Ultrasensitive dopamine detection with graphene aptasensor multitransistor arrays
Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from...
Saved in:
Published in | Journal of biomaterials and nanobiotechnology Vol. 20; no. 1; pp. 1 - 15 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer Nature
24.11.2022
BioMed Central Ltd BioMed Central BMC |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10-18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10-8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson's Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis.
This work was funded by: "la Caixa" Banking Foundation under grant agree ment LCF/PR/HR21-00410; national funds, through the Foundation for Science and Technology (FCT)—projects UIDB/50026/2020, UIDP/50026/2020, and UIDB/04650/2020; by FCT project PTDC/MED-NEU/28073/2017 (POCI-01-307 0145-FEDER-028073); by The Branco Weiss fellowship—Society in Science (ETH Zurich); and by FCT Ph.D. fellowships SFRH/BD/14536/2022 (M.A.), SFRH/BD/08181/2020 (T.D.), and PD/BD/127823/2016 (D.R.). |
---|---|
AbstractList | Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10
–18
) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10
–8
), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson’s Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis. Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 x 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10.sup.-18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 [micro]M (10.sup.-8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 [micro]L) of cerebral spinal fluid samples obtained from a mouse model of Parkinson's Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis. Abstract Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10–18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10–8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson’s Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis. Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10-18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10-8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson's Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis.Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10-18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10-8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson's Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis. Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10–18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10–8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson’s Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis. Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10-18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10-8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson's Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis. This work was funded by: "la Caixa" Banking Foundation under grant agree ment LCF/PR/HR21-00410; national funds, through the Foundation for Science and Technology (FCT)—projects UIDB/50026/2020, UIDP/50026/2020, and UIDB/04650/2020; by FCT project PTDC/MED-NEU/28073/2017 (POCI-01-307 0145-FEDER-028073); by The Branco Weiss fellowship—Society in Science (ETH Zurich); and by FCT Ph.D. fellowships SFRH/BD/14536/2022 (M.A.), SFRH/BD/08181/2020 (T.D.), and PD/BD/127823/2016 (D.R.). Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 x 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10.sup.-18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 [micro]M (10.sup.-8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 [micro]L) of cerebral spinal fluid samples obtained from a mouse model of Parkinson's Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis. Keywords: Graphene, Field-effect transistor, Aptasensor, Dopamine, LOD, Parkinson's disease |
ArticleNumber | 495 |
Audience | Academic |
Author | Domingues, Telma Jacinto, Luis Alpuim, P. Abrantes, Mafalda Monteiro, Patricia Rodrigues, Diana Nemala, Siva S Borme, Jérôme |
Author_xml | – sequence: 1 fullname: Abrantes, Mafalda – sequence: 2 fullname: Rodrigues, Diana – sequence: 3 fullname: Domingues, Telma – sequence: 4 fullname: Nemala, Siva S – sequence: 5 fullname: Monteiro, Patricia – sequence: 6 fullname: Borme, Jérôme – sequence: 7 fullname: Alpuim, P. – sequence: 8 fullname: Jacinto, Luis |
BookMark | eNp9kktv1DAUhSNURIfSP8BqJDawSPEziTdIVcVjpEqIR9fWje3MeJTEwXYG-u-5M1OBpkI4CzvX3zmJr8_z4mwMoyuKl5RcUdpUbxNlStKSMFYSWilZkifFglHZlDUR_KxYUFHXJadSnheXKW0JDqFERfiz4pxXgomK8UXx5a7PEZIbk89-55Y2TDD4ERcuO5N9GJc_fd4s1xGmjcM6TPmAh7gc5j57VKM2ZXyHGOE-vSiedtAnd_kwXxR3H95_v_lU3n7-uLq5vi2NVCqXwkhDCWXcUugksy0oxQGUqIF1qjGtMDXhtQRlW8etc6yxkljVCWcREvyiWB19bYCtnqIfIN7rAF4fCiGuNcTsTe90K1sDQKqGUpSSDhyF2nZAOSWyMga93h29prkdnDVuxGP1J6anO6Pf6HXYaVUpIQVDg9cPBjH8mF3KevDJuL6H0YU5aVYLIikhTYPoq0foNsxxxFYhJWUlKiHZX2oNeAA_dgG_a_am-rpmdUOUPPTg6h8UPtYN3mBgOo_1E8GbEwEy2f3Ka5hT0qtvX09ZdmRNDClF1_3pByV6n0F9zKDGDOpDBjVBUfNIZHyGfY7wz3z_f-nyKI14WZOOboexgqRpg1BDWSX4by2L61w |
CitedBy_id | crossref_primary_10_3390_molecules29204859 crossref_primary_10_1016_j_jtice_2023_104814 crossref_primary_10_3390_bios13040413 crossref_primary_10_1016_j_nantod_2022_101729 crossref_primary_10_3390_s25061729 crossref_primary_10_1021_acssensors_4c03314 crossref_primary_10_1002_admi_202400617 crossref_primary_10_3390_ijms251910522 crossref_primary_10_1039_D3MA00623A crossref_primary_10_1002_adhm_202303872 crossref_primary_10_1021_acsanm_3c05309 crossref_primary_10_3390_app142210109 crossref_primary_10_1039_D4CP00432A crossref_primary_10_1002_advs_202303654 crossref_primary_10_3390_s24020575 crossref_primary_10_1016_j_device_2024_100284 |
Cites_doi | 10.1111/j.1476-5381.2011.01426.x 10.1038/s41598-020-60715-x 10.1021/acsami.8b01063 10.1021/ac401894w 10.1021/acssensors.8b00344 10.1016/S0014-2999(02)02647-X 10.1088/1361-6463/aadcca 10.1016/j.bios.2021.113340 10.1007/s00604-014-1418-z 10.1016/j.isci.2020.101469 10.2174/1570159X13666141223223657 10.1016/j.snb.2010.06.070 10.1088/2515-7639/ab8270 10.1111/j.1600-0404.1995.tb01023.x 10.1016/j.nantod.2010.12.001 10.1021/acsomega.9b01629 10.1007/s00604-018-3143-5 10.1021/acs.nanolett.8b04253 10.1016/j.saa.2021.120202 10.1038/s41531-019-0104-6 10.1016/j.mee.2017.12.015 10.1007/s00213-015-4118-4 10.1016/j.matpr.2020.07.678 10.1002/adhm.201300221 10.1016/j.snb.2019.127348 10.1109/NANO.2015.7388878 10.1088/0953-8984/28/8/085302 10.3389/fchem.2020.573865 10.1021/acsami.0c17535 10.1038/s43586-021-00065-8 10.1016/j.apsusc.2019.03.004 10.1002/cjoc.202000584 10.1007/s10571-018-0632-3 10.1038/s41467-021-27361-x 10.1021/acs.chemrev.5b00620 10.1039/C8AN01659C 10.3390/ma13112577 10.1016/j.snb.2015.07.086 10.1371/journal.pone.0235407 10.1039/c1an15458c 10.1016/j.phrs.2018.01.016 10.1021/tx200339h 10.1021/nl071792z 10.3390/ma13245728 10.1038/s41467-020-15330-9 10.1093/brain/aws055 10.1007/s40273-020-00998-0 10.3390/bios11060179 10.3389/fncel.2013.00260 10.1016/j.bios.2020.112798 10.1016/S1474-4422(18)30295-3 10.1016/j.xcrp.2021.100372 10.1002/VIW.20200102 10.1103/PhysRevE.88.012802 10.1016/j.neuron.2019.06.013 10.1021/acsomega.8b03152 10.3389/fnins.2022.875656 10.1039/b505903h 10.1016/j.carbon.2020.08.019 10.1021/acssensors.9b01939 10.1007/s11920-019-0997-0 10.3389/fchem.2019.00399 10.1126/science.aao6750 10.1016/S2468-2667(21)00249-8 10.1016/j.bioelechem.2006.03.012 10.1140/epjst/e2007-00222-8 10.1021/acs.analchem.5b04207 10.1038/s43246-020-00114-x 10.1002/asia.201000252 10.1021/acs.analchem.0c05191 10.1016/j.pmatsci.2012.03.002 10.1038/srep04342 10.1021/acsnano.0c09758 10.1016/j.bios.2008.06.011 10.3171/2017.1.JNS161089 10.1039/D0AN01661F 10.1002/elps.200500457 10.1002/smll.201902820 10.1002/smll.201400463 10.1016/j.brainresbull.2012.09.009 10.1021/acs.analchem.0c00835 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 BioMed Central Ltd. 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). The Author(s) 2022 |
Copyright_xml | – notice: COPYRIGHT 2022 BioMed Central Ltd. – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). – notice: The Author(s) 2022 |
DBID | RCLKO AAYXX CITATION ISR 3V. 7QO 7TB 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s12951-022-01695-0 |
DatabaseName | RCAAP open access repository CrossRef Science (Gale In Context) ProQuest Central (Corporate) Biotechnology Research Abstracts Mechanical & Transportation Engineering Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DissertationSchool | Universidade do Minho |
EISSN | 2158-7043 1477-3155 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_b5bcaa068119470fae1a7dfa131056cc PMC9694542 A727809574 10_1186_s12951_022_01695_0 1822_81264 |
GeographicLocations | Portugal |
GeographicLocations_xml | – name: Portugal |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: LCF/PR/HR21-00410 – fundername: ; grantid: UIDB/50026/2020; UIDP/50026/2020; PTDC/MED-NEU/28073/2017 (POCI-01-307 0145-FEDER-028073) |
GroupedDBID | AAZHT ACGFO AHWXS ALMA_UNASSIGNED_HOLDINGS GX1 HH5 OK1 P2P RCLKO RNS --- 0R~ 29L 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABJCF ABUWG ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADDVE ADMLS ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALIPV AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EBLON EBS EMOBN ESX F5P FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE I-F IAO IHR INH INR ISR ITC ITG ITH KB. KQ8 LK8 M1P M48 M7P MM. M~E O5R O5S OVT PDBOC PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ ROL RPM RSV RVI SCM SOJ SV3 TR2 TUS UKHRP WOQ WOW XSB ~8M PMFND 3V. 7QO 7TB 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c599t-4c5c10123d1af52dba993aa947a2f98cb4c70375a9dbe3dee28d50d9f4ed94743 |
IEDL.DBID | M48 |
ISSN | 1477-3155 |
IngestDate | Wed Aug 27 01:21:10 EDT 2025 Thu Aug 21 18:39:17 EDT 2025 Mon Jul 21 10:51:34 EDT 2025 Fri Jul 25 19:08:36 EDT 2025 Tue Jun 17 21:15:59 EDT 2025 Tue Jun 10 20:19:58 EDT 2025 Fri Jun 27 03:54:18 EDT 2025 Thu Apr 24 22:55:37 EDT 2025 Tue Jul 01 01:26:51 EDT 2025 Fri Aug 01 16:35:17 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c599t-4c5c10123d1af52dba993aa947a2f98cb4c70375a9dbe3dee28d50d9f4ed94743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12951-022-01695-0 |
PMID | 36424623 |
PQID | 2755646452 |
PQPubID | 44676 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b5bcaa068119470fae1a7dfa131056cc pubmedcentral_primary_oai_pubmedcentral_nih_gov_9694542 proquest_miscellaneous_2740510088 proquest_journals_2755646452 gale_infotracmisc_A727809574 gale_infotracacademiconefile_A727809574 gale_incontextgauss_ISR_A727809574 crossref_primary_10_1186_s12951_022_01695_0 crossref_citationtrail_10_1186_s12951_022_01695_0 rcaap_revistas_1822_81264 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-24 |
PublicationDateYYYYMMDD | 2022-11-24 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of biomaterials and nanobiotechnology |
PublicationYear | 2022 |
Publisher | Springer Nature BioMed Central Ltd BioMed Central BMC |
Publisher_xml | – name: Springer Nature – name: BioMed Central Ltd – name: BioMed Central – name: BMC |
References | E Eldrup (1695_CR77) 1995; 92 SD Niyonambaza (1695_CR8) 2019; 9 S Sheibani (1695_CR39) 2021; 2 Y Liu (1695_CR53) 2015; 221 H Li (1695_CR64) 2021; 171 S Duty (1695_CR72) 2011; 164 N Nakatsuka (1695_CR50) 2021; 13 1695_CR45 K Jayant (1695_CR30) 2013; 88 PD Cabral (1695_CR44) 2020; 13 N Nakatsuka (1695_CR47) 2018; 362 A Vázquez-Guardado (1695_CR61) 2019; 19 RR Metzger (1695_CR74) 2002; 456 DS Goldstein (1695_CR78) 2012; 135 T Sakata (1695_CR40) 2019; 4 F Yan (1695_CR21) 2014; 3 W Wang (1695_CR54) 2015; 182 MF Craciun (1695_CR16) 2011; 6 E Stern (1695_CR29) 2007; 7 N Liu (1695_CR67) 2021; 188 B Zhan (1695_CR27) 2014; 10 SE Davis (1695_CR62) 2020; 15 F Chen (1695_CR19) 2010; 5 MA Ali (1695_CR13) 2021; 12 L Liu (1695_CR79) 2008; 21 F Torricelli (1695_CR52) 2021; 1 W Wu (1695_CR34) 2010; 150 X Liu (1695_CR46) 2021; 173 JM May (1695_CR70) 2013; 90 R Campos (1695_CR38) 2018; 189 J Chen (1695_CR59) 2019; 186 J Rehm (1695_CR4) 2019; 21 J Huang (1695_CR55) 2008; 24 M D’Amelio (1695_CR3) 2018; 130 R Bueno (1695_CR24) 2019; 4 CM De Freitas (1695_CR75) 2016; 233 R Campos (1695_CR26) 2019; 4 M Senel (1695_CR63) 2020; 92 A Chhibber (1695_CR6) 2021; 39 V Georgakilas (1695_CR25) 2016; 116 FB Kamal Eddin (1695_CR66) 2021; 263 I Álvarez-Martos (1695_CR57) 2016; 88 K Xu (1695_CR51) 2020; 3 Y Liu (1695_CR37) 2020; 8 Y Wang (1695_CR58) 2020; 305 BV Krsihna (1695_CR18) 2021; 45 IM Bhattacharyya (1695_CR31) 2020; 5 L Zhang (1695_CR81) 2013; 85 H Huang (1695_CR15) 2019; 7 Z Jinjin (1695_CR82) 2011; 136 NCS Vieira (1695_CR35) 2016; 28 C Vericat (1695_CR49) 2005; 7 T Hianik (1695_CR68) 2007; 70 SJ Park (1695_CR41) 2014; 4 KM Money (1695_CR2) 2013; 7 T Kuila (1695_CR23) 2012; 57 S Xu (1695_CR43) 2021; 2 Q Liu (1695_CR69) 2020; 23 X Zhang (1695_CR17) 2020; 16 Y Liang (1695_CR12) 2020; 13 X Xie (1695_CR65) 2021; 93 TJ Echtermeyer (1695_CR48) 2007; 148 Z Tang (1695_CR60) 2019; 144 K Zhang (1695_CR83) 2018; 10 MO Klein (1695_CR1) 2019; 39 D Gong (1695_CR80) 2018; 129 E Nichols (1695_CR7) 2022; 7 F Tessier (1695_CR71) 2006; 27 JW McKinley (1695_CR76) 2019; 103 V Sessi (1695_CR42) 2022; 16 M Donnelly (1695_CR14) 2018; 51 MT Hwang (1695_CR33) 2020; 11 X Liu (1695_CR11) 2021; 2 VC Sanchez (1695_CR22) 2012; 25 V Castro (1695_CR9) 2014; 12 S Lakard (1695_CR10) 2021; 11 E Fernandes (1695_CR28) 2019; 480 E Ray Dorsey (1695_CR5) 2018; 17 C Coletti (1695_CR36) 2021; 15 A Béraud (1695_CR20) 2021; 146 Y Buhidma (1695_CR73) 2020; 6 SJ Park (1695_CR56) 2020; 10 Z Zheng (1695_CR32) 2021; 39 |
References_xml | – volume: 164 start-page: 1357 issue: 4 year: 2011 ident: 1695_CR72 publication-title: Br J Pharmacol doi: 10.1111/j.1476-5381.2011.01426.x – volume: 10 start-page: 3772 issue: 1 year: 2020 ident: 1695_CR56 publication-title: Sci Rep doi: 10.1038/s41598-020-60715-x – volume: 10 start-page: 15388 issue: 18 year: 2018 ident: 1695_CR83 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b01063 – volume: 85 start-page: 8001 issue: 16 year: 2013 ident: 1695_CR81 publication-title: Anal Chem doi: 10.1021/ac401894w – volume: 4 start-page: 286 issue: 2 year: 2019 ident: 1695_CR26 publication-title: ACS Sensors doi: 10.1021/acssensors.8b00344 – volume: 456 start-page: 39 issue: 1–3 year: 2002 ident: 1695_CR74 publication-title: Eur J Pharmacol doi: 10.1016/S0014-2999(02)02647-X – volume: 51 issue: 49 year: 2018 ident: 1695_CR14 publication-title: J Phys D Appl Phys doi: 10.1088/1361-6463/aadcca – volume: 188 year: 2021 ident: 1695_CR67 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2021.113340 – volume: 182 start-page: 1123 issue: 5–6 year: 2015 ident: 1695_CR54 publication-title: Microchim Acta doi: 10.1007/s00604-014-1418-z – volume: 23 start-page: 101469 issue: 9 year: 2020 ident: 1695_CR69 publication-title: iScience. doi: 10.1016/j.isci.2020.101469 – volume: 12 start-page: 490 issue: 6 year: 2014 ident: 1695_CR9 publication-title: Curr Neuropharmacol doi: 10.2174/1570159X13666141223223657 – volume: 150 start-page: 296 issue: 1 year: 2010 ident: 1695_CR34 publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2010.06.070 – volume: 3 issue: 3 year: 2020 ident: 1695_CR51 publication-title: J Phys Mater doi: 10.1088/2515-7639/ab8270 – volume: 92 start-page: 116 issue: 2 year: 1995 ident: 1695_CR77 publication-title: Acta Neurol Scand doi: 10.1111/j.1600-0404.1995.tb01023.x – volume: 6 start-page: 42 issue: 1 year: 2011 ident: 1695_CR16 publication-title: Nano Today doi: 10.1016/j.nantod.2010.12.001 – volume: 4 start-page: 11852 issue: 7 year: 2019 ident: 1695_CR40 publication-title: ACS Omega doi: 10.1021/acsomega.9b01629 – volume: 186 start-page: 58 issue: 2 year: 2019 ident: 1695_CR59 publication-title: Microchim Acta doi: 10.1007/s00604-018-3143-5 – volume: 19 start-page: 449 issue: 1 year: 2019 ident: 1695_CR61 publication-title: Nano Lett doi: 10.1021/acs.nanolett.8b04253 – volume: 263 start-page: 120202 year: 2021 ident: 1695_CR66 publication-title: Spectrochim Acta Part A Mol Biomol Spectrosc. doi: 10.1016/j.saa.2021.120202 – volume: 6 start-page: 1 year: 2020 ident: 1695_CR73 publication-title: NPJ Parkinsons Dis doi: 10.1038/s41531-019-0104-6 – volume: 189 start-page: 85 year: 2018 ident: 1695_CR38 publication-title: Microelectron Eng doi: 10.1016/j.mee.2017.12.015 – volume: 233 start-page: 457 issue: 3 year: 2016 ident: 1695_CR75 publication-title: Psychopharmacology doi: 10.1007/s00213-015-4118-4 – volume: 45 start-page: 1524 year: 2021 ident: 1695_CR18 publication-title: Mater Today Proc doi: 10.1016/j.matpr.2020.07.678 – volume: 3 start-page: 313 issue: 3 year: 2014 ident: 1695_CR21 publication-title: Adv Healthc Mater doi: 10.1002/adhm.201300221 – volume: 305 year: 2020 ident: 1695_CR58 publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2019.127348 – ident: 1695_CR45 doi: 10.1109/NANO.2015.7388878 – volume: 28 issue: 8 year: 2016 ident: 1695_CR35 publication-title: J Phys Condens Matter doi: 10.1088/0953-8984/28/8/085302 – volume: 8 year: 2020 ident: 1695_CR37 publication-title: Front Chem doi: 10.3389/fchem.2020.573865 – volume: 13 start-page: 9425 issue: 8 year: 2021 ident: 1695_CR50 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c17535 – volume: 1 start-page: 66 year: 2021 ident: 1695_CR52 publication-title: Nat Rev Methods Prim doi: 10.1038/s43586-021-00065-8 – volume: 480 start-page: 709 year: 2019 ident: 1695_CR28 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2019.03.004 – volume: 39 start-page: 999 issue: 4 year: 2021 ident: 1695_CR32 publication-title: Chin J Chem doi: 10.1002/cjoc.202000584 – volume: 39 start-page: 31 issue: 1 year: 2019 ident: 1695_CR1 publication-title: Cell Mol Neurobiol doi: 10.1007/s10571-018-0632-3 – volume: 12 start-page: 7077 issue: 1 year: 2021 ident: 1695_CR13 publication-title: Nat Commun doi: 10.1038/s41467-021-27361-x – volume: 116 start-page: 5464 issue: 9 year: 2016 ident: 1695_CR25 publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00620 – volume: 144 start-page: 468 issue: 2 year: 2019 ident: 1695_CR60 publication-title: Analyst doi: 10.1039/C8AN01659C – volume: 13 start-page: 2577 issue: 11 year: 2020 ident: 1695_CR12 publication-title: Materials (Basel) doi: 10.3390/ma13112577 – volume: 221 start-page: 1542 year: 2015 ident: 1695_CR53 publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2015.07.086 – volume: 15 issue: 7 year: 2020 ident: 1695_CR62 publication-title: PLoS ONE doi: 10.1371/journal.pone.0235407 – volume: 136 start-page: 4070 issue: 19 year: 2011 ident: 1695_CR82 publication-title: Analyst doi: 10.1039/c1an15458c – volume: 130 start-page: 414 year: 2018 ident: 1695_CR3 publication-title: Pharmacol Res doi: 10.1016/j.phrs.2018.01.016 – volume: 25 start-page: 15 issue: 1 year: 2012 ident: 1695_CR22 publication-title: Chem Res Toxicol doi: 10.1021/tx200339h – volume: 7 start-page: 3405 issue: 11 year: 2007 ident: 1695_CR29 publication-title: Nano Lett doi: 10.1021/nl071792z – volume: 13 start-page: 1 issue: 24 year: 2020 ident: 1695_CR44 publication-title: Materials (Basel) doi: 10.3390/ma13245728 – volume: 11 start-page: 1543 issue: 1 year: 2020 ident: 1695_CR33 publication-title: Nat Commun doi: 10.1038/s41467-020-15330-9 – volume: 135 start-page: 1900 issue: 6 year: 2012 ident: 1695_CR78 publication-title: Brain doi: 10.1093/brain/aws055 – volume: 39 start-page: 399 issue: 4 year: 2021 ident: 1695_CR6 publication-title: Pharmacoeconomics doi: 10.1007/s40273-020-00998-0 – volume: 11 start-page: 179 issue: 6 year: 2021 ident: 1695_CR10 publication-title: Biosensors doi: 10.3390/bios11060179 – volume: 7 start-page: 260 year: 2013 ident: 1695_CR2 publication-title: Front Cell Neurosci doi: 10.3389/fncel.2013.00260 – volume: 173 year: 2021 ident: 1695_CR46 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2020.112798 – volume: 17 start-page: 939 issue: 11 year: 2018 ident: 1695_CR5 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(18)30295-3 – volume: 2 issue: 3 year: 2021 ident: 1695_CR43 publication-title: Cell Rep Phys Sci doi: 10.1016/j.xcrp.2021.100372 – volume: 2 start-page: 20200102 issue: 1 year: 2021 ident: 1695_CR11 publication-title: View doi: 10.1002/VIW.20200102 – volume: 88 issue: 1 year: 2013 ident: 1695_CR30 publication-title: Phys Rev E doi: 10.1103/PhysRevE.88.012802 – volume: 103 start-page: 1056 issue: 6 year: 2019 ident: 1695_CR76 publication-title: Neuron doi: 10.1016/j.neuron.2019.06.013 – volume: 4 start-page: 3287 issue: 2 year: 2019 ident: 1695_CR24 publication-title: ACS Omega doi: 10.1021/acsomega.8b03152 – volume: 16 year: 2022 ident: 1695_CR42 publication-title: Front Neurosci doi: 10.3389/fnins.2022.875656 – volume: 7 start-page: 3258 issue: 18 year: 2005 ident: 1695_CR49 publication-title: Phys Chem Chem Phys doi: 10.1039/b505903h – volume: 171 start-page: 16 year: 2021 ident: 1695_CR64 publication-title: Carbon N Y doi: 10.1016/j.carbon.2020.08.019 – volume: 5 start-page: 154 issue: 1 year: 2020 ident: 1695_CR31 publication-title: ACS Sens doi: 10.1021/acssensors.9b01939 – volume: 21 start-page: 10 issue: 2 year: 2019 ident: 1695_CR4 publication-title: Curr Psychiatry Rep doi: 10.1007/s11920-019-0997-0 – volume: 7 start-page: 399 year: 2019 ident: 1695_CR15 publication-title: Front Chem doi: 10.3389/fchem.2019.00399 – volume: 362 start-page: 319 issue: 6412 year: 2018 ident: 1695_CR47 publication-title: Science doi: 10.1126/science.aao6750 – volume: 21 start-page: 960 year: 2008 ident: 1695_CR79 publication-title: J Vis Exp – volume: 9 start-page: 4719 issue: 21 year: 2019 ident: 1695_CR8 publication-title: Appl Sci (Switzerland) – volume: 7 start-page: e105 issue: 2 year: 2022 ident: 1695_CR7 publication-title: Lancet Public Health doi: 10.1016/S2468-2667(21)00249-8 – volume: 70 start-page: 127 issue: 1 year: 2007 ident: 1695_CR68 publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2006.03.012 – volume: 148 start-page: 19 issue: 1 year: 2007 ident: 1695_CR48 publication-title: Eur Phys J Spec Top doi: 10.1140/epjst/e2007-00222-8 – volume: 88 start-page: 3608 issue: 7 year: 2016 ident: 1695_CR57 publication-title: Anal Chem doi: 10.1021/acs.analchem.5b04207 – volume: 2 start-page: 10 issue: 1 year: 2021 ident: 1695_CR39 publication-title: Commun Mater doi: 10.1038/s43246-020-00114-x – volume: 5 start-page: 2144 issue: 10 year: 2010 ident: 1695_CR19 publication-title: Chem Asian J doi: 10.1002/asia.201000252 – volume: 93 start-page: 4916 issue: 11 year: 2021 ident: 1695_CR65 publication-title: Anal Chem doi: 10.1021/acs.analchem.0c05191 – volume: 57 start-page: 1061 issue: 7 year: 2012 ident: 1695_CR23 publication-title: Prog Mater Sci doi: 10.1016/j.pmatsci.2012.03.002 – volume: 4 start-page: 4342 year: 2014 ident: 1695_CR41 publication-title: Sci Rep doi: 10.1038/srep04342 – volume: 15 start-page: 3171 issue: 2 year: 2021 ident: 1695_CR36 publication-title: ACS Nano doi: 10.1021/acsnano.0c09758 – volume: 24 start-page: 632 issue: 4 year: 2008 ident: 1695_CR55 publication-title: Biosens Bioelectron doi: 10.1016/j.bios.2008.06.011 – volume: 129 start-page: 146 issue: 1 year: 2018 ident: 1695_CR80 publication-title: J Neurosurg doi: 10.3171/2017.1.JNS161089 – volume: 146 start-page: 403 issue: 2 year: 2021 ident: 1695_CR20 publication-title: Analyst doi: 10.1039/D0AN01661F – volume: 27 start-page: 686 issue: 3 year: 2006 ident: 1695_CR71 publication-title: Electrophoresis doi: 10.1002/elps.200500457 – volume: 16 start-page: 1902820 issue: 15 year: 2020 ident: 1695_CR17 publication-title: Small doi: 10.1002/smll.201902820 – volume: 10 start-page: 4042 issue: 20 year: 2014 ident: 1695_CR27 publication-title: Small doi: 10.1002/smll.201400463 – volume: 90 start-page: 35 issue: 1 year: 2013 ident: 1695_CR70 publication-title: Brain Res Bull. doi: 10.1016/j.brainresbull.2012.09.009 – volume: 92 start-page: 7746 issue: 11 year: 2020 ident: 1695_CR63 publication-title: Anal Chem doi: 10.1021/acs.analchem.0c00835 |
SSID | ssj0000494603 ssj0022424 |
Score | 2.4635649 |
Snippet | Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and... Abstract Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved... |
SourceID | doaj pubmedcentral proquest gale crossref rcaap |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Alzheimer's disease Analytical chemistry Animals Aptamers Aptasensor Arrays Biological properties Biological samples Biosensing Techniques Biosensors Brain Brain Diseases Brain research Cerebrospinal fluid Chemical vapor deposition Deoxyribonucleic acid Design Design and construction Diagnosis Disorders DNA Dopamine Electric fields Electrodes Electrolytes Engenharia e Tecnologia Field-effect transistor Field-effect transistors Graphene Graphite Health aspects Integrated circuits Ionic strength LOD Low concentrations Measurement Mice Movement disorders Nanotecnologia Neurodegenerative diseases Neurosciences Neurotransmitters Nucleic acid aptamers Nucleotide Parkinson's disease Physiological aspects Physiology Reproducibility Robustness Science & Technology Semiconductor chips Sensitivity Sensor arrays Sensors Target detection Transistors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kvehBfGJ0lVYEDxI2SXcn3cdVXFZBwcfA3prqR3RhzQxJ5uC_t6qTGSYs6MVruhKSSnVVfUnVV4y9Em3TuFioPBrZ5lJpyF10kHtROHCqxRBP_c6fPtfnK_nxQl0cjPqimrCJHnhS3IlTzgMUtS4RbjdFC7GEJrRQCpoZ7z15X4x5OzA1Qy1qeti1yOj6ZMCophA2V1SGUFNP8iIMJbb-6z75ep3kzR7vZXMQgM7usjtz5shPpzu-x27E7j67fcAn-IB9WV3hFQaqSScvxgMi4l-4zEMcU8lVx-m7K08s1ejkOGzGJL7ueaosHClyJeIQDn0Pv4eHbHX2_vu783yemZB7ZcyYS688UXaJUEKrquAAExAAVB1UrdHeSd_Q2FswwUURYqx0UEUwrYwBhaR4xI66dRcfM-4NZlfCNz4ELbWvMbNBOBkKXwgpgqkyVu5UaP1MKE5zLa5sAha6tpPaLardJrXbImNv9udsJjqNv0q_pTezlyQq7HQADcTOBmL_ZSAZe0nv1RLZRUfVND9gOwz2w7ev9hSTN405ZiMz9noWatf4DB7m5gTUBPFjLSSPF5K4G_1yeWc-dvYGg60aper0CzljL_bLdCZVuHVxvSUZSf4RnX7GmoXZLR5_udJd_kyM4KY2Ukm8epYM1FKFOIKLwSJ6rCzmcLV88j90-ZTdqmgTlWVeyWN2NPbb-AyTstE9T_vvD7o_NR4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8RShBQWExAFFTRw_4hMqiKoggcRjpb1ZfqVFKsk2yR7498x4vdtGlXqNJ1EyHs_D-eYzIW_rVkobSl4ExdqC8cYUNlhTuLq0xvIWQjz2O3_7Lk4X7OuSL9OG25hglVufGB217x3ukR9RybmIv-E-rC4LPDUK_66mIzTukn2kLkNIl1xeFVzY-rBtlGnE0QixjUPxTBGMILAzeRaMImf_Tc98Ey25PzhjVtfC0MlD8iDlj_nxZsIfkTuhe0zuX2MVfEJ-LC7gCSMi09GX5R7q4r8wnPswReBVl-Puax65qsHV5WY1RfF-yCO-cML4FelDcjMM5t_4lCxOPv_-dFqkkxMKx5WaCua4Q-Ku2lem5dRbA2mIMYpJQ1vVOMucxMNvjfI21D4E2nheetWy4EGI1c_IXtd34TnJnYIcq3bSed-wxgnIb6Co9KUra1Z7RTNSbVWoXaIVx9MtLnQsLxqhN2rXoHYd1a7LjLzf3bPakGrcKv0RZ2YniYTY8UI_nOm0vrTlFialFA3YAZNla0JlpG9NBekrF85l5A3Oq0bKiw4xNWdmPY76y6-f-hhSuAYyTcky8i4JtT18gzOpRQE0gSxZM8nDmSSsSTcf3pqPTj5h1FcWnJHXu2G8E3FuXejXKMPQS4Lrz4icmd3s8-cj3Z_zyAuuhGKcwdOzaKAaceJQYowaakiqIZMT7MXtL3ZA7lFcHlVVUHZI9qZhHV5C0jXZV3Fl_QdYJSwF priority: 102 providerName: ProQuest |
Title | Ultrasensitive dopamine detection with graphene aptasensor multitransistor arrays |
URI | http://hdl.handle.net/1822/81264 https://www.proquest.com/docview/2755646452 https://www.proquest.com/docview/2740510088 https://pubmed.ncbi.nlm.nih.gov/PMC9694542 https://doaj.org/article/b5bcaa068119470fae1a7dfa131056cc |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_aHkh9ED9paj2iCD5INNnsR_Ig0pOeVWjR04PDl2Wzu6nCmbsmObD_vTN7uaOhxQdf8pCdXdidmZ2ZZOY3hLxMSykLF_PI5ayMGM90VLhCRyaNC13wEkw81jufnYvTKfs847Mdsml31B1gc2toh_2kpvX8zZ_Lq_eg8O-8wmfibQM2i0NQTDHJQGDF8S4ZgGWSqKhnbPtXgWIpxKZw5tZ5--ROCg45EzTt2SkP53_z0r6ZSDmojdbLaxZqfJ_c61zL8HgtCw_IjqsekrvXAAcfka_TOazQYNI6XnOhhZD5NwyH1rU-J6sK8cNs6GGs4RYM9bL15Is69KmHLZo2jywS6rrWV81jMh2ffP9wGnVNFSLD87yNmOEGMb1Sm-iSU1to8FC0zpnUtMwzUzAjsS-uzm3hUusczSyPbV4yZ4GIpU_IXrWo3AEJTQ7uV2qksTZjmRHg-kC8aWMTpyy1OQ1IsjlCZTrEcWx8MVc-8siEWnNAAQeU54CKA_J6O2e5xtv4J_UIObOlRKxs_2JRX6hO9VTBC2BKLLIkgQ3EpXaJlrbUCXi2XBgTkBfIV4VoGBWm21zoVdOoT98m6hi8uwycUMkC8qojKhewB6O76gU4CQTQ6lEe9ShBXU1_eCM-aiPtikrOhf_HHJDn22GciSlwlVuskIbhBQpWISCyJ3a97fdHql8_PWR4LnLGGaweeAFVmEIO0UejILykCpw8wQ7_e9WnZJ-iEiVJRNkR2WvrlXsGrlpbDMmunEl4ZuOPQzIYnZx_mQz9Z48hmlA-9PoJz8nox19xBULK |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiKcIFAgIxAFFTRw7iQ8IlUe1Sx8S0JV6c_1KQSrJkmSF-qf4jcx4k22jSr31up5Y6_E8k5lvCHmdlnmuXcwjJ1gZMV6oSDutIpPGWmlegovHfuf9g2wyY1-P-NEa-Tf0wmBZ5WATvaG2tcF35Fs05zzzn-E-zP9EODUKv64OIzSWYrHrzv5Cyta-n36G-31D6c6Xw0-TqJ8qEBkuRBcxww2CWqU2USWnVitw0UoJlitaisJoZnIcDKuE1S61ztHC8tiKkjkLRCyFfW-QDXC8MWpUfnSe4GGrxdCYU2RbLfhSDsk6xeKHDDuhR87Pzwi47AkuV2duNEap-QW3t3OX3Onj1XB7KWD3yJqr7pPbF1AMH5Bvs1PYocVKeLSdoYU8_Dcsh9Z1vtCrCvFtb-ixscG0hmreefK6CX09Y4f-0sOVhKpp1Fn7kMyuhaePyHpVV-4xCY2AmC41ubG2YIXJIJ6CJNbGJk5ZagUNSDKwUJoexhynaZxKn84UmVyyXQLbpWe7jAPybvXMfAnicSX1R7yZFSUCcPsf6uZE9vosNddwKXFWJAkcIC6VS1RuS5WAWPDMmIC8wnuVCLFRYQ3PiVq0rZz--C63IWQsILLNWUDe9kRlDWcwqm-JAE4gKteIcnNECTbAjJcH8ZG9DWrlucYE5OVqGZ_EurrK1QukYWiVwdUEJB-J3ej445Xq10-PQy4ywTiD3QMvoBLr0iGlaSXkrFRC5JixJ1f_sRfk5uRwf0_uTQ92n5JbFFUlSSLKNsl61yzcMwj4Ov3ca1lIjq9brf8D29tp4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasensitive+dopamine+detection+with+graphene+aptasensor+multitransistor+arrays&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Abrantes%2C+Mafalda&rft.au=Rodrigues%2C+Diana&rft.au=Domingues%2C+Telma&rft.au=Nemala%2C+Siva+S.&rft.date=2022-11-24&rft.pub=BioMed+Central&rft.eissn=1477-3155&rft.volume=20&rft_id=info:doi/10.1186%2Fs12951-022-01695-0&rft_id=info%3Apmid%2F36424623&rft.externalDocID=PMC9694542 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon |