Balancing Selection Maintains a Form of ERAP2 that Undergoes Nonsense-Mediated Decay and Affects Antigen Presentation

A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and b...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 6; no. 10; p. e1001157
Main Authors Andrés, Aida M., Dennis, Megan Y., Kretzschmar, Warren W., Cannons, Jennifer L., Lee-Lin, Shih-Queen, Hurle, Belen, Schwartzberg, Pamela L., Williamson, Scott H., Bustamante, Carlos D., Nielsen, Rasmus, Clark, Andrew G., Green, Eric D.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 14.10.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection.
AbstractList   A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection.
A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection.
A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection. It has long been known that the extremely high levels of genetic diversity present in the major histocompatibility locus (MHC) are due to balancing selection, a type of natural selection that maintains advantageous genetic diversity in populations. The MHC encodes for molecules required for a type of antigen presentation that mediates detection of infected and cancerous cells by the immune system; the genetic diversity of the MHC thus ensures an adequate response to the wide variety of pathogens that humans encounter. Here, we show that other genes involved in the same antigen-presentation pathway are also subject to balancing selection in humans. Specifically, we show that balancing selection acts to maintain two forms of the endoplasmic reticulum aminopeptidase 2 gene (ERAP2), which encodes a protein also involved in antigen presentation. Although the two ERAP2 forms are present in a similar frequency (close to 0.5), they are associated with differences with respect to the levels of MHC molecules on the cell surface of immune cells. In summary, our findings show that natural selection maintains variants of ERAP2 that affect immune surveillance; they also establish ERAP2 as one of the few examples of balancing selection in humans where the selected variant, its functional consequences, and its influence in interpersonal diversity are known.
A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection.A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection.
A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 ( ERAP2 ), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2 . This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 ( ERAP1 ), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection. It has long been known that the extremely high levels of genetic diversity present in the major histocompatibility locus (MHC) are due to balancing selection, a type of natural selection that maintains advantageous genetic diversity in populations. The MHC encodes for molecules required for a type of antigen presentation that mediates detection of infected and cancerous cells by the immune system; the genetic diversity of the MHC thus ensures an adequate response to the wide variety of pathogens that humans encounter. Here, we show that other genes involved in the same antigen-presentation pathway are also subject to balancing selection in humans. Specifically, we show that balancing selection acts to maintain two forms of the endoplasmic reticulum aminopeptidase 2 gene ( ERAP2 ), which encodes a protein also involved in antigen presentation. Although the two ERAP2 forms are present in a similar frequency (close to 0.5), they are associated with differences with respect to the levels of MHC molecules on the cell surface of immune cells. In summary, our findings show that natural selection maintains variants of ERAP2 that affect immune surveillance; they also establish ERAP2 as one of the few examples of balancing selection in humans where the selected variant, its functional consequences, and its influence in interpersonal diversity are known.
Author Green, Eric D.
Dennis, Megan Y.
Cannons, Jennifer L.
Hurle, Belen
Williamson, Scott H.
Clark, Andrew G.
Andrés, Aida M.
Kretzschmar, Warren W.
Lee-Lin, Shih-Queen
Schwartzberg, Pamela L.
Nielsen, Rasmus
Bustamante, Carlos D.
AuthorAffiliation 4 Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
3 NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
2 Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
National Institute of Genetics, Japan
5 Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
6 Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
1 Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
AuthorAffiliation_xml – name: 2 Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
– name: 6 Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
– name: 4 Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, United States of America
– name: 3 NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
– name: 5 Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America
– name: 1 Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
– name: National Institute of Genetics, Japan
Author_xml – sequence: 1
  givenname: Aida M.
  surname: Andrés
  fullname: Andrés, Aida M.
– sequence: 2
  givenname: Megan Y.
  surname: Dennis
  fullname: Dennis, Megan Y.
– sequence: 3
  givenname: Warren W.
  surname: Kretzschmar
  fullname: Kretzschmar, Warren W.
– sequence: 4
  givenname: Jennifer L.
  surname: Cannons
  fullname: Cannons, Jennifer L.
– sequence: 5
  givenname: Shih-Queen
  surname: Lee-Lin
  fullname: Lee-Lin, Shih-Queen
– sequence: 6
  givenname: Belen
  surname: Hurle
  fullname: Hurle, Belen
– sequence: 7
  givenname: Pamela L.
  surname: Schwartzberg
  fullname: Schwartzberg, Pamela L.
– sequence: 8
  givenname: Scott H.
  surname: Williamson
  fullname: Williamson, Scott H.
– sequence: 9
  givenname: Carlos D.
  surname: Bustamante
  fullname: Bustamante, Carlos D.
– sequence: 10
  givenname: Rasmus
  surname: Nielsen
  fullname: Nielsen, Rasmus
– sequence: 11
  givenname: Andrew G.
  surname: Clark
  fullname: Clark, Andrew G.
– sequence: 12
  givenname: Eric D.
  surname: Green
  fullname: Green, Eric D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20976248$$D View this record in MEDLINE/PubMed
BookMark eNqFUl1vFCEUnZga-6H_wChvPs0KAwyDDyZrbbVJq43aZwLMZctmFrYwa9J_L-vOmtYHTSAQOPfcc-89x9VBiAGq6iXBM0IFebuMmxT0MFsvIMwIxoRw8aQ6IpzTWjDMDh7cD6vjnJcYU95J8aw6bLAUbcO6o2rzQQ86WB8W6DsMYEcfA7rSPoxlZ6TReUwrFB06-za_btB4q0d0E3pIiwgZfYkhQ1n1FfRej9Cjj2D1PdKhR3PnCl1G8zD6IhFdJyjYUW8zPK-eOj1keDGdJ9XN-dmP08_15ddPF6fzy9pyKccajNYdZ47SXhpCiHMMG0YaIkjHJRGUQuNYbxiTWFAuKTPOdsYR05jO0I6eVK93vOshZjV1LCtCCeXlG7cFcbFD9FEv1Tr5lU73Kmqvfj_EtFA6jd4OoHprOZbGSWJaBo4aIljXMI1tg4XB22zvp2wbs4LelmqTHh6RPv4J_lYt4k_VSF6YeCF4MxGkeLeBPKqVzxaGMiGIm6wKrBTZtP9HihaXGUvJCvLVQ1F_1OwtUADvdgCbYs4JnLJ-N6Wi0Q-KYLX12757aus3NfmtBLO_gvf8_wz7BS9b3RI
CitedBy_id crossref_primary_10_1371_journal_pone_0069054
crossref_primary_10_1073_pnas_1804506115
crossref_primary_10_3390_genes11030276
crossref_primary_10_1016_j_humimm_2020_02_011
crossref_primary_10_1016_j_jid_2023_01_012
crossref_primary_10_1007_s00439_011_1025_6
crossref_primary_10_1371_journal_pgen_1004681
crossref_primary_10_3389_fimmu_2020_01576
crossref_primary_10_1186_s12885_020_06832_2
crossref_primary_10_1093_gbe_evt198
crossref_primary_10_3389_fimmu_2021_634441
crossref_primary_10_1038_ng_2614
crossref_primary_10_1093_molbev_msw215
crossref_primary_10_1093_molbev_msv007
crossref_primary_10_1097_QAD_0b013e3283601cee
crossref_primary_10_1186_1471_2148_11_202
crossref_primary_10_1093_gbe_evad032
crossref_primary_10_1074_jbc_M115_685909
crossref_primary_10_1074_mcp_RA119_001710
crossref_primary_10_1038_nbt_4042
crossref_primary_10_1002_art_38980
crossref_primary_10_1093_rheumatology_kez212
crossref_primary_10_1371_journal_ppat_1012359
crossref_primary_10_1093_molbev_msaa134
crossref_primary_10_1186_1471_2350_12_64
crossref_primary_10_1002_1878_0261_13541
crossref_primary_10_1371_journal_pgen_1002410
crossref_primary_10_3390_ijms24043454
crossref_primary_10_1016_j_humimm_2019_02_004
crossref_primary_10_3389_fimmu_2022_1002375
crossref_primary_10_1007_s00005_016_0444_4
crossref_primary_10_1371_journal_pgen_1008485
crossref_primary_10_3389_fimmu_2024_1519159
crossref_primary_10_1080_2162402X_2017_1336594
crossref_primary_10_1016_j_berh_2018_09_005
crossref_primary_10_1016_j_cbpa_2014_08_007
crossref_primary_10_1016_j_jbc_2021_100443
crossref_primary_10_1038_gene_2016_39
crossref_primary_10_1016_j_coi_2023_102337
crossref_primary_10_1136_annrheumdis_2015_207416
crossref_primary_10_2174_0929867325666180214111849
crossref_primary_10_1038_ng_2205
crossref_primary_10_1097_BOR_0000000000000297
crossref_primary_10_1038_s41598_018_28799_8
crossref_primary_10_1101_gr_111211_110
crossref_primary_10_1186_gb_2013_14_7_r74
crossref_primary_10_1080_08820139_2020_1869253
crossref_primary_10_1093_biolre_ioy001
crossref_primary_10_1016_j_molimm_2016_08_005
crossref_primary_10_4049_jimmunol_2000991
crossref_primary_10_1016_j_humimm_2019_02_014
crossref_primary_10_3390_ijms22168585
crossref_primary_10_1016_j_gde_2014_08_001
crossref_primary_10_7759_cureus_48806
crossref_primary_10_1016_j_preteyeres_2014_11_003
crossref_primary_10_1038_srep33363
crossref_primary_10_1016_j_tree_2012_08_012
crossref_primary_10_1038_s41598_021_86240_z
crossref_primary_10_1371_journal_pone_0126911
crossref_primary_10_3390_cancers13030414
crossref_primary_10_1016_j_humimm_2017_11_010
crossref_primary_10_1016_j_autrev_2012_04_007
crossref_primary_10_1016_j_humimm_2019_02_010
crossref_primary_10_1016_j_humimm_2019_02_011
crossref_primary_10_1021_bi201230p
crossref_primary_10_1016_j_ajhg_2017_11_002
crossref_primary_10_1016_j_molimm_2018_03_026
crossref_primary_10_1111_tan_12410
crossref_primary_10_2478_aite_2024_0008
crossref_primary_10_1038_gene_2014_46
crossref_primary_10_1038_s41435_023_00225_8
crossref_primary_10_1074_mcp_RA117_000565
crossref_primary_10_1016_j_ajhg_2017_01_028
crossref_primary_10_1042_BSR20171503
crossref_primary_10_1016_j_humimm_2020_11_004
crossref_primary_10_1186_s12967_024_05532_w
crossref_primary_10_3390_biom10101461
crossref_primary_10_1002_art_40369
crossref_primary_10_3389_fimmu_2022_902567
crossref_primary_10_1093_gbe_evy054
crossref_primary_10_1371_journal_pgen_1002355
crossref_primary_10_1080_14397595_2016_1206174
crossref_primary_10_7554_eLife_79111
crossref_primary_10_1093_jb_mvt066
crossref_primary_10_1101_gr_240390_118
crossref_primary_10_1080_14728222_2020_1751821
crossref_primary_10_1038_ng_2467
crossref_primary_10_1073_pnas_1501475112
crossref_primary_10_1016_j_placenta_2017_03_012
crossref_primary_10_1002_mgg3_13
crossref_primary_10_1371_journal_pone_0260692
crossref_primary_10_1016_j_molimm_2013_06_013
crossref_primary_10_3390_ijms25116081
crossref_primary_10_3389_fimmu_2020_599558
crossref_primary_10_20411_pai_v8i1_597
crossref_primary_10_3389_fimmu_2019_00035
crossref_primary_10_1111_1756_185X_14079
crossref_primary_10_1111_jeb_13745
crossref_primary_10_1016_j_imlet_2020_04_015
crossref_primary_10_1038_s41588_019_0487_7
crossref_primary_10_1093_rheumatology_kev218
crossref_primary_10_1074_mcp_RA119_001515
crossref_primary_10_1186_s13059_016_1093_y
crossref_primary_10_1016_j_ajhg_2023_02_008
crossref_primary_10_1093_molbev_msv043
crossref_primary_10_1038_s41413_019_0057_8
crossref_primary_10_3389_fonc_2014_00363
crossref_primary_10_1186_s12859_017_1844_0
crossref_primary_10_3389_fimmu_2021_755624
crossref_primary_10_1016_j_mehy_2013_04_034
crossref_primary_10_3389_fimmu_2021_664474
crossref_primary_10_3390_cells9030720
crossref_primary_10_1038_s41559_023_02053_5
crossref_primary_10_1136_annrheumdis_2015_207467
crossref_primary_10_1016_j_humimm_2018_11_002
crossref_primary_10_1080_1744666X_2020_1732820
crossref_primary_10_1111_mec_16238
crossref_primary_10_1016_j_humimm_2018_11_001
crossref_primary_10_3389_fimmu_2018_02463
crossref_primary_10_4049_jimmunol_1100525
crossref_primary_10_1021_acs_jmedchem_4c00840
crossref_primary_10_1038_nrrheum_2017_80
crossref_primary_10_3390_ijms23094961
crossref_primary_10_1167_iovs_62_14_3
crossref_primary_10_1111_mec_13085
crossref_primary_10_3390_cells9091951
crossref_primary_10_25208_vdv1260
crossref_primary_10_1016_j_humimm_2019_01_003
crossref_primary_10_1371_journal_pone_0161011
crossref_primary_10_1111_cei_13020
crossref_primary_10_1016_j_molimm_2022_12_010
crossref_primary_10_1016_j_immuni_2024_10_013
crossref_primary_10_1093_molbev_msw023
crossref_primary_10_4049_jimmunol_1200918
crossref_primary_10_1186_s12862_016_0842_6
crossref_primary_10_1016_j_humimm_2021_05_003
crossref_primary_10_1053_j_gastro_2022_11_036
crossref_primary_10_1002_art_40033
crossref_primary_10_1093_jb_mvab009
crossref_primary_10_1093_ced_llae128
crossref_primary_10_1371_journal_pgen_1004189
crossref_primary_10_1534_genetics_111_137117
crossref_primary_10_3390_ijms21165861
crossref_primary_10_1111_mec_12425
crossref_primary_10_1016_j_meegid_2017_12_014
crossref_primary_10_1016_j_berh_2015_02_002
crossref_primary_10_1111_j_1558_5646_2012_01744_x
crossref_primary_10_1186_s12920_020_0662_9
crossref_primary_10_1074_jbc_RA119_010102
crossref_primary_10_1074_mcp_M115_048959
crossref_primary_10_17352_jvi_000007
crossref_primary_10_1097_MD_0000000000038666
crossref_primary_10_1074_jbc_M117_789180
crossref_primary_10_1097_BOR_0000000000000188
crossref_primary_10_1038_s41586_022_05349_x
crossref_primary_10_1093_hmg_ddu307
crossref_primary_10_1155_2013_204240
crossref_primary_10_1002_wrna_120
crossref_primary_10_3389_fcell_2024_1506216
crossref_primary_10_1007_s00018_011_0662_1
crossref_primary_10_1586_eci_13_16
crossref_primary_10_1007_s11926_016_0612_x
crossref_primary_10_1093_molbev_mss329
crossref_primary_10_1016_j_xgen_2023_100460
crossref_primary_10_1371_journal_pgen_1003404
crossref_primary_10_1002_art_39734
crossref_primary_10_1093_rheumatology_ker199
crossref_primary_10_1016_j_jaut_2016_12_008
crossref_primary_10_1016_j_berh_2021_101691
crossref_primary_10_1038_nrrheum_2015_133
crossref_primary_10_1038_s41586_024_08497_4
crossref_primary_10_1016_j_pan_2021_09_012
crossref_primary_10_1038_nrg3502
crossref_primary_10_1016_j_molimm_2020_02_020
crossref_primary_10_1007_s00251_013_0746_1
crossref_primary_10_1038_ng_835
crossref_primary_10_1016_j_humimm_2019_03_011
crossref_primary_10_1126_science_abj5117
crossref_primary_10_1101_gr_205070_116
crossref_primary_10_1126_sciadv_abi4476
crossref_primary_10_1038_ng_2667
crossref_primary_10_1016_j_humimm_2017_10_005
crossref_primary_10_1074_mcp_RA118_000778
crossref_primary_10_3390_ijms13078338
crossref_primary_10_1186_1471_2393_11_74
crossref_primary_10_1074_mcp_RA120_002014
Cites_doi 10.1073/pnas.0906051106
10.1038/nrrheum.2010.85
10.1038/ni1208
10.1371/journal.pbio.0040072
10.1126/science.1139247
10.1002/gcc.20441
10.4049/jimmunol.176.8.4869
10.1101/gr.073254.107
10.1371/journal.pgen.0030090
10.1084/jem.20052271
10.1073/pnas.0603095103
10.1038/ng2077
10.1007/s00262-007-0362-8
10.1101/gr.088336.108
10.1016/j.molimm.2006.10.015
10.1371/journal.pgen.1000666
10.1146/annurev.genet.32.1.415
10.1016/j.coi.2003.11.004
10.1038/nature02168
10.1523/JNEUROSCI.1671-06.2006
10.1111/j.1742-4658.2004.04521.x
10.1093/genetics/123.3.585
10.1002/jcp.21454
10.1016/S0962-8924(01)02030-X
10.1016/j.coi.2007.12.004
10.4049/jimmunol.0903399
10.1093/bioinformatics/18.2.337
10.1093/bioinformatics/btg316
10.1073/pnas.88.13.5897
10.1017/S0016672397002954
10.1002/humu.10047
10.1086/503116
10.4049/jimmunol.0903712
10.1056/NEJMoa031884
10.1038/nature04244
10.1016/j.cub.2005.04.050
10.1002/art.24467
10.1101/gr.10.4.511
10.4049/jimmunol.181.9.6275
10.4049/jimmunol.178.4.2241
10.1016/j.placenta.2008.09.015
10.1089/1066527041410418
10.1093/genetics/116.1.153
10.1111/j.0105-2896.2005.00313.x
10.1126/science.7524148
10.1002/gcc.20648
10.1038/ni1409
10.1371/journal.pgen.0030079
10.1038/ni860
10.1093/oxfordjournals.jbchem.a022812
10.1007/s00439-009-0714-x
10.1038/ni1286
10.1186/gb-2009-10-11-r130
10.1016/j.tig.2004.11.001
10.1038/ng2111
10.1073/pnas.86.3.958
10.1086/319501
10.1093/genetics/120.3.831
10.1038/335167a0
10.1371/journal.pbio.0030170
10.1038/ng.513
10.1038/nature04240
10.1073/pnas.162046399
10.1038/nature04072
10.1093/genetics/124.4.967
10.1016/1055-7903(92)90021-8
10.1038/88099
10.1084/jem.20031982
10.2174/138161209789271816
10.1074/jbc.M305076200
10.1371/journal.pgen.1000436
10.1534/genetics.106.055715
10.1016/j.immuni.2007.04.003
10.1371/journal.pgen.1000695
10.1038/ng.78
10.1038/ng.2007.17
10.1093/molbev/msp190
10.1093/hmg/ddp371
10.1038/ng.2007.57
10.1371/journal.pgen.1000766
10.1038/nature08835
10.1248/bpb.27.777
10.1038/ni.1728
10.1182/blood-2006-11-057208
ContentType Journal Article
Copyright This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010
2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Andrés AM, Dennis MY, Kretzschmar WW, Cannons JL, Lee-Lin S-Q, et al. (2010) Balancing Selection Maintains a Form of ERAP2 that Undergoes Nonsense-Mediated Decay and Affects Antigen Presentation. PLoS Genet 6(10): e1001157. doi:10.1371/journal.pgen.1001157
Copyright_xml – notice: This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. 2010
– notice: 2010 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Citation: Andrés AM, Dennis MY, Kretzschmar WW, Cannons JL, Lee-Lin S-Q, et al. (2010) Balancing Selection Maintains a Form of ERAP2 that Undergoes Nonsense-Mediated Decay and Affects Antigen Presentation. PLoS Genet 6(10): e1001157. doi:10.1371/journal.pgen.1001157
CorporateAuthor NISC Comparative Sequencing Program
CorporateAuthor_xml – name: NISC Comparative Sequencing Program
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
DOA
DOI 10.1371/journal.pgen.1001157
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE

Genetics Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Balancing Selection of ERAP2
EISSN 1553-7404
ExternalDocumentID 1313538306
oai_doaj_org_article_dcc509bf91b64ef3b174824a0c207b08
PMC2954825
20976248
10_1371_journal_pgen_1001157
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Intramural NIH HHS
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AFKRA
AFPKN
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B0M
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
BWKFM
C1A
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
IHR
IHW
INH
INR
IOV
ISN
ISR
ITC
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
QN7
RNS
RPM
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
3V.
CGR
CUY
CVF
ECM
EIF
M~E
NPM
7X8
PJZUB
PPXIY
PQGLB
7TM
8FD
FR3
P64
RC3
5PM
PUEGO
AAPBV
ABPTK
ID FETCH-LOGICAL-c599t-ebaa854f33d9b111ff40b4121718591733e2f4db4490735934bfc8bf1b2b8b383
IEDL.DBID DOA
ISSN 1553-7404
1553-7390
IngestDate Sun Oct 01 00:20:32 EDT 2023
Wed Aug 27 01:29:11 EDT 2025
Thu Aug 21 18:33:59 EDT 2025
Fri Jul 11 12:36:24 EDT 2025
Tue Aug 05 09:36:19 EDT 2025
Wed Feb 19 01:47:50 EST 2025
Tue Jul 01 02:38:30 EDT 2025
Thu Apr 24 23:13:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c599t-ebaa854f33d9b111ff40b4121718591733e2f4db4490735934bfc8bf1b2b8b383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
a: Current address: Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
b: Current address: Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
Conceived and designed the experiments: AMA MYD JLC SQLL SHW CDB RN AGC EDG. Performed the experiments: AMA MYD WWK JLC SQLL NISC Comparative Sequencing Program. Analyzed the data: AMA MYD WWK BH. Contributed reagents/materials/analysis tools: PLS EDG. Wrote the paper: AMA MYD WWK EDG.
c: Current address: Department of Genetics, Stanford School of Medicine, Stanford, California, United States of America
OpenAccessLink https://doaj.org/article/dcc509bf91b64ef3b174824a0c207b08
PMID 20976248
PQID 760209994
PQPubID 23479
ParticipantIDs plos_journals_1313538306
doaj_primary_oai_doaj_org_article_dcc509bf91b64ef3b174824a0c207b08
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2954825
proquest_miscellaneous_954593265
proquest_miscellaneous_760209994
pubmed_primary_20976248
crossref_citationtrail_10_1371_journal_pgen_1001157
crossref_primary_10_1371_journal_pgen_1001157
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20101014
PublicationDateYYYYMMDD 2010-10-14
PublicationDate_xml – month: 10
  year: 2010
  text: 20101014
  day: 14
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco, USA
PublicationTitle PLoS genetics
PublicationTitleAlternate PLoS Genet
PublicationYear 2010
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References JW Yewdell (ref64) 2001; 11
(ref76) 2003; 426
M Pinyol (ref49) 2007; 109
J Coulombe-Huntington (ref44) 2009; 5
MJ Bamshad (ref68) 2002; 99
B Charlesworth (ref53) 1997; 70
RJ Levine (ref70) 2004; 350
HT Bjornsson (ref42) 2008; 18
AM Andrés (ref3) 2009; 26
N Yamamoto (ref22) 2002; 19
AL Hughes (ref9) 1998; 32
T Tanioka (ref20) 2005; 272
AM Mehta (ref31) 2007; 46
A Hattori (ref13) 2004; 27
MY Dennis (ref85) 2009; 5
N Blanchard (ref58) 2010; 184
KL Rock (ref19) 2010; 184
R Nielsen (ref37) 2009; 19
E Firat (ref61) 2007; 178
WP Maksymowych (ref29) 2009; 60
J Yan (ref55) 2006; 203
M Rasmussen (ref51) 2010; 463
(ref77) 2005; 437
K Thornton (ref79) 2003; 19
D Fruci (ref25) 2006; 176
MP Johnson (ref34) 2009; 126
EN Noensie (ref50) 2001; 19
PM Kloetzel (ref14) 2004; 16
GE Hammer (ref16) 2007; 26
VG Cheung (ref40) 2005; 437
A Hattori (ref23) 2000; 128
RR Hudson (ref39) 1987; 116
T Kwan (ref43) 2008; 40
RR Hudson (ref52) 1988; 120
(ref30) 2010; 42
N Haroon (ref36) 2010; 6
S Asthana (ref1) 2005; 21
Y Xue (ref69) 2006; 78
T Tanioka (ref24) 2003; 278
(ref27) 2007; 39
GE Hammer (ref56) 2007; 8
DS Mosher (ref65) 2007; 3
M Stephens (ref82) 2001; 68
N Takahata (ref6) 1990; 124
Y Watanabe (ref21) 2003; 9
SE Gabriel (ref67) 1994; 266
HJ Bandelt (ref83) 1992; 1
L Saveanu (ref15) 2005; 207
T Kanaseki (ref62) 2008; 181
C Fasquelle (ref66) 2009; 5
IA York (ref57) 2006; 103
R Nielsen (ref72) 2005; 3
BF Voight (ref73) 2006; 4
G Yeo (ref47) 2004; 11
CD Bustamante (ref71) 2005; 437
I Evnouchidou (ref18) 2009; 15
F Prugnolle (ref8) 2005; 15
L Saveanu (ref48) 2005; 6
D Harvey (ref28) 2009; 18
SH Williamson (ref74) 2007; 3
PJ Norman (ref10) 2007; 39
K Gendzekhadze (ref12) 2009; 106
N Blanchard (ref17) 2008; 20
AL Hughes (ref5) 1989; 86
F Tajima (ref38) 1989; 123
S Tenzer (ref60) 2009; 10
RM Single (ref11) 2007; 39
SA Founds (ref35) 2009; 30
RN Gutenkunst (ref81) 2009; 5
C Wu (ref45) 2009; 10
AL Hughes (ref4) 1988; 335
PW Hedrick (ref7) 1991; 88
IA York (ref63) 2002; 3
HQ Qu (ref41) 2007; 44
GE Hammer (ref54) 2006; 7
RR Hudson (ref80) 2002; 18
AM Mehta (ref32) 2008; 57
KL Bubb (ref2) 2006; 173
A Antonellis (ref84) 2006; 26
G Parra (ref46) 2000; 10
AM Mehta (ref33) 2009; 48
RA Gibbs (ref78) 2007; 316
D Fruci (ref26) 2008; 216
LB Barreiro (ref75) 2008; 40
R Draenert (ref59) 2004; 199
15067030 - J Exp Med. 2004 Apr 5;199(7):905-15
17129607 - Mol Immunol. 2007 Mar;44(8):2135-8
14695154 - Clin Cancer Res. 2003 Dec 15;9(17):6497-503
16251966 - Nature. 2005 Oct 27;437(7063):1365-9
15908954 - Nat Immunol. 2005 Jul;6(7):689-97
19713326 - Mol Biol Evol. 2009 Dec;26(12):2755-64
11254454 - Am J Hum Genet. 2001 Apr;68(4):978-89
20148029 - Nature. 2010 Feb 11;463(7282):757-62
11413040 - Trends Cell Biol. 2001 Jul;11(7):294-7
12799365 - J Biol Chem. 2003 Aug 22;278(34):32275-83
16494531 - PLoS Biol. 2006 Mar;4(3):e72
19851460 - PLoS Genet. 2009 Oct;5(10):e1000695
12149450 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10539-44
1342941 - Mol Phylogenet Evol. 1992 Sep;1(3):242-52
14685227 - Nature. 2003 Dec 18;426(6968):789-96
2062867 - Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5897-901
17952073 - Nat Genet. 2007 Nov;39(11):1329-37
15869325 - PLoS Biol. 2005 Jun;3(6):e170
16532395 - Am J Hum Genet. 2006 Apr;78(4):659-70
18941218 - J Immunol. 2008 Nov 1;181(9):6275-82
16751668 - Genetics. 2006 Aug;173(4):2165-77
17530926 - PLoS Genet. 2007 May 25;3(5):e79
19837691 - Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18692-7
15691326 - FEBS J. 2005 Feb;272(4):916-28
19578876 - Hum Genet. 2009 Nov;126(5):655-66
2513255 - Genetics. 1989 Nov;123(3):585-95
14734113 - Curr Opin Immunol. 2004 Feb;16(1):76-81
19412183 - Nat Immunol. 2009 Jun;10(6):636-46
17622526 - Cancer Immunol Immunother. 2008 Feb;57(2):197-206
19404951 - Arthritis Rheum. 2009 May;60(5):1317-23
20011102 - PLoS Genet. 2009 Dec;5(12):e1000766
11056387 - J Biochem. 2000 Nov;128(5):755-62
7524148 - Science. 1994 Oct 7;266(5182):107-9
19925418 - Curr Pharm Des. 2009;15(31):3656-70
10779490 - Genome Res. 2000 Apr;10(4):511-5
11329012 - Nat Biotechnol. 2001 May;19(5):434-9
3147214 - Genetics. 1988 Nov;120(3):831-40
17431167 - Science. 2007 Apr 13;316(5822):222-34
17542651 - PLoS Genet. 2007 Jun;3(6):e90
3412472 - Nature. 1988 Sep 8;335(6186):167-70
16237444 - Nature. 2005 Oct 20;437(7062):1153-7
11857741 - Hum Mutat. 2002 Mar;19(3):251-7
15187416 - Biol Pharm Bull. 2004 Jun;27(6):777-80
14630667 - Bioinformatics. 2003 Nov 22;19(17):2325-7
9928486 - Annu Rev Genet. 1998;32:415-35
15680511 - Trends Genet. 2005 Jan;21(1):30-2
17277129 - J Immunol. 2007 Feb 15;178(4):2241-8
16136131 - Nature. 2005 Sep 1;437(7055):69-87
3110004 - Genetics. 1987 May;116(1):153-9
19325871 - PLoS Genet. 2009 Mar;5(3):e1000436
9449192 - Genet Res. 1997 Oct;70(2):155-74
17332242 - Blood. 2007 Jun 15;109(12):5422-9
16585582 - J Immunol. 2006 Apr 15;176(8):4869-79
16299505 - Nat Immunol. 2006 Jan;7(1):103-12
17128277 - Nat Immunol. 2007 Jan;8(1):101-8
19692350 - Hum Mol Genet. 2009 Nov 1;18(21):4204-12
20028659 - J Immunol. 2010 Jan 1;184(1):9-15
18193047 - Nat Genet. 2008 Feb;40(2):225-31
16181326 - Immunol Rev. 2005 Oct;207:42-59
18393273 - J Cell Physiol. 2008 Sep;216(3):742-9
20062062 - Nat Genet. 2010 Feb;42(2):123-7
15936272 - Curr Biol. 2005 Jun 7;15(11):1022-7
19279335 - Genome Res. 2009 May;19(5):838-49
17459809 - Immunity. 2007 Apr;26(4):397-406
15285897 - J Comput Biol. 2004;11(2-3):377-94
11847089 - Bioinformatics. 2002 Feb;18(2):337-8
12436110 - Nat Immunol. 2002 Dec;3(12):1177-84
2323559 - Genetics. 1990 Apr;124(4):967-78
17366619 - Genes Chromosomes Cancer. 2007 Jun;46(6):577-86
14764923 - N Engl J Med. 2004 Feb 12;350(7):672-83
16754858 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9202-7
20531381 - Nat Rev Rheumatol. 2010 Aug;6(8):461-7
17694054 - Nat Genet. 2007 Sep;39(9):1092-9
18243675 - Curr Opin Immunol. 2008 Feb;20(1):82-8
19779552 - PLoS Genet. 2009 Sep;5(9):e1000666
18246066 - Nat Genet. 2008 Mar;40(3):340-5
16505142 - J Exp Med. 2006 Mar 20;203(3):647-59
19919682 - Genome Biol. 2009;10(11):R130
17035524 - J Neurosci. 2006 Oct 11;26(41):10397-406
2492668 - Proc Natl Acad Sci U S A. 1989 Feb;86(3):958-62
19027158 - Placenta. 2009 Jan;30(1):15-24
18369178 - Genome Res. 2008 May;18(5):771-9
17694058 - Nat Genet. 2007 Sep;39(9):1114-9
19202550 - Genes Chromosomes Cancer. 2009 May;48(5):410-8
20173027 - J Immunol. 2010 Mar 15;184(6):3033-42
References_xml – volume: 106
  start-page: 18692
  year: 2009
  ident: ref12
  article-title: Co-evolution of KIR2DL3 with HLA-C in a human population retaining minimal essential diversity of KIR and HLA class I ligands.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0906051106
– volume: 6
  start-page: 461
  year: 2010
  ident: ref36
  article-title: Endoplasmic reticulum aminopeptidases: Biology and pathogenic potential.
  publication-title: Nat Rev Rheumatol
  doi: 10.1038/nrrheum.2010.85
– volume: 6
  start-page: 689
  year: 2005
  ident: ref48
  article-title: Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum.
  publication-title: Nat Immunol
  doi: 10.1038/ni1208
– volume: 4
  start-page: e72
  year: 2006
  ident: ref73
  article-title: A map of recent positive selection in the human genome.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0040072
– volume: 316
  start-page: 222
  year: 2007
  ident: ref78
  article-title: Evolutionary and biomedical insights from the rhesus macaque genome.
  publication-title: Science
  doi: 10.1126/science.1139247
– volume: 46
  start-page: 577
  year: 2007
  ident: ref31
  article-title: Genetic variation of antigen processing machinery components and association with cervical carcinoma.
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.20441
– volume: 176
  start-page: 4869
  year: 2006
  ident: ref25
  article-title: Expression of endoplasmic reticulum aminopeptidases in EBV-B cell lines from healthy donors and in leukemia/lymphoma, carcinoma, and melanoma cell lines.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.176.8.4869
– volume: 18
  start-page: 771
  year: 2008
  ident: ref42
  article-title: SNP-specific array-based allele-specific expression analysis.
  publication-title: Genome Res
  doi: 10.1101/gr.073254.107
– volume: 3
  start-page: e90
  year: 2007
  ident: ref74
  article-title: Localizing recent adaptive evolution in the human genome.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030090
– volume: 203
  start-page: 647
  year: 2006
  ident: ref55
  article-title: In vivo role of ER-associated peptidase activity in tailoring peptides for presentation by MHC class Ia and class Ib molecules.
  publication-title: J Exp Med
  doi: 10.1084/jem.20052271
– volume: 103
  start-page: 9202
  year: 2006
  ident: ref57
  article-title: Endoplasmic reticulum aminopeptidase 1 (ERAP1) trims MHC class I-presented peptides in vivo and plays an important role in immunodominance.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0603095103
– volume: 39
  start-page: 1114
  year: 2007
  ident: ref11
  article-title: Global diversity and evidence for coevolution of KIR and HLA.
  publication-title: Nat Genet
  doi: 10.1038/ng2077
– volume: 57
  start-page: 197
  year: 2008
  ident: ref32
  article-title: Association of antigen processing machinery and HLA class I defects with clinicopathological outcome in cervical carcinoma.
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-007-0362-8
– volume: 19
  start-page: 838
  year: 2009
  ident: ref37
  article-title: Darwinian and demographic forces affecting human protein coding genes.
  publication-title: Genome Res
  doi: 10.1101/gr.088336.108
– volume: 44
  start-page: 2135
  year: 2007
  ident: ref41
  article-title: No association of type 1 diabetes with a functional polymorphism of the LRAP gene.
  publication-title: Mol Immunol
  doi: 10.1016/j.molimm.2006.10.015
– volume: 5
  start-page: e1000666
  year: 2009
  ident: ref66
  article-title: Balancing selection of a frame-shift mutation in the MRC2 gene accounts for the outbreak of the Crooked Tail Syndrome in Belgian Blue Cattle.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000666
– volume: 32
  start-page: 415
  year: 1998
  ident: ref9
  article-title: Natural selection at major histocompatibility complex loci of vertebrates.
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.32.1.415
– volume: 16
  start-page: 76
  year: 2004
  ident: ref14
  article-title: Proteasome and peptidase function in MHC-class-I-mediated antigen presentation.
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2003.11.004
– volume: 426
  start-page: 789
  year: 2003
  ident: ref76
  article-title: The International HapMap Project.
  publication-title: Nature
  doi: 10.1038/nature02168
– volume: 26
  start-page: 10397
  year: 2006
  ident: ref84
  article-title: Functional analyses of glycyl-tRNA synthetase mutations suggest a key role for tRNA-charging enzymes in peripheral axons.
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1671-06.2006
– volume: 272
  start-page: 916
  year: 2005
  ident: ref20
  article-title: Regulation of the human leukocyte-derived arginine aminopeptidase/endoplasmic reticulum-aminopeptidase 2 gene by interferon-gamma.
  publication-title: FEBS J
  doi: 10.1111/j.1742-4658.2004.04521.x
– volume: 123
  start-page: 585
  year: 1989
  ident: ref38
  article-title: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.
  publication-title: Genetics
  doi: 10.1093/genetics/123.3.585
– volume: 216
  start-page: 742
  year: 2008
  ident: ref26
  article-title: Altered expression of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in transformed non-lymphoid human tissues.
  publication-title: J Cell Physiol
  doi: 10.1002/jcp.21454
– volume: 11
  start-page: 294
  year: 2001
  ident: ref64
  article-title: Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing.
  publication-title: Trends Cell Biol
  doi: 10.1016/S0962-8924(01)02030-X
– volume: 20
  start-page: 82
  year: 2008
  ident: ref17
  article-title: Coping with loss of perfection in the MHC class I peptide repertoire.
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2007.12.004
– volume: 184
  start-page: 9
  year: 2010
  ident: ref19
  article-title: Proteases in MHC class I presentation and cross-presentation.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0903399
– volume: 18
  start-page: 337
  year: 2002
  ident: ref80
  article-title: Generating samples under a Wright-Fisher neutral model of genetic variation.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.2.337
– volume: 19
  start-page: 2325
  year: 2003
  ident: ref79
  article-title: Libsequence: a C++ class library for evolutionary genetic analysis.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg316
– volume: 88
  start-page: 5897
  year: 1991
  ident: ref7
  article-title: Heterozygosity at individual amino acid sites: extremely high levels for HLA-A and -B genes.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.88.13.5897
– volume: 70
  start-page: 155
  year: 1997
  ident: ref53
  article-title: The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations.
  publication-title: Genet Res
  doi: 10.1017/S0016672397002954
– volume: 19
  start-page: 251
  year: 2002
  ident: ref22
  article-title: Identification of 33 polymorphisms in the adipocyte-derived leucine aminopeptidase (ALAP) gene and possible association with hypertension.
  publication-title: Hum Mutat
  doi: 10.1002/humu.10047
– volume: 78
  start-page: 659
  year: 2006
  ident: ref69
  article-title: Spread of an inactive form of caspase-12 in humans is due to recent positive selection.
  publication-title: Am J Hum Genet
  doi: 10.1086/503116
– volume: 184
  start-page: 3033
  year: 2010
  ident: ref58
  article-title: Endoplasmic reticulum aminopeptidase associated with antigen processing defines the composition and structure of MHC class I Peptide repertoire in normal and virus-infected cells.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0903712
– volume: 350
  start-page: 672
  year: 2004
  ident: ref70
  article-title: Circulating angiogenic factors and the risk of preeclampsia.
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa031884
– volume: 437
  start-page: 1365
  year: 2005
  ident: ref40
  article-title: Mapping determinants of human gene expression by regional and genome-wide association.
  publication-title: Nature
  doi: 10.1038/nature04244
– volume: 15
  start-page: 1022
  year: 2005
  ident: ref8
  article-title: Pathogen-driven selection and worldwide HLA class I diversity.
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2005.04.050
– volume: 60
  start-page: 1317
  year: 2009
  ident: ref29
  article-title: Association of a specific ERAP1/ARTS1 haplotype with disease susceptibility in ankylosing spondylitis.
  publication-title: Arthritis Rheum
  doi: 10.1002/art.24467
– volume: 10
  start-page: 511
  year: 2000
  ident: ref46
  article-title: GeneID in Drosophila.
  publication-title: Genome Res
  doi: 10.1101/gr.10.4.511
– volume: 181
  start-page: 6275
  year: 2008
  ident: ref62
  article-title: Endoplasmic reticulum aminopeptidase associated with antigen processing regulates quality of processed peptides presented by MHC class I molecules.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.181.9.6275
– volume: 178
  start-page: 2241
  year: 2007
  ident: ref61
  article-title: The role of endoplasmic reticulum-associated aminopeptidase 1 in immunity to infection and in cross-presentation.
  publication-title: J Immunol
  doi: 10.4049/jimmunol.178.4.2241
– volume: 30
  start-page: 15
  year: 2009
  ident: ref35
  article-title: Altered global gene expression in first trimester placentas of women destined to develop preeclampsia.
  publication-title: Placenta
  doi: 10.1016/j.placenta.2008.09.015
– volume: 11
  start-page: 377
  year: 2004
  ident: ref47
  article-title: Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals.
  publication-title: J Comput Biol
  doi: 10.1089/1066527041410418
– volume: 116
  start-page: 153
  year: 1987
  ident: ref39
  article-title: A test of neutral molecular evolution based on nucleotide data.
  publication-title: Genetics
  doi: 10.1093/genetics/116.1.153
– volume: 207
  start-page: 42
  year: 2005
  ident: ref15
  article-title: Complexity, contradictions, and conundrums: studying post-proteasomal proteolysis in HLA class I antigen presentation.
  publication-title: Immunol Rev
  doi: 10.1111/j.0105-2896.2005.00313.x
– volume: 266
  start-page: 107
  year: 1994
  ident: ref67
  article-title: Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model.
  publication-title: Science
  doi: 10.1126/science.7524148
– volume: 48
  start-page: 410
  year: 2009
  ident: ref33
  article-title: Single nucleotide polymorphisms in antigen processing machinery component ERAP1 significantly associate with clinical outcome in cervical carcinoma.
  publication-title: Genes Chromosomes Cancer
  doi: 10.1002/gcc.20648
– volume: 8
  start-page: 101
  year: 2007
  ident: ref56
  article-title: In the absence of aminopeptidase ERAAP, MHC class I molecules present many unstable and highly immunogenic peptides.
  publication-title: Nat Immunol
  doi: 10.1038/ni1409
– volume: 3
  start-page: e79
  year: 2007
  ident: ref65
  article-title: A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.0030079
– volume: 3
  start-page: 1177
  year: 2002
  ident: ref63
  article-title: The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues.
  publication-title: Nat Immunol
  doi: 10.1038/ni860
– volume: 128
  start-page: 755
  year: 2000
  ident: ref23
  article-title: Characterization of recombinant human adipocyte-derived leucine aminopeptidase expressed in Chinese hamster ovary cells.
  publication-title: J Biochem
  doi: 10.1093/oxfordjournals.jbchem.a022812
– volume: 126
  start-page: 655
  year: 2009
  ident: ref34
  article-title: The ERAP2 gene is associated with preeclampsia in Australian and Norwegian populations.
  publication-title: Hum Genet
  doi: 10.1007/s00439-009-0714-x
– volume: 7
  start-page: 103
  year: 2006
  ident: ref54
  article-title: The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules.
  publication-title: Nat Immunol
  doi: 10.1038/ni1286
– volume: 10
  start-page: R130
  year: 2009
  ident: ref45
  article-title: BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources.
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-11-r130
– volume: 21
  start-page: 30
  year: 2005
  ident: ref1
  article-title: A limited role for balancing selection.
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2004.11.001
– volume: 39
  start-page: 1092
  year: 2007
  ident: ref10
  article-title: Unusual selection on the KIR3DL1/S1 natural killer cell receptor in Africans.
  publication-title: Nat Genet
  doi: 10.1038/ng2111
– volume: 86
  start-page: 958
  year: 1989
  ident: ref5
  article-title: Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.86.3.958
– volume: 68
  start-page: 978
  year: 2001
  ident: ref82
  article-title: A new statistical method for haplotype reconstruction from population data.
  publication-title: Am J Hum Genet
  doi: 10.1086/319501
– volume: 120
  start-page: 831
  year: 1988
  ident: ref52
  article-title: The coalescent process in models with selection and recombination.
  publication-title: Genetics
  doi: 10.1093/genetics/120.3.831
– volume: 335
  start-page: 167
  year: 1988
  ident: ref4
  article-title: Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection.
  publication-title: Nature
  doi: 10.1038/335167a0
– volume: 3
  start-page: e170
  year: 2005
  ident: ref72
  article-title: A scan for positively selected genes in the genomes of humans and chimpanzees.
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0030170
– volume: 9
  start-page: 6497
  year: 2003
  ident: ref21
  article-title: Adipocyte-derived leucine aminopeptidase suppresses angiogenesis in human endometrial carcinoma via renin-angiotensin system.
  publication-title: Clin Cancer Res
– volume: 42
  start-page: 123
  year: 2010
  ident: ref30
  article-title: Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci.
  publication-title: Nat Genet
  doi: 10.1038/ng.513
– volume: 437
  start-page: 1153
  year: 2005
  ident: ref71
  article-title: Natural selection on protein-coding genes in the human genome.
  publication-title: Nature
  doi: 10.1038/nature04240
– volume: 99
  start-page: 10539
  year: 2002
  ident: ref68
  article-title: A strong signature of balancing selection in the 5′ cis-regulatory region of CCR5.
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.162046399
– volume: 437
  start-page: 69
  year: 2005
  ident: ref77
  article-title: Initial sequence of the chimpanzee genome and comparison with the human genome.
  publication-title: Nature
  doi: 10.1038/nature04072
– volume: 124
  start-page: 967
  year: 1990
  ident: ref6
  article-title: Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci.
  publication-title: Genetics
  doi: 10.1093/genetics/124.4.967
– volume: 1
  start-page: 242
  year: 1992
  ident: ref83
  article-title: Split decomposition: a new and useful approach to phylogenetic analysis of distance data.
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/1055-7903(92)90021-8
– volume: 19
  start-page: 434
  year: 2001
  ident: ref50
  article-title: A strategy for disease gene identification through nonsense-mediated mRNA decay inhibition.
  publication-title: Nat Biotechnol
  doi: 10.1038/88099
– volume: 199
  start-page: 905
  year: 2004
  ident: ref59
  article-title: Immune selection for altered antigen processing leads to cytotoxic T lymphocyte escape in chronic HIV-1 infection.
  publication-title: J Exp Med
  doi: 10.1084/jem.20031982
– volume: 15
  start-page: 3656
  year: 2009
  ident: ref18
  article-title: A new role for Zn(II) aminopeptidases: antigenic peptide generation and destruction.
  publication-title: Curr Pharm Des
  doi: 10.2174/138161209789271816
– volume: 278
  start-page: 32275
  year: 2003
  ident: ref24
  article-title: Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases.
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M305076200
– volume: 5
  start-page: e1000436
  year: 2009
  ident: ref85
  article-title: A common variant associated with dyslexia reduces expression of the KIAA0319 gene.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000436
– volume: 173
  start-page: 2165
  year: 2006
  ident: ref2
  article-title: Scan of human genome reveals no new Loci under ancient balancing selection.
  publication-title: Genetics
  doi: 10.1534/genetics.106.055715
– volume: 26
  start-page: 397
  year: 2007
  ident: ref16
  article-title: The final touches make perfect the peptide-MHC class I repertoire.
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.04.003
– volume: 5
  start-page: e1000695
  year: 2009
  ident: ref81
  article-title: Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000695
– volume: 40
  start-page: 340
  year: 2008
  ident: ref75
  article-title: Natural selection has driven population differentiation in modern humans.
  publication-title: Nat Genet
  doi: 10.1038/ng.78
– volume: 39
  start-page: 1329
  year: 2007
  ident: ref27
  article-title: Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants.
  publication-title: Nat Genet
  doi: 10.1038/ng.2007.17
– volume: 26
  start-page: 2755
  year: 2009
  ident: ref3
  article-title: Targets of balancing selection in the human genome.
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msp190
– volume: 18
  start-page: 4204
  year: 2009
  ident: ref28
  article-title: Investigating the genetic association between ERAP1 and ankylosing spondylitis.
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddp371
– volume: 40
  start-page: 225
  year: 2008
  ident: ref43
  article-title: Genome-wide analysis of transcript isoform variation in humans.
  publication-title: Nat Genet
  doi: 10.1038/ng.2007.57
– volume: 5
  start-page: e1000766
  year: 2009
  ident: ref44
  article-title: Fine-scale variation and genetic determinants of alternative splicing across individuals.
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000766
– volume: 463
  start-page: 757
  year: 2010
  ident: ref51
  article-title: Ancient human genome sequence of an extinct Palaeo-Eskimo.
  publication-title: Nature
  doi: 10.1038/nature08835
– volume: 27
  start-page: 777
  year: 2004
  ident: ref13
  article-title: Processing of antigenic peptides by aminopeptidases.
  publication-title: Biol Pharm Bull
  doi: 10.1248/bpb.27.777
– volume: 10
  start-page: 636
  year: 2009
  ident: ref60
  article-title: Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance.
  publication-title: Nat Immunol
  doi: 10.1038/ni.1728
– volume: 109
  start-page: 5422
  year: 2007
  ident: ref49
  article-title: Inactivation of RB1 in mantle-cell lymphoma detected by nonsense-mediated mRNA decay pathway inhibition and microarray analysis.
  publication-title: Blood
  doi: 10.1182/blood-2006-11-057208
– reference: 18941218 - J Immunol. 2008 Nov 1;181(9):6275-82
– reference: 19325871 - PLoS Genet. 2009 Mar;5(3):e1000436
– reference: 11857741 - Hum Mutat. 2002 Mar;19(3):251-7
– reference: 20011102 - PLoS Genet. 2009 Dec;5(12):e1000766
– reference: 19279335 - Genome Res. 2009 May;19(5):838-49
– reference: 16251966 - Nature. 2005 Oct 27;437(7063):1365-9
– reference: 3147214 - Genetics. 1988 Nov;120(3):831-40
– reference: 16754858 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9202-7
– reference: 19404951 - Arthritis Rheum. 2009 May;60(5):1317-23
– reference: 20062062 - Nat Genet. 2010 Feb;42(2):123-7
– reference: 19851460 - PLoS Genet. 2009 Oct;5(10):e1000695
– reference: 16751668 - Genetics. 2006 Aug;173(4):2165-77
– reference: 17694058 - Nat Genet. 2007 Sep;39(9):1114-9
– reference: 14764923 - N Engl J Med. 2004 Feb 12;350(7):672-83
– reference: 17035524 - J Neurosci. 2006 Oct 11;26(41):10397-406
– reference: 14734113 - Curr Opin Immunol. 2004 Feb;16(1):76-81
– reference: 15285897 - J Comput Biol. 2004;11(2-3):377-94
– reference: 16299505 - Nat Immunol. 2006 Jan;7(1):103-12
– reference: 20148029 - Nature. 2010 Feb 11;463(7282):757-62
– reference: 12799365 - J Biol Chem. 2003 Aug 22;278(34):32275-83
– reference: 15067030 - J Exp Med. 2004 Apr 5;199(7):905-15
– reference: 2323559 - Genetics. 1990 Apr;124(4):967-78
– reference: 18369178 - Genome Res. 2008 May;18(5):771-9
– reference: 11413040 - Trends Cell Biol. 2001 Jul;11(7):294-7
– reference: 15680511 - Trends Genet. 2005 Jan;21(1):30-2
– reference: 11847089 - Bioinformatics. 2002 Feb;18(2):337-8
– reference: 9449192 - Genet Res. 1997 Oct;70(2):155-74
– reference: 17530926 - PLoS Genet. 2007 May 25;3(5):e79
– reference: 2513255 - Genetics. 1989 Nov;123(3):585-95
– reference: 17694054 - Nat Genet. 2007 Sep;39(9):1092-9
– reference: 2492668 - Proc Natl Acad Sci U S A. 1989 Feb;86(3):958-62
– reference: 2062867 - Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5897-901
– reference: 16505142 - J Exp Med. 2006 Mar 20;203(3):647-59
– reference: 17431167 - Science. 2007 Apr 13;316(5822):222-34
– reference: 19713326 - Mol Biol Evol. 2009 Dec;26(12):2755-64
– reference: 19919682 - Genome Biol. 2009;10(11):R130
– reference: 11056387 - J Biochem. 2000 Nov;128(5):755-62
– reference: 14630667 - Bioinformatics. 2003 Nov 22;19(17):2325-7
– reference: 15691326 - FEBS J. 2005 Feb;272(4):916-28
– reference: 18243675 - Curr Opin Immunol. 2008 Feb;20(1):82-8
– reference: 18393273 - J Cell Physiol. 2008 Sep;216(3):742-9
– reference: 20173027 - J Immunol. 2010 Mar 15;184(6):3033-42
– reference: 19925418 - Curr Pharm Des. 2009;15(31):3656-70
– reference: 17459809 - Immunity. 2007 Apr;26(4):397-406
– reference: 1342941 - Mol Phylogenet Evol. 1992 Sep;1(3):242-52
– reference: 16494531 - PLoS Biol. 2006 Mar;4(3):e72
– reference: 19779552 - PLoS Genet. 2009 Sep;5(9):e1000666
– reference: 19578876 - Hum Genet. 2009 Nov;126(5):655-66
– reference: 16585582 - J Immunol. 2006 Apr 15;176(8):4869-79
– reference: 17128277 - Nat Immunol. 2007 Jan;8(1):101-8
– reference: 20531381 - Nat Rev Rheumatol. 2010 Aug;6(8):461-7
– reference: 15936272 - Curr Biol. 2005 Jun 7;15(11):1022-7
– reference: 17277129 - J Immunol. 2007 Feb 15;178(4):2241-8
– reference: 20028659 - J Immunol. 2010 Jan 1;184(1):9-15
– reference: 18246066 - Nat Genet. 2008 Mar;40(3):340-5
– reference: 12436110 - Nat Immunol. 2002 Dec;3(12):1177-84
– reference: 14685227 - Nature. 2003 Dec 18;426(6968):789-96
– reference: 16237444 - Nature. 2005 Oct 20;437(7062):1153-7
– reference: 16136131 - Nature. 2005 Sep 1;437(7055):69-87
– reference: 17622526 - Cancer Immunol Immunother. 2008 Feb;57(2):197-206
– reference: 15908954 - Nat Immunol. 2005 Jul;6(7):689-97
– reference: 7524148 - Science. 1994 Oct 7;266(5182):107-9
– reference: 12149450 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10539-44
– reference: 17332242 - Blood. 2007 Jun 15;109(12):5422-9
– reference: 19692350 - Hum Mol Genet. 2009 Nov 1;18(21):4204-12
– reference: 11329012 - Nat Biotechnol. 2001 May;19(5):434-9
– reference: 17366619 - Genes Chromosomes Cancer. 2007 Jun;46(6):577-86
– reference: 17542651 - PLoS Genet. 2007 Jun;3(6):e90
– reference: 18193047 - Nat Genet. 2008 Feb;40(2):225-31
– reference: 11254454 - Am J Hum Genet. 2001 Apr;68(4):978-89
– reference: 15187416 - Biol Pharm Bull. 2004 Jun;27(6):777-80
– reference: 15869325 - PLoS Biol. 2005 Jun;3(6):e170
– reference: 3110004 - Genetics. 1987 May;116(1):153-9
– reference: 3412472 - Nature. 1988 Sep 8;335(6186):167-70
– reference: 16181326 - Immunol Rev. 2005 Oct;207:42-59
– reference: 17129607 - Mol Immunol. 2007 Mar;44(8):2135-8
– reference: 19027158 - Placenta. 2009 Jan;30(1):15-24
– reference: 19837691 - Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18692-7
– reference: 9928486 - Annu Rev Genet. 1998;32:415-35
– reference: 19412183 - Nat Immunol. 2009 Jun;10(6):636-46
– reference: 10779490 - Genome Res. 2000 Apr;10(4):511-5
– reference: 17952073 - Nat Genet. 2007 Nov;39(11):1329-37
– reference: 16532395 - Am J Hum Genet. 2006 Apr;78(4):659-70
– reference: 14695154 - Clin Cancer Res. 2003 Dec 15;9(17):6497-503
– reference: 19202550 - Genes Chromosomes Cancer. 2009 May;48(5):410-8
SSID ssj0035897
Score 2.4311283
Snippet A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection....
  A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection....
SourceID plos
doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1001157
SubjectTerms African Continental Ancestry Group - genetics
Aminopeptidases - genetics
Aminopeptidases - immunology
Antigen Presentation
Asian Continental Ancestry Group - genetics
European Continental Ancestry Group - genetics
Evolutionary Biology/Human Evolution
Experiments
Gene Frequency
Genes
Genetic diversity
Genetics and Genomics/Bioinformatics
Genetics and Genomics/Genetics of the Immune System
Genetics and Genomics/Population Genetics
Genetics, Population
Genomes
Genotype
Haplotypes
Haplotypes - genetics
Histocompatibility Antigens Class I - immunology
Humans
Immune system
Immunology/Antigen Processing and Recognition
Immunology/Autoimmunity
Indians, North American - genetics
Minor Histocompatibility Antigens
Molecular Biology/RNA Splicing
Phylogeny
Polymorphism
Polymorphism, Single Nucleotide
Protein Biosynthesis
RNA Processing, Post-Transcriptional
RNA Splicing
Selection, Genetic
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZpSqGX0ne2L3ToVUG2JEs-lJKUhFBIKaULuRlJlpLAxt6uvdD9952R7W23JPRS8GHxSpat0Xjms2bmI-Q9r0vtYh6YsZIzmfOamcJxpq1zMcK7MrMIFM-_FGdz-flCXeyRibN1nMDuVmiHfFLz1eLw54_NR1D4D4m1QWdTp8MlTHmqKZQpfY_cB9ukUVXP5XZfQSgz0K0oJZgGuD8m0911lR1jlWr6Yw3URdvd5o_-HVb5h506fUwejQ4mPRpWxBOyF5qn5MFAObl5RtbHGMvowWDRLlHggFzojb1u8BNBRy1FJ5a2kZ58O_qa0_7K9hTzzFaXbehog7HXcLCUcALOKq2Dtxtqm5raITIEfvdY4ZMufyc2Nc_J_PTk-6czNlIvMK_KsmfBWWuUjELUpYPXYYySOwmSA1OmAOEJEfIoayclgGuhSiFd9MbFzOXOOEC9L8g-3FI4IJQH7G2D5UEDGgtGeBNqq4qohQ-Gz4iY5rjyY11ypMdYVGmzTQM-GWauQslUo2RmhG17LYe6HP9of4zi27bFqtrpRLu6rEYlrWrvwX9yscxcIUMUDuCayaXlPufacTMjByj8aYAOhkPaEAOwa0botCAqUFDcdbFNaNddpQuO6cmlvLtJCW4s-tFqRl4OS2h7n9AVzJWEofXO4tp5kN1_muurVCYcd3AB_7_6H0_-mjxMYRN4yDdkv1-tw1vwxnr3LinYL8IaNy4
  priority: 102
  providerName: Scholars Portal
Title Balancing Selection Maintains a Form of ERAP2 that Undergoes Nonsense-Mediated Decay and Affects Antigen Presentation
URI https://www.ncbi.nlm.nih.gov/pubmed/20976248
https://www.proquest.com/docview/760209994
https://www.proquest.com/docview/954593265
https://pubmed.ncbi.nlm.nih.gov/PMC2954825
https://doaj.org/article/dcc509bf91b64ef3b174824a0c207b08
http://dx.doi.org/10.1371/journal.pgen.1001157
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdby2AvY-s-6n0EPexVq2xJlvzYjJRSaCllhbwZSZbWQueE2nnof787y0mTsdGXgQkhkZClO-vuZ939jpCvvKm0i0VgxkrOZMEbZkrHmbbOxQh7ZW4RKJ5flKfX8myu5lulvjAmLNEDp4U7arwHm-ZilbtShigcuNCmkJb7gmuX0nzB5q3BVNqDhTKprIpSgmmA9WPSnND50Sijb0sQ0MBAlKNp2jJKA3c_cp3eLbq_-Z1_hk9u2aOT1-TV6EjS4zSBN-RZaA_Ii1Ra8uEtWU0xZtGDYaLdUOoG1p_-srctvgroqKXorNJFpLOr48uC9je2p5hPdv9zETraYow1XGxILAGnlDbB2wdq24baFAEC33tk8qTLxwSm9h25Ppn9-H7KxhILzKuq6llw1holoxBN5WDbi1FyJ0FCYLIUIDkhQhFl46QEEC1UJaSL3riYu8IZB-j2PdmDWwqHhPKAvW2wPGhAXcEIb0JjVRm18MHwjIj1Gtd-5B_HMhh39XCopgGHpJWrUTL1KJmMsE2vZeLfeKL9FMW3aYvs2cMPoFP1qFP1UzqVkUMU_nqADobD8iAG4FVG6FohangQ8XTFtmGx6mpdckxDruS_m1TgrqK_rDLyIanQ5j6hK5glCUPrHeXamcjuP-3tzUAHjie1gPM__o-ZfyIvh_AIvORnstffr8IX8Lp6NyHP9VxPyP50dnF5NRkeN_g8l-Y3-XwwRw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+selection+maintains+a+form+of+ERAP2+that+undergoes+nonsense-mediated+decay+and+affects+antigen+presentation&rft.jtitle=PLoS+genetics&rft.au=Aida+M+Andr%C3%A9s&rft.au=Megan+Y+Dennis&rft.au=Warren+W+Kretzschmar&rft.au=Jennifer+L+Cannons&rft.date=2010-10-14&rft.pub=Public+Library+of+Science+%28PLoS%29&rft.issn=1553-7390&rft.eissn=1553-7404&rft.volume=6&rft.issue=10&rft.spage=e1001157&rft_id=info:doi/10.1371%2Fjournal.pgen.1001157&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dcc509bf91b64ef3b174824a0c207b08
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7404&client=summon