Model for fitting longitudinal traits subject to threshold response applied to genetic evaluation for heat tolerance
A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that individual variation exists both in the degree of the linear change of performance (slope) beyond a particular threshold of the independent variable scale and in the magnitude of the threshold itself; t...
Saved in:
Published in | Genetics selection evolution (Paris) Vol. 41; no. 1; p. 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
14.01.2009
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1297-9686 0999-193X 1297-9686 |
DOI | 10.1186/1297-9686-41-10 |
Cover
Abstract | A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that individual variation exists both in the degree of the linear change of performance (slope) beyond a particular threshold of the independent variable scale and in the magnitude of the threshold itself; these individual variations are attributed to genetic and environmental components. During implementation via a Bayesian MCMC approach, threshold levels were sampled using a Metropolis step because their fully conditional posterior distributions do not have a closed form. The model was tested by simulation following designs similar to previous studies on genetics of heat stress. Posterior means of parameters of interest, under all simulation scenarios, were close to their true values with the latter always being included in the uncertain regions, indicating an absence of bias. The proposed models provide flexible tools for studying genotype by environmental interaction as well as for fitting other longitudinal traits subject to abrupt changes in the performance at particular points on the independent variable scale. |
---|---|
AbstractList | A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that individual variation exists both in the degree of the linear change of performance (slope) beyond a particular threshold of the independent variable scale and in the magnitude of the threshold itself; these individual variations are attributed to genetic and environmental components. During implementation via a Bayesian MCMC approach, threshold levels were sampled using a Metropolis step because their fully conditional posterior distributions do not have a closed form. The model was tested by simulation following designs similar to previous studies on genetics of heat stress. Posterior means of parameters of interest, under all simulation scenarios, were close to their true values with the latter always being included in the uncertain regions, indicating an absence of bias. The proposed models provide flexible tools for studying genotype by environmental interaction as well as for fitting other longitudinal traits subject to abrupt changes in the performance at particular points on the independent variable scale. A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that individual variation exists both in the degree of the linear change of performance (slope) beyond a particular threshold of the independent variable scale and in the magnitude of the threshold itself; these individual variations are attributed to genetic and environmental components. During implementation via a Bayesian MCMC approach, threshold levels were sampled using a Metropolis step because their fully conditional posterior distributions do not have a closed form. The model was tested by simulation following designs similar to previous studies on genetics of heat stress. Posterior means of parameters of interest, under all simulation scenarios, were close to their true values with the latter always being included in the uncertain regions, indicating an absence of bias. The proposed models provide flexible tools for studying genotype by environmental interaction as well as for fitting other longitudinal traits subject to abrupt changes in the performance at particular points on the independent variable scale.A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that individual variation exists both in the degree of the linear change of performance (slope) beyond a particular threshold of the independent variable scale and in the magnitude of the threshold itself; these individual variations are attributed to genetic and environmental components. During implementation via a Bayesian MCMC approach, threshold levels were sampled using a Metropolis step because their fully conditional posterior distributions do not have a closed form. The model was tested by simulation following designs similar to previous studies on genetics of heat stress. Posterior means of parameters of interest, under all simulation scenarios, were close to their true values with the latter always being included in the uncertain regions, indicating an absence of bias. The proposed models provide flexible tools for studying genotype by environmental interaction as well as for fitting other longitudinal traits subject to abrupt changes in the performance at particular points on the independent variable scale. Abstract A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that individual variation exists both in the degree of the linear change of performance (slope) beyond a particular threshold of the independent variable scale and in the magnitude of the threshold itself; these individual variations are attributed to genetic and environmental components. During implementation via a Bayesian MCMC approach, threshold levels were sampled using a Metropolis step because their fully conditional posterior distributions do not have a closed form. The model was tested by simulation following designs similar to previous studies on genetics of heat stress. Posterior means of parameters of interest, under all simulation scenarios, were close to their true values with the latter always being included in the uncertain regions, indicating an absence of bias. The proposed models provide flexible tools for studying genotype by environmental interaction as well as for fitting other longitudinal traits subject to abrupt changes in the performance at particular points on the independent variable scale. |
ArticleNumber | 10 |
Audience | Academic |
Author | Rekaya, Romdhane Misztal, Ignacy Sánchez, Juan Pablo |
AuthorAffiliation | 1 Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, 24071, Spain 2 Animal and Dairy Science Department, University of Georgia, 425 River Road, Athens, GA, 30602, USA |
AuthorAffiliation_xml | – name: 1 Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, León, 24071, Spain – name: 2 Animal and Dairy Science Department, University of Georgia, 425 River Road, Athens, GA, 30602, USA |
Author_xml | – sequence: 1 givenname: Juan Pablo surname: Sánchez fullname: Sánchez, Juan Pablo email: jpsans@unileon.es organization: Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León – sequence: 2 givenname: Romdhane surname: Rekaya fullname: Rekaya, Romdhane organization: Animal and Dairy Science Department, University of Georgia – sequence: 3 givenname: Ignacy surname: Misztal fullname: Misztal, Ignacy organization: Animal and Dairy Science Department, University of Georgia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19284701$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktr3DAUhU1JaR7turtiKBS6cCLZsiVtCiH0MZBS6GMtJPnao0EjTSU5tP--8jhNMoEWL2SuzneurnROiyPnHRTFS4zOMWbdBa45rXjHuorgCqMnxcld5ejB_3FxGuMGIdSRjjwrjjGvGaEInxTps-_BloMP5WBSMm4srXejSVNvnLRlCtKkWMZJbUCnMvkyrQPEtbd9mdeddxFKudtZA_28O4KDZHQJN9JOMhnv9t5rkDNsIUin4XnxdJA2wovb9az48eH996tP1fWXj6ury-tKt5ynqgUOgCnjnPdKglQ9U4xpBjWXQ8dlQ3VHaK81UaTldZen7TXjRCE5QKua5qxYLb69lxuxC2Yrw2_hpRH7gg-jkCGf1oJgGClOG10rKQnSTFEOEmkEqKGK1yR7vVu8dpPaQq_B5auxB6aHO86sxehvRN1RnPls8ObWIPifE8QktiZqsFY68FMUHUV1y9nc6fUj4cZPIT9GFHVLaNe0LcVZdb6oRpmPb9zgc1edvx62RueUDCbXLzFvUUPqZgbeHgBZk-BXGuUUo1h9-3qoffVw2Lsp_-YmCy4WgQ4-xgDDvQSJOZlizp6YsycIzsVMtI8IbdI-IHPE7H84tHAxd3AjhPvb-BfyB8MJ90s |
CitedBy_id | crossref_primary_10_2527_jas_2012_5457 crossref_primary_10_1186_s12711_023_00779_1 crossref_primary_10_3168_jds_2008_1626 crossref_primary_10_31893_2318_1265jabb_v7n2p39_51 crossref_primary_10_2527_jas_2014_7616 crossref_primary_10_3168_jds_2014_8023 |
Cites_doi | 10.1080/01621459.1973.10481353 10.1063/1.1699114 10.1086/285752 10.1186/1297-9686-32-4-383 10.1017/S1357729800058604 10.1186/1297-9686-36-4-435 10.2527/jas.2007-0523 10.1186/1297-9686-37-5-437 10.2527/jas.2007-0282 10.1016/S0301-6226(96)01415-7 10.3168/jds.S0022-0302(00)75095-8 10.1007/b98952 10.2527/jas.2005-517 10.1111/1467-9868.00128 |
ContentType | Journal Article |
Copyright | Sánchez et al; licensee BioMed Central Ltd. 2009 COPYRIGHT 2009 BioMed Central Ltd. 2009. This work is licensed under http://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Copyright © 2009 Sánchez et al; licensee BioMed Central Ltd. 2009 Sánchez et al; licensee BioMed Central Ltd. |
Copyright_xml | – notice: Sánchez et al; licensee BioMed Central Ltd. 2009 – notice: COPYRIGHT 2009 BioMed Central Ltd. – notice: 2009. This work is licensed under http://creativecommons.org/licenses/by/2.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. – notice: Copyright © 2009 Sánchez et al; licensee BioMed Central Ltd. 2009 Sánchez et al; licensee BioMed Central Ltd. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 3V. 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY RC3 7X8 5PM DOA |
DOI | 10.1186/1297-9686-41-10 |
DatabaseName | Springer_OA刊 CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Open Access资源_Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1297-9686 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_810b973c2baa40c8b79ea0c0e037b924 PMC2671243 A195034231 19284701 10_1186_1297_9686_41_10 |
Genre | Journal Article |
GeographicLocations | United States Spain |
GeographicLocations_xml | – name: Spain – name: United States |
GroupedDBID | --- 0R~ 29H 2VQ 2WC 4.4 5GY 5VS 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABQSL ABUWG ACGFS ACIWK ACPRK ADBBV ADHKG ADRAZ ADUKV AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ATCPS BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C1A C6C CCPQU CS3 DIK E3Z EBLON EBS EJD F5P FYUFA GI~ GROUPED_DOAJ H13 HCIFZ HMCUK HYE IAO IEA IHR INH INR IPNFZ ISR ITC KQ8 LK8 M1P M41 M48 M7P N2Q O5R O5S OK1 OVT PATMY PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO PYCSY RBZ RED RHV RIG RNS ROL RPM RSV SBL SOJ TR2 UKHRP AAYXX ALIPV CITATION -56 -5G -A0 -BR 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF IFM M~E NPM PMFND 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c599t-5e9ee178999dbaeabd8b88c8e29af69a37c647dcc4b45926297dc894b0afe5b33 |
IEDL.DBID | M48 |
ISSN | 1297-9686 0999-193X |
IngestDate | Wed Aug 27 01:27:06 EDT 2025 Thu Aug 21 18:41:58 EDT 2025 Thu Sep 04 22:11:43 EDT 2025 Fri Jul 25 10:51:26 EDT 2025 Tue Jun 10 21:21:51 EDT 2025 Fri Jun 27 05:55:11 EDT 2025 Thu Jan 02 22:44:34 EST 2025 Thu Apr 24 22:52:37 EDT 2025 Tue Jul 01 04:02:56 EDT 2025 Sat Sep 06 07:21:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Gibbs Sampler Variance Matrix Conditional Posterior Distribution Marginal Posterior Distribution Additive Genetic Effect |
Language | English |
License | http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c599t-5e9ee178999dbaeabd8b88c8e29af69a37c647dcc4b45926297dc894b0afe5b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/1297-9686-41-10 |
PMID | 19284701 |
PQID | 2547635571 |
PQPubID | 55459 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_810b973c2baa40c8b79ea0c0e037b924 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2671243 proquest_miscellaneous_67025984 proquest_journals_2547635571 gale_infotracacademiconefile_A195034231 gale_incontextgauss_ISR_A195034231 pubmed_primary_19284701 crossref_primary_10_1186_1297_9686_41_10 crossref_citationtrail_10_1186_1297_9686_41_10 springer_journals_10_1186_1297_9686_41_10 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-01-14 |
PublicationDateYYYYMMDD | 2009-01-14 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-14 day: 14 |
PublicationDecade | 2000 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: France |
PublicationTitle | Genetics selection evolution (Paris) |
PublicationTitleAbbrev | Genet Sel Evol |
PublicationTitleAlternate | Genet Sel Evol |
PublicationYear | 2009 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | G De Jong (2385_CR1) 1995; 145 B Zumbach (2385_CR3) 2008; 86 L Varona (2385_CR10) 1997; 47 K Meyer (2385_CR18) 2005; 37 R Kolmodin (2385_CR13) 2004; 36 D Sorensen (2385_CR8) 2002 M Plummer (2385_CR15) 2008 O Ravagnolo (2385_CR2) 2000; 83 R Kolmodin (2385_CR6) 2003; 76 R Kolmodin (2385_CR4) 2002; 52 N Metropolis (2385_CR11) 1953; 21 J Geweke (2385_CR14) 1992 G Su (2385_CR5) 2006; 84 B Zumbach (2385_CR7) 2008; 86 M Lynch (2385_CR12) 1998 R Rekaya (2385_CR17) 2000; 32 AR Gallant (2385_CR19) 1973; 68 MG Bulmer (2385_CR9) 1980 DGT Denison (2385_CR16) 1998; Part 2 |
References_xml | – volume-title: Genetics and analysis of quantitative traits year: 1998 ident: 2385_CR12 – volume: 68 start-page: 144 year: 1973 ident: 2385_CR19 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1973.10481353 – volume: 21 start-page: 1087 year: 1953 ident: 2385_CR11 publication-title: J Chem Phys doi: 10.1063/1.1699114 – volume: 145 start-page: 493 year: 1995 ident: 2385_CR1 publication-title: Am Nat doi: 10.1086/285752 – volume-title: R package version 0.13–2 year: 2008 ident: 2385_CR15 – volume-title: Bayesian Statistics 4 year: 1992 ident: 2385_CR14 – volume: 32 start-page: 383 year: 2000 ident: 2385_CR17 publication-title: Genet Sel Evol doi: 10.1186/1297-9686-32-4-383 – volume: 76 start-page: 375 year: 2003 ident: 2385_CR6 publication-title: Anim Sci doi: 10.1017/S1357729800058604 – volume-title: The mathematical theory of quantitative genetics year: 1980 ident: 2385_CR9 – volume: 36 start-page: 435 year: 2004 ident: 2385_CR13 publication-title: Genet Sel Evol doi: 10.1186/1297-9686-36-4-435 – volume: 52 start-page: 11 year: 2002 ident: 2385_CR4 publication-title: Acta Agric Scand – volume: 86 start-page: 2082 year: 2008 ident: 2385_CR7 publication-title: J Anim Sci doi: 10.2527/jas.2007-0523 – volume: 37 start-page: 437 year: 2005 ident: 2385_CR18 publication-title: Genet Sel Evol doi: 10.1186/1297-9686-37-5-437 – volume: 86 start-page: 2076 year: 2008 ident: 2385_CR3 publication-title: J Anim Sci doi: 10.2527/jas.2007-0282 – volume: 47 start-page: 201 year: 1997 ident: 2385_CR10 publication-title: Livest Prod Sci doi: 10.1016/S0301-6226(96)01415-7 – volume: 83 start-page: 2126 year: 2000 ident: 2385_CR2 publication-title: J Dairy Sci doi: 10.3168/jds.S0022-0302(00)75095-8 – volume-title: Likelihood, Bayesian and MCMC Methods in Quantitative Genetics year: 2002 ident: 2385_CR8 doi: 10.1007/b98952 – volume: 84 start-page: 1651 year: 2006 ident: 2385_CR5 publication-title: J Anim Sci doi: 10.2527/jas.2005-517 – volume: Part 2 start-page: 333 year: 1998 ident: 2385_CR16 publication-title: J R Statist Soc B 60 doi: 10.1111/1467-9868.00128 |
SSID | ssj0006464 |
Score | 1.8609046 |
Snippet | A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that individual variation exists both in the degree of the linear... Abstract A semi-parametric non-linear longitudinal hierarchical model is presented. The model assumes that individual variation exists both in the degree of... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10 |
SubjectTerms | Agriculture Animal breeding Animal Genetics and Genomics Animals Animals, Domestic - genetics Animals, Domestic - physiology Bayesian analysis Biomedical and Life Sciences Breeding Computer Simulation Environmental aspects Evolutionary Biology Genetic aspects Genetic diversity Genetics Genotype Genotypes Heat stress Heat tolerance Hot Temperature Independent variables Life Sciences Mathematical models Methods Model testing Models, Genetic Multilevel analysis Phenotype Quantitative Trait, Heritable Stress, Physiological |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQ4IN6EFrAQEnAIdRrHj-OCqAoSHIBKe7Nsx2krrRK0SQ78-87E3t2mqOLCMRk7smfG45l4_A0hb5TUTQ37fF42kufcOZ1DCFZDzGMxqdCVfqoZ-e27ODnlX5fV8kqpL8wJi_DAkXGHqmBOS-jirOXMKyd1sMyzwErpIHhA68s02wRTyQYLHoGj8I49uCjLBOpTKHEIG5zMtVAi55jMNduPJtj-v43zld3peubktePTaVc6vk_uJXeSLuI0HpBbdXhI7i7O1glSA55ux3KTfx6RAQufrSi4qbS5mPKd6arDekVjjbWxKJaLGHrajw5_ztChowNIuscDKrqOubSB2ui2IhV0D69A0h1i-PRtNO9AXgWs2REek9Pjz78-neSp6kLuK62HvAo6hEJCHKZrZ4N1tXJKeRWOtG2EtqX0gsvae-54hWiDGh6U5o7ZJoBwyydkr-3a8IzQqnAe0W40a0rOXOm4RXDKKhTBCS2bjHzY8N74BEmOU12ZKTRRwqCwDArL8AJeZuTdtsPviMZxc9OPKMxtM4TRnl6AcpmkXOZfypWR16gKBoEyWszEObNj35svP3-YBdbPRfjEIiNvU6Omg9F7my42AA8QW2vW8mCjUiaZit5AhI6ggJUE8qstGRY5ntzYNnRjb4QE11QrGM_TqH-72Wv0Lxj0lTPNnM17TmkvzicY8SMhwbkrM_J-o8O7Qd3A1Of_g6n75E48koPlxw_I3rAewwvw7Ab3clrEl5gXSLk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKKyQ4ICivlAIWQgIOaZPG8eOA0Ba1KkisUKHS3izbcZZKq6TdJAf-PTOJs8sWlePGzsqPz-OZePx9hLyVQpUF7PNxVgoWM2tVDCFYATGPwaRCm7leM_LblJ9dsK-zfLZFpuNdGEyrHG1ib6iL2uE38kMIZJA7LRfpp6vrGFWj8HR1lNAwQVqh-NhTjN0hO2CSJeB-5_hk-v18ZZs5Gwil8O49uC6zQPaTSn4IG5-IFZc8ZpjktbFP9XT-_xrtv3atmxmVN45V-93q9CF5ENxMOhlw8Yhs-WqX3J_Ml4Fqw--Su4MM5e_HpEVBtAUF95WWl30eNF3UqGPUFaiZRVFGom1o01n8aEPbmraAgAYPruhyyLH11AzuLJYCJvFqJF0ziff_jWYfihcetTz8E3JxevLz81kc1BhilyvVxrlX3qcC4jNVWOONLaSV0kl_pEzJlcmE40wUzjHLcmQhVPBDKmYTU3qY9Owp2a7qyj8nNE-tQxYclZQZS2xmmUHSytyn3nIlyogcjGOvXaAqx64udB-ySK5xsjROlmYpPIzI-9ULVwNLx-1Vj3EyV9WQXrt_UC_nOqxWLdPEKgE4tcawxEkrlDeJS3ySCQsRa0TeIBQ0EmhUmKEzN13T6C8_zvUEdXWRVjGNyLtQqayh9c6ECw8wBsi5tVFzf4SUDiak0WvAR-T1qhgWP57omMrXXaO5AJdVSWjPswF_694r9DsSeFdsIHOj35sl1eWvnl78iAtw-rKIfBgxvG7ULYO69_8OvCD3hkM4WFhsn2y3y86_BF-uta_CAv0Dk01G5g priority: 102 providerName: ProQuest – databaseName: Springer_OA刊 dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI9gCAkOCMZXYUCEkIBDoV3SfBwfE9NAggMwabcoSdMx6amdXtvD_nvsNO-9dbADx9ZOlcROYtfOz4S8UVI3NZzzOWskz7lzOgcXrAafx2JSoWM-1oz89l0cHfOvJ9VJAknCuzCX4_elEh_hOJK5FkrkHFOvbpJbVclEjMqKg82WK7jgCbfnH41mR05E5v97_710AF1NjrwSIY0Hz-F9ci9ZjHQxifgBuRHaXXJ3cbpKqBlhl9yeKkpePCQD1jZbUrBEaXMWU5rpssOSRGON5a8oVoQYetqPDv-_0KGjAwizxxgUXU3psoHayTJFKqgX3nKkW1Dw-G3cwYG8DFiWIzwix4effx0c5amwQu4rrYe8CjqEUoKrpWtng3W1ckp5Ffa1bYS2THrBZe09d7xCQEEND0pzV9gmgPzYY7LTdm14SmhVOo-ANrpoGC8cc9wi_mQVyuCElk1GPqzn3viEOo5DXZrofShhUFgGhWV4CS8z8m7T4HwC3Lie9RMKc8OGSNnxBSiQSQvPqLJwWoLKOWt54ZWTOtjCF6Fg0oHzmZHXqAoGsTBaTLY5tWPfmy8_f5gFlshFhMQyI28TU9NB771NdxdgDhA-a8a5t1Ypk3aD3oATjrh_lQTyqw0Z1jEGZ2wburE3QoL1qRX058mkf9vRazQhCmgrZ5o5G_ec0p79jkjh-0KC_cYy8n6tw9tOXTOpz_6D9zm5MwXXYJXxPbIzrMbwAmy0wb2M6_MPbgY1gQ priority: 102 providerName: Springer Nature |
Title | Model for fitting longitudinal traits subject to threshold response applied to genetic evaluation for heat tolerance |
URI | https://link.springer.com/article/10.1186/1297-9686-41-10 https://www.ncbi.nlm.nih.gov/pubmed/19284701 https://www.proquest.com/docview/2547635571 https://www.proquest.com/docview/67025984 https://pubmed.ncbi.nlm.nih.gov/PMC2671243 https://doaj.org/article/810b973c2baa40c8b79ea0c0e037b924 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYJiR4QDC-AqNYCAl4yEgWxx8PCHVl0wbahAaT-mbZiVMmVQk0qcT-e-4ct6Vje-GlUmI38ced7y4-_36EvJZCVSXY-TirBIuZtSqGEKyEmMdgUqHNCs8ZeXLKj87Z53E-XtEBhQFsrw3tkE_qfDbd_f3r8iMo_Aev8JK_B5MlYsUljxmmZ22QLTBLHCOxE7aCDuesx5LCY_fgtYwDzs81D_BAorhsB6aYhbXyoP7_Lt1_2a6reZVXNle9zTq8T-4FZ5MOe-l4QG65epvcHU5mAXDDbZPbPRnl5UPSIS3alIITS6sLnw1Npw2yGc1LZM6iSCbRtbSdW_x0Q7uGdiAHLW5f0Vmfaeuo6Z1aLAXJxAOSdIUn7p-Niz8UTx0yerhH5Pzw4PvoKA6cDHGRK9XFuVPOpQKiNFVa44wtpZWykG5PmYork4mCM1EWBbMsRyxCBRdSMZuYysHUZ4_JZt3U7imheWoLxMJRSZWxxGaWGYSuzF3qLFeiisjuYux1EQDLsatT7QMXyTXOm8Z50yyFmxF5u_zDzx6r4-aq-ziZy2oIsu1vNLOJDjqrZZpYJUBarTEsKaQVypmkSFySCQtxa0ReoShohNGoMU9nYuZtq4-_nekhsusiuGIakTehUtVA6wsTjj3AGCDy1lrNnYVI6YUeaIjfETIwF1D8clkMSwDu65jaNfNWcwGOq5LQnie9_K16H8Q4ImJNMtf6vV5SX_zwION7XIDrl0Xk3UKGV426YVCf_fdbnpM7_S4dqB_bIZvdbO5egLPX2QHZEGMxIFv7B6dfz-BqxEfw--n4y8B_Phl4Jf8DxRpVRw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwQ8IBi3wGAWAsEewpLGie2HCXWwqWVbhcYm9c3YjlMmVcloUqH9OX4b5yRpS4fG2x4TO1FsH59LfM73EfJGcJmlYOf9KOPMZ8ZIH0KwFGIejUmFJrI1Z-TxMOmfsS-jeLRGfs9rYTCtcq4Ta0WdFhb_ke9AIIPYaTEPP1789JE1Ck9X5xQauqVWSHdriLG2sOPQXf6CEK7cHXyG9X7b7R7sn37q-y3LgG9jKSs_dtK5kEPcIVOjnTapMEJY4bpSZ4nUEbcJ46m1zLAY0fUkXAjJTKAzB4OJ4L23yDrDCtcOWd_bH349WdiChDUAVljrD67SqAUXCkWyA4aW-zIRic8wqWzFLtb0Af8aib-s5NUMzivHuLV1PHhA7rduLe01cviQrLl8g9zrjacttIfbILcb2svLR6RCArYJBXeZZud13jWdFMibNEuRo4sibUVV0nJm8CcRrQpagcSVeFBGp01Or6O6cZ-xFfYAlmLSJXJ5_W40M9A8ccgd4h6TsxtZlyekkxe5e0ZoHBqLqDsyyCIWmMgwjSCZsQudSSTPPPJhPvfKttDoONSJqkMkkShcLIWLpVgINz3yfvHARYMKcn3XPVzMRTeE865vFNOxarWDEmFgJId9YbRmgRWGS6cDG7gg4gYiZI-8RlFQCNiRY0bQWM_KUg2-nage8vgijGPokXdtp6yAr7e6LbCAOUCMr5Wem3ORUq3KKtVyg3lka9EMygZPkHTuilmpEg4ushTwPU8b-VuOXqKfE8CzfEUyV8a92pKf_6jhzLsJBycz8sj2XIaXH3XNpD7__wC2yJ3-6fGROhoMD1-Qu80BIGwytkk61XTmXoIfWZlX7Wal5PtN64c_zp-Fjw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCAQHBOUVKNRCSMAhbdI4fhyXwqrlUSGgUm-W7ThLpVVSbZID_56ZxNklhR44Jh5HtmfsmcmMvyHklRSqLEDPx1kpWMysVTG4YAX4PAaTCm3m-pqRX0740Sn7eJafhdycZsx2H0OSw50GRGmq2v2Lohy2uOT7oKRErLjkMcOErOvkBkO9h7Fafrg-iDnjLKD5_KPTRBH1eP1_n8p_qKXLKZOX4qa9OprfI3eDHUlnA-Pvk2u-2iZ3ZotVwNLw2-TmUGfy1wPSYsWzJQX7lJbnfaIzXdZYqKgrsCgWxToRbUObzuJfGdrWtAUWNxiZoqshidZTM9ir2ApCh3cf6QYqvP82nuvQvPRYrMM_JKfzDz8Oj-JQbiF2uVJtnHvlfSrAAVOFNd7YQlopnfQHypRcmUw4zkThHLMsR5hBBQ9SMZuY0gNXs0dkq6or_4TQPLUOYW5UUmYssZllBlEpc596y5UoI7I3rr12AYscp7rUvU8iuUZmaWSWZim8jMibdYeLAYbjatJ3yMw1GeJn9y_q1UKH7ahlmlglQBCtMSxx0grlTeISn2TCgksakZcoChoRMipMwVmYrmn08fdveoaFcxE3MY3I60BU1jB6Z8KNBlgDBNWaUO6MIqXDGdFocM0RDTAX0Ly7bobdjSEbU_m6azQXYJMqCeN5PMjfZvYKDYsE-oqJZE7mPW2pzn_2-OEHXIBVl0Xk7SjDm0FdsahP_4N2l9z6-n6uPx-ffHpGbg_RN9hwbIdstavOPwcjrrUv-q36G8K7QLU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+for+fitting+longitudinal+traits+subject+to+threshold+response+applied+to+genetic+evaluation+for+heat+tolerance&rft.jtitle=Genetics+selection+evolution+%28Paris%29&rft.au=S%C3%A1nchez%2C+Juan+Pablo&rft.au=Rekaya%2C+Romdhane&rft.au=Misztal%2C+Ignacy&rft.date=2009-01-14&rft.pub=BioMed+Central&rft.issn=0999-193X&rft.eissn=1297-9686&rft.volume=41&rft.issue=1&rft.spage=10&rft.epage=10&rft_id=info:doi/10.1186%2F1297-9686-41-10&rft_id=info%3Apmid%2F19284701&rft.externalDocID=PMC2671243 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1297-9686&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1297-9686&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1297-9686&client=summon |