Deforestation mapping sampling designs for Canadian landscapes

Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their deforestation. Because of the vastness of Canada’s forest and the rare and spatially diverse nature of its deforestation, a sampling appro...

Full description

Saved in:
Bibliographic Details
Published inCanadian journal of forest research Vol. 45; no. 11; pp. 1564 - 1576
Main Authors Leckie, Donald G, Dennis Paradine, Werner A. Kurz, Steen Magnussen
Format Journal Article
LanguageEnglish
Published Ottawa NRC Research Press 01.11.2015
Canadian Science Publishing NRC Research Press
Subjects
Online AccessGet full text
ISSN1208-6037
0045-5067
1208-6037
DOI10.1139/cjfr-2014-0541

Cover

Abstract Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their deforestation. Because of the vastness of Canada’s forest and the rare and spatially diverse nature of its deforestation, a sampling approach in which deforestation is mapped and then scaled up to represent deforestation for different regions was needed. The effectiveness of different sample designs in capturing the area of deforestation was evaluated using a Monte Carlo approach in which alternate sample designs were applied to simulated forest landscapes representative of different regions and deforestation patterns in Canada. Sampling error as expressed by the standard error in the estimated deforestation level for the sample divided by actual deforestation of the simulated landscape was used as a measure of sample design performance. Results indicated that sampling error was dependent on the characteristics of the deforestation (e.g., amount, shape, size, and distribution). For example, as mean event size increases or the proportion of linear deforestation events (e.g., roads and corridors) decreases, the required sampling intensity to reach a certain level of sampling error increases, and landscapes with a small number of very large events required the largest sampling intensity. To achieve a relative sampling error target (standard error / sample mean) of 10%, given sample designs of square plots on a systematic grid, a sample of 15%–25% of a landscape will be required for most Canadian landscapes, given a 10-year mapping time frame (interval between samples) and assuming a deforestation rate of 0.025% per annum. With mapping over a 5-year period, the required sampling intensity rises to 20%–40%. Also discussed are the consequences of the sampling error of different designs on the uncertainty in estimated greenhouse gas emission resulting from deforestation.
AbstractList Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their deforestation. Because of the vastness of Canada’s forest and the rare and spatially diverse nature of its deforestation, a sampling approach in which deforestation is mapped and then scaled up to represent deforestation for different regions was needed. The effectiveness of different sample designs in capturing the area of deforestation was evaluated using a Monte Carlo approach in which alternate sample designs were applied to simulated forest landscapes representative of different regions and deforestation patterns in Canada. Sampling error as expressed by the standard error in the estimated deforestation level for the sample divided by actual deforestation of the simulated landscape was used as a measure of sample design performance. Results indicated that sampling error was dependent on the characteristics of the deforestation (e.g., amount, shape, size, and distribution). For example, as mean event size increases or the proportion of linear deforestation events (e.g., roads and corridors) decreases, the required sampling intensity to reach a certain level of sampling error increases, and landscapes with a small number of very large events required the largest sampling intensity. To achieve a relative sampling error target (standard error / sample mean) of 10%, given sample designs of square plots on a systematic grid, a sample of 15%–25% of a landscape will be required for most Canadian landscapes, given a 10-year mapping time frame (interval between samples) and assuming a deforestation rate of 0.025% per annum. With mapping over a 5-year period, the required sampling intensity rises to 20%–40%. Also discussed are the consequences of the sampling error of different designs on the uncertainty in estimated greenhouse gas emission resulting from deforestation.
Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their deforestation. Because of the vastness of Canada's forest and the rare and spatially diverse nature of its deforestation, a sampling approach in which deforestation is mapped and then scaled up to represent deforestation for different regions was needed. The effectiveness of different sample designs in capturing the area of deforestation was evaluated using a Monte Carlo approach in which alternate sample designs were applied to simulated forest landscapes representative of different regions and deforestation patterns in Canada. Sampling error as expressed by the standard error in the estimated deforestation level for the sample divided by actual deforestation of the simulated landscape was used as a measure of sample design performance. Results indicated that sampling error was dependent on the characteristics of the deforestation (e.g., amount, shape, size, and distribution). For example, as mean event size increases or the proportion of linear deforestation events (e.g., roads and corridors) decreases, the required sampling intensity to reach a certain level of sampling error increases, and landscapes with a small number of very large events required the largest sampling intensity. To achieve a relative sampling error target (standard error/sample mean) of 10%, given sample designs of square plots on a systematic grid, a sample of 15%-25% of a landscape will be required for most Canadian landscapes, given a 10-year mapping time frame (interval between samples) and assuming a deforestation rate of 0.025% per annum. With mapping over a 5-year period, the required sampling intensity rises to 20%-40%. Also discussed are the consequences of the sampling error of different designs on the uncertainty in estimated greenhouse gas emission resulting from deforestation. Key words: deforestation, sample design, monitoring, greenhouse gas emissions, CBM-CFS3. La deforestation est la conversion anthropique directe de la foret a des usages non forestiers des terres. Il est important pour les nations de comprendre et de rapporter l'ampleur de leur deforestation. A cause de l'immensite de la foret canadienne et etant donne la rarete et la diversite spatiale de sa deforestation, il etait necessaire de mettre au point une methode d'echantillonnage qui permet de cartographier la deforestation, puis de changer d'echelle pour representer la deforestation dans differentes regions. L'efficacite de differents plans d'echantillonnage a determiner l'aire de deforestation a ete evaluee a l'aide d'une methode de Monte Carlo dans laquelle differents plans d'echantillonnage ont ete appliques pour simuler des paysages forestiers representatifs de differentes regions et de divers schemas de deforestation au Canada. Comme mesure de la performance du plan d'echantillonnage, nous avons utilise l'erreur d'echantillonnage exprimee par l'erreur-type du niveau de deforestation estime pour l'echantillon, divisee par la deforestation reelle du paysage simule. Les resultats indiquent que l'erreur d'echantillonnage etait dependante des caracteristiques de la deforestation (c.-a-d. la quantite, la forme, la taille et la distribution). Par exemple, avec l'augmentation de la taille moyenne des evenements ou la diminution de la proportion des evenements de deforestation lineaire (c.-a-d. les routes et les corridors), l'intensite d'echantillonnage requise pour atteindre un certain niveau d'erreur d'echantillonnage augmente et les paysages avec un petit nombre d'evenements tres vastes necessitaient la plus forte intensite d'echantillonnage. Pour atteindre une cible d'erreur relative d'echantillonnage (rapport de l'erreur-type sur la moyenne de l'echantillon) de 10 % a l'aide de plans d'echantillonnage systematique en grille avec des placettes carrees, un echantillon de 15 a 25 % d'un paysage sera necessaire pour la plupart des paysages canadiens avec un calendrier cartographique de 10 ans (intervalle de temps entre les echantillons) et en assumant un taux de deforestation annuel de 0,025 %. Si la cartographie est realisee sur une periode de cinq ans, l'intensite d'echantillonnage requise augmente et se situe entre 20 et 40 %. Nous discutons aussi des consequences de l'erreur d'echantillonnage de differents plans sur l'incertitude des emissions estimees de gaz a effet de serre provenant de la deforestation. [Traduit par la Redaction] Mots-cles: deforestation, plan d'echantillonnage, surveillance, emissions de gaz a effet de serre, CBM-CFS3.
Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their deforestation. Because of the vastness of Canada's forest and the rare and spatially diverse nature of its deforestation, a sampling approach in which deforestation is mapped and then scaled up to represent deforestation for different regions was needed. The effectiveness of different sample designs in capturing the area of deforestation was evaluated using a Monte Carlo approach in which alternate sample designs were applied to simulated forest landscapes representative of different regions and deforestation patterns in Canada. Sampling error as expressed by the standard error in the estimated deforestation level for the sample divided by actual deforestation of the simulated landscape was used as a measure of sample design performance. Results indicated that sampling error was dependent on the characteristics of the deforestation (e.g., amount, shape, size, and distribution). For example, as mean event size increases or the proportion of linear deforestation events (e.g., roads and corridors) decreases, the required sampling intensity to reach a certain level of sampling error increases, and landscapes with a small number of very large events required the largest sampling intensity. To achieve a relative sampling error target (standard error/sample mean) of 10%, given sample designs of square plots on a systematic grid, a sample of 15%-25% of a landscape will be required for most Canadian landscapes, given a 10-year mapping time frame (interval between samples) and assuming a deforestation rate of 0.025% per annum. With mapping over a 5-year period, the required sampling intensity rises to 20%-40%. Also discussed are the consequences of the sampling error of different designs on the uncertainty in estimated greenhouse gas emission resulting from deforestation.Original Abstract: La deforestation est la conversion anthropique directe de la foret a des usages non forestiers des terres. Il est important pour les nations de comprendre et de rapporter l'ampleur de leur deforestation. A cause de l'immensite de la foret canadienne et etant donne la rarete et la diversite spatiale de sa deforestation, il etait necessaire de mettre au point une methode d'echantillonnage qui permet de cartographier la deforestation, puis de changer d'echelle pour representer la deforestation dans differentes regions. L'efficacite de differents plans d'echantillonnage a determiner l'aire de deforestation a ete evaluee a l'aide d'une methode de Monte Carlo dans laquelle differents plans d'echantillonnage ont ete appliques pour simuler des paysages forestiers representatifs de differentes regions et de divers schemas de deforestation au Canada. Comme mesure de la performance du plan d'echantillonnage, nous avons utilise l'erreur d'echantillonnage exprimee par l'erreur-type du niveau de deforestation estime pour l'echantillon, divisee par la deforestation reelle du paysage simule. Les resultats indiquent que l'erreur d'echantillonnage etait dependante des caracteristiques de la deforestation (c.-a-d. la quantite, la forme, la taille et la distribution). Par exemple, avec l'augmentation de la taille moyenne des evenements ou la diminution de la proportion des evenements de deforestation lineaire (c.-a-d. les routes et les corridors), l'intensite d'echantillonnage requise pour atteindre un certain niveau d'erreur d'echantillonnage augmente et les paysages avec un petit nombre d'evenements tres vastes necessitaient la plus forte intensite d'echantillonnage. Pour atteindre une cible d'erreur relative d'echantillonnage (rapport de l'erreur-type sur la moyenne de l'echantillon) de 10 % a l'aide de plans d'echantillonnage systematique en grille avec des placettes carrees, un echantillon de 15 a 25 % d'un paysage sera necessaire pour la plupart des paysages canadiens avec un calendrier cartographique de 10 ans (intervalle de temps entre les echantillons) et en assumant un taux de deforestation annuel de 0,025 %. Si la cartographie est realisee sur une periode de cinq ans, l'intensite d'echantillonnage requise augmente et se situe entre 20 et 40 %. Nous discutons aussi des consequences de l'erreur d'echantillonnage de differents plans sur l'incertitude des emissions estimees de gaz a effet de serre provenant de la deforestation. [Traduit par la Redaction]
Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their deforestation. Because of the vastness of Canada’s forest and the rare and spatially diverse nature of its deforestation, a sampling approach in which deforestation is mapped and then scaled up to represent deforestation for different regions was needed. The effectiveness of different sample designs in capturing the area of deforestation was evaluated using a Monte Carlo approach in which alternate sample designs were applied to simulated forest landscapes representative of different regions and deforestation patterns in Canada. Sampling error as expressed by the standard error in the estimated deforestation level for the sample divided by actual deforestation of the simulated landscape was used as a measure of sample design performance. Results indicated that sampling error was dependent on the characteristics of the deforestation (e.g., amount, shape, size, and distribution). For example, as mean event size increases or the proportion of linear deforestation events (e.g., roads and corridors) decreases, the required sampling intensity to reach a certain level of sampling error increases, and landscapes with a small number of very large events required the largest sampling intensity. To achieve a relative sampling error target (standard error / sample mean) of 10%, given sample designs of square plots on a systematic grid, a sample of 15%–25% of a landscape will be required for most Canadian landscapes, given a 10-year mapping time frame (interval between samples) and assuming a deforestation rate of 0.025% per annum. With mapping over a 5-year period, the required sampling intensity rises to 20%–40%. Also discussed are the consequences of the sampling error of different designs on the uncertainty in estimated greenhouse gas emission resulting from deforestation.
Abstract_FL La déforestation est la conversion anthropique directe de la forêt à des usages non forestiers des terres. Il est important pour les nations de comprendre et de rapporter l’ampleur de leur déforestation. À cause de l’immensité de la forêt canadienne et étant donné la rareté et la diversité spatiale de sa déforestation, il était nécessaire de mettre au point une méthode d’échantillonnage qui permet de cartographier la déforestation, puis de changer d’échelle pour représenter la déforestation dans différentes régions. L’efficacité de différents plans d’échantillonnage à déterminer l’aire de déforestation a été évaluée à l’aide d’une méthode de Monte Carlo dans laquelle différents plans d’échantillonnage ont été appliqués pour simuler des paysages forestiers représentatifs de différentes régions et de divers schémas de déforestation au Canada. Comme mesure de la performance du plan d’échantillonnage, nous avons utilisé l’erreur d’échantillonnage exprimée par l’erreur-type du niveau de déforestation estimé pour l’échantillon, divisée par la déforestation réelle du paysage simulé. Les résultats indiquent que l’erreur d’échantillonnage était dépendante des caractéristiques de la déforestation (c.-à-d. la quantité, la forme, la taille et la distribution). Par exemple, avec l’augmentation de la taille moyenne des événements ou la diminution de la proportion des événements de déforestation linéaire (c.-à-d. les routes et les corridors), l’intensité d’échantillonnage requise pour atteindre un certain niveau d’erreur d’échantillonnage augmente et les paysages avec un petit nombre d’événements très vastes nécessitaient la plus forte intensité d’échantillonnage. Pour atteindre une cible d’erreur relative d’échantillonnage (rapport de l’erreur-type sur la moyenne de l’échantillon) de 10 % à l’aide de plans d’échantillonnage systématique en grille avec des placettes carrées, un échantillon de 15 à 25 % d’un paysage sera nécessaire pour la plupart des paysages canadiens avec un calendrier cartographique de 10 ans (intervalle de temps entre les échantillons) et en assumant un taux de déforestation annuel de 0,025 %. Si la cartographie est réalisée sur une période de cinq ans, l’intensité d’échantillonnage requise augmente et se situe entre 20 et 40 %. Nous discutons aussi des conséquences de l’erreur d’échantillonnage de différents plans sur l’incertitude des émissions estimées de gaz à effet de serre provenant de la déforestation. [Traduit par la Rédaction]
Audience Academic
Author Leckie, Donald G
Werner A. Kurz
Steen Magnussen
Dennis Paradine
Author_xml – sequence: 1
  fullname: Leckie, Donald G
– sequence: 2
  fullname: Dennis Paradine
– sequence: 3
  fullname: Werner A. Kurz
– sequence: 4
  fullname: Steen Magnussen
BookMark eNqVkk1v1DAQhi1UJNrClSsRXOCQMo4dJ74gVctXpQokSs-W1xkHrxI7tbMS_HscbQ-71aIK-eCx_bzjGc17Rk588EjISwoXlDL53mxsLCugvISa0yfklFbQlgJYc7IXPyNnKW0AgAkGp-TDR7QhYpr17IIvRj1NzvdF0uM0LEGHyfU-FRkqVtrrzmlfDNp3yegJ03Py1Ooh4Yv7_Zzcfv70c_W1vP7-5Wp1eV2aWsq5FLLh2FFJEdeIXPJ1JVGDtLIzHdiqaVC2AlpRWdPVWFuzzuc1GoGcM2vZOXm7yzvFcLfN5arRJYNDrgTDNina0qalNcjmcbQRtRQSoMromwfoJmyjz41kqpKyFoztUb0eUDlvwxy1WZKqS54BgLaWmSqPUD16jHrIg7IuXx_wr4_wZnJ3ah-6OALl1eHozNGs7w4EmZnx99zrbUrq6ubHf7DfDtn7QkwMKUW0aopu1PGPoqAW96nFfWpxn1rclwX8gcC4ncdyB274t4zuZD6a7ErU0fx6_KtXO43VQek-uqRub_KzyCMGoBVnfwEYAfRt
CODEN CJFRAR
CitedBy_id crossref_primary_10_1139_er_2024_0001
crossref_primary_10_1016_j_foreco_2015_11_015
Cites_doi 10.1139/er-2013-0041
10.1080/01431160500222632
10.1016/j.isprsjprs.2009.10.008
10.3390/rs5041842
10.5558/tfc71074-1
10.1186/1750-0680-4-10
10.1126/science.1070656
10.2307/1400530
10.1111/j.1365-2486.2010.02369.x
10.1016/j.rse.2007.07.026
10.1029/2010JG001471
10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2
10.1007/s10342-005-0074-6
10.1016/j.ecolmodel.2008.10.018
10.5589/m02-062
10.1088/1748-9326/2/4/045022
10.1080/0143116021000057135
10.5194/essd-6-235-2014
10.1080/014311600210263
10.1016/j.rse.2010.10.009
10.5558/tfc72138-2
10.1007/s11027-006-1006-6
10.1016/j.rse.2009.07.011
ContentType Journal Article
Copyright COPYRIGHT 2015 NRC Research Press
Copyright Canadian Science Publishing NRC Research Press Nov 2015
Copyright_xml – notice: COPYRIGHT 2015 NRC Research Press
– notice: Copyright Canadian Science Publishing NRC Research Press Nov 2015
DBID FBQ
AAYXX
CITATION
ISN
ISR
7SN
7SS
7T7
8FD
C1K
FR3
P64
RC3
U9A
7ST
7U6
SOI
7S9
L.6
DOI 10.1139/cjfr-2014-0541
DatabaseName AGRIS
CrossRef
Gale In Context: Canada
Gale In Context: Science
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Sustainability Science Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Engineering Research Database
Ecology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Career and Technical Education (Alumni Edition)
Environment Abstracts
Sustainability Science Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef




Ecology Abstracts
AGRICOLA




Entomology Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1208-6037
EndPage 1576
ExternalDocumentID 3857212631
A433200859
10_1139_cjfr_2014_0541
cjfr-2014-0541
US201600200124
Genre Feature
GeographicLocations Canada
ANW, Canada
GeographicLocations_xml – name: Canada
– name: ANW, Canada
GroupedDBID 00T
0R~
29B
2XV
4.4
4P2
5GY
5RP
6J9
7RQ
7X2
7XC
88I
8AF
8FE
8FG
8FH
8FQ
8G5
AAHBH
AAYJJ
ABDBF
ABJCF
ABJNI
ABTAH
ABUWG
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AEUYN
AFKRA
AFRAH
AI.
AIAGR
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
CAG
CCPQU
COF
CS3
D8U
DWQXO
EAD
EAP
EAS
EBC
EBD
EBS
ECC
ECGQY
EDH
EJD
EMK
EPL
ESX
FBQ
GNUQQ
GUQSH
HCIFZ
HZ~
I-F
IAO
ICQ
IEA
IEP
IOF
IPNFZ
IRD
ISN
ISR
ITC
ITF
ITG
ITH
L6V
LK5
M0K
M2O
M2P
M2Q
M3C
M3G
M7R
M7S
MV1
NMEPN
NRXXU
NYCZX
N~3
O9-
ONR
OVD
P2P
PATMY
PCBAR
PEA
PHGZT
PQQKQ
PRG
PROAC
PTHSS
PV9
PYCSY
QF4
QM4
QN7
QO4
QRP
RIG
RRCRK
RRP
RZL
SJFOW
TEORI
TUS
U5U
UQL
VH1
VQG
XOL
Y6R
YV5
ZCG
ZY4
08R
0R
1AW
3V.
ABFLS
ABPTK
ADKZR
B4K
HZ
IFM
LA8
MBDVC
N95
PADUT
PQEST
PQUKI
PRINS
AAYXX
CITATION
PHGZM
PQGLB
7SN
7SS
7T7
8FD
C1K
FR3
P64
RC3
U9A
7ST
7U6
SOI
7S9
L.6
ID FETCH-LOGICAL-c599t-6974ed191eebee494b29ea09f9dcd0f277e9860862fcd5e5fcb986bec6e443ff3
ISSN 1208-6037
0045-5067
IngestDate Thu Jul 10 21:08:49 EDT 2025
Fri Jul 11 13:17:41 EDT 2025
Sat Aug 16 04:21:47 EDT 2025
Wed Mar 19 01:50:33 EDT 2025
Fri Mar 14 02:13:31 EDT 2025
Tue Jun 10 15:33:45 EDT 2025
Sat Mar 08 18:22:01 EST 2025
Wed Mar 05 03:59:31 EST 2025
Wed Mar 05 04:27:06 EST 2025
Thu Jul 10 08:50:08 EDT 2025
Thu Apr 24 22:57:11 EDT 2025
Wed Nov 11 00:33:16 EST 2020
Thu Apr 03 09:42:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c599t-6974ed191eebee494b29ea09f9dcd0f277e9860862fcd5e5fcb986bec6e443ff3
Notes http://dx.doi.org/10.1139/cjfr-2014-0541
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1729956332
PQPubID 47747
PageCount 13
ParticipantIDs proquest_miscellaneous_1817815097
nrcresearch_primary_10_1139_cjfr_2014_0541
crossref_primary_10_1139_cjfr_2014_0541
gale_infotraccpiq_433200859
gale_infotracmisc_A433200859
gale_infotracgeneralonefile_A433200859
crossref_citationtrail_10_1139_cjfr_2014_0541
fao_agris_US201600200124
gale_incontextgauss_ISN_A433200859
gale_infotracacademiconefile_A433200859
proquest_miscellaneous_1765969002
proquest_journals_1729956332
gale_incontextgauss_ISR_A433200859
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Ottawa
PublicationPlace_xml – name: Ottawa
PublicationTitle Canadian journal of forest research
PublicationYear 2015
Publisher NRC Research Press
Canadian Science Publishing NRC Research Press
Publisher_xml – name: NRC Research Press
– name: Canadian Science Publishing NRC Research Press
References refg40/ref40
refg22/ref22
refg36/ref36
refg45/ref45
refg9/ref9
refg25/ref25
refg6/ref6
refg15/ref15
refg43/ref43
refg14/ref14
refg8/ref8
refg5/ref5
refg2/ref2
refg23/ref23
refg37/ref37
refg19/ref19
refg21/ref21
refg4/ref4
refg10/ref10
refg1/ref1
refg28/ref28
refg41/ref41
refg35/ref35
refg39/ref39
refg3/ref3
Magnussen S. (refg33/ref33) 2001; 13
refg24/ref24
refg27/ref27
References_xml – ident: refg24/ref24
  doi: 10.1139/er-2013-0041
– ident: refg39/ref39
  doi: 10.1080/01431160500222632
– ident: refg10/ref10
  doi: 10.1016/j.isprsjprs.2009.10.008
– ident: refg15/ref15
  doi: 10.3390/rs5041842
– ident: refg45/ref45
– ident: refg27/ref27
  doi: 10.5558/tfc71074-1
– volume: 13
  start-page: 204
  issue: 3
  year: 2001
  ident: refg33/ref33
  publication-title: Math. Model. Sci. Comput.
– ident: refg19/ref19
  doi: 10.1186/1750-0680-4-10
– ident: refg1/ref1
  doi: 10.1126/science.1070656
– ident: refg4/ref4
  doi: 10.2307/1400530
– ident: refg41/ref41
  doi: 10.1111/j.1365-2486.2010.02369.x
– ident: refg6/ref6
  doi: 10.1016/j.rse.2007.07.026
– ident: refg36/ref36
  doi: 10.1029/2010JG001471
– ident: refg8/ref8
– ident: refg21/ref21
  doi: 10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2
– ident: refg35/ref35
  doi: 10.1007/s10342-005-0074-6
– ident: refg23/ref23
  doi: 10.1016/j.ecolmodel.2008.10.018
– ident: refg28/ref28
  doi: 10.5589/m02-062
– ident: refg2/ref2
  doi: 10.1088/1748-9326/2/4/045022
– ident: refg37/ref37
– ident: refg5/ref5
  doi: 10.1080/0143116021000057135
– ident: refg25/ref25
  doi: 10.5194/essd-6-235-2014
– ident: refg9/ref9
– ident: refg43/ref43
  doi: 10.1080/014311600210263
– ident: refg40/ref40
  doi: 10.1016/j.rse.2010.10.009
– ident: refg14/ref14
  doi: 10.5558/tfc72138-2
– ident: refg22/ref22
  doi: 10.1007/s11027-006-1006-6
– ident: refg3/ref3
  doi: 10.1016/j.rse.2009.07.011
SSID ssj0003630
Score 2.1346645
Snippet Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their...
SourceID proquest
gale
crossref
nrcresearch
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1564
SubjectTerms Canada
CBM-CFS3
Deforestation
déforestation
Environmental aspects
Forest management
forests
greenhouse gas emissions
Greenhouse gases
Land use
landscapes
Mapping
monitoring
Monte Carlo simulation
plan d’échantillonnage
roads
sample design
Sampling
surveillance
Uncertainty
émissions de gaz à effet de serre
Title Deforestation mapping sampling designs for Canadian landscapes
URI http://www.nrcresearchpress.com/doi/abs/10.1139/cjfr-2014-0541
https://www.proquest.com/docview/1729956332
https://www.proquest.com/docview/1765969002
https://www.proquest.com/docview/1817815097
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYJiF4QHxqZQUFhJjEFEiaOI1fkLqNaiDYw7qKvVmJY1d8pSVJH-Cv585xnER04-MlSuOTnd6dP8753c-EPIsxaggC4ULwISBAiX03lgpB41GcURbTVJ8Z-eE0OpmH7y7oRXvQpc4uqdKX4ufGvJL_sSo8A7tiluw_WNZWCg_gHuwLV7AwXP_KxscSlpyyNIDBb8lKJz-VCaLE4SbT6AxNuHBgWQh0bi-insruutQWd5gk6roPDB2Q3TZ-L8WX-qNGva_cOZ0rKRCRX5chaqb7oUhvVH-URY6g_HYffJGvS7MJNKukyUszuxA-Nel4FqRxdmShgj3wiB50Q-pSrz51w4yTSFGzeQAPkP9UfFYFWNoPXVhR-u1UZQGEE6Rdw-Ui2yI7o_EYv9DvTA6PD6d2Gg6iwOQf1a0bxk5o4FW_-t6KZEslSzs738wL0Sj5t7laL0DOb5NbJnJwJrUb3CHXZH6XXJ9qIxU_7pHXPW9wjDc4jTc4xhscEHIaczutN9wn8-mb86MT15yO4QrKWOVGEAnKDMJtCf1QhixMR0wmHlMsE5mnQCmSxRFGrEpkVFIlUvgNXTaSYRgoFTwg2_kyl7vEUZQFsRewNElFGEJ90ELGEhmJKERkxoC4jYa4MNTxeILJV65DyIBx1ChHjXLU6IDsW_lVTZpyqeQuKJwnC5jR-Hw2Qr5DD2F-I2j0KVqBI0lJjiioRQIOyd_OTnlr_UuFznpC-0ZILeG1RWIyT-DPI_lZT3KvJylWn77zTunzXumiJobfVM2wJwgjtugVv-g41h81NGz8jpshoOQQdWBGOlQ4IE9sMTaDkMlcLtcoE1EWMVDnFTKxP44hJGTjh1e_8h650fb6IdmuirV8BKvxKn1s-t0vYhjb4g
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deforestation+mapping+sampling+designs+for+Canadian+landscapes&rft.jtitle=Canadian+journal+of+forest+research&rft.au=Leckie%2C+Donald+G&rft.au=Paradine%2C+Dennis&rft.au=Kurz%2C+Werner+A&rft.au=Magnussen%2C+Steen&rft.date=2015-11-01&rft.pub=NRC+Research+Press&rft.issn=0045-5067&rft.spage=1564&rft_id=info:doi/10.1139%2Fcjfr-2014-0541&rft.externalDocID=A433200859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1208-6037&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1208-6037&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1208-6037&client=summon