Ultrasensitive dopamine detection with graphene aptasensor multitransistor arrays

Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomaterials and nanobiotechnology Vol. 20; no. 1; pp. 1 - 15
Main Authors Abrantes, Mafalda, Rodrigues, Diana, Domingues, Telma, Nemala, Siva S, Monteiro, Patricia, Borme, Jérôme, Alpuim, P., Jacinto, Luis
Format Journal Article
LanguageEnglish
Published London Springer Nature 24.11.2022
BioMed Central Ltd
BioMed Central
BMC
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10-18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10-8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson's Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis. This work was funded by: "la Caixa" Banking Foundation under grant agree ment LCF/PR/HR21-00410; national funds, through the Foundation for Science and Technology (FCT)—projects UIDB/50026/2020, UIDP/50026/2020, and UIDB/04650/2020; by FCT project PTDC/MED-NEU/28073/2017 (POCI-01-307 0145-FEDER-028073); by The Branco Weiss fellowship—Society in Science (ETH Zurich); and by FCT Ph.D. fellowships SFRH/BD/14536/2022 (M.A.), SFRH/BD/08181/2020 (T.D.), and PD/BD/127823/2016 (D.R.).
AbstractList Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10 –18 ) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10 –8 ), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson’s Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis.
Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 x 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10.sup.-18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 [micro]M (10.sup.-8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 [micro]L) of cerebral spinal fluid samples obtained from a mouse model of Parkinson's Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis.
Abstract Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10–18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10–8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson’s Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis.
Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10-18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10-8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson's Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis.Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10-18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10-8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson's Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis.
Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10–18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10–8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson’s Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis.
Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 × 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10-18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 µM (10-8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 µL) of cerebral spinal fluid samples obtained from a mouse model of Parkinson's Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis. This work was funded by: "la Caixa" Banking Foundation under grant agree ment LCF/PR/HR21-00410; national funds, through the Foundation for Science and Technology (FCT)—projects UIDB/50026/2020, UIDP/50026/2020, and UIDB/04650/2020; by FCT project PTDC/MED-NEU/28073/2017 (POCI-01-307 0145-FEDER-028073); by The Branco Weiss fellowship—Society in Science (ETH Zurich); and by FCT Ph.D. fellowships SFRH/BD/14536/2022 (M.A.), SFRH/BD/08181/2020 (T.D.), and PD/BD/127823/2016 (D.R.).
Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and therapeutics. However, neurotransmitter sensors for real-world applications must reliably detect low concentrations of target analytes from small volume working samples. Herein, a platform for robust and ultrasensitive detection of dopamine, an essential neurotransmitter that underlies several brain disorders, based on graphene multitransistor arrays (gMTAs) functionalized with a selective DNA aptamer is presented. High-yield scalable methodologies optimized at the wafer level were employed to integrate multiple graphene transistors on small-size chips (4.5 x 4.5 mm). The multiple sensor array configuration permits independent and simultaneous replicate measurements of the same sample that produce robust average data, reducing sources of measurement variability. This procedure allowed sensitive and reproducible dopamine detection in ultra-low concentrations from small volume samples across physiological buffers and high ionic strength complex biological samples. The obtained limit-of-detection was 1 aM (10.sup.-18) with dynamic detection ranges spanning 10 orders of magnitude up to 100 [micro]M (10.sup.-8), and a 22 mV/decade peak sensitivity in artificial cerebral spinal fluid. Dopamine detection in dopamine-depleted brain homogenates spiked with dopamine was also possible with a LOD of 1 aM, overcoming sensitivity losses typically observed in ion-sensitive sensors in complex biological samples. Furthermore, we show that our gMTAs platform can detect minimal changes in dopamine concentrations in small working volume samples (2 [micro]L) of cerebral spinal fluid samples obtained from a mouse model of Parkinson's Disease. The platform presented in this work can lead the way to graphene-based neurotransmitter sensors suitable for real-world academic and pre-clinical pharmaceutical research as well as clinical diagnosis. Keywords: Graphene, Field-effect transistor, Aptasensor, Dopamine, LOD, Parkinson's disease
ArticleNumber 495
Audience Academic
Author Domingues, Telma
Jacinto, Luis
Alpuim, P.
Abrantes, Mafalda
Monteiro, Patricia
Rodrigues, Diana
Nemala, Siva S
Borme, Jérôme
Author_xml – sequence: 1
  fullname: Abrantes, Mafalda
– sequence: 2
  fullname: Rodrigues, Diana
– sequence: 3
  fullname: Domingues, Telma
– sequence: 4
  fullname: Nemala, Siva S
– sequence: 5
  fullname: Monteiro, Patricia
– sequence: 6
  fullname: Borme, Jérôme
– sequence: 7
  fullname: Alpuim, P.
– sequence: 8
  fullname: Jacinto, Luis
BookMark eNp9kktv1DAUhSNURIfSP8BqJDawSPEziTdIVcVjpEqIR9fWje3MeJTEwXYG-u-5M1OBpkI4CzvX3zmJr8_z4mwMoyuKl5RcUdpUbxNlStKSMFYSWilZkifFglHZlDUR_KxYUFHXJadSnheXKW0JDqFERfiz4pxXgomK8UXx5a7PEZIbk89-55Y2TDD4ERcuO5N9GJc_fd4s1xGmjcM6TPmAh7gc5j57VKM2ZXyHGOE-vSiedtAnd_kwXxR3H95_v_lU3n7-uLq5vi2NVCqXwkhDCWXcUugksy0oxQGUqIF1qjGtMDXhtQRlW8etc6yxkljVCWcREvyiWB19bYCtnqIfIN7rAF4fCiGuNcTsTe90K1sDQKqGUpSSDhyF2nZAOSWyMga93h29prkdnDVuxGP1J6anO6Pf6HXYaVUpIQVDg9cPBjH8mF3KevDJuL6H0YU5aVYLIikhTYPoq0foNsxxxFYhJWUlKiHZX2oNeAA_dgG_a_am-rpmdUOUPPTg6h8UPtYN3mBgOo_1E8GbEwEy2f3Ka5hT0qtvX09ZdmRNDClF1_3pByV6n0F9zKDGDOpDBjVBUfNIZHyGfY7wz3z_f-nyKI14WZOOboexgqRpg1BDWSX4by2L61w
CitedBy_id crossref_primary_10_3390_molecules29204859
crossref_primary_10_1016_j_jtice_2023_104814
crossref_primary_10_3390_bios13040413
crossref_primary_10_1016_j_nantod_2022_101729
crossref_primary_10_3390_s25061729
crossref_primary_10_1021_acssensors_4c03314
crossref_primary_10_1002_admi_202400617
crossref_primary_10_3390_ijms251910522
crossref_primary_10_1039_D3MA00623A
crossref_primary_10_1002_adhm_202303872
crossref_primary_10_1021_acsanm_3c05309
crossref_primary_10_3390_app142210109
crossref_primary_10_1039_D4CP00432A
crossref_primary_10_1002_advs_202303654
crossref_primary_10_3390_s24020575
crossref_primary_10_1016_j_device_2024_100284
Cites_doi 10.1111/j.1476-5381.2011.01426.x
10.1038/s41598-020-60715-x
10.1021/acsami.8b01063
10.1021/ac401894w
10.1021/acssensors.8b00344
10.1016/S0014-2999(02)02647-X
10.1088/1361-6463/aadcca
10.1016/j.bios.2021.113340
10.1007/s00604-014-1418-z
10.1016/j.isci.2020.101469
10.2174/1570159X13666141223223657
10.1016/j.snb.2010.06.070
10.1088/2515-7639/ab8270
10.1111/j.1600-0404.1995.tb01023.x
10.1016/j.nantod.2010.12.001
10.1021/acsomega.9b01629
10.1007/s00604-018-3143-5
10.1021/acs.nanolett.8b04253
10.1016/j.saa.2021.120202
10.1038/s41531-019-0104-6
10.1016/j.mee.2017.12.015
10.1007/s00213-015-4118-4
10.1016/j.matpr.2020.07.678
10.1002/adhm.201300221
10.1016/j.snb.2019.127348
10.1109/NANO.2015.7388878
10.1088/0953-8984/28/8/085302
10.3389/fchem.2020.573865
10.1021/acsami.0c17535
10.1038/s43586-021-00065-8
10.1016/j.apsusc.2019.03.004
10.1002/cjoc.202000584
10.1007/s10571-018-0632-3
10.1038/s41467-021-27361-x
10.1021/acs.chemrev.5b00620
10.1039/C8AN01659C
10.3390/ma13112577
10.1016/j.snb.2015.07.086
10.1371/journal.pone.0235407
10.1039/c1an15458c
10.1016/j.phrs.2018.01.016
10.1021/tx200339h
10.1021/nl071792z
10.3390/ma13245728
10.1038/s41467-020-15330-9
10.1093/brain/aws055
10.1007/s40273-020-00998-0
10.3390/bios11060179
10.3389/fncel.2013.00260
10.1016/j.bios.2020.112798
10.1016/S1474-4422(18)30295-3
10.1016/j.xcrp.2021.100372
10.1002/VIW.20200102
10.1103/PhysRevE.88.012802
10.1016/j.neuron.2019.06.013
10.1021/acsomega.8b03152
10.3389/fnins.2022.875656
10.1039/b505903h
10.1016/j.carbon.2020.08.019
10.1021/acssensors.9b01939
10.1007/s11920-019-0997-0
10.3389/fchem.2019.00399
10.1126/science.aao6750
10.1016/S2468-2667(21)00249-8
10.1016/j.bioelechem.2006.03.012
10.1140/epjst/e2007-00222-8
10.1021/acs.analchem.5b04207
10.1038/s43246-020-00114-x
10.1002/asia.201000252
10.1021/acs.analchem.0c05191
10.1016/j.pmatsci.2012.03.002
10.1038/srep04342
10.1021/acsnano.0c09758
10.1016/j.bios.2008.06.011
10.3171/2017.1.JNS161089
10.1039/D0AN01661F
10.1002/elps.200500457
10.1002/smll.201902820
10.1002/smll.201400463
10.1016/j.brainresbull.2012.09.009
10.1021/acs.analchem.0c00835
ContentType Journal Article
Copyright COPYRIGHT 2022 BioMed Central Ltd.
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
The Author(s) 2022
Copyright_xml – notice: COPYRIGHT 2022 BioMed Central Ltd.
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
– notice: The Author(s) 2022
DBID RCLKO
AAYXX
CITATION
ISR
3V.
7QO
7TB
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s12951-022-01695-0
DatabaseName RCAAP open access repository
CrossRef
Science (Gale In Context)
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Mechanical & Transportation Engineering Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic

Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DissertationSchool Universidade do Minho
EISSN 2158-7043
1477-3155
EndPage 15
ExternalDocumentID oai_doaj_org_article_b5bcaa068119470fae1a7dfa131056cc
PMC9694542
A727809574
10_1186_s12951_022_01695_0
1822_81264
GeographicLocations Portugal
GeographicLocations_xml – name: Portugal
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: LCF/PR/HR21-00410
– fundername: ;
  grantid: UIDB/50026/2020; UIDP/50026/2020; PTDC/MED-NEU/28073/2017 (POCI-01-307 0145-FEDER-028073)
GroupedDBID AAZHT
ACGFO
AHWXS
ALMA_UNASSIGNED_HOLDINGS
GX1
HH5
OK1
P2P
RCLKO
RNS
---
0R~
29L
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABJCF
ABUWG
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADDVE
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALIPV
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EBLON
EBS
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
I-F
IAO
IHR
INH
INR
ISR
ITC
ITG
ITH
KB.
KQ8
LK8
M1P
M48
M7P
MM.
M~E
O5R
O5S
OVT
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
ROL
RPM
RSV
RVI
SCM
SOJ
SV3
TR2
TUS
UKHRP
WOQ
WOW
XSB
~8M
PMFND
3V.
7QO
7TB
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c599t-4c5c10123d1af52dba993aa947a2f98cb4c70375a9dbe3dee28d50d9f4ed94743
IEDL.DBID M48
ISSN 1477-3155
IngestDate Wed Aug 27 01:21:10 EDT 2025
Thu Aug 21 18:39:17 EDT 2025
Mon Jul 21 10:51:34 EDT 2025
Fri Jul 25 19:08:36 EDT 2025
Tue Jun 17 21:15:59 EDT 2025
Tue Jun 10 20:19:58 EDT 2025
Fri Jun 27 03:54:18 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Tue Jul 01 01:26:51 EDT 2025
Fri Aug 01 16:35:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c599t-4c5c10123d1af52dba993aa947a2f98cb4c70375a9dbe3dee28d50d9f4ed94743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12951-022-01695-0
PMID 36424623
PQID 2755646452
PQPubID 44676
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_b5bcaa068119470fae1a7dfa131056cc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9694542
proquest_miscellaneous_2740510088
proquest_journals_2755646452
gale_infotracmisc_A727809574
gale_infotracacademiconefile_A727809574
gale_incontextgauss_ISR_A727809574
crossref_primary_10_1186_s12951_022_01695_0
crossref_citationtrail_10_1186_s12951_022_01695_0
rcaap_revistas_1822_81264
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-24
PublicationDateYYYYMMDD 2022-11-24
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of biomaterials and nanobiotechnology
PublicationYear 2022
Publisher Springer Nature
BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: Springer Nature
– name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References E Eldrup (1695_CR77) 1995; 92
SD Niyonambaza (1695_CR8) 2019; 9
S Sheibani (1695_CR39) 2021; 2
Y Liu (1695_CR53) 2015; 221
H Li (1695_CR64) 2021; 171
S Duty (1695_CR72) 2011; 164
N Nakatsuka (1695_CR50) 2021; 13
1695_CR45
K Jayant (1695_CR30) 2013; 88
PD Cabral (1695_CR44) 2020; 13
N Nakatsuka (1695_CR47) 2018; 362
A Vázquez-Guardado (1695_CR61) 2019; 19
RR Metzger (1695_CR74) 2002; 456
DS Goldstein (1695_CR78) 2012; 135
T Sakata (1695_CR40) 2019; 4
F Yan (1695_CR21) 2014; 3
W Wang (1695_CR54) 2015; 182
MF Craciun (1695_CR16) 2011; 6
E Stern (1695_CR29) 2007; 7
N Liu (1695_CR67) 2021; 188
B Zhan (1695_CR27) 2014; 10
SE Davis (1695_CR62) 2020; 15
F Chen (1695_CR19) 2010; 5
MA Ali (1695_CR13) 2021; 12
L Liu (1695_CR79) 2008; 21
F Torricelli (1695_CR52) 2021; 1
W Wu (1695_CR34) 2010; 150
X Liu (1695_CR46) 2021; 173
JM May (1695_CR70) 2013; 90
R Campos (1695_CR38) 2018; 189
J Chen (1695_CR59) 2019; 186
J Rehm (1695_CR4) 2019; 21
J Huang (1695_CR55) 2008; 24
M D’Amelio (1695_CR3) 2018; 130
R Bueno (1695_CR24) 2019; 4
CM De Freitas (1695_CR75) 2016; 233
R Campos (1695_CR26) 2019; 4
M Senel (1695_CR63) 2020; 92
A Chhibber (1695_CR6) 2021; 39
V Georgakilas (1695_CR25) 2016; 116
FB Kamal Eddin (1695_CR66) 2021; 263
I Álvarez-Martos (1695_CR57) 2016; 88
K Xu (1695_CR51) 2020; 3
Y Liu (1695_CR37) 2020; 8
Y Wang (1695_CR58) 2020; 305
BV Krsihna (1695_CR18) 2021; 45
IM Bhattacharyya (1695_CR31) 2020; 5
L Zhang (1695_CR81) 2013; 85
H Huang (1695_CR15) 2019; 7
Z Jinjin (1695_CR82) 2011; 136
NCS Vieira (1695_CR35) 2016; 28
C Vericat (1695_CR49) 2005; 7
T Hianik (1695_CR68) 2007; 70
SJ Park (1695_CR41) 2014; 4
KM Money (1695_CR2) 2013; 7
T Kuila (1695_CR23) 2012; 57
S Xu (1695_CR43) 2021; 2
Q Liu (1695_CR69) 2020; 23
X Zhang (1695_CR17) 2020; 16
Y Liang (1695_CR12) 2020; 13
X Xie (1695_CR65) 2021; 93
TJ Echtermeyer (1695_CR48) 2007; 148
Z Tang (1695_CR60) 2019; 144
K Zhang (1695_CR83) 2018; 10
MO Klein (1695_CR1) 2019; 39
D Gong (1695_CR80) 2018; 129
E Nichols (1695_CR7) 2022; 7
F Tessier (1695_CR71) 2006; 27
JW McKinley (1695_CR76) 2019; 103
V Sessi (1695_CR42) 2022; 16
M Donnelly (1695_CR14) 2018; 51
MT Hwang (1695_CR33) 2020; 11
X Liu (1695_CR11) 2021; 2
VC Sanchez (1695_CR22) 2012; 25
V Castro (1695_CR9) 2014; 12
S Lakard (1695_CR10) 2021; 11
E Fernandes (1695_CR28) 2019; 480
E Ray Dorsey (1695_CR5) 2018; 17
C Coletti (1695_CR36) 2021; 15
A Béraud (1695_CR20) 2021; 146
Y Buhidma (1695_CR73) 2020; 6
SJ Park (1695_CR56) 2020; 10
Z Zheng (1695_CR32) 2021; 39
References_xml – volume: 164
  start-page: 1357
  issue: 4
  year: 2011
  ident: 1695_CR72
  publication-title: Br J Pharmacol
  doi: 10.1111/j.1476-5381.2011.01426.x
– volume: 10
  start-page: 3772
  issue: 1
  year: 2020
  ident: 1695_CR56
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-60715-x
– volume: 10
  start-page: 15388
  issue: 18
  year: 2018
  ident: 1695_CR83
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b01063
– volume: 85
  start-page: 8001
  issue: 16
  year: 2013
  ident: 1695_CR81
  publication-title: Anal Chem
  doi: 10.1021/ac401894w
– volume: 4
  start-page: 286
  issue: 2
  year: 2019
  ident: 1695_CR26
  publication-title: ACS Sensors
  doi: 10.1021/acssensors.8b00344
– volume: 456
  start-page: 39
  issue: 1–3
  year: 2002
  ident: 1695_CR74
  publication-title: Eur J Pharmacol
  doi: 10.1016/S0014-2999(02)02647-X
– volume: 51
  issue: 49
  year: 2018
  ident: 1695_CR14
  publication-title: J Phys D Appl Phys
  doi: 10.1088/1361-6463/aadcca
– volume: 188
  year: 2021
  ident: 1695_CR67
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2021.113340
– volume: 182
  start-page: 1123
  issue: 5–6
  year: 2015
  ident: 1695_CR54
  publication-title: Microchim Acta
  doi: 10.1007/s00604-014-1418-z
– volume: 23
  start-page: 101469
  issue: 9
  year: 2020
  ident: 1695_CR69
  publication-title: iScience.
  doi: 10.1016/j.isci.2020.101469
– volume: 12
  start-page: 490
  issue: 6
  year: 2014
  ident: 1695_CR9
  publication-title: Curr Neuropharmacol
  doi: 10.2174/1570159X13666141223223657
– volume: 150
  start-page: 296
  issue: 1
  year: 2010
  ident: 1695_CR34
  publication-title: Sensors Actuators B Chem
  doi: 10.1016/j.snb.2010.06.070
– volume: 3
  issue: 3
  year: 2020
  ident: 1695_CR51
  publication-title: J Phys Mater
  doi: 10.1088/2515-7639/ab8270
– volume: 92
  start-page: 116
  issue: 2
  year: 1995
  ident: 1695_CR77
  publication-title: Acta Neurol Scand
  doi: 10.1111/j.1600-0404.1995.tb01023.x
– volume: 6
  start-page: 42
  issue: 1
  year: 2011
  ident: 1695_CR16
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2010.12.001
– volume: 4
  start-page: 11852
  issue: 7
  year: 2019
  ident: 1695_CR40
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01629
– volume: 186
  start-page: 58
  issue: 2
  year: 2019
  ident: 1695_CR59
  publication-title: Microchim Acta
  doi: 10.1007/s00604-018-3143-5
– volume: 19
  start-page: 449
  issue: 1
  year: 2019
  ident: 1695_CR61
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.8b04253
– volume: 263
  start-page: 120202
  year: 2021
  ident: 1695_CR66
  publication-title: Spectrochim Acta Part A Mol Biomol Spectrosc.
  doi: 10.1016/j.saa.2021.120202
– volume: 6
  start-page: 1
  year: 2020
  ident: 1695_CR73
  publication-title: NPJ Parkinsons Dis
  doi: 10.1038/s41531-019-0104-6
– volume: 189
  start-page: 85
  year: 2018
  ident: 1695_CR38
  publication-title: Microelectron Eng
  doi: 10.1016/j.mee.2017.12.015
– volume: 233
  start-page: 457
  issue: 3
  year: 2016
  ident: 1695_CR75
  publication-title: Psychopharmacology
  doi: 10.1007/s00213-015-4118-4
– volume: 45
  start-page: 1524
  year: 2021
  ident: 1695_CR18
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2020.07.678
– volume: 3
  start-page: 313
  issue: 3
  year: 2014
  ident: 1695_CR21
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201300221
– volume: 305
  year: 2020
  ident: 1695_CR58
  publication-title: Sensors Actuators B Chem
  doi: 10.1016/j.snb.2019.127348
– ident: 1695_CR45
  doi: 10.1109/NANO.2015.7388878
– volume: 28
  issue: 8
  year: 2016
  ident: 1695_CR35
  publication-title: J Phys Condens Matter
  doi: 10.1088/0953-8984/28/8/085302
– volume: 8
  year: 2020
  ident: 1695_CR37
  publication-title: Front Chem
  doi: 10.3389/fchem.2020.573865
– volume: 13
  start-page: 9425
  issue: 8
  year: 2021
  ident: 1695_CR50
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c17535
– volume: 1
  start-page: 66
  year: 2021
  ident: 1695_CR52
  publication-title: Nat Rev Methods Prim
  doi: 10.1038/s43586-021-00065-8
– volume: 480
  start-page: 709
  year: 2019
  ident: 1695_CR28
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2019.03.004
– volume: 39
  start-page: 999
  issue: 4
  year: 2021
  ident: 1695_CR32
  publication-title: Chin J Chem
  doi: 10.1002/cjoc.202000584
– volume: 39
  start-page: 31
  issue: 1
  year: 2019
  ident: 1695_CR1
  publication-title: Cell Mol Neurobiol
  doi: 10.1007/s10571-018-0632-3
– volume: 12
  start-page: 7077
  issue: 1
  year: 2021
  ident: 1695_CR13
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-27361-x
– volume: 116
  start-page: 5464
  issue: 9
  year: 2016
  ident: 1695_CR25
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00620
– volume: 144
  start-page: 468
  issue: 2
  year: 2019
  ident: 1695_CR60
  publication-title: Analyst
  doi: 10.1039/C8AN01659C
– volume: 13
  start-page: 2577
  issue: 11
  year: 2020
  ident: 1695_CR12
  publication-title: Materials (Basel)
  doi: 10.3390/ma13112577
– volume: 221
  start-page: 1542
  year: 2015
  ident: 1695_CR53
  publication-title: Sensors Actuators B Chem
  doi: 10.1016/j.snb.2015.07.086
– volume: 15
  issue: 7
  year: 2020
  ident: 1695_CR62
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0235407
– volume: 136
  start-page: 4070
  issue: 19
  year: 2011
  ident: 1695_CR82
  publication-title: Analyst
  doi: 10.1039/c1an15458c
– volume: 130
  start-page: 414
  year: 2018
  ident: 1695_CR3
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2018.01.016
– volume: 25
  start-page: 15
  issue: 1
  year: 2012
  ident: 1695_CR22
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx200339h
– volume: 7
  start-page: 3405
  issue: 11
  year: 2007
  ident: 1695_CR29
  publication-title: Nano Lett
  doi: 10.1021/nl071792z
– volume: 13
  start-page: 1
  issue: 24
  year: 2020
  ident: 1695_CR44
  publication-title: Materials (Basel)
  doi: 10.3390/ma13245728
– volume: 11
  start-page: 1543
  issue: 1
  year: 2020
  ident: 1695_CR33
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-15330-9
– volume: 135
  start-page: 1900
  issue: 6
  year: 2012
  ident: 1695_CR78
  publication-title: Brain
  doi: 10.1093/brain/aws055
– volume: 39
  start-page: 399
  issue: 4
  year: 2021
  ident: 1695_CR6
  publication-title: Pharmacoeconomics
  doi: 10.1007/s40273-020-00998-0
– volume: 11
  start-page: 179
  issue: 6
  year: 2021
  ident: 1695_CR10
  publication-title: Biosensors
  doi: 10.3390/bios11060179
– volume: 7
  start-page: 260
  year: 2013
  ident: 1695_CR2
  publication-title: Front Cell Neurosci
  doi: 10.3389/fncel.2013.00260
– volume: 173
  year: 2021
  ident: 1695_CR46
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2020.112798
– volume: 17
  start-page: 939
  issue: 11
  year: 2018
  ident: 1695_CR5
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(18)30295-3
– volume: 2
  issue: 3
  year: 2021
  ident: 1695_CR43
  publication-title: Cell Rep Phys Sci
  doi: 10.1016/j.xcrp.2021.100372
– volume: 2
  start-page: 20200102
  issue: 1
  year: 2021
  ident: 1695_CR11
  publication-title: View
  doi: 10.1002/VIW.20200102
– volume: 88
  issue: 1
  year: 2013
  ident: 1695_CR30
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.88.012802
– volume: 103
  start-page: 1056
  issue: 6
  year: 2019
  ident: 1695_CR76
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.06.013
– volume: 4
  start-page: 3287
  issue: 2
  year: 2019
  ident: 1695_CR24
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b03152
– volume: 16
  year: 2022
  ident: 1695_CR42
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2022.875656
– volume: 7
  start-page: 3258
  issue: 18
  year: 2005
  ident: 1695_CR49
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b505903h
– volume: 171
  start-page: 16
  year: 2021
  ident: 1695_CR64
  publication-title: Carbon N Y
  doi: 10.1016/j.carbon.2020.08.019
– volume: 5
  start-page: 154
  issue: 1
  year: 2020
  ident: 1695_CR31
  publication-title: ACS Sens
  doi: 10.1021/acssensors.9b01939
– volume: 21
  start-page: 10
  issue: 2
  year: 2019
  ident: 1695_CR4
  publication-title: Curr Psychiatry Rep
  doi: 10.1007/s11920-019-0997-0
– volume: 7
  start-page: 399
  year: 2019
  ident: 1695_CR15
  publication-title: Front Chem
  doi: 10.3389/fchem.2019.00399
– volume: 362
  start-page: 319
  issue: 6412
  year: 2018
  ident: 1695_CR47
  publication-title: Science
  doi: 10.1126/science.aao6750
– volume: 21
  start-page: 960
  year: 2008
  ident: 1695_CR79
  publication-title: J Vis Exp
– volume: 9
  start-page: 4719
  issue: 21
  year: 2019
  ident: 1695_CR8
  publication-title: Appl Sci (Switzerland)
– volume: 7
  start-page: e105
  issue: 2
  year: 2022
  ident: 1695_CR7
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(21)00249-8
– volume: 70
  start-page: 127
  issue: 1
  year: 2007
  ident: 1695_CR68
  publication-title: Bioelectrochemistry
  doi: 10.1016/j.bioelechem.2006.03.012
– volume: 148
  start-page: 19
  issue: 1
  year: 2007
  ident: 1695_CR48
  publication-title: Eur Phys J Spec Top
  doi: 10.1140/epjst/e2007-00222-8
– volume: 88
  start-page: 3608
  issue: 7
  year: 2016
  ident: 1695_CR57
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.5b04207
– volume: 2
  start-page: 10
  issue: 1
  year: 2021
  ident: 1695_CR39
  publication-title: Commun Mater
  doi: 10.1038/s43246-020-00114-x
– volume: 5
  start-page: 2144
  issue: 10
  year: 2010
  ident: 1695_CR19
  publication-title: Chem Asian J
  doi: 10.1002/asia.201000252
– volume: 93
  start-page: 4916
  issue: 11
  year: 2021
  ident: 1695_CR65
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.0c05191
– volume: 57
  start-page: 1061
  issue: 7
  year: 2012
  ident: 1695_CR23
  publication-title: Prog Mater Sci
  doi: 10.1016/j.pmatsci.2012.03.002
– volume: 4
  start-page: 4342
  year: 2014
  ident: 1695_CR41
  publication-title: Sci Rep
  doi: 10.1038/srep04342
– volume: 15
  start-page: 3171
  issue: 2
  year: 2021
  ident: 1695_CR36
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09758
– volume: 24
  start-page: 632
  issue: 4
  year: 2008
  ident: 1695_CR55
  publication-title: Biosens Bioelectron
  doi: 10.1016/j.bios.2008.06.011
– volume: 129
  start-page: 146
  issue: 1
  year: 2018
  ident: 1695_CR80
  publication-title: J Neurosurg
  doi: 10.3171/2017.1.JNS161089
– volume: 146
  start-page: 403
  issue: 2
  year: 2021
  ident: 1695_CR20
  publication-title: Analyst
  doi: 10.1039/D0AN01661F
– volume: 27
  start-page: 686
  issue: 3
  year: 2006
  ident: 1695_CR71
  publication-title: Electrophoresis
  doi: 10.1002/elps.200500457
– volume: 16
  start-page: 1902820
  issue: 15
  year: 2020
  ident: 1695_CR17
  publication-title: Small
  doi: 10.1002/smll.201902820
– volume: 10
  start-page: 4042
  issue: 20
  year: 2014
  ident: 1695_CR27
  publication-title: Small
  doi: 10.1002/smll.201400463
– volume: 90
  start-page: 35
  issue: 1
  year: 2013
  ident: 1695_CR70
  publication-title: Brain Res Bull.
  doi: 10.1016/j.brainresbull.2012.09.009
– volume: 92
  start-page: 7746
  issue: 11
  year: 2020
  ident: 1695_CR63
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.0c00835
SSID ssj0000494603
ssj0022424
Score 2.4635649
Snippet Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved diagnostics and...
Abstract Detecting physiological levels of neurotransmitters in biological samples can advance our understanding of brain disorders and lead to improved...
SourceID doaj
pubmedcentral
proquest
gale
crossref
rcaap
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Alzheimer's disease
Analytical chemistry
Animals
Aptamers
Aptasensor
Arrays
Biological properties
Biological samples
Biosensing Techniques
Biosensors
Brain
Brain Diseases
Brain research
Cerebrospinal fluid
Chemical vapor deposition
Deoxyribonucleic acid
Design
Design and construction
Diagnosis
Disorders
DNA
Dopamine
Electric fields
Electrodes
Electrolytes
Engenharia e Tecnologia
Field-effect transistor
Field-effect transistors
Graphene
Graphite
Health aspects
Integrated circuits
Ionic strength
LOD
Low concentrations
Measurement
Mice
Movement disorders
Nanotecnologia
Neurodegenerative diseases
Neurosciences
Neurotransmitters
Nucleic acid aptamers
Nucleotide
Parkinson's disease
Physiological aspects
Physiology
Reproducibility
Robustness
Science & Technology
Semiconductor chips
Sensitivity
Sensor arrays
Sensors
Target detection
Transistors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9RAEG5kvehBfGJ0lVYEDxI2SXcn3cdVXFZBwcfA3prqR3RhzQxJ5uC_t6qTGSYs6MVruhKSSnVVfUnVV4y9Em3TuFioPBrZ5lJpyF10kHtROHCqxRBP_c6fPtfnK_nxQl0cjPqimrCJHnhS3IlTzgMUtS4RbjdFC7GEJrRQCpoZ7z15X4x5OzA1Qy1qeti1yOj6ZMCophA2V1SGUFNP8iIMJbb-6z75ep3kzR7vZXMQgM7usjtz5shPpzu-x27E7j67fcAn-IB9WV3hFQaqSScvxgMi4l-4zEMcU8lVx-m7K08s1ejkOGzGJL7ueaosHClyJeIQDn0Pv4eHbHX2_vu783yemZB7ZcyYS688UXaJUEKrquAAExAAVB1UrdHeSd_Q2FswwUURYqx0UEUwrYwBhaR4xI66dRcfM-4NZlfCNz4ELbWvMbNBOBkKXwgpgqkyVu5UaP1MKE5zLa5sAha6tpPaLardJrXbImNv9udsJjqNv0q_pTezlyQq7HQADcTOBmL_ZSAZe0nv1RLZRUfVND9gOwz2w7ev9hSTN405ZiMz9noWatf4DB7m5gTUBPFjLSSPF5K4G_1yeWc-dvYGg60aper0CzljL_bLdCZVuHVxvSUZSf4RnX7GmoXZLR5_udJd_kyM4KY2Ukm8epYM1FKFOIKLwSJ6rCzmcLV88j90-ZTdqmgTlWVeyWN2NPbb-AyTstE9T_vvD7o_NR4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvcAB8RShBQWExAFFTRw_4hMqiKoggcRjpb1ZfqVFKsk2yR7498x4vdtGlXqNJ1EyHs_D-eYzIW_rVkobSl4ExdqC8cYUNlhTuLq0xvIWQjz2O3_7Lk4X7OuSL9OG25hglVufGB217x3ukR9RybmIv-E-rC4LPDUK_66mIzTukn2kLkNIl1xeFVzY-rBtlGnE0QixjUPxTBGMILAzeRaMImf_Tc98Ey25PzhjVtfC0MlD8iDlj_nxZsIfkTuhe0zuX2MVfEJ-LC7gCSMi09GX5R7q4r8wnPswReBVl-Puax65qsHV5WY1RfF-yCO-cML4FelDcjMM5t_4lCxOPv_-dFqkkxMKx5WaCua4Q-Ku2lem5dRbA2mIMYpJQ1vVOMucxMNvjfI21D4E2nheetWy4EGI1c_IXtd34TnJnYIcq3bSed-wxgnIb6Co9KUra1Z7RTNSbVWoXaIVx9MtLnQsLxqhN2rXoHYd1a7LjLzf3bPakGrcKv0RZ2YniYTY8UI_nOm0vrTlFialFA3YAZNla0JlpG9NBekrF85l5A3Oq0bKiw4xNWdmPY76y6-f-hhSuAYyTcky8i4JtT18gzOpRQE0gSxZM8nDmSSsSTcf3pqPTj5h1FcWnJHXu2G8E3FuXejXKMPQS4Lrz4icmd3s8-cj3Z_zyAuuhGKcwdOzaKAaceJQYowaakiqIZMT7MXtL3ZA7lFcHlVVUHZI9qZhHV5C0jXZV3Fl_QdYJSwF
  priority: 102
  providerName: ProQuest
Title Ultrasensitive dopamine detection with graphene aptasensor multitransistor arrays
URI http://hdl.handle.net/1822/81264
https://www.proquest.com/docview/2755646452
https://www.proquest.com/docview/2740510088
https://pubmed.ncbi.nlm.nih.gov/PMC9694542
https://doaj.org/article/b5bcaa068119470fae1a7dfa131056cc
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF_aHkh9ED9paj2iCD5INNnsR_Ig0pOeVWjR04PDl2Wzu6nCmbsmObD_vTN7uaOhxQdf8pCdXdidmZ2ZZOY3hLxMSykLF_PI5ayMGM90VLhCRyaNC13wEkw81jufnYvTKfs847Mdsml31B1gc2toh_2kpvX8zZ_Lq_eg8O-8wmfibQM2i0NQTDHJQGDF8S4ZgGWSqKhnbPtXgWIpxKZw5tZ5--ROCg45EzTt2SkP53_z0r6ZSDmojdbLaxZqfJ_c61zL8HgtCw_IjqsekrvXAAcfka_TOazQYNI6XnOhhZD5NwyH1rU-J6sK8cNs6GGs4RYM9bL15Is69KmHLZo2jywS6rrWV81jMh2ffP9wGnVNFSLD87yNmOEGMb1Sm-iSU1to8FC0zpnUtMwzUzAjsS-uzm3hUusczSyPbV4yZ4GIpU_IXrWo3AEJTQ7uV2qksTZjmRHg-kC8aWMTpyy1OQ1IsjlCZTrEcWx8MVc-8siEWnNAAQeU54CKA_J6O2e5xtv4J_UIObOlRKxs_2JRX6hO9VTBC2BKLLIkgQ3EpXaJlrbUCXi2XBgTkBfIV4VoGBWm21zoVdOoT98m6hi8uwycUMkC8qojKhewB6O76gU4CQTQ6lEe9ShBXU1_eCM-aiPtikrOhf_HHJDn22GciSlwlVuskIbhBQpWISCyJ3a97fdHql8_PWR4LnLGGaweeAFVmEIO0UejILykCpw8wQ7_e9WnZJ-iEiVJRNkR2WvrlXsGrlpbDMmunEl4ZuOPQzIYnZx_mQz9Z48hmlA-9PoJz8nox19xBULK
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKewAOiKcIFAgIxAFFTRw7iQ8IlUe1Sx8S0JV6c_1KQSrJkmSF-qf4jcx4k22jSr31up5Y6_E8k5lvCHmdlnmuXcwjJ1gZMV6oSDutIpPGWmlegovHfuf9g2wyY1-P-NEa-Tf0wmBZ5WATvaG2tcF35Fs05zzzn-E-zP9EODUKv64OIzSWYrHrzv5Cyta-n36G-31D6c6Xw0-TqJ8qEBkuRBcxww2CWqU2USWnVitw0UoJlitaisJoZnIcDKuE1S61ztHC8tiKkjkLRCyFfW-QDXC8MWpUfnSe4GGrxdCYU2RbLfhSDsk6xeKHDDuhR87Pzwi47AkuV2duNEap-QW3t3OX3Onj1XB7KWD3yJqr7pPbF1AMH5Bvs1PYocVKeLSdoYU8_Dcsh9Z1vtCrCvFtb-ixscG0hmreefK6CX09Y4f-0sOVhKpp1Fn7kMyuhaePyHpVV-4xCY2AmC41ubG2YIXJIJ6CJNbGJk5ZagUNSDKwUJoexhynaZxKn84UmVyyXQLbpWe7jAPybvXMfAnicSX1R7yZFSUCcPsf6uZE9vosNddwKXFWJAkcIC6VS1RuS5WAWPDMmIC8wnuVCLFRYQ3PiVq0rZz--C63IWQsILLNWUDe9kRlDWcwqm-JAE4gKteIcnNECTbAjJcH8ZG9DWrlucYE5OVqGZ_EurrK1QukYWiVwdUEJB-J3ej445Xq10-PQy4ywTiD3QMvoBLr0iGlaSXkrFRC5JixJ1f_sRfk5uRwf0_uTQ92n5JbFFUlSSLKNsl61yzcMwj4Ov3ca1lIjq9brf8D29tp4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrasensitive+dopamine+detection+with+graphene+aptasensor+multitransistor+arrays&rft.jtitle=Journal+of+nanobiotechnology&rft.au=Abrantes%2C+Mafalda&rft.au=Rodrigues%2C+Diana&rft.au=Domingues%2C+Telma&rft.au=Nemala%2C+Siva+S.&rft.date=2022-11-24&rft.pub=BioMed+Central&rft.eissn=1477-3155&rft.volume=20&rft_id=info:doi/10.1186%2Fs12951-022-01695-0&rft_id=info%3Apmid%2F36424623&rft.externalDocID=PMC9694542
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-3155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-3155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-3155&client=summon