Deforestation mapping sampling designs for Canadian landscapes
Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their deforestation. Because of the vastness of Canadaâs forest and the rare and spatially diverse nature of its deforestation, a sampling appro...
Saved in:
Published in | Canadian journal of forest research Vol. 45; no. 11; pp. 1564 - 1576 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Ottawa
NRC Research Press
01.11.2015
Canadian Science Publishing NRC Research Press |
Subjects | |
Online Access | Get full text |
ISSN | 1208-6037 0045-5067 1208-6037 |
DOI | 10.1139/cjfr-2014-0541 |
Cover
Abstract | Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their deforestation. Because of the vastness of Canadaâs forest and the rare and spatially diverse nature of its deforestation, a sampling approach in which deforestation is mapped and then scaled up to represent deforestation for different regions was needed. The effectiveness of different sample designs in capturing the area of deforestation was evaluated using a Monte Carlo approach in which alternate sample designs were applied to simulated forest landscapes representative of different regions and deforestation patterns in Canada. Sampling error as expressed by the standard error in the estimated deforestation level for the sample divided by actual deforestation of the simulated landscape was used as a measure of sample design performance. Results indicated that sampling error was dependent on the characteristics of the deforestation (e.g., amount, shape, size, and distribution). For example, as mean event size increases or the proportion of linear deforestation events (e.g., roads and corridors) decreases, the required sampling intensity to reach a certain level of sampling error increases, and landscapes with a small number of very large events required the largest sampling intensity. To achieve a relative sampling error target (standard errorâ/âsample mean) of 10%, given sample designs of square plots on a systematic grid, a sample of 15%â25% of a landscape will be required for most Canadian landscapes, given a 10-year mapping time frame (interval between samples) and assuming a deforestation rate of 0.025% per annum. With mapping over a 5-year period, the required sampling intensity rises to 20%â40%. Also discussed are the consequences of the sampling error of different designs on the uncertainty in estimated greenhouse gas emission resulting from deforestation. |
---|---|
AbstractList | Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their deforestation. Because of the vastness of Canada’s forest and the rare and spatially diverse nature of its deforestation, a sampling approach in which deforestation is mapped and then scaled up to represent deforestation for different regions was needed. The effectiveness of different sample designs in capturing the area of deforestation was evaluated using a Monte Carlo approach in which alternate sample designs were applied to simulated forest landscapes representative of different regions and deforestation patterns in Canada. Sampling error as expressed by the standard error in the estimated deforestation level for the sample divided by actual deforestation of the simulated landscape was used as a measure of sample design performance. Results indicated that sampling error was dependent on the characteristics of the deforestation (e.g., amount, shape, size, and distribution). For example, as mean event size increases or the proportion of linear deforestation events (e.g., roads and corridors) decreases, the required sampling intensity to reach a certain level of sampling error increases, and landscapes with a small number of very large events required the largest sampling intensity. To achieve a relative sampling error target (standard error / sample mean) of 10%, given sample designs of square plots on a systematic grid, a sample of 15%–25% of a landscape will be required for most Canadian landscapes, given a 10-year mapping time frame (interval between samples) and assuming a deforestation rate of 0.025% per annum. With mapping over a 5-year period, the required sampling intensity rises to 20%–40%. Also discussed are the consequences of the sampling error of different designs on the uncertainty in estimated greenhouse gas emission resulting from deforestation. Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their deforestation. Because of the vastness of Canada's forest and the rare and spatially diverse nature of its deforestation, a sampling approach in which deforestation is mapped and then scaled up to represent deforestation for different regions was needed. The effectiveness of different sample designs in capturing the area of deforestation was evaluated using a Monte Carlo approach in which alternate sample designs were applied to simulated forest landscapes representative of different regions and deforestation patterns in Canada. Sampling error as expressed by the standard error in the estimated deforestation level for the sample divided by actual deforestation of the simulated landscape was used as a measure of sample design performance. Results indicated that sampling error was dependent on the characteristics of the deforestation (e.g., amount, shape, size, and distribution). For example, as mean event size increases or the proportion of linear deforestation events (e.g., roads and corridors) decreases, the required sampling intensity to reach a certain level of sampling error increases, and landscapes with a small number of very large events required the largest sampling intensity. To achieve a relative sampling error target (standard error/sample mean) of 10%, given sample designs of square plots on a systematic grid, a sample of 15%-25% of a landscape will be required for most Canadian landscapes, given a 10-year mapping time frame (interval between samples) and assuming a deforestation rate of 0.025% per annum. With mapping over a 5-year period, the required sampling intensity rises to 20%-40%. Also discussed are the consequences of the sampling error of different designs on the uncertainty in estimated greenhouse gas emission resulting from deforestation. Key words: deforestation, sample design, monitoring, greenhouse gas emissions, CBM-CFS3. La deforestation est la conversion anthropique directe de la foret a des usages non forestiers des terres. Il est important pour les nations de comprendre et de rapporter l'ampleur de leur deforestation. A cause de l'immensite de la foret canadienne et etant donne la rarete et la diversite spatiale de sa deforestation, il etait necessaire de mettre au point une methode d'echantillonnage qui permet de cartographier la deforestation, puis de changer d'echelle pour representer la deforestation dans differentes regions. L'efficacite de differents plans d'echantillonnage a determiner l'aire de deforestation a ete evaluee a l'aide d'une methode de Monte Carlo dans laquelle differents plans d'echantillonnage ont ete appliques pour simuler des paysages forestiers representatifs de differentes regions et de divers schemas de deforestation au Canada. Comme mesure de la performance du plan d'echantillonnage, nous avons utilise l'erreur d'echantillonnage exprimee par l'erreur-type du niveau de deforestation estime pour l'echantillon, divisee par la deforestation reelle du paysage simule. Les resultats indiquent que l'erreur d'echantillonnage etait dependante des caracteristiques de la deforestation (c.-a-d. la quantite, la forme, la taille et la distribution). Par exemple, avec l'augmentation de la taille moyenne des evenements ou la diminution de la proportion des evenements de deforestation lineaire (c.-a-d. les routes et les corridors), l'intensite d'echantillonnage requise pour atteindre un certain niveau d'erreur d'echantillonnage augmente et les paysages avec un petit nombre d'evenements tres vastes necessitaient la plus forte intensite d'echantillonnage. Pour atteindre une cible d'erreur relative d'echantillonnage (rapport de l'erreur-type sur la moyenne de l'echantillon) de 10 % a l'aide de plans d'echantillonnage systematique en grille avec des placettes carrees, un echantillon de 15 a 25 % d'un paysage sera necessaire pour la plupart des paysages canadiens avec un calendrier cartographique de 10 ans (intervalle de temps entre les echantillons) et en assumant un taux de deforestation annuel de 0,025 %. Si la cartographie est realisee sur une periode de cinq ans, l'intensite d'echantillonnage requise augmente et se situe entre 20 et 40 %. Nous discutons aussi des consequences de l'erreur d'echantillonnage de differents plans sur l'incertitude des emissions estimees de gaz a effet de serre provenant de la deforestation. [Traduit par la Redaction] Mots-cles: deforestation, plan d'echantillonnage, surveillance, emissions de gaz a effet de serre, CBM-CFS3. Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their deforestation. Because of the vastness of Canada's forest and the rare and spatially diverse nature of its deforestation, a sampling approach in which deforestation is mapped and then scaled up to represent deforestation for different regions was needed. The effectiveness of different sample designs in capturing the area of deforestation was evaluated using a Monte Carlo approach in which alternate sample designs were applied to simulated forest landscapes representative of different regions and deforestation patterns in Canada. Sampling error as expressed by the standard error in the estimated deforestation level for the sample divided by actual deforestation of the simulated landscape was used as a measure of sample design performance. Results indicated that sampling error was dependent on the characteristics of the deforestation (e.g., amount, shape, size, and distribution). For example, as mean event size increases or the proportion of linear deforestation events (e.g., roads and corridors) decreases, the required sampling intensity to reach a certain level of sampling error increases, and landscapes with a small number of very large events required the largest sampling intensity. To achieve a relative sampling error target (standard error/sample mean) of 10%, given sample designs of square plots on a systematic grid, a sample of 15%-25% of a landscape will be required for most Canadian landscapes, given a 10-year mapping time frame (interval between samples) and assuming a deforestation rate of 0.025% per annum. With mapping over a 5-year period, the required sampling intensity rises to 20%-40%. Also discussed are the consequences of the sampling error of different designs on the uncertainty in estimated greenhouse gas emission resulting from deforestation.Original Abstract: La deforestation est la conversion anthropique directe de la foret a des usages non forestiers des terres. Il est important pour les nations de comprendre et de rapporter l'ampleur de leur deforestation. A cause de l'immensite de la foret canadienne et etant donne la rarete et la diversite spatiale de sa deforestation, il etait necessaire de mettre au point une methode d'echantillonnage qui permet de cartographier la deforestation, puis de changer d'echelle pour representer la deforestation dans differentes regions. L'efficacite de differents plans d'echantillonnage a determiner l'aire de deforestation a ete evaluee a l'aide d'une methode de Monte Carlo dans laquelle differents plans d'echantillonnage ont ete appliques pour simuler des paysages forestiers representatifs de differentes regions et de divers schemas de deforestation au Canada. Comme mesure de la performance du plan d'echantillonnage, nous avons utilise l'erreur d'echantillonnage exprimee par l'erreur-type du niveau de deforestation estime pour l'echantillon, divisee par la deforestation reelle du paysage simule. Les resultats indiquent que l'erreur d'echantillonnage etait dependante des caracteristiques de la deforestation (c.-a-d. la quantite, la forme, la taille et la distribution). Par exemple, avec l'augmentation de la taille moyenne des evenements ou la diminution de la proportion des evenements de deforestation lineaire (c.-a-d. les routes et les corridors), l'intensite d'echantillonnage requise pour atteindre un certain niveau d'erreur d'echantillonnage augmente et les paysages avec un petit nombre d'evenements tres vastes necessitaient la plus forte intensite d'echantillonnage. Pour atteindre une cible d'erreur relative d'echantillonnage (rapport de l'erreur-type sur la moyenne de l'echantillon) de 10 % a l'aide de plans d'echantillonnage systematique en grille avec des placettes carrees, un echantillon de 15 a 25 % d'un paysage sera necessaire pour la plupart des paysages canadiens avec un calendrier cartographique de 10 ans (intervalle de temps entre les echantillons) et en assumant un taux de deforestation annuel de 0,025 %. Si la cartographie est realisee sur une periode de cinq ans, l'intensite d'echantillonnage requise augmente et se situe entre 20 et 40 %. Nous discutons aussi des consequences de l'erreur d'echantillonnage de differents plans sur l'incertitude des emissions estimees de gaz a effet de serre provenant de la deforestation. [Traduit par la Redaction] Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their deforestation. Because of the vastness of Canadaâs forest and the rare and spatially diverse nature of its deforestation, a sampling approach in which deforestation is mapped and then scaled up to represent deforestation for different regions was needed. The effectiveness of different sample designs in capturing the area of deforestation was evaluated using a Monte Carlo approach in which alternate sample designs were applied to simulated forest landscapes representative of different regions and deforestation patterns in Canada. Sampling error as expressed by the standard error in the estimated deforestation level for the sample divided by actual deforestation of the simulated landscape was used as a measure of sample design performance. Results indicated that sampling error was dependent on the characteristics of the deforestation (e.g., amount, shape, size, and distribution). For example, as mean event size increases or the proportion of linear deforestation events (e.g., roads and corridors) decreases, the required sampling intensity to reach a certain level of sampling error increases, and landscapes with a small number of very large events required the largest sampling intensity. To achieve a relative sampling error target (standard errorâ/âsample mean) of 10%, given sample designs of square plots on a systematic grid, a sample of 15%â25% of a landscape will be required for most Canadian landscapes, given a 10-year mapping time frame (interval between samples) and assuming a deforestation rate of 0.025% per annum. With mapping over a 5-year period, the required sampling intensity rises to 20%â40%. Also discussed are the consequences of the sampling error of different designs on the uncertainty in estimated greenhouse gas emission resulting from deforestation. |
Abstract_FL | La déforestation est la conversion anthropique directe de la forêt à des usages non forestiers des terres. Il est important pour les nations de comprendre et de rapporter l’ampleur de leur déforestation. À cause de l’immensité de la forêt canadienne et étant donné la rareté et la diversité spatiale de sa déforestation, il était nécessaire de mettre au point une méthode d’échantillonnage qui permet de cartographier la déforestation, puis de changer d’échelle pour représenter la déforestation dans différentes régions. L’efficacité de différents plans d’échantillonnage à déterminer l’aire de déforestation a été évaluée à l’aide d’une méthode de Monte Carlo dans laquelle différents plans d’échantillonnage ont été appliqués pour simuler des paysages forestiers représentatifs de différentes régions et de divers schémas de déforestation au Canada. Comme mesure de la performance du plan d’échantillonnage, nous avons utilisé l’erreur d’échantillonnage exprimée par l’erreur-type du niveau de déforestation estimé pour l’échantillon, divisée par la déforestation réelle du paysage simulé. Les résultats indiquent que l’erreur d’échantillonnage était dépendante des caractéristiques de la déforestation (c.-à-d. la quantité, la forme, la taille et la distribution). Par exemple, avec l’augmentation de la taille moyenne des événements ou la diminution de la proportion des événements de déforestation linéaire (c.-à-d. les routes et les corridors), l’intensité d’échantillonnage requise pour atteindre un certain niveau d’erreur d’échantillonnage augmente et les paysages avec un petit nombre d’événements très vastes nécessitaient la plus forte intensité d’échantillonnage. Pour atteindre une cible d’erreur relative d’échantillonnage (rapport de l’erreur-type sur la moyenne de l’échantillon) de 10 % à l’aide de plans d’échantillonnage systématique en grille avec des placettes carrées, un échantillon de 15 à 25 % d’un paysage sera nécessaire pour la plupart des paysages canadiens avec un calendrier cartographique de 10 ans (intervalle de temps entre les échantillons) et en assumant un taux de déforestation annuel de 0,025 %. Si la cartographie est réalisée sur une période de cinq ans, l’intensité d’échantillonnage requise augmente et se situe entre 20 et 40 %. Nous discutons aussi des conséquences de l’erreur d’échantillonnage de différents plans sur l’incertitude des émissions estimées de gaz à effet de serre provenant de la déforestation. [Traduit par la Rédaction] |
Audience | Academic |
Author | Leckie, Donald G Werner A. Kurz Steen Magnussen Dennis Paradine |
Author_xml | – sequence: 1 fullname: Leckie, Donald G – sequence: 2 fullname: Dennis Paradine – sequence: 3 fullname: Werner A. Kurz – sequence: 4 fullname: Steen Magnussen |
BookMark | eNqVkk1v1DAQhi1UJNrClSsRXOCQMo4dJ74gVctXpQokSs-W1xkHrxI7tbMS_HscbQ-71aIK-eCx_bzjGc17Rk588EjISwoXlDL53mxsLCugvISa0yfklFbQlgJYc7IXPyNnKW0AgAkGp-TDR7QhYpr17IIvRj1NzvdF0uM0LEGHyfU-FRkqVtrrzmlfDNp3yegJ03Py1Ooh4Yv7_Zzcfv70c_W1vP7-5Wp1eV2aWsq5FLLh2FFJEdeIXPJ1JVGDtLIzHdiqaVC2AlpRWdPVWFuzzuc1GoGcM2vZOXm7yzvFcLfN5arRJYNDrgTDNina0qalNcjmcbQRtRQSoMromwfoJmyjz41kqpKyFoztUb0eUDlvwxy1WZKqS54BgLaWmSqPUD16jHrIg7IuXx_wr4_wZnJ3ah-6OALl1eHozNGs7w4EmZnx99zrbUrq6ubHf7DfDtn7QkwMKUW0aopu1PGPoqAW96nFfWpxn1rclwX8gcC4ncdyB274t4zuZD6a7ErU0fx6_KtXO43VQek-uqRub_KzyCMGoBVnfwEYAfRt |
CODEN | CJFRAR |
CitedBy_id | crossref_primary_10_1139_er_2024_0001 crossref_primary_10_1016_j_foreco_2015_11_015 |
Cites_doi | 10.1139/er-2013-0041 10.1080/01431160500222632 10.1016/j.isprsjprs.2009.10.008 10.3390/rs5041842 10.5558/tfc71074-1 10.1186/1750-0680-4-10 10.1126/science.1070656 10.2307/1400530 10.1111/j.1365-2486.2010.02369.x 10.1016/j.rse.2007.07.026 10.1029/2010JG001471 10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2 10.1007/s10342-005-0074-6 10.1016/j.ecolmodel.2008.10.018 10.5589/m02-062 10.1088/1748-9326/2/4/045022 10.1080/0143116021000057135 10.5194/essd-6-235-2014 10.1080/014311600210263 10.1016/j.rse.2010.10.009 10.5558/tfc72138-2 10.1007/s11027-006-1006-6 10.1016/j.rse.2009.07.011 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 NRC Research Press Copyright Canadian Science Publishing NRC Research Press Nov 2015 |
Copyright_xml | – notice: COPYRIGHT 2015 NRC Research Press – notice: Copyright Canadian Science Publishing NRC Research Press Nov 2015 |
DBID | FBQ AAYXX CITATION ISN ISR 7SN 7SS 7T7 8FD C1K FR3 P64 RC3 U9A 7ST 7U6 SOI 7S9 L.6 |
DOI | 10.1139/cjfr-2014-0541 |
DatabaseName | AGRIS CrossRef Gale In Context: Canada Gale In Context: Science Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Sustainability Science Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Entomology Abstracts Genetics Abstracts Technology Research Database Engineering Research Database Ecology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Career and Technical Education (Alumni Edition) Environment Abstracts Sustainability Science Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Ecology Abstracts AGRICOLA Entomology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISSN | 1208-6037 |
EndPage | 1576 |
ExternalDocumentID | 3857212631 A433200859 10_1139_cjfr_2014_0541 cjfr-2014-0541 US201600200124 |
Genre | Feature |
GeographicLocations | Canada ANW, Canada |
GeographicLocations_xml | – name: Canada – name: ANW, Canada |
GroupedDBID | 00T 0R~ 29B 2XV 4.4 4P2 5GY 5RP 6J9 7RQ 7X2 7XC 88I 8AF 8FE 8FG 8FH 8FQ 8G5 AAHBH AAYJJ ABDBF ABJCF ABJNI ABTAH ABUWG ACGFO ACGFS ACGOD ACIWK ACPRK ACUHS AEGXH AENEX AEUYN AFKRA AFRAH AI. AIAGR ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS AZQEC BCR BCU BEC BENPR BES BGLVJ BHPHI BKSAR BLC BPHCQ CAG CCPQU COF CS3 D8U DWQXO EAD EAP EAS EBC EBD EBS ECC ECGQY EDH EJD EMK EPL ESX FBQ GNUQQ GUQSH HCIFZ HZ~ I-F IAO ICQ IEA IEP IOF IPNFZ IRD ISN ISR ITC ITF ITG ITH L6V LK5 M0K M2O M2P M2Q M3C M3G M7R M7S MV1 NMEPN NRXXU NYCZX N~3 O9- ONR OVD P2P PATMY PCBAR PEA PHGZT PQQKQ PRG PROAC PTHSS PV9 PYCSY QF4 QM4 QN7 QO4 QRP RIG RRCRK RRP RZL SJFOW TEORI TUS U5U UQL VH1 VQG XOL Y6R YV5 ZCG ZY4 08R 0R 1AW 3V. ABFLS ABPTK ADKZR B4K HZ IFM LA8 MBDVC N95 PADUT PQEST PQUKI PRINS AAYXX CITATION PHGZM PQGLB 7SN 7SS 7T7 8FD C1K FR3 P64 RC3 U9A 7ST 7U6 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c599t-6974ed191eebee494b29ea09f9dcd0f277e9860862fcd5e5fcb986bec6e443ff3 |
ISSN | 1208-6037 0045-5067 |
IngestDate | Thu Jul 10 21:08:49 EDT 2025 Fri Jul 11 13:17:41 EDT 2025 Sat Aug 16 04:21:47 EDT 2025 Wed Mar 19 01:50:33 EDT 2025 Fri Mar 14 02:13:31 EDT 2025 Tue Jun 10 15:33:45 EDT 2025 Sat Mar 08 18:22:01 EST 2025 Wed Mar 05 03:59:31 EST 2025 Wed Mar 05 04:27:06 EST 2025 Thu Jul 10 08:50:08 EDT 2025 Thu Apr 24 22:57:11 EDT 2025 Wed Nov 11 00:33:16 EST 2020 Thu Apr 03 09:42:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c599t-6974ed191eebee494b29ea09f9dcd0f277e9860862fcd5e5fcb986bec6e443ff3 |
Notes | http://dx.doi.org/10.1139/cjfr-2014-0541 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1729956332 |
PQPubID | 47747 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1817815097 nrcresearch_primary_10_1139_cjfr_2014_0541 crossref_primary_10_1139_cjfr_2014_0541 gale_infotraccpiq_433200859 gale_infotracmisc_A433200859 gale_infotracgeneralonefile_A433200859 crossref_citationtrail_10_1139_cjfr_2014_0541 fao_agris_US201600200124 gale_incontextgauss_ISN_A433200859 gale_infotracacademiconefile_A433200859 proquest_miscellaneous_1765969002 proquest_journals_1729956332 gale_incontextgauss_ISR_A433200859 |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Ottawa |
PublicationPlace_xml | – name: Ottawa |
PublicationTitle | Canadian journal of forest research |
PublicationYear | 2015 |
Publisher | NRC Research Press Canadian Science Publishing NRC Research Press |
Publisher_xml | – name: NRC Research Press – name: Canadian Science Publishing NRC Research Press |
References | refg40/ref40 refg22/ref22 refg36/ref36 refg45/ref45 refg9/ref9 refg25/ref25 refg6/ref6 refg15/ref15 refg43/ref43 refg14/ref14 refg8/ref8 refg5/ref5 refg2/ref2 refg23/ref23 refg37/ref37 refg19/ref19 refg21/ref21 refg4/ref4 refg10/ref10 refg1/ref1 refg28/ref28 refg41/ref41 refg35/ref35 refg39/ref39 refg3/ref3 Magnussen S. (refg33/ref33) 2001; 13 refg24/ref24 refg27/ref27 |
References_xml | – ident: refg24/ref24 doi: 10.1139/er-2013-0041 – ident: refg39/ref39 doi: 10.1080/01431160500222632 – ident: refg10/ref10 doi: 10.1016/j.isprsjprs.2009.10.008 – ident: refg15/ref15 doi: 10.3390/rs5041842 – ident: refg45/ref45 – ident: refg27/ref27 doi: 10.5558/tfc71074-1 – volume: 13 start-page: 204 issue: 3 year: 2001 ident: refg33/ref33 publication-title: Math. Model. Sci. Comput. – ident: refg19/ref19 doi: 10.1186/1750-0680-4-10 – ident: refg1/ref1 doi: 10.1126/science.1070656 – ident: refg4/ref4 doi: 10.2307/1400530 – ident: refg41/ref41 doi: 10.1111/j.1365-2486.2010.02369.x – ident: refg6/ref6 doi: 10.1016/j.rse.2007.07.026 – ident: refg36/ref36 doi: 10.1029/2010JG001471 – ident: refg8/ref8 – ident: refg21/ref21 doi: 10.1890/1051-0761(1999)009[0526:AYRAOC]2.0.CO;2 – ident: refg35/ref35 doi: 10.1007/s10342-005-0074-6 – ident: refg23/ref23 doi: 10.1016/j.ecolmodel.2008.10.018 – ident: refg28/ref28 doi: 10.5589/m02-062 – ident: refg2/ref2 doi: 10.1088/1748-9326/2/4/045022 – ident: refg37/ref37 – ident: refg5/ref5 doi: 10.1080/0143116021000057135 – ident: refg25/ref25 doi: 10.5194/essd-6-235-2014 – ident: refg9/ref9 – ident: refg43/ref43 doi: 10.1080/014311600210263 – ident: refg40/ref40 doi: 10.1016/j.rse.2010.10.009 – ident: refg14/ref14 doi: 10.5558/tfc72138-2 – ident: refg22/ref22 doi: 10.1007/s11027-006-1006-6 – ident: refg3/ref3 doi: 10.1016/j.rse.2009.07.011 |
SSID | ssj0003630 |
Score | 2.1346645 |
Snippet | Deforestation is the direct human-induced conversion of forest to nonforest land uses. It is important for nations to understand and report the extent of their... |
SourceID | proquest gale crossref nrcresearch fao |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1564 |
SubjectTerms | Canada CBM-CFS3 Deforestation déforestation Environmental aspects Forest management forests greenhouse gas emissions Greenhouse gases Land use landscapes Mapping monitoring Monte Carlo simulation plan d’échantillonnage roads sample design Sampling surveillance Uncertainty émissions de gaz à effet de serre |
Title | Deforestation mapping sampling designs for Canadian landscapes |
URI | http://www.nrcresearchpress.com/doi/abs/10.1139/cjfr-2014-0541 https://www.proquest.com/docview/1729956332 https://www.proquest.com/docview/1765969002 https://www.proquest.com/docview/1817815097 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYJiF4QHxqZQUFhJjEFEiaOI1fkLqNaiDYw7qKvVmJY1d8pSVJH-Cv585xnER04-MlSuOTnd6dP8753c-EPIsxaggC4ULwISBAiX03lgpB41GcURbTVJ8Z-eE0OpmH7y7oRXvQpc4uqdKX4ufGvJL_sSo8A7tiluw_WNZWCg_gHuwLV7AwXP_KxscSlpyyNIDBb8lKJz-VCaLE4SbT6AxNuHBgWQh0bi-insruutQWd5gk6roPDB2Q3TZ-L8WX-qNGva_cOZ0rKRCRX5chaqb7oUhvVH-URY6g_HYffJGvS7MJNKukyUszuxA-Nel4FqRxdmShgj3wiB50Q-pSrz51w4yTSFGzeQAPkP9UfFYFWNoPXVhR-u1UZQGEE6Rdw-Ui2yI7o_EYv9DvTA6PD6d2Gg6iwOQf1a0bxk5o4FW_-t6KZEslSzs738wL0Sj5t7laL0DOb5NbJnJwJrUb3CHXZH6XXJ9qIxU_7pHXPW9wjDc4jTc4xhscEHIaczutN9wn8-mb86MT15yO4QrKWOVGEAnKDMJtCf1QhixMR0wmHlMsE5mnQCmSxRFGrEpkVFIlUvgNXTaSYRgoFTwg2_kyl7vEUZQFsRewNElFGEJ90ELGEhmJKERkxoC4jYa4MNTxeILJV65DyIBx1ChHjXLU6IDsW_lVTZpyqeQuKJwnC5jR-Hw2Qr5DD2F-I2j0KVqBI0lJjiioRQIOyd_OTnlr_UuFznpC-0ZILeG1RWIyT-DPI_lZT3KvJylWn77zTunzXumiJobfVM2wJwgjtugVv-g41h81NGz8jpshoOQQdWBGOlQ4IE9sMTaDkMlcLtcoE1EWMVDnFTKxP44hJGTjh1e_8h650fb6IdmuirV8BKvxKn1s-t0vYhjb4g |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deforestation+mapping+sampling+designs+for+Canadian+landscapes&rft.jtitle=Canadian+journal+of+forest+research&rft.au=Leckie%2C+Donald+G&rft.au=Paradine%2C+Dennis&rft.au=Kurz%2C+Werner+A&rft.au=Magnussen%2C+Steen&rft.date=2015-11-01&rft.pub=NRC+Research+Press&rft.issn=0045-5067&rft.spage=1564&rft_id=info:doi/10.1139%2Fcjfr-2014-0541&rft.externalDocID=A433200859 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1208-6037&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1208-6037&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1208-6037&client=summon |