NPM 7X8 PJZUB PPXIY PQGLB 7TM 8FD FR3 P64 RC3 5PM PUEGO AAPBV ABPTK |
ID | FETCH-LOGICAL-c599t-ebaa854f33d9b111ff40b4121718591733e2f4db4490735934bfc8bf1b2b8b383 |
IEDL.DBID | DOA |
ISSN | 1553-7404 1553-7390 |
IngestDate | Sun Oct 01 00:20:32 EDT 2023 Wed Aug 27 01:29:11 EDT 2025 Thu Aug 21 18:33:59 EDT 2025 Fri Jul 11 12:36:24 EDT 2025 Tue Aug 05 09:36:19 EDT 2025 Wed Feb 19 01:47:50 EST 2025 Tue Jul 01 02:38:30 EDT 2025 Thu Apr 24 23:13:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. Creative Commons Attribution License |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c599t-ebaa854f33d9b111ff40b4121718591733e2f4db4490735934bfc8bf1b2b8b383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 a: Current address: Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany b: Current address: Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America Conceived and designed the experiments: AMA MYD JLC SQLL SHW CDB RN AGC EDG. Performed the experiments: AMA MYD WWK JLC SQLL NISC Comparative Sequencing Program. Analyzed the data: AMA MYD WWK BH. Contributed reagents/materials/analysis tools: PLS EDG. Wrote the paper: AMA MYD WWK EDG. c: Current address: Department of Genetics, Stanford School of Medicine, Stanford, California, United States of America |
OpenAccessLink | https://doaj.org/article/dcc509bf91b64ef3b174824a0c207b08 |
PMID | 20976248 |
PQID | 760209994 |
PQPubID | 23479 |
ParticipantIDs | plos_journals_1313538306 doaj_primary_oai_doaj_org_article_dcc509bf91b64ef3b174824a0c207b08 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2954825 proquest_miscellaneous_954593265 proquest_miscellaneous_760209994 pubmed_primary_20976248 crossref_citationtrail_10_1371_journal_pgen_1001157 crossref_primary_10_1371_journal_pgen_1001157 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20101014 |
PublicationDateYYYYMMDD | 2010-10-14 |
PublicationDate_xml | – month: 10 year: 2010 text: 20101014 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, USA |
PublicationTitle | PLoS genetics |
PublicationTitleAlternate | PLoS Genet |
PublicationYear | 2010 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | JW Yewdell (ref64) 2001; 11 (ref76) 2003; 426 M Pinyol (ref49) 2007; 109 J Coulombe-Huntington (ref44) 2009; 5 MJ Bamshad (ref68) 2002; 99 B Charlesworth (ref53) 1997; 70 RJ Levine (ref70) 2004; 350 HT Bjornsson (ref42) 2008; 18 AM Andrés (ref3) 2009; 26 N Yamamoto (ref22) 2002; 19 AL Hughes (ref9) 1998; 32 T Tanioka (ref20) 2005; 272 AM Mehta (ref31) 2007; 46 A Hattori (ref13) 2004; 27 MY Dennis (ref85) 2009; 5 N Blanchard (ref58) 2010; 184 KL Rock (ref19) 2010; 184 R Nielsen (ref37) 2009; 19 E Firat (ref61) 2007; 178 WP Maksymowych (ref29) 2009; 60 J Yan (ref55) 2006; 203 M Rasmussen (ref51) 2010; 463 (ref77) 2005; 437 K Thornton (ref79) 2003; 19 D Fruci (ref25) 2006; 176 MP Johnson (ref34) 2009; 126 EN Noensie (ref50) 2001; 19 PM Kloetzel (ref14) 2004; 16 GE Hammer (ref16) 2007; 26 VG Cheung (ref40) 2005; 437 A Hattori (ref23) 2000; 128 RR Hudson (ref39) 1987; 116 T Kwan (ref43) 2008; 40 RR Hudson (ref52) 1988; 120 (ref30) 2010; 42 N Haroon (ref36) 2010; 6 S Asthana (ref1) 2005; 21 Y Xue (ref69) 2006; 78 T Tanioka (ref24) 2003; 278 (ref27) 2007; 39 GE Hammer (ref56) 2007; 8 DS Mosher (ref65) 2007; 3 M Stephens (ref82) 2001; 68 N Takahata (ref6) 1990; 124 Y Watanabe (ref21) 2003; 9 SE Gabriel (ref67) 1994; 266 HJ Bandelt (ref83) 1992; 1 L Saveanu (ref15) 2005; 207 T Kanaseki (ref62) 2008; 181 C Fasquelle (ref66) 2009; 5 IA York (ref57) 2006; 103 R Nielsen (ref72) 2005; 3 BF Voight (ref73) 2006; 4 G Yeo (ref47) 2004; 11 CD Bustamante (ref71) 2005; 437 I Evnouchidou (ref18) 2009; 15 F Prugnolle (ref8) 2005; 15 L Saveanu (ref48) 2005; 6 D Harvey (ref28) 2009; 18 SH Williamson (ref74) 2007; 3 PJ Norman (ref10) 2007; 39 K Gendzekhadze (ref12) 2009; 106 N Blanchard (ref17) 2008; 20 AL Hughes (ref5) 1989; 86 F Tajima (ref38) 1989; 123 S Tenzer (ref60) 2009; 10 RM Single (ref11) 2007; 39 SA Founds (ref35) 2009; 30 RN Gutenkunst (ref81) 2009; 5 C Wu (ref45) 2009; 10 AL Hughes (ref4) 1988; 335 PW Hedrick (ref7) 1991; 88 IA York (ref63) 2002; 3 HQ Qu (ref41) 2007; 44 GE Hammer (ref54) 2006; 7 RR Hudson (ref80) 2002; 18 AM Mehta (ref32) 2008; 57 KL Bubb (ref2) 2006; 173 A Antonellis (ref84) 2006; 26 G Parra (ref46) 2000; 10 AM Mehta (ref33) 2009; 48 RA Gibbs (ref78) 2007; 316 D Fruci (ref26) 2008; 216 LB Barreiro (ref75) 2008; 40 R Draenert (ref59) 2004; 199 15067030 - J Exp Med. 2004 Apr 5;199(7):905-15 17129607 - Mol Immunol. 2007 Mar;44(8):2135-8 14695154 - Clin Cancer Res. 2003 Dec 15;9(17):6497-503 16251966 - Nature. 2005 Oct 27;437(7063):1365-9 15908954 - Nat Immunol. 2005 Jul;6(7):689-97 19713326 - Mol Biol Evol. 2009 Dec;26(12):2755-64 11254454 - Am J Hum Genet. 2001 Apr;68(4):978-89 20148029 - Nature. 2010 Feb 11;463(7282):757-62 11413040 - Trends Cell Biol. 2001 Jul;11(7):294-7 12799365 - J Biol Chem. 2003 Aug 22;278(34):32275-83 16494531 - PLoS Biol. 2006 Mar;4(3):e72 19851460 - PLoS Genet. 2009 Oct;5(10):e1000695 12149450 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10539-44 1342941 - Mol Phylogenet Evol. 1992 Sep;1(3):242-52 14685227 - Nature. 2003 Dec 18;426(6968):789-96 2062867 - Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5897-901 17952073 - Nat Genet. 2007 Nov;39(11):1329-37 15869325 - PLoS Biol. 2005 Jun;3(6):e170 16532395 - Am J Hum Genet. 2006 Apr;78(4):659-70 18941218 - J Immunol. 2008 Nov 1;181(9):6275-82 16751668 - Genetics. 2006 Aug;173(4):2165-77 17530926 - PLoS Genet. 2007 May 25;3(5):e79 19837691 - Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18692-7 15691326 - FEBS J. 2005 Feb;272(4):916-28 19578876 - Hum Genet. 2009 Nov;126(5):655-66 2513255 - Genetics. 1989 Nov;123(3):585-95 14734113 - Curr Opin Immunol. 2004 Feb;16(1):76-81 19412183 - Nat Immunol. 2009 Jun;10(6):636-46 17622526 - Cancer Immunol Immunother. 2008 Feb;57(2):197-206 19404951 - Arthritis Rheum. 2009 May;60(5):1317-23 20011102 - PLoS Genet. 2009 Dec;5(12):e1000766 11056387 - J Biochem. 2000 Nov;128(5):755-62 7524148 - Science. 1994 Oct 7;266(5182):107-9 19925418 - Curr Pharm Des. 2009;15(31):3656-70 10779490 - Genome Res. 2000 Apr;10(4):511-5 11329012 - Nat Biotechnol. 2001 May;19(5):434-9 3147214 - Genetics. 1988 Nov;120(3):831-40 17431167 - Science. 2007 Apr 13;316(5822):222-34 17542651 - PLoS Genet. 2007 Jun;3(6):e90 3412472 - Nature. 1988 Sep 8;335(6186):167-70 16237444 - Nature. 2005 Oct 20;437(7062):1153-7 11857741 - Hum Mutat. 2002 Mar;19(3):251-7 15187416 - Biol Pharm Bull. 2004 Jun;27(6):777-80 14630667 - Bioinformatics. 2003 Nov 22;19(17):2325-7 9928486 - Annu Rev Genet. 1998;32:415-35 15680511 - Trends Genet. 2005 Jan;21(1):30-2 17277129 - J Immunol. 2007 Feb 15;178(4):2241-8 16136131 - Nature. 2005 Sep 1;437(7055):69-87 3110004 - Genetics. 1987 May;116(1):153-9 19325871 - PLoS Genet. 2009 Mar;5(3):e1000436 9449192 - Genet Res. 1997 Oct;70(2):155-74 17332242 - Blood. 2007 Jun 15;109(12):5422-9 16585582 - J Immunol. 2006 Apr 15;176(8):4869-79 16299505 - Nat Immunol. 2006 Jan;7(1):103-12 17128277 - Nat Immunol. 2007 Jan;8(1):101-8 19692350 - Hum Mol Genet. 2009 Nov 1;18(21):4204-12 20028659 - J Immunol. 2010 Jan 1;184(1):9-15 18193047 - Nat Genet. 2008 Feb;40(2):225-31 16181326 - Immunol Rev. 2005 Oct;207:42-59 18393273 - J Cell Physiol. 2008 Sep;216(3):742-9 20062062 - Nat Genet. 2010 Feb;42(2):123-7 15936272 - Curr Biol. 2005 Jun 7;15(11):1022-7 19279335 - Genome Res. 2009 May;19(5):838-49 17459809 - Immunity. 2007 Apr;26(4):397-406 15285897 - J Comput Biol. 2004;11(2-3):377-94 11847089 - Bioinformatics. 2002 Feb;18(2):337-8 12436110 - Nat Immunol. 2002 Dec;3(12):1177-84 2323559 - Genetics. 1990 Apr;124(4):967-78 17366619 - Genes Chromosomes Cancer. 2007 Jun;46(6):577-86 14764923 - N Engl J Med. 2004 Feb 12;350(7):672-83 16754858 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9202-7 20531381 - Nat Rev Rheumatol. 2010 Aug;6(8):461-7 17694054 - Nat Genet. 2007 Sep;39(9):1092-9 18243675 - Curr Opin Immunol. 2008 Feb;20(1):82-8 19779552 - PLoS Genet. 2009 Sep;5(9):e1000666 18246066 - Nat Genet. 2008 Mar;40(3):340-5 16505142 - J Exp Med. 2006 Mar 20;203(3):647-59 19919682 - Genome Biol. 2009;10(11):R130 17035524 - J Neurosci. 2006 Oct 11;26(41):10397-406 2492668 - Proc Natl Acad Sci U S A. 1989 Feb;86(3):958-62 19027158 - Placenta. 2009 Jan;30(1):15-24 18369178 - Genome Res. 2008 May;18(5):771-9 17694058 - Nat Genet. 2007 Sep;39(9):1114-9 19202550 - Genes Chromosomes Cancer. 2009 May;48(5):410-8 20173027 - J Immunol. 2010 Mar 15;184(6):3033-42 |
References_xml | – volume: 106 start-page: 18692 year: 2009 ident: ref12 article-title: Co-evolution of KIR2DL3 with HLA-C in a human population retaining minimal essential diversity of KIR and HLA class I ligands. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0906051106 – volume: 6 start-page: 461 year: 2010 ident: ref36 article-title: Endoplasmic reticulum aminopeptidases: Biology and pathogenic potential. publication-title: Nat Rev Rheumatol doi: 10.1038/nrrheum.2010.85 – volume: 6 start-page: 689 year: 2005 ident: ref48 article-title: Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. publication-title: Nat Immunol doi: 10.1038/ni1208 – volume: 4 start-page: e72 year: 2006 ident: ref73 article-title: A map of recent positive selection in the human genome. publication-title: PLoS Biol doi: 10.1371/journal.pbio.0040072 – volume: 316 start-page: 222 year: 2007 ident: ref78 article-title: Evolutionary and biomedical insights from the rhesus macaque genome. publication-title: Science doi: 10.1126/science.1139247 – volume: 46 start-page: 577 year: 2007 ident: ref31 article-title: Genetic variation of antigen processing machinery components and association with cervical carcinoma. publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.20441 – volume: 176 start-page: 4869 year: 2006 ident: ref25 article-title: Expression of endoplasmic reticulum aminopeptidases in EBV-B cell lines from healthy donors and in leukemia/lymphoma, carcinoma, and melanoma cell lines. publication-title: J Immunol doi: 10.4049/jimmunol.176.8.4869 – volume: 18 start-page: 771 year: 2008 ident: ref42 article-title: SNP-specific array-based allele-specific expression analysis. publication-title: Genome Res doi: 10.1101/gr.073254.107 – volume: 3 start-page: e90 year: 2007 ident: ref74 article-title: Localizing recent adaptive evolution in the human genome. publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030090 – volume: 203 start-page: 647 year: 2006 ident: ref55 article-title: In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules. publication-title: J Exp Med doi: 10.1084/jem.20052271 – volume: 103 start-page: 9202 year: 2006 ident: ref57 article-title: Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0603095103 – volume: 39 start-page: 1114 year: 2007 ident: ref11 article-title: Global diversity and evidence for coevolution of KIR and HLA. publication-title: Nat Genet doi: 10.1038/ng2077 – volume: 57 start-page: 197 year: 2008 ident: ref32 article-title: Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma. publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-007-0362-8 – volume: 19 start-page: 838 year: 2009 ident: ref37 article-title: Darwinian and demographic forces affecting human protein coding genes. publication-title: Genome Res doi: 10.1101/gr.088336.108 – volume: 44 start-page: 2135 year: 2007 ident: ref41 article-title: No association of type 1 diabetes with a functional polymorphism of the LRAP gene. publication-title: Mol Immunol doi: 10.1016/j.molimm.2006.10.015 – volume: 5 start-page: e1000666 year: 2009 ident: ref66 article-title: Balancing selection of a frame-shift mutation in the MRC2 gene accounts for the outbreak of the Crooked Tail Syndrome in Belgian Blue Cattle. publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000666 – volume: 32 start-page: 415 year: 1998 ident: ref9 article-title: Natural selection at major histocompatibility complex loci of vertebrates. publication-title: Annu Rev Genet doi: 10.1146/annurev.genet.32.1.415 – volume: 16 start-page: 76 year: 2004 ident: ref14 article-title: Proteasome and peptidase function in MHC-class-I-mediated antigen presentation. publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2003.11.004 – volume: 426 start-page: 789 year: 2003 ident: ref76 article-title: The International HapMap Project. publication-title: Nature doi: 10.1038/nature02168 – volume: 26 start-page: 10397 year: 2006 ident: ref84 article-title: Functional analyses of glycyl-tRNA synthetase mutations suggest a key role for tRNA-charging enzymes in peripheral axons. publication-title: J Neurosci doi: 10.1523/JNEUROSCI.1671-06.2006 – volume: 272 start-page: 916 year: 2005 ident: ref20 article-title: Regulation of the human leukocyte-derived arginine aminopeptidase/endoplasmic reticulum-aminopeptidase 2 gene by interferon-gamma. publication-title: FEBS J doi: 10.1111/j.1742-4658.2004.04521.x – volume: 123 start-page: 585 year: 1989 ident: ref38 article-title: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. publication-title: Genetics doi: 10.1093/genetics/123.3.585 – volume: 216 start-page: 742 year: 2008 ident: ref26 article-title: Altered expression of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in transformed non-lymphoid human tissues. publication-title: J Cell Physiol doi: 10.1002/jcp.21454 – volume: 11 start-page: 294 year: 2001 ident: ref64 article-title: Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. publication-title: Trends Cell Biol doi: 10.1016/S0962-8924(01)02030-X – volume: 20 start-page: 82 year: 2008 ident: ref17 article-title: Coping with loss of perfection in the MHC class I peptide repertoire. publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2007.12.004 – volume: 184 start-page: 9 year: 2010 ident: ref19 article-title: Proteases in MHC class I presentation and cross-presentation. publication-title: J Immunol doi: 10.4049/jimmunol.0903399 – volume: 18 start-page: 337 year: 2002 ident: ref80 article-title: Generating samples under a Wright-Fisher neutral model of genetic variation. publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.2.337 – volume: 19 start-page: 2325 year: 2003 ident: ref79 article-title: Libsequence: a C++ class library for evolutionary genetic analysis. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg316 – volume: 88 start-page: 5897 year: 1991 ident: ref7 article-title: Heterozygosity at individual amino acid sites: extremely high levels for HLA-A and -B genes. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.88.13.5897 – volume: 70 start-page: 155 year: 1997 ident: ref53 article-title: The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. publication-title: Genet Res doi: 10.1017/S0016672397002954 – volume: 19 start-page: 251 year: 2002 ident: ref22 article-title: Identification of 33 polymorphisms in the adipocyte-derived leucine aminopeptidase (ALAP) gene and possible association with hypertension. publication-title: Hum Mutat doi: 10.1002/humu.10047 – volume: 78 start-page: 659 year: 2006 ident: ref69 article-title: Spread of an inactive form of caspase-12 in humans is due to recent positive selection. publication-title: Am J Hum Genet doi: 10.1086/503116 – volume: 184 start-page: 3033 year: 2010 ident: ref58 article-title: Endoplasmic reticulum aminopeptidase associated with antigen processing defines the composition and structure of MHC class I Peptide repertoire in normal and virus-infected cells. publication-title: J Immunol doi: 10.4049/jimmunol.0903712 – volume: 350 start-page: 672 year: 2004 ident: ref70 article-title: Circulating angiogenic factors and the risk of preeclampsia. publication-title: N Engl J Med doi: 10.1056/NEJMoa031884 – volume: 437 start-page: 1365 year: 2005 ident: ref40 article-title: Mapping determinants of human gene expression by regional and genome-wide association. publication-title: Nature doi: 10.1038/nature04244 – volume: 15 start-page: 1022 year: 2005 ident: ref8 article-title: Pathogen-driven selection and worldwide HLA class I diversity. publication-title: Curr Biol doi: 10.1016/j.cub.2005.04.050 – volume: 60 start-page: 1317 year: 2009 ident: ref29 article-title: Association of a specific ERAP1/ARTS1 haplotype with disease susceptibility in ankylosing spondylitis. publication-title: Arthritis Rheum doi: 10.1002/art.24467 – volume: 10 start-page: 511 year: 2000 ident: ref46 article-title: GeneID in Drosophila. publication-title: Genome Res doi: 10.1101/gr.10.4.511 – volume: 181 start-page: 6275 year: 2008 ident: ref62 article-title: Endoplasmic reticulum aminopeptidase associated with antigen processing regulates quality of processed peptides presented by MHC class I molecules. publication-title: J Immunol doi: 10.4049/jimmunol.181.9.6275 – volume: 178 start-page: 2241 year: 2007 ident: ref61 article-title: The role of endoplasmic reticulum-associated aminopeptidase 1 in immunity to infection and in cross-presentation. publication-title: J Immunol doi: 10.4049/jimmunol.178.4.2241 – volume: 30 start-page: 15 year: 2009 ident: ref35 article-title: Altered global gene expression in first trimester placentas of women destined to develop preeclampsia. publication-title: Placenta doi: 10.1016/j.placenta.2008.09.015 – volume: 11 start-page: 377 year: 2004 ident: ref47 article-title: Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. publication-title: J Comput Biol doi: 10.1089/1066527041410418 – volume: 116 start-page: 153 year: 1987 ident: ref39 article-title: A test of neutral molecular evolution based on nucleotide data. publication-title: Genetics doi: 10.1093/genetics/116.1.153 – volume: 207 start-page: 42 year: 2005 ident: ref15 article-title: Complexity, contradictions, and conundrums: studying post-proteasomal proteolysis in HLA class I antigen presentation. publication-title: Immunol Rev doi: 10.1111/j.0105-2896.2005.00313.x – volume: 266 start-page: 107 year: 1994 ident: ref67 article-title: Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. publication-title: Science doi: 10.1126/science.7524148 – volume: 48 start-page: 410 year: 2009 ident: ref33 article-title: Single nucleotide polymorphisms in antigen processing machinery component ERAP1 significantly associate with clinical outcome in cervical carcinoma. publication-title: Genes Chromosomes Cancer doi: 10.1002/gcc.20648 – volume: 8 start-page: 101 year: 2007 ident: ref56 article-title: In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides. publication-title: Nat Immunol doi: 10.1038/ni1409 – volume: 3 start-page: e79 year: 2007 ident: ref65 article-title: A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. publication-title: PLoS Genet doi: 10.1371/journal.pgen.0030079 – volume: 3 start-page: 1177 year: 2002 ident: ref63 article-title: The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. publication-title: Nat Immunol doi: 10.1038/ni860 – volume: 128 start-page: 755 year: 2000 ident: ref23 article-title: Characterization of recombinant human adipocyte-derived leucine aminopeptidase expressed in Chinese hamster ovary cells. publication-title: J Biochem doi: 10.1093/oxfordjournals.jbchem.a022812 – volume: 126 start-page: 655 year: 2009 ident: ref34 article-title: The ERAP2 gene is associated with preeclampsia in Australian and Norwegian populations. publication-title: Hum Genet doi: 10.1007/s00439-009-0714-x – volume: 7 start-page: 103 year: 2006 ident: ref54 article-title: The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. publication-title: Nat Immunol doi: 10.1038/ni1286 – volume: 10 start-page: R130 year: 2009 ident: ref45 article-title: BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. publication-title: Genome Biol doi: 10.1186/gb-2009-10-11-r130 – volume: 21 start-page: 30 year: 2005 ident: ref1 article-title: A limited role for balancing selection. publication-title: Trends Genet doi: 10.1016/j.tig.2004.11.001 – volume: 39 start-page: 1092 year: 2007 ident: ref10 article-title: Unusual selection on the KIR3DL1/S1 natural killer cell receptor in Africans. publication-title: Nat Genet doi: 10.1038/ng2111 – volume: 86 start-page: 958 year: 1989 ident: ref5 article-title: Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.86.3.958 – volume: 68 start-page: 978 year: 2001 ident: ref82 article-title: A new statistical method for haplotype reconstruction from population data. publication-title: Am J Hum Genet doi: 10.1086/319501 – volume: 120 start-page: 831 year: 1988 ident: ref52 article-title: The coalescent process in models with selection and recombination. publication-title: Genetics doi: 10.1093/genetics/120.3.831 – volume: 335 start-page: 167 year: 1988 ident: ref4 article-title: Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. publication-title: Nature doi: 10.1038/335167a0 – volume: 3 start-page: e170 year: 2005 ident: ref72 article-title: A scan for positively selected genes in the genomes of humans and chimpanzees. publication-title: PLoS Biol doi: 10.1371/journal.pbio.0030170 – volume: 9 start-page: 6497 year: 2003 ident: ref21 article-title: Adipocyte-derived leucine aminopeptidase suppresses angiogenesis in human endometrial carcinoma via renin-angiotensin system. publication-title: Clin Cancer Res – volume: 42 start-page: 123 year: 2010 ident: ref30 article-title: Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. publication-title: Nat Genet doi: 10.1038/ng.513 – volume: 437 start-page: 1153 year: 2005 ident: ref71 article-title: Natural selection on protein-coding genes in the human genome. publication-title: Nature doi: 10.1038/nature04240 – volume: 99 start-page: 10539 year: 2002 ident: ref68 article-title: A strong signature of balancing selection in the 5′ cis-regulatory region of CCR5. publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.162046399 – volume: 437 start-page: 69 year: 2005 ident: ref77 article-title: Initial sequence of the chimpanzee genome and comparison with the human genome. publication-title: Nature doi: 10.1038/nature04072 – volume: 124 start-page: 967 year: 1990 ident: ref6 article-title: Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. publication-title: Genetics doi: 10.1093/genetics/124.4.967 – volume: 1 start-page: 242 year: 1992 ident: ref83 article-title: Split decomposition: a new and useful approach to phylogenetic analysis of distance data. publication-title: Mol Phylogenet Evol doi: 10.1016/1055-7903(92)90021-8 – volume: 19 start-page: 434 year: 2001 ident: ref50 article-title: A strategy for disease gene identification through nonsense-mediated mRNA decay inhibition. publication-title: Nat Biotechnol doi: 10.1038/88099 – volume: 199 start-page: 905 year: 2004 ident: ref59 article-title: Immune selection for altered antigen processing leads to cytotoxic T lymphocyte escape in chronic HIV-1 infection. publication-title: J Exp Med doi: 10.1084/jem.20031982 – volume: 15 start-page: 3656 year: 2009 ident: ref18 article-title: A new role for Zn(II) aminopeptidases: antigenic peptide generation and destruction. publication-title: Curr Pharm Des doi: 10.2174/138161209789271816 – volume: 278 start-page: 32275 year: 2003 ident: ref24 article-title: Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases. publication-title: J Biol Chem doi: 10.1074/jbc.M305076200 – volume: 5 start-page: e1000436 year: 2009 ident: ref85 article-title: A common variant associated with dyslexia reduces expression of the KIAA0319 gene. publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000436 – volume: 173 start-page: 2165 year: 2006 ident: ref2 article-title: Scan of human genome reveals no new Loci under ancient balancing selection. publication-title: Genetics doi: 10.1534/genetics.106.055715 – volume: 26 start-page: 397 year: 2007 ident: ref16 article-title: The final touches make perfect the peptide-MHC class I repertoire. publication-title: Immunity doi: 10.1016/j.immuni.2007.04.003 – volume: 5 start-page: e1000695 year: 2009 ident: ref81 article-title: Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000695 – volume: 40 start-page: 340 year: 2008 ident: ref75 article-title: Natural selection has driven population differentiation in modern humans. publication-title: Nat Genet doi: 10.1038/ng.78 – volume: 39 start-page: 1329 year: 2007 ident: ref27 article-title: Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. publication-title: Nat Genet doi: 10.1038/ng.2007.17 – volume: 26 start-page: 2755 year: 2009 ident: ref3 article-title: Targets of balancing selection in the human genome. publication-title: Mol Biol Evol doi: 10.1093/molbev/msp190 – volume: 18 start-page: 4204 year: 2009 ident: ref28 article-title: Investigating the genetic association between ERAP1 and ankylosing spondylitis. publication-title: Hum Mol Genet doi: 10.1093/hmg/ddp371 – volume: 40 start-page: 225 year: 2008 ident: ref43 article-title: Genome-wide analysis of transcript isoform variation in humans. publication-title: Nat Genet doi: 10.1038/ng.2007.57 – volume: 5 start-page: e1000766 year: 2009 ident: ref44 article-title: Fine-scale variation and genetic determinants of alternative splicing across individuals. publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000766 – volume: 463 start-page: 757 year: 2010 ident: ref51 article-title: Ancient human genome sequence of an extinct Palaeo-Eskimo. publication-title: Nature doi: 10.1038/nature08835 – volume: 27 start-page: 777 year: 2004 ident: ref13 article-title: Processing of antigenic peptides by aminopeptidases. publication-title: Biol Pharm Bull doi: 10.1248/bpb.27.777 – volume: 10 start-page: 636 year: 2009 ident: ref60 article-title: Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance. publication-title: Nat Immunol doi: 10.1038/ni.1728 – volume: 109 start-page: 5422 year: 2007 ident: ref49 article-title: Inactivation of RB1 in mantle-cell lymphoma detected by nonsense-mediated mRNA decay pathway inhibition and microarray analysis. publication-title: Blood doi: 10.1182/blood-2006-11-057208 – reference: 18941218 - J Immunol. 2008 Nov 1;181(9):6275-82 – reference: 19325871 - PLoS Genet. 2009 Mar;5(3):e1000436 – reference: 11857741 - Hum Mutat. 2002 Mar;19(3):251-7 – reference: 20011102 - PLoS Genet. 2009 Dec;5(12):e1000766 – reference: 19279335 - Genome Res. 2009 May;19(5):838-49 – reference: 16251966 - Nature. 2005 Oct 27;437(7063):1365-9 – reference: 3147214 - Genetics. 1988 Nov;120(3):831-40 – reference: 16754858 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9202-7 – reference: 19404951 - Arthritis Rheum. 2009 May;60(5):1317-23 – reference: 20062062 - Nat Genet. 2010 Feb;42(2):123-7 – reference: 19851460 - PLoS Genet. 2009 Oct;5(10):e1000695 – reference: 16751668 - Genetics. 2006 Aug;173(4):2165-77 – reference: 17694058 - Nat Genet. 2007 Sep;39(9):1114-9 – reference: 14764923 - N Engl J Med. 2004 Feb 12;350(7):672-83 – reference: 17035524 - J Neurosci. 2006 Oct 11;26(41):10397-406 – reference: 14734113 - Curr Opin Immunol. 2004 Feb;16(1):76-81 – reference: 15285897 - J Comput Biol. 2004;11(2-3):377-94 – reference: 16299505 - Nat Immunol. 2006 Jan;7(1):103-12 – reference: 20148029 - Nature. 2010 Feb 11;463(7282):757-62 – reference: 12799365 - J Biol Chem. 2003 Aug 22;278(34):32275-83 – reference: 15067030 - J Exp Med. 2004 Apr 5;199(7):905-15 – reference: 2323559 - Genetics. 1990 Apr;124(4):967-78 – reference: 18369178 - Genome Res. 2008 May;18(5):771-9 – reference: 11413040 - Trends Cell Biol. 2001 Jul;11(7):294-7 – reference: 15680511 - Trends Genet. 2005 Jan;21(1):30-2 – reference: 11847089 - Bioinformatics. 2002 Feb;18(2):337-8 – reference: 9449192 - Genet Res. 1997 Oct;70(2):155-74 – reference: 17530926 - PLoS Genet. 2007 May 25;3(5):e79 – reference: 2513255 - Genetics. 1989 Nov;123(3):585-95 – reference: 17694054 - Nat Genet. 2007 Sep;39(9):1092-9 – reference: 2492668 - Proc Natl Acad Sci U S A. 1989 Feb;86(3):958-62 – reference: 2062867 - Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5897-901 – reference: 16505142 - J Exp Med. 2006 Mar 20;203(3):647-59 – reference: 17431167 - Science. 2007 Apr 13;316(5822):222-34 – reference: 19713326 - Mol Biol Evol. 2009 Dec;26(12):2755-64 – reference: 19919682 - Genome Biol. 2009;10(11):R130 – reference: 11056387 - J Biochem. 2000 Nov;128(5):755-62 – reference: 14630667 - Bioinformatics. 2003 Nov 22;19(17):2325-7 – reference: 15691326 - FEBS J. 2005 Feb;272(4):916-28 – reference: 18243675 - Curr Opin Immunol. 2008 Feb;20(1):82-8 – reference: 18393273 - J Cell Physiol. 2008 Sep;216(3):742-9 – reference: 20173027 - J Immunol. 2010 Mar 15;184(6):3033-42 – reference: 19925418 - Curr Pharm Des. 2009;15(31):3656-70 – reference: 17459809 - Immunity. 2007 Apr;26(4):397-406 – reference: 1342941 - Mol Phylogenet Evol. 1992 Sep;1(3):242-52 – reference: 16494531 - PLoS Biol. 2006 Mar;4(3):e72 – reference: 19779552 - PLoS Genet. 2009 Sep;5(9):e1000666 – reference: 19578876 - Hum Genet. 2009 Nov;126(5):655-66 – reference: 16585582 - J Immunol. 2006 Apr 15;176(8):4869-79 – reference: 17128277 - Nat Immunol. 2007 Jan;8(1):101-8 – reference: 20531381 - Nat Rev Rheumatol. 2010 Aug;6(8):461-7 – reference: 15936272 - Curr Biol. 2005 Jun 7;15(11):1022-7 – reference: 17277129 - J Immunol. 2007 Feb 15;178(4):2241-8 – reference: 20028659 - J Immunol. 2010 Jan 1;184(1):9-15 – reference: 18246066 - Nat Genet. 2008 Mar;40(3):340-5 – reference: 12436110 - Nat Immunol. 2002 Dec;3(12):1177-84 – reference: 14685227 - Nature. 2003 Dec 18;426(6968):789-96 – reference: 16237444 - Nature. 2005 Oct 20;437(7062):1153-7 – reference: 16136131 - Nature. 2005 Sep 1;437(7055):69-87 – reference: 17622526 - Cancer Immunol Immunother. 2008 Feb;57(2):197-206 – reference: 15908954 - Nat Immunol. 2005 Jul;6(7):689-97 – reference: 7524148 - Science. 1994 Oct 7;266(5182):107-9 – reference: 12149450 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10539-44 – reference: 17332242 - Blood. 2007 Jun 15;109(12):5422-9 – reference: 19692350 - Hum Mol Genet. 2009 Nov 1;18(21):4204-12 – reference: 11329012 - Nat Biotechnol. 2001 May;19(5):434-9 – reference: 17366619 - Genes Chromosomes Cancer. 2007 Jun;46(6):577-86 – reference: 17542651 - PLoS Genet. 2007 Jun;3(6):e90 – reference: 18193047 - Nat Genet. 2008 Feb;40(2):225-31 – reference: 11254454 - Am J Hum Genet. 2001 Apr;68(4):978-89 – reference: 15187416 - Biol Pharm Bull. 2004 Jun;27(6):777-80 – reference: 15869325 - PLoS Biol. 2005 Jun;3(6):e170 – reference: 3110004 - Genetics. 1987 May;116(1):153-9 – reference: 3412472 - Nature. 1988 Sep 8;335(6186):167-70 – reference: 16181326 - Immunol Rev. 2005 Oct;207:42-59 – reference: 17129607 - Mol Immunol. 2007 Mar;44(8):2135-8 – reference: 19027158 - Placenta. 2009 Jan;30(1):15-24 – reference: 19837691 - Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18692-7 – reference: 9928486 - Annu Rev Genet. 1998;32:415-35 – reference: 19412183 - Nat Immunol. 2009 Jun;10(6):636-46 – reference: 10779490 - Genome Res. 2000 Apr;10(4):511-5 – reference: 17952073 - Nat Genet. 2007 Nov;39(11):1329-37 – reference: 16532395 - Am J Hum Genet. 2006 Apr;78(4):659-70 – reference: 14695154 - Clin Cancer Res. 2003 Dec 15;9(17):6497-503 – reference: 19202550 - Genes Chromosomes Cancer. 2009 May;48(5):410-8 |
SSID | ssj0035897 |
Score | 2.4311283 |
Snippet | A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection.... A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection.... |
SourceID | plos doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1001157 |
SubjectTerms | African Continental Ancestry Group - genetics Aminopeptidases - genetics Aminopeptidases - immunology Antigen Presentation Asian Continental Ancestry Group - genetics European Continental Ancestry Group - genetics Evolutionary Biology/Human Evolution Experiments Gene Frequency Genes Genetic diversity Genetics and Genomics/Bioinformatics Genetics and Genomics/Genetics of the Immune System Genetics and Genomics/Population Genetics Genetics, Population Genomes Genotype Haplotypes Haplotypes - genetics Histocompatibility Antigens Class I - immunology Humans Immune system Immunology/Antigen Processing and Recognition Immunology/Autoimmunity Indians, North American - genetics Minor Histocompatibility Antigens Molecular Biology/RNA Splicing Phylogeny Polymorphism Polymorphism, Single Nucleotide Protein Biosynthesis RNA Processing, Post-Transcriptional RNA Splicing Selection, Genetic |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZpSqGX0ne2L3ToVUG2JEs-lJKUhFBIKaULuRlJlpLAxt6uvdD9952R7W23JPRS8GHxSpat0Xjms2bmI-Q9r0vtYh6YsZIzmfOamcJxpq1zMcK7MrMIFM-_FGdz-flCXeyRibN1nMDuVmiHfFLz1eLw54_NR1D4D4m1QWdTp8MlTHmqKZQpfY_cB9ukUVXP5XZfQSgz0K0oJZgGuD8m0911lR1jlWr6Yw3URdvd5o_-HVb5h506fUwejQ4mPRpWxBOyF5qn5MFAObl5RtbHGMvowWDRLlHggFzojb1u8BNBRy1FJ5a2kZ58O_qa0_7K9hTzzFaXbehog7HXcLCUcALOKq2Dtxtqm5raITIEfvdY4ZMufyc2Nc_J_PTk-6czNlIvMK_KsmfBWWuUjELUpYPXYYySOwmSA1OmAOEJEfIoayclgGuhSiFd9MbFzOXOOEC9L8g-3FI4IJQH7G2D5UEDGgtGeBNqq4qohQ-Gz4iY5rjyY11ypMdYVGmzTQM-GWauQslUo2RmhG17LYe6HP9of4zi27bFqtrpRLu6rEYlrWrvwX9yscxcIUMUDuCayaXlPufacTMjByj8aYAOhkPaEAOwa0botCAqUFDcdbFNaNddpQuO6cmlvLtJCW4s-tFqRl4OS2h7n9AVzJWEofXO4tp5kN1_muurVCYcd3AB_7_6H0_-mjxMYRN4yDdkv1-tw1vwxnr3LinYL8IaNy4 priority: 102 providerName: Scholars Portal |
Title | Balancing Selection Maintains a Form of ERAP2 that Undergoes Nonsense-Mediated Decay and Affects Antigen Presentation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/20976248 https://www.proquest.com/docview/760209994 https://www.proquest.com/docview/954593265 https://pubmed.ncbi.nlm.nih.gov/PMC2954825 https://doaj.org/article/dcc509bf91b64ef3b174824a0c207b08 http://dx.doi.org/10.1371/journal.pgen.1001157 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdby2AvY-s-6n0EPexVq2xJlvzYjJRSaCllhbwZSZbWQueE2nnof787y0mTsdGXgQkhkZClO-vuZ939jpCvvKm0i0VgxkrOZMEbZkrHmbbOxQh7ZW4RKJ5flKfX8myu5lulvjAmLNEDp4U7arwHm-ZilbtShigcuNCmkJb7gmuX0nzB5q3BVNqDhTKprIpSgmmA9WPSnND50Sijb0sQ0MBAlKNp2jJKA3c_cp3eLbq_-Z1_hk9u2aOT1-TV6EjS4zSBN-RZaA_Ii1Ra8uEtWU0xZtGDYaLdUOoG1p_-srctvgroqKXorNJFpLOr48uC9je2p5hPdv9zETraYow1XGxILAGnlDbB2wdq24baFAEC33tk8qTLxwSm9h25Ppn9-H7KxhILzKuq6llw1holoxBN5WDbi1FyJ0FCYLIUIDkhQhFl46QEEC1UJaSL3riYu8IZB-j2PdmDWwqHhPKAvW2wPGhAXcEIb0JjVRm18MHwjIj1Gtd-5B_HMhh39XCopgGHpJWrUTL1KJmMsE2vZeLfeKL9FMW3aYvs2cMPoFP1qFP1UzqVkUMU_nqADobD8iAG4FVG6FohangQ8XTFtmGx6mpdckxDruS_m1TgrqK_rDLyIanQ5j6hK5glCUPrHeXamcjuP-3tzUAHjie1gPM__o-ZfyIvh_AIvORnstffr8IX8Lp6NyHP9VxPyP50dnF5NRkeN_g8l-Y3-XwwRw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+selection+maintains+a+form+of+ERAP2+that+undergoes+nonsense-mediated+decay+and+affects+antigen+presentation&rft.jtitle=PLoS+genetics&rft.au=Aida+M+Andr%C3%A9s&rft.au=Megan+Y+Dennis&rft.au=Warren+W+Kretzschmar&rft.au=Jennifer+L+Cannons&rft.date=2010-10-14&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=6&rft.issue=10&rft.spage=e1001157&rft_id=info:doi/10.1371%2Fjournal.pgen.1001157&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dcc509bf91b64ef3b174824a0c207b08 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon |