A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins

Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular com...

Full description

Saved in:
Bibliographic Details
Published inFEBS letters Vol. 589; no. 19; pp. 2570 - 2577
Main Authors Kikhney, Alexey G., Svergun, Dmitri I.
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 14.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X-ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented.
AbstractList Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X-ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented.
Small‐angle X‐ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X‐ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented.
Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X-ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented.Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X-ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented.
Small‐angle X‐ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X‐ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental andin silico techniques to characterize completely, or partially unstructured proteins, are presented.
Author Svergun, Dmitri I.
Kikhney, Alexey G.
Author_xml – sequence: 1
  givenname: Alexey G.
  surname: Kikhney
  fullname: Kikhney, Alexey G.
– sequence: 2
  givenname: Dmitri I.
  surname: Svergun
  fullname: Svergun, Dmitri I.
  email: d.svergun@embl-hamburg.de
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26320411$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9vEzEQxS1URNPARwD5WA672N7Ya4sDClX_IFXiEJB6s2zvbOTI2S22U8i3x0tCD1zCybbm995Y8-YCnQ3jAAi9paSmhIoPm7oHmwLkmhHKayJrwtoXaEZl21TNQsgzNCOELirequYcXaS0IeUtqXqFzploGFlQOkObJX6MxmXvTMDrne8A5xGnrQkBm2EdAD9U0exxciZniH5Y48vV8mH1Ho897gP88rYwZuiwH3Ipp8ko7HHn0xg7iNAV_zFDqbxGL3sTErw5nnP0_eb629Vddf_19svV8r5yXClVWbCOS8bBMrrohSW2V0LaFrjkvVRWcCpZ56wiouFCKNc7YVprG7BguoY2c3R58C2Nf-wgZb31yUEIZoBxlzQrc2CLZtKfQmlLJWkb9cf13RHd2S10-jH6rYl7_XeUBeAHwMUxpQj9M0KJniLTG32MTE-RaSJ1iazoPv6jcz6b7McyT-PDSfXdQf3TB9j_X0t9c_2ZrablmHaDckJaVi5z9OlgBSWcJw9RJ-dhcND5CC7rbvQnPvMbiKfK6w
CitedBy_id crossref_primary_10_1007_s40042_020_00042_6
crossref_primary_10_1016_j_jsb_2020_107630
crossref_primary_10_1021_acs_jpclett_3c02600
crossref_primary_10_1016_j_jbc_2021_100270
crossref_primary_10_1016_j_vaccine_2019_09_005
crossref_primary_10_1016_j_foodhyd_2024_110973
crossref_primary_10_1021_jacsau_4c00359
crossref_primary_10_1063_1_5029274
crossref_primary_10_3389_fmolb_2022_913860
crossref_primary_10_1007_s42860_023_00229_5
crossref_primary_10_1016_j_crstbi_2024_100156
crossref_primary_10_1021_acs_biomac_0c00546
crossref_primary_10_1080_15548627_2023_2259707
crossref_primary_10_1074_jbc_M116_747485
crossref_primary_10_1038_s41598_021_00495_0
crossref_primary_10_3389_fmolb_2022_981312
crossref_primary_10_1021_acs_molpharmaceut_3c00508
crossref_primary_10_1107_S2059798317011597
crossref_primary_10_3390_biom10060946
crossref_primary_10_1080_07391102_2024_2404531
crossref_primary_10_1016_j_abb_2019_07_020
crossref_primary_10_1002_ange_201702904
crossref_primary_10_1093_nar_gkad809
crossref_primary_10_1039_c8pp00034d
crossref_primary_10_1139_bcb_2022_0118
crossref_primary_10_3390_pharmaceutics13101654
crossref_primary_10_1016_j_csbj_2021_07_036
crossref_primary_10_1016_j_jsb_2020_107531
crossref_primary_10_1039_D4SM00907J
crossref_primary_10_1016_j_isci_2024_109689
crossref_primary_10_1016_j_jscs_2018_02_005
crossref_primary_10_1016_j_jmb_2018_07_006
crossref_primary_10_1039_C8SM01967C
crossref_primary_10_1371_journal_pcbi_1007710
crossref_primary_10_1021_acsmacrolett_4c00656
crossref_primary_10_1021_acsnano_3c12314
crossref_primary_10_1016_j_jbc_2024_107727
crossref_primary_10_3389_fmolb_2016_00047
crossref_primary_10_7554_eLife_36258
crossref_primary_10_1016_j_crstbi_2024_100138
crossref_primary_10_1016_j_cej_2024_150329
crossref_primary_10_1016_j_ndteint_2023_103004
crossref_primary_10_1128_JB_00734_17
crossref_primary_10_3390_molecules25040873
crossref_primary_10_1016_j_foodchem_2021_131821
crossref_primary_10_3390_cryst9120612
crossref_primary_10_1016_j_vacuum_2024_113936
crossref_primary_10_1016_j_bpj_2019_02_015
crossref_primary_10_1016_j_bbagen_2016_05_008
crossref_primary_10_1038_s41524_022_00725_7
crossref_primary_10_1007_s43450_025_00634_y
crossref_primary_10_1021_acs_langmuir_9b02541
crossref_primary_10_1128_jb_00340_22
crossref_primary_10_1002_anie_201702904
crossref_primary_10_7554_eLife_90259_3
crossref_primary_10_1107_S1600576717017101
crossref_primary_10_1016_j_molliq_2018_08_096
crossref_primary_10_1002_ijch_202000007
crossref_primary_10_1016_j_csbj_2022_07_009
crossref_primary_10_1128_JVI_01789_19
crossref_primary_10_1021_acs_jctc_3c00190
crossref_primary_10_1016_j_ijbiomac_2019_07_118
crossref_primary_10_1177_1469066717722256
crossref_primary_10_1016_j_jphotochem_2020_112430
crossref_primary_10_1107_S2052252524004032
crossref_primary_10_3389_fphar_2019_01127
crossref_primary_10_1038_s41598_018_30190_6
crossref_primary_10_1080_07391102_2020_1856721
crossref_primary_10_1002_ange_202312517
crossref_primary_10_1002_asia_202400389
crossref_primary_10_1016_j_biochi_2024_07_018
crossref_primary_10_1021_jasms_2c00253
crossref_primary_10_1038_s41467_022_28264_1
crossref_primary_10_1021_acs_jpcb_9b07502
crossref_primary_10_3390_cells9020470
crossref_primary_10_1063_1_5050926
crossref_primary_10_1039_D1NR00611H
crossref_primary_10_1038_s41586_022_04537_z
crossref_primary_10_1107_S2052252521005613
crossref_primary_10_3389_fchem_2021_718405
crossref_primary_10_1007_s11095_024_03671_9
crossref_primary_10_1016_j_microc_2023_109659
crossref_primary_10_1093_bbb_zbad082
crossref_primary_10_1021_acs_jcim_2c01196
crossref_primary_10_1038_s41598_022_12885_z
crossref_primary_10_1002_prot_26442
crossref_primary_10_3390_pr9020345
crossref_primary_10_1016_j_bpj_2018_01_001
crossref_primary_10_1016_j_jsb_2020_107463
crossref_primary_10_3389_fmolb_2021_787368
crossref_primary_10_3390_genes13050915
crossref_primary_10_1002_mabi_202300579
crossref_primary_10_1177_09673911231196380
crossref_primary_10_1016_j_bbamem_2020_183202
crossref_primary_10_1093_nar_gky031
crossref_primary_10_3390_molecules27030984
crossref_primary_10_1002_adma_201801246
crossref_primary_10_1039_C9RA01510H
crossref_primary_10_1002_prot_25000
crossref_primary_10_1002_xrs_3141
crossref_primary_10_1038_s41598_018_25355_2
crossref_primary_10_1021_acs_jpclett_1c03614
crossref_primary_10_1016_j_bbagen_2019_129420
crossref_primary_10_1021_acs_jctc_8b00715
crossref_primary_10_1021_acs_jpca_7b05279
crossref_primary_10_1073_pnas_2211855120
crossref_primary_10_26599_NR_2025_94907183
crossref_primary_10_1016_j_jmb_2023_167988
crossref_primary_10_1360_SSC_2023_0165
crossref_primary_10_1021_acs_biomac_4c00995
crossref_primary_10_1021_acschemneuro_0c00479
crossref_primary_10_1021_acschembio_6b00791
crossref_primary_10_1002_chem_202103025
crossref_primary_10_1042_ETLS20170138
crossref_primary_10_1016_j_cis_2020_102268
crossref_primary_10_1016_j_foodhyd_2020_105778
crossref_primary_10_1016_j_bpj_2017_07_023
crossref_primary_10_1093_nar_gky1092
crossref_primary_10_1016_j_sbi_2016_05_003
crossref_primary_10_3389_fchem_2021_603639
crossref_primary_10_1021_acsami_2c00181
crossref_primary_10_1002_pro_4085
crossref_primary_10_1002_jccs_202000498
crossref_primary_10_3389_fmolb_2019_00064
crossref_primary_10_1021_acs_jpcb_8b08371
crossref_primary_10_1016_j_foodhyd_2024_110202
crossref_primary_10_1016_j_jmb_2018_05_024
crossref_primary_10_1021_acs_biochem_5b01061
crossref_primary_10_3390_ijms17081305
crossref_primary_10_1016_j_molliq_2024_124970
crossref_primary_10_1016_j_str_2020_02_001
crossref_primary_10_1016_j_jocs_2024_102497
crossref_primary_10_1021_acs_jcim_8b00928
crossref_primary_10_1002_adhm_202403385
crossref_primary_10_1149_1945_7111_ad07fe
crossref_primary_10_1021_acs_macromol_2c02165
crossref_primary_10_1093_nar_gkac565
crossref_primary_10_1016_j_ijbiomac_2022_05_032
crossref_primary_10_1002_cite_201800079
crossref_primary_10_1093_nar_gkaa107
crossref_primary_10_1016_j_bbamem_2020_183191
crossref_primary_10_1016_j_bpj_2017_08_044
crossref_primary_10_1021_acs_biochem_5b01171
crossref_primary_10_1016_j_polymer_2025_128299
crossref_primary_10_1016_j_bbapap_2020_140404
crossref_primary_10_3389_fimmu_2024_1434463
crossref_primary_10_1038_s41598_019_44385_y
crossref_primary_10_1021_acs_jpcb_9b07036
crossref_primary_10_1002_elan_202060316
crossref_primary_10_1021_acs_jpcb_6b09154
crossref_primary_10_1021_acs_jafc_9b04595
crossref_primary_10_1098_rsta_2022_0350
crossref_primary_10_1093_nar_gkac414
crossref_primary_10_3762_bjoc_20_220
crossref_primary_10_1016_j_csbj_2023_04_028
crossref_primary_10_1002_1873_3468_13954
crossref_primary_10_1016_j_jsb_2018_05_006
crossref_primary_10_1016_j_molliq_2018_08_015
crossref_primary_10_1021_jacs_0c07285
crossref_primary_10_1107_S160057672300910X
crossref_primary_10_1016_j_dnarep_2018_02_012
crossref_primary_10_1016_j_foodhyd_2024_110533
crossref_primary_10_1134_S0006297924140116
crossref_primary_10_3389_fpls_2021_672035
crossref_primary_10_1016_j_jmb_2022_167708
crossref_primary_10_1038_s41594_024_01212_x
crossref_primary_10_1088_1478_3975_aa776a
crossref_primary_10_1146_annurev_biophys_101122_071930
crossref_primary_10_1016_j_bpj_2021_04_010
crossref_primary_10_1021_acs_biomac_9b01390
crossref_primary_10_1080_07391102_2023_2298734
crossref_primary_10_1093_nar_gkw1147
crossref_primary_10_3390_ijms18122623
crossref_primary_10_1021_acsmacrolett_2c00665
crossref_primary_10_3390_ijms21249413
crossref_primary_10_1038_s42003_024_06644_1
crossref_primary_10_1093_mtomcs_mfad007
crossref_primary_10_1021_acs_biochem_8b00441
crossref_primary_10_3389_fmolb_2021_749052
crossref_primary_10_1016_j_bpj_2021_10_003
crossref_primary_10_3390_dj11040098
crossref_primary_10_1016_j_foodhyd_2022_108052
crossref_primary_10_1038_s41598_017_16959_1
crossref_primary_10_1021_acs_chemrev_1c00786
crossref_primary_10_1021_acsabm_4c01621
crossref_primary_10_3799_dqkx_2024_028
crossref_primary_10_1140_epjb_s10051_021_00186_9
crossref_primary_10_1021_acs_jctc_2c01090
crossref_primary_10_1016_j_str_2025_01_017
crossref_primary_10_1021_acs_jpcb_2c04344
crossref_primary_10_1021_acs_jpclett_4c00825
crossref_primary_10_1073_pnas_1818206116
crossref_primary_10_1103_PhysRevB_97_184202
crossref_primary_10_1021_acs_jpcb_9b05071
crossref_primary_10_1021_acs_biomac_4c00204
crossref_primary_10_3390_biom10081095
crossref_primary_10_1016_j_jmb_2018_04_008
crossref_primary_10_1016_j_bmc_2024_117873
crossref_primary_10_1007_s41048_017_0044_9
crossref_primary_10_1016_j_ijbiomac_2023_125792
crossref_primary_10_1016_j_cep_2018_09_022
crossref_primary_10_1080_15476286_2024_2448391
crossref_primary_10_1039_C9PY01342C
crossref_primary_10_1016_j_jmb_2018_03_007
crossref_primary_10_1038_nprot_2016_113
crossref_primary_10_1038_s41598_019_52344_w
crossref_primary_10_1021_acs_jpcb_0c07449
crossref_primary_10_1016_j_ijbiomac_2022_10_227
crossref_primary_10_1021_acsnano_4c01534
crossref_primary_10_1088_1361_648X_abdf91
crossref_primary_10_1016_j_ijbiomac_2024_133212
crossref_primary_10_1007_s12551_016_0194_x
crossref_primary_10_1016_j_jmb_2018_03_002
crossref_primary_10_1063_1_5041949
crossref_primary_10_1021_acs_biomac_4c00479
crossref_primary_10_1021_acssusresmgt_4c00294
crossref_primary_10_3390_cells14050383
crossref_primary_10_1080_17425247_2022_2138329
crossref_primary_10_1002_1873_3468_14055
crossref_primary_10_1002_pro_4805
crossref_primary_10_3390_ijms21113920
crossref_primary_10_1039_D0LC01048K
crossref_primary_10_1080_19420862_2022_2127172
crossref_primary_10_1021_acs_chemrev_1c00237
crossref_primary_10_3390_ijms22042172
crossref_primary_10_1039_D2LC00622G
crossref_primary_10_1093_nar_gkac1274
crossref_primary_10_1007_s12221_017_7123_x
crossref_primary_10_18632_oncotarget_17371
crossref_primary_10_1002_adma_201901556
crossref_primary_10_1101_gad_341925_120
crossref_primary_10_1016_j_foodres_2023_112484
crossref_primary_10_1016_j_molliq_2024_126086
crossref_primary_10_1016_j_bbamem_2018_03_020
crossref_primary_10_1021_acs_chemrev_6b00790
crossref_primary_10_1002_bkcs_12119
crossref_primary_10_1002_ange_201712286
crossref_primary_10_1016_j_bioorg_2021_105162
crossref_primary_10_1021_jacs_2c13525
crossref_primary_10_1002_wcms_1685
crossref_primary_10_1021_acs_biomac_2c01370
crossref_primary_10_3390_molecules26030602
crossref_primary_10_1002_cplu_202300260
crossref_primary_10_3389_fmolb_2017_00012
crossref_primary_10_1016_j_bpj_2020_01_031
crossref_primary_10_1093_nar_gkad223
crossref_primary_10_1007_s12038_020_0010_4
crossref_primary_10_1093_gigascience_giac118
crossref_primary_10_3390_cryst11020203
crossref_primary_10_1002_anie_201712286
crossref_primary_10_1039_D3SC06370D
crossref_primary_10_1128_mBio_00448_20
crossref_primary_10_1107_S1600576720013412
crossref_primary_10_1016_j_biotechadv_2024_108316
crossref_primary_10_7554_eLife_90259
crossref_primary_10_1016_j_pbiomolbio_2018_08_008
crossref_primary_10_1021_acs_macromol_3c00907
crossref_primary_10_1073_pnas_2009044117
crossref_primary_10_1021_jacsau_3c00124
crossref_primary_10_1016_j_celrep_2022_110959
crossref_primary_10_1039_C7CP00717E
crossref_primary_10_1039_C9SC03961A
crossref_primary_10_1016_j_cell_2018_03_003
crossref_primary_10_1016_j_nima_2023_168719
crossref_primary_10_1107_S1600576723011159
crossref_primary_10_1039_C9SC02630D
crossref_primary_10_1016_j_ijbiomac_2023_127898
crossref_primary_10_1016_j_molliq_2019_111794
crossref_primary_10_1016_j_mtchem_2023_101850
crossref_primary_10_1063_4_0000171
crossref_primary_10_1002_adfm_202301447
crossref_primary_10_1021_acssuschemeng_3c06094
crossref_primary_10_3390_life10120320
crossref_primary_10_1021_acs_jctc_3c00864
crossref_primary_10_1038_s41467_023_42012_z
crossref_primary_10_1016_j_csbj_2019_04_011
crossref_primary_10_1016_j_jsb_2024_108131
crossref_primary_10_1016_j_foodres_2023_113787
crossref_primary_10_1021_acs_langmuir_2c00172
crossref_primary_10_1016_j_colsurfa_2020_124571
crossref_primary_10_3390_ijms20153653
crossref_primary_10_1021_acs_jpcb_1c02453
crossref_primary_10_1016_j_foodhyd_2019_01_033
crossref_primary_10_1016_j_jbc_2025_108242
crossref_primary_10_1016_j_jcis_2023_10_139
crossref_primary_10_1021_acs_jcim_6b00789
crossref_primary_10_1093_narcan_zcaa007
crossref_primary_10_1016_j_powtec_2019_08_089
crossref_primary_10_1002_fob2_12016
crossref_primary_10_1016_j_bpc_2021_106552
crossref_primary_10_1016_j_eurpolymj_2018_11_034
crossref_primary_10_1073_pnas_2409139121
crossref_primary_10_1107_S1600576723011019
crossref_primary_10_1016_j_biotechadv_2022_108055
crossref_primary_10_1007_s12551_018_0464_x
crossref_primary_10_1002_anie_202312517
crossref_primary_10_1038_s41564_019_0622_3
crossref_primary_10_1016_j_csbj_2022_03_012
crossref_primary_10_1016_j_ultsonch_2023_106510
crossref_primary_10_1002_app_48627
crossref_primary_10_15252_embj_2020107500
crossref_primary_10_1016_j_pbiomolbio_2023_06_002
crossref_primary_10_1002_cm_21954
crossref_primary_10_1038_s43586_021_00064_9
crossref_primary_10_3390_ijms22094947
crossref_primary_10_3390_biom12010095
crossref_primary_10_1016_j_jsb_2018_10_009
crossref_primary_10_1107_S2059798320010700
crossref_primary_10_1016_j_bbamem_2018_02_012
crossref_primary_10_3390_biom12081111
crossref_primary_10_3390_biom12121876
crossref_primary_10_1021_acs_biomac_2c01158
crossref_primary_10_3389_fmolb_2022_862910
crossref_primary_10_1021_acs_langmuir_0c02015
crossref_primary_10_1021_acs_jmedchem_5c00134
crossref_primary_10_1093_nar_gkac182
crossref_primary_10_1002_wcms_1359
crossref_primary_10_1021_acs_biochem_6b00658
crossref_primary_10_1038_s41598_024_74335_2
crossref_primary_10_1016_j_petsci_2022_01_012
crossref_primary_10_1021_acs_jctc_2c01140
crossref_primary_10_1016_j_ymeth_2016_12_002
crossref_primary_10_1021_acs_langmuir_9b03059
crossref_primary_10_1039_D2EN00408A
crossref_primary_10_1002_mas_21596
crossref_primary_10_1016_j_carbpol_2025_123411
crossref_primary_10_1016_j_carbpol_2024_123011
crossref_primary_10_1039_D4CP02564D
crossref_primary_10_1021_acs_jpcb_4c00219
crossref_primary_10_1021_acs_langmuir_4c03661
crossref_primary_10_1002_jctb_5682
crossref_primary_10_1016_j_ymeth_2018_02_020
crossref_primary_10_1021_acs_jpcb_0c07169
crossref_primary_10_1002_adts_201800175
crossref_primary_10_1016_j_jmb_2020_03_014
crossref_primary_10_1021_acs_biochem_6b00988
crossref_primary_10_3389_fbinf_2022_781949
crossref_primary_10_1002_app_56116
crossref_primary_10_1016_j_mbplus_2021_100081
crossref_primary_10_1002_bip_23558
crossref_primary_10_1016_j_jbc_2025_108289
crossref_primary_10_1093_nar_gkaa1285
crossref_primary_10_1021_acs_jpcb_2c01591
crossref_primary_10_1021_acsomega_2c05576
crossref_primary_10_1016_j_ijbiomac_2022_08_145
crossref_primary_10_1021_acs_jpclett_4c02667
crossref_primary_10_1021_acs_jpcb_8b03354
crossref_primary_10_1039_D2NA00303A
crossref_primary_10_3390_molecules28217414
crossref_primary_10_1074_jbc_M117_775858
crossref_primary_10_1107_S205979831900264X
crossref_primary_10_3390_ijms19113633
crossref_primary_10_3390_diagnostics13081375
crossref_primary_10_1038_s41598_019_40966_z
crossref_primary_10_1107_S2053273324007988
crossref_primary_10_1021_acs_accounts_2c00519
crossref_primary_10_1016_j_ijbiomac_2020_08_148
crossref_primary_10_1021_acs_jpclett_4c01544
crossref_primary_10_3390_pr10030457
crossref_primary_10_1016_j_ifset_2024_103831
crossref_primary_10_1016_j_bbapap_2017_07_013
crossref_primary_10_1016_j_isci_2022_104586
crossref_primary_10_1038_s41598_020_58868_w
crossref_primary_10_1002_pol_20230530
crossref_primary_10_3390_ijms232214050
crossref_primary_10_1039_D3CP04780F
crossref_primary_10_1016_j_bbabio_2017_01_010
crossref_primary_10_7554_eLife_43630
crossref_primary_10_1021_acs_jpcb_8b05797
crossref_primary_10_3390_cells8040316
crossref_primary_10_1021_acsmacrolett_4c00269
crossref_primary_10_1261_rna_069476_118
crossref_primary_10_7554_eLife_55607
crossref_primary_10_1016_j_cis_2024_103242
crossref_primary_10_1038_s41580_023_00673_0
crossref_primary_10_1107_S2052252523003482
crossref_primary_10_1038_s42003_024_06672_x
crossref_primary_10_1080_19420862_2020_1752529
crossref_primary_10_1021_acs_jpcb_7b08925
crossref_primary_10_1016_j_jfoodeng_2024_112444
crossref_primary_10_1016_j_memsci_2022_120788
crossref_primary_10_1021_acs_macromol_1c02304
crossref_primary_10_1063_5_0087583
crossref_primary_10_1107_S1600576722003685
crossref_primary_10_1107_S2059798320002016
crossref_primary_10_1073_pnas_2319998121
crossref_primary_10_1371_journal_pcbi_1006641
crossref_primary_10_1021_acs_jpclett_9b03154
crossref_primary_10_1016_j_foodhyd_2018_12_013
crossref_primary_10_1021_acs_jctc_9b01010
crossref_primary_10_1021_acs_biochem_3c00176
crossref_primary_10_1021_acssensors_4c01677
crossref_primary_10_1074_jbc_RA120_013939
crossref_primary_10_1080_15567036_2023_2282733
crossref_primary_10_3389_fmolb_2020_631232
crossref_primary_10_1107_S2052252520004169
crossref_primary_10_1016_j_bpj_2024_10_021
crossref_primary_10_1016_j_jcis_2022_12_024
crossref_primary_10_1021_acsinfecdis_2c00627
crossref_primary_10_1016_j_cbpa_2019_05_003
crossref_primary_10_1002_pro_3754
crossref_primary_10_1016_j_bbagen_2022_130101
crossref_primary_10_1002_cpz1_802
crossref_primary_10_1063_5_0007158
crossref_primary_10_1016_j_ymeth_2020_06_004
crossref_primary_10_1021_acs_jpcb_9b02575
crossref_primary_10_1002_app_49325
crossref_primary_10_1128_spectrum_02373_23
crossref_primary_10_3390_app142210346
crossref_primary_10_3390_membranes10020033
crossref_primary_10_1186_s12900_016_0068_2
crossref_primary_10_1007_s11120_017_0342_6
crossref_primary_10_1016_j_str_2021_08_002
crossref_primary_10_1088_1674_1056_ad8b36
crossref_primary_10_1038_s41467_019_08865_z
crossref_primary_10_1016_j_sbi_2018_03_005
crossref_primary_10_1016_j_cplett_2019_07_004
crossref_primary_10_1038_s41565_020_00798_9
crossref_primary_10_1093_nar_gkaf043
crossref_primary_10_1016_j_bbapap_2022_140767
crossref_primary_10_1021_jacs_0c02088
crossref_primary_10_3390_cells10071697
crossref_primary_10_3390_polym11122104
crossref_primary_10_1042_BCJ20160631
crossref_primary_10_1111_febs_14493
crossref_primary_10_1038_s41598_018_29871_z
crossref_primary_10_1107_S1600577522005136
crossref_primary_10_1073_pnas_1914866117
crossref_primary_10_1146_annurev_physchem_052516_050851
crossref_primary_10_1016_j_bios_2019_05_019
crossref_primary_10_1107_S1600577521012923
crossref_primary_10_1021_acs_jpcb_2c07182
crossref_primary_10_1021_acsphyschemau_4c00048
crossref_primary_10_1016_j_bbapap_2022_140755
crossref_primary_10_1016_j_jconrel_2023_10_033
crossref_primary_10_1038_s42003_023_05416_7
crossref_primary_10_1021_acssynbio_8b00007
Cites_doi 10.1016/S1093-3263(00)00138-8
10.1073/pnas.0506202102
10.4149/gpb_2009_02_174
10.1016/j.str.2010.07.011
10.1016/j.bbapap.2010.01.017
10.1038/nrm1589
10.1073/pnas.1004569107
10.1021/bi9019934
10.1529/biophysj.104.048645
10.1016/S0076-6879(09)69012-1
10.1107/S1600577515000375
10.1021/bi801115g
10.1016/j.molcel.2007.04.024
10.1016/S0167-4838(97)00092-7
10.1021/bi991765q
10.1021/ja105485b
10.1016/j.nima.2012.06.008
10.1002/pro.351
10.1016/j.jmb.2008.02.009
10.1107/S0907444913018714
10.1371/journal.pone.0074783
10.1021/ja076216j
10.1073/pnas.0404236101
10.1016/j.bpj.2009.08.044
10.1016/S0968-0004(02)02169-2
10.1146/annurev.biophys.37.032807.125924
10.1016/j.str.2010.09.009
10.1073/pnas.0506078102
10.1016/j.str.2010.10.006
10.1093/nar/gkt960
10.1021/ja069124n
10.1016/j.tibs.2007.10.003
10.1016/0301-4622(94)00081-6
10.1110/ps.062115406
10.1021/ja801332d
10.1038/nsmb1278
10.1093/nar/gku1047
10.1021/bi060532d
10.1002/bip.20747
10.1016/j.jmb.2008.08.039
10.1529/biophysj.105.064154
10.1007/s00249-009-0549-3
10.1006/bbrc.1999.2013
10.1016/S0022-2836(03)00033-0
10.1093/nar/gkq837
10.1016/j.jmb.2009.06.001
10.1021/ja1063923
10.1107/S205225251500202X
10.1006/jmbi.2001.4611
10.1073/pnas.0705069104
10.1016/j.cell.2010.05.039
10.1093/nar/gkr005
10.1021/bi991584o
10.1021/bi036269n
10.1002/prot.23033
10.1016/j.jmb.2009.10.010
10.1073/pnas.0801353105
10.1016/j.jmb.2004.06.094
10.1016/j.sbi.2008.10.002
10.1021/bi050196l
10.1002/prot.22311
10.1016/j.jmb.2007.01.038
10.1016/j.jsb.2010.06.012
10.1021/bi00040a037
10.1016/j.bpc.2010.01.002
10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7
10.1038/4681046a
10.1107/S0021889803012779
10.1021/ja054342m
10.1021/ja902528f
10.1039/C1MB05275F
10.1006/jmbi.2001.4720
10.1021/ja0618649
10.1074/jbc.M809627200
10.1016/j.str.2009.08.001
10.1107/S0021889892001663
10.1016/S0161-813X(02)00066-9
10.1146/annurev.biochem.75.101304.123901
10.1073/pnas.0402690101
10.1021/bi990752
10.1002/prot.22135
10.1186/1472-6807-11-29
10.1098/rsob.130090
10.1042/BJ20100314
10.1107/S0021889895007047
10.1074/jbc.M500159200
10.1073/pnas.0403643101
10.1107/S0021889808021018
10.1038/nmeth.1353
10.1016/j.sbi.2011.03.012
10.1016/j.str.2005.04.009
ContentType Journal Article
Copyright 2015 The Authors
FEBS Letters 589 (2015) 0014-5793 ©2015 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2015 The Authors
– notice: FEBS Letters 589 (2015) 0014-5793 ©2015 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.
– notice: Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.febslet.2015.08.027
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Wiley Online Library Open Access - NZ
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1873-3468
EndPage 2577
ExternalDocumentID 26320411
10_1016_j_febslet_2015_08_027
FEB2S0014579315007279
S0014579315007279
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
-~X
.~1
0R~
0SF
1B1
1OC
1~.
1~5
24P
2WC
33P
4.4
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
AABNK
AACTN
AAEDW
AAESR
AAFTH
AAHHS
AAIKJ
AAJUZ
AALRI
AANLZ
AAQFI
AASGY
AAXRX
AAXUO
AAZKR
ABBQC
ABCUV
ABFNM
ABFRF
ABGSF
ABHUG
ABJNI
ABLJU
ABMAC
ABQWH
ABVKL
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIUM
ACMXC
ACNCT
ACPOU
ACXBN
ACXQS
ADAWD
ADBBV
ADBTR
ADDAD
ADEOM
ADEZE
ADKYN
ADMGS
ADOZA
ADQTV
ADUVX
ADXAS
ADZMN
ADZOD
AEEZP
AEFWE
AEGXH
AEKER
AENEX
AEQDE
AEQOU
AEUQT
AEUYR
AEXQZ
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AGYEJ
AHBTC
AIACR
AIAGR
AITUG
AIURR
AIWBW
AJBDE
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AMYDB
AZFZN
AZVAB
BAWUL
BFHJK
BMXJE
C45
CBWCG
CS3
DCZOG
DIK
DOVZS
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FNPLU
FUBAC
G-Q
GBLVA
GX1
HVGLF
IHE
IXB
J1W
KBYEO
L7B
LATKE
LCYCR
LEEKS
LITHE
LOXES
LUTES
LX3
LYRES
M41
MEWTI
MO0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N9A
NCXOZ
O-L
O9-
OK1
OVD
OZT
P-8
P-9
P2P
P2W
PC.
Q38
R9-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SFE
SSZ
SUPJJ
TEORI
TR2
UHB
UNMZH
WBKPD
WH7
WIH
WIJ
WIK
WIN
WOHZO
WXSBR
YK3
ZA5
ZZTAW
~02
AAHBH
AAHQN
AAIPD
AAMNL
AAYCA
ADVLN
AFWVQ
AITYG
AKRWK
ALUQN
ALVPJ
HGLYW
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AEYWJ
AFPUW
AGYGG
AIGII
AKBMS
AKYEP
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c5999-bebc5825eb214f6b0bf968b7e585f89b65182dcb90635669cfc6a7bb3ebead313
IEDL.DBID 24P
ISSN 0014-5793
1873-3468
IngestDate Fri Jul 11 09:56:11 EDT 2025
Fri Jul 11 10:32:05 EDT 2025
Mon Jul 21 06:05:08 EDT 2025
Thu Apr 24 23:00:28 EDT 2025
Tue Jul 01 02:46:42 EDT 2025
Wed Jan 22 16:32:51 EST 2025
Fri Feb 23 02:33:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords Small angle scattering
Intrinsically disordered protein
Flexibility
Disorder
Small-angle X-ray scattering
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
Attribution-NonCommercial-NoDerivs
Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5999-bebc5825eb214f6b0bf968b7e585f89b65182dcb90635669cfc6a7bb3ebead313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1016%2Fj.febslet.2015.08.027
PMID 26320411
PQID 1718073931
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2000243906
proquest_miscellaneous_1718073931
pubmed_primary_26320411
crossref_primary_10_1016_j_febslet_2015_08_027
crossref_citationtrail_10_1016_j_febslet_2015_08_027
wiley_primary_10_1016_j_febslet_2015_08_027_FEB2S0014579315007279
elsevier_sciencedirect_doi_10_1016_j_febslet_2015_08_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 14, 2015
PublicationDateYYYYMMDD 2015-09-14
PublicationDate_xml – month: 09
  year: 2015
  text: September 14, 2015
  day: 14
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle FEBS letters
PublicationTitleAlternate FEBS Lett
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tidow (b0330) 2007; 104
Li, Uversky, Fink (b0355) 2002; 23
Bernado, Blackledge (b0155) 2009; 97
Elliott, Goult, Kopp, Bate, Grossmann, Roberts, Critchley, Barsukov (b0455) 2010; 18
A. Guinier, La diffraction des rayons X aux tr‘es petits angles: application ‘a l’étude de phénom‘enes ultramicroscopiquesed, Univ. de Paris, Paris, 1939, pp. 3, p.l., 80, 2, p. 1 l.
Fitzkee, Rose (b0260) 2004; 101
Calmettes, Durand, Desmadril, Minard, Receveur, Smith (b0135) 1994; 53
Zhou, Silverman (b0250) 2002
Binolfi, Rasia, Bertoncini, Ceolin, Zweckstetter, Griesinger, Jovin, Fernandez (b0310) 2006; 128
Garcia-Pino (b0445) 2010; 142
Jacques, Trewhella (b0115) 2010; 19
Hura (b0040) 2009; 6
Svergun, Barberato, Koch (b0230) 1995; 28
Perez, Vachette, Russo, Desmadril, Durand (b0150) 2001; 308
Shi (b0440) 2010; 431
Hong, Fink, Uversky (b0315) 2008; 383
Bertini, Fragai, Luchinat, Melikian, Mylonas, Sarti, Svergun (b0450) 2009; 284
Bernado, Blanchard, Timmins, Marion, Ruigrok, Blackledge (b0180) 2005; 102
Kojima, Tanokura, Maeda, Kimura, Amemiya, Kihara, Takahashi (b0025) 2000; 39
Uversky (b0365) 2000; 267
Baker, Hudson, Kanelis, Choy, Thibodeau, Thomas, Forman-Kay (b0285) 2007; 14
Tria, Mertens, Kachala, Svergun (b0210) 2015; 2
Hammel, Yu, Fang, Lees-Miller, Tainer (b0320) 2010; 18
Marsh, Neale, Jack, Choy, Lee, Crowhurst, Forman-Kay (b0400) 2007; 367
Yang, Blachowicz, Makowski, Roux (b0220) 2010; 107
Grishaev, Wu, Trewhella, Bax (b0385) 2005; 127
Kohn (b0005) 2004; 101
Nardini (b0340) 2006; 15
Tran, Wang, Pappu (b0265) 2005; 44
Tompa (b0080) 2002; 27
Gast (b0415) 1995; 34
Edwards, Lee, Tsutakawa, Williams, Nazeer, Kleiman, Tainer, Glover (b0465) 2008; 47
Chiti, Dobson (b0065) 2006; 75
Round (b0035) 2008; 41
Jensen, Markwick, Meier, Griesinger, Zweckstetter, Grzesiek, Bernado, Blackledge (b0185) 2009; 17
Varadi (b0475) 2014; 42
Stumpe, Grubmuller (b0015) 2007; 129
Shkumatov, Chinnathambi, Mandelkow, Svergun (b0370) 2011; 79
Moncoq, Broutin, Craescu, Vachette, Ducruix, Durand (b0430) 2004; 87
Uversky, Gillespie, Fink (b0380) 2000; 41
Dunker, Silman, Uversky, Sussman (b0090) 2008; 18
Mertens, Svergun (b0110) 2010; 172
Bernado, Blackledge (b0200) 2010; 468
Fukuchi, Hosoda, Homma, Gojobori, Nishikawa (b0055) 2011; 11
Svergun (b0145) 1992; 25
Jensen, Houben, Lescop, Blanchard, Ruigrok, Blackledge (b0420) 2008; 130
Jha, Colubri, Freed, Sosnick (b0050) 2005; 102
Wang, Trewhella, Goldenberg (b0280) 2008; 377
Goldenberg (b0255) 2003; 326
Tompa (b0085) 2011; 21
Schmidt (b0425) 2010; 395
Pelikan, Hura, Hammel (b0215) 2009; 28
Bernado, Mylonas, Petoukhov, Blackledge, Svergun (b0205) 2007; 129
Paoletti (b0335) 2009; 75
Yang, van der Woerd, Muthurajan, Hansen, Luger (b0100) 2011; 39
Shell, Putnam, Kolodner (b0105) 2007; 26
Uversky (b0360) 1999; 38
Galantini, Leggio, Konarev, Pavel (b0020) 2010; 147
Jeffries, Graewert, Svergun, Blanchet (b0125) 2015; 22
Lima (b0435) 2006; 45
Bernadó (b0460) 2010; 39
Uversky, Dunker (b0060) 2010; 1804
Schwieters, Suh, Grishaev, Ghirlando, Takayama, Clore (b0395) 2010; 132
Franke, Kikhney, Svergun (b0120) 2012; 689
Pollack, Doniach (b0030) 2009; 469
Glatter (b0140) 1977; 47
Zhou (b0195) 2004; 43
Kim (b0350) 2011; 39
Valentini, Kikhney, Previtali, Jeffries, Svergun (b0470) 2015; 43
He, Ramachandran, Dahl, George, Schultz, Cookson, Veis, George (b0305) 2005; 280
Bertini, Giachetti, Luchinat, Parigi, Petoukhov, Pierattelli, Ravera, Svergun (b0410) 2010; 132
Konno, Tanaka, Kataoka, Takano, Maki (b0295) 1997; 1342
Konarev, Volkov, Sokolova, Koch, Svergun (b0170) 2003; 36
Moller (b0245) 2013; 8
Marsh, Forman-Kay (b0405) 2009; 391
Dyson, Wright (b0075) 2005; 6
Wilkins, Grimshaw, Receveur, Dobson, Jones, Smith (b0010) 1999; 38
Sander, Tria, Shkumatov, Kim, Grossmann, Tessmer, Svergun, Schindelin (b0240) 2013; 69
Aslam, Perkins (b0045) 2001; 309
Munishkina, Fink, Uversky (b0300) 2004; 342
Lanza, Silva, Assmann, Quaresma, Bressan, Torriani, Kobarg (b0325) 2009; 74
Wang, Plaxco, Makarov (b0275) 2007; 86
Tompa, Fuxreiter (b0095) 2008; 33
Pretto, Tsutakawa, Brosey, Castillo, Chagot, Smith, Tainer, Chazin (b0290) 2010; 49
Wells (b0190) 2008; 105
Ding, Jha, Dokholyan (b0270) 2005; 13
Uversky, Oldfield, Dunker (b0070) 2008; 37
Bernado, Svergun (b0165) 2012; 8
Wang (b0390) 2009; 131
Rozycki, Kim, Hummer (b0225) 2011; 19
Schulte (b0235) 2014; 4
Petoukhov, Svergun (b0175) 2005; 89
Kingston, Hamel, Gay, Dahlquist, Matthews (b0345) 2004; 101
Flory (b0160) 1953
Dunker (b0375) 2001; 19
2007; 104
2006; 75
2013; 69
2010; 107
2010; 19
2010; 468
2010; 18
2010; 147
1995; 34
2000; 41
2008; 37
2011; 11
2010; 142
2008; 105
2001; 309
2008; 33
2013; 8
2001; 308
2011; 19
2012; 689
2008; 383
2014; 4
2003; 326
2009; 97
1995; 28
2005; 102
2010; 431
2015; 43
2001; 19
2011; 21
2010; 395
2010; 1804
2009; 284
2006; 128
2007; 26
2009; 17
2004; 101
2004; 43
2015; 2
2007; 367
2004; 87
2004; 342
2007; 129
1997; 1342
1977; 47
2010; 39
2008; 18
2006; 15
1953
2003; 36
2011; 79
2002
2009; 131
2011; 39
2005; 44
2005; 89
2007; 14
2009; 28
2014; 42
2002; 27
2005; 280
2010; 49
2009; 74
2000; 39
2009; 75
2000; 267
2006; 45
2009; 391
2002; 23
1999; 38
2015; 22
2005; 127
2010; 132
2008; 47
2005; 6
2010; 172
2009; 6
1992; 25
2008; 41
2008; 377
2007; 86
2008; 130
2012; 8
2005; 13
2009; 469
1994; 53
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_92_1
Zhou R. (e_1_2_9_51_1) 2002
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
Glatter O. (e_1_2_9_29_1) 1977; 47
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_95_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
References_xml – volume: 41
  start-page: 913
  year: 2008
  end-page: 917
  ident: b0035
  article-title: Automated sample-changing robot for solution scattering experiments at the EMBL Hamburg SAXS station X33
  publication-title: J. Appl. Crystallogr.
– volume: 23
  start-page: 553
  year: 2002
  end-page: 567
  ident: b0355
  article-title: Conformational behavior of human alpha-synuclein is modulated by familial Parkinson’s disease point mutations A30P and A53T
  publication-title: Neurotoxicology
– volume: 469
  start-page: 253
  year: 2009
  end-page: 268
  ident: b0030
  article-title: Time-resolved X-ray scattering and RNA folding
  publication-title: Methods Enzymol.
– volume: 25
  start-page: 495
  year: 1992
  end-page: 503
  ident: b0145
  article-title: Determination of the regularization parameter in indirect-transform methods using perceptual criteria
  publication-title: J. Appl. Crystallogr.
– volume: 79
  start-page: 2122
  year: 2011
  end-page: 2131
  ident: b0370
  article-title: Structural memory of natively unfolded tau protein detected by small-angle X-ray scattering
  publication-title: Proteins
– volume: 27
  start-page: 527
  year: 2002
  end-page: 533
  ident: b0080
  article-title: Intrinsically unstructured proteins
  publication-title: Trends Biochem. Sci.
– volume: 326
  start-page: 1615
  year: 2003
  end-page: 1633
  ident: b0255
  article-title: Computational simulation of the statistical properties of unfolded proteins
  publication-title: J. Mol. Biol.
– volume: 377
  start-page: 1576
  year: 2008
  end-page: 1592
  ident: b0280
  article-title: Small-angle X-ray scattering of reduced ribonuclease A: effects of solution conditions and comparisons with a computational model of unfolded proteins
  publication-title: J. Mol. Biol.
– volume: 44
  start-page: 11369
  year: 2005
  end-page: 11380
  ident: b0265
  article-title: Reconciling observations of sequence-specific conformational propensities with the generic polymeric behavior of denatured proteins
  publication-title: Biochemistry
– volume: 41
  start-page: 415
  year: 2000
  end-page: 427
  ident: b0380
  article-title: Why are “natively unfolded” proteins unstructured under physiologic conditions?
  publication-title: Proteins
– volume: 104
  start-page: 12324
  year: 2007
  end-page: 12329
  ident: b0330
  article-title: From the cover: quaternary structures of tumor suppressor p53 and a specific p53 DNA complex
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 129
  start-page: 16126
  year: 2007
  end-page: 16131
  ident: b0015
  article-title: Interaction of urea with amino acids: implications for urea-induced protein denaturation
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 151
  year: 2012
  end-page: 167
  ident: b0165
  article-title: Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering
  publication-title: Mol. Biosyst.
– volume: 128
  start-page: 9893
  year: 2006
  end-page: 9901
  ident: b0310
  article-title: Interaction of alpha-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 419
  year: 2011
  end-page: 425
  ident: b0085
  article-title: Unstructural biology coming of age
  publication-title: Curr. Opin. Struct. Biol.
– volume: 38
  start-page: 16424
  year: 1999
  end-page: 16431
  ident: b0010
  article-title: Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques
  publication-title: Biochemistry
– volume: 49
  start-page: 2880
  year: 2010
  end-page: 2889
  ident: b0290
  article-title: Structural dynamics and single-stranded DNA binding activity of the three N-terminal domains of the large subunit of replication protein A from small angle X-ray scattering
  publication-title: Biochemistry
– volume: 37
  start-page: 215
  year: 2008
  end-page: 246
  ident: b0070
  article-title: Intrinsically disordered proteins in human diseases: introducing the D2 concept
  publication-title: Annu. Rev. Biophys.
– volume: 1342
  start-page: 73
  year: 1997
  end-page: 82
  ident: b0295
  article-title: A circular dichroism study of preferential hydration and alcohol effects on a denatured protein, pig calpastatin domain I
  publication-title: Biochim. Biophys. Acta
– volume: 308
  start-page: 721
  year: 2001
  end-page: 743
  ident: b0150
  article-title: Heat-induced unfolding of neocarzinostatin, a small all-beta protein investigated by small-angle X-ray scattering
  publication-title: J. Mol. Biol.
– volume: 142
  start-page: 101
  year: 2010
  end-page: 111
  ident: b0445
  article-title: Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity
  publication-title: Cell
– volume: 39
  start-page: 1364
  year: 2000
  end-page: 1372
  ident: b0025
  article-title: PH-dependent unfolding of aspergillopepsin II studied by small-angle X-ray scattering
  publication-title: Biochemistry
– volume: 468
  start-page: 1046
  year: 2010
  end-page: 1048
  ident: b0200
  article-title: Structural biology: proteins in dynamic equilibrium
  publication-title: Nature
– volume: 127
  start-page: 16621
  year: 2005
  end-page: 16628
  ident: b0385
  article-title: Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and NMR data
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 9180
  year: 2006
  end-page: 9187
  ident: b0435
  article-title: Structural insights into the interaction between prion protein and nucleic acid
  publication-title: Biochemistry
– volume: 43
  year: 2015
  ident: b0470
  article-title: SASBDB, a repository for biological small-angle scattering data
  publication-title: Nucleic Acids Res.
– volume: 17
  start-page: 1169
  year: 2009
  end-page: 1185
  ident: b0185
  article-title: Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings
  publication-title: Structure
– volume: 105
  start-page: 5762
  year: 2008
  end-page: 5767
  ident: b0190
  article-title: Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 75
  start-page: 333
  year: 2006
  end-page: 366
  ident: b0065
  article-title: Protein misfolding, functional amyloid, and human disease
  publication-title: Annu. Rev. Biochem.
– volume: 39
  start-page: 769
  year: 2010
  end-page: 780
  ident: b0460
  article-title: Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering
  publication-title: Eur. Biophys. J.
– volume: 14
  start-page: 738
  year: 2007
  end-page: 745
  ident: b0285
  article-title: CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices
  publication-title: Nat. Struct. Mol. Biol.
– volume: 132
  start-page: 13553
  year: 2010
  end-page: 13558
  ident: b0410
  article-title: Conformational space of flexible biological macromolecules from average data
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 207
  year: 2015
  end-page: 217
  ident: b0210
  article-title: Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering
  publication-title: Iucrj
– volume: 53
  start-page: 105
  year: 1994
  end-page: 113
  ident: b0135
  article-title: How random is a highly denatured protein?
  publication-title: Biophys. Chem.
– volume: 309
  start-page: 1117
  year: 2001
  end-page: 1138
  ident: b0045
  article-title: Folded-back solution structure of monomeric factor H of human complement by synchrotron X-ray and neutron scattering, analytical ultracentrifugation and constrained molecular modelling
  publication-title: J. Mol. Biol.
– volume: 6
  start-page: 606
  year: 2009
  end-page: 612
  ident: b0040
  article-title: Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)
  publication-title: Nat. Methods
– volume: 431
  start-page: 93
  year: 2010
  end-page: 102
  ident: b0440
  article-title: Identification and biophysical assessment of the molecular recognition mechanisms between the human haemopoietic cell kinase Src homology domain 3 and ALG-2-interacting protein X
  publication-title: Biochem. J.
– volume: 130
  start-page: 8055
  year: 2008
  end-page: 8061
  ident: b0420
  article-title: Quantitative conformational analysis of partially folded proteins from residual dipolar couplings: application to the molecular recognition element of Sendai virus nucleoprotein
  publication-title: J. Am. Chem. Soc.
– volume: 101
  start-page: 12497
  year: 2004
  end-page: 12502
  ident: b0260
  article-title: Reassessing random-coil statistics in unfolded proteins
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 129
  start-page: 5656
  year: 2007
  end-page: 5664
  ident: b0205
  article-title: Structural characterization of flexible proteins using small-angle X-ray scattering
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 197
  year: 2005
  end-page: 208
  ident: b0075
  article-title: Intrinsically unstructured proteins and their functions
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 47
  start-page: 83
  year: 1977
  end-page: 102
  ident: b0140
  article-title: Data evaluation in small-angle scattering – calculation of radial electron-density distribution by means of indirect fourier transformation
  publication-title: Acta Phys. Aust.
– volume: 4
  start-page: 130090
  year: 2014
  ident: b0235
  article-title: The basic keratin 10-binding domain of the virulence-associated pneumococcal serine-rich protein PsrP adopts a novel MSCRAMM fold
  publication-title: Open Biol.
– volume: 38
  start-page: 15009
  year: 1999
  end-page: 15016
  ident: b0360
  article-title: Natively unfolded human prothymosin alpha adopts partially folded collapsed conformation at acidic pH
  publication-title: Biochemistry
– volume: 13
  start-page: 1047
  year: 2005
  end-page: 1054
  ident: b0270
  article-title: Scaling behavior and structure of denatured proteins
  publication-title: Structure
– volume: 28
  start-page: 174
  year: 2009
  end-page: 189
  ident: b0215
  article-title: Structure and flexibility within proteins as identified through small angle X-ray scattering
  publication-title: Gen. Physiol. Biophys.
– volume: 43
  start-page: 2141
  year: 2004
  end-page: 2154
  ident: b0195
  article-title: Polymer models of protein stability, folding, and interactions
  publication-title: Biochemistry
– volume: 11
  start-page: 29
  year: 2011
  ident: b0055
  article-title: Binary classification of protein molecules into intrinsically disordered and ordered segments
  publication-title: BMC Struct. Biol.
– volume: 18
  start-page: 1431
  year: 2010
  end-page: 1442
  ident: b0320
  article-title: XLF regulates filament architecture of the XRCC4.ligase IV complex
  publication-title: Structure
– volume: 267
  start-page: 663
  year: 2000
  end-page: 668
  ident: b0365
  article-title: Zn(2+)-mediated structure formation and compaction of the “natively unfolded” human prothymosin alpha
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 1804
  start-page: 1231
  year: 2010
  end-page: 1264
  ident: b0060
  article-title: Understanding protein non-folding
  publication-title: Biochim. Biophys. Acta
– volume: 107
  start-page: 15757
  year: 2010
  end-page: 15762
  ident: b0220
  article-title: Multidomain assembled states of Hck tyrosine kinase in solution
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 28
  start-page: 768
  year: 1995
  end-page: 773
  ident: b0230
  article-title: CRYSOL – a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates
  publication-title: J. Appl. Crystallogr.
– volume: 131
  start-page: 10507
  year: 2009
  end-page: 10515
  ident: b0390
  article-title: Determination of multicomponent protein structures in solution using global orientation and shape restraints
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 1289
  year: 2010
  end-page: 1299
  ident: b0455
  article-title: The structure of the talin head reveals a novel extended conformation of the FERM domain
  publication-title: Structure
– volume: 19
  start-page: 26
  year: 2001
  end-page: 59
  ident: b0375
  article-title: Intrinsically disordered protein
  publication-title: J. Mol. Graph. Model.
– volume: 33
  start-page: 2
  year: 2008
  end-page: 8
  ident: b0095
  article-title: Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions
  publication-title: Trends Biochem. Sci.
– volume: 69
  start-page: 2050
  year: 2013
  end-page: 2060
  ident: b0240
  article-title: Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
– volume: 132
  start-page: 13026
  year: 2010
  end-page: 13045
  ident: b0395
  article-title: Solution structure of the 128 kDa enzyme I dimer from
  publication-title: J. Am. Chem. Soc.
– volume: 89
  start-page: 1237
  year: 2005
  end-page: 1250
  ident: b0175
  article-title: Global rigid body modeling of macromolecular complexes against small-angle scattering data
  publication-title: Biophys. J.
– volume: 74
  start-page: 104
  year: 2009
  end-page: 121
  ident: b0325
  article-title: Human FEZ1 has characteristics of a natively unfolded protein and dimerizes in solution
  publication-title: Proteins
– volume: 86
  start-page: 321
  year: 2007
  end-page: 328
  ident: b0275
  article-title: Influence of local and residual structures on the scaling behavior and dimensions of unfolded proteins
  publication-title: Biopolymers
– volume: 280
  start-page: 33109
  year: 2005
  end-page: 33114
  ident: b0305
  article-title: Phosphorylation of phosphophoryn is crucial for its function as a mediator of biomineralization
  publication-title: J. Biol. Chem.
– start-page: 673
  year: 2002
  end-page: 684
  ident: b0250
  article-title: Detecting native protein folds among large decoy sets with hydrophobic moment profiling
  publication-title: Pac. Symp. Biocomput.
– volume: 34
  start-page: 13211
  year: 1995
  end-page: 13218
  ident: b0415
  article-title: Prothymosin alpha: a biologically active protein with random coil conformation
  publication-title: Biochemistry
– volume: 102
  start-page: 13099
  year: 2005
  end-page: 13104
  ident: b0050
  article-title: Statistical coil model of the unfolded state: resolving the reconciliation problem
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 36
  start-page: 1277
  year: 2003
  end-page: 1282
  ident: b0170
  article-title: PRIMUS – a Windows-PC based system for small-angle scattering data analysis
  publication-title: J. Appl. Crystallogr.
– volume: 19
  start-page: 109
  year: 2011
  end-page: 116
  ident: b0225
  article-title: SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions
  publication-title: Structure
– year: 1953
  ident: b0160
  article-title: Principles of Polymer Chemistry
– volume: 18
  start-page: 756
  year: 2008
  end-page: 764
  ident: b0090
  article-title: Function and structure of inherently disordered proteins
  publication-title: Curr. Opin. Struct. Biol.
– volume: 367
  start-page: 1494
  year: 2007
  end-page: 1510
  ident: b0400
  article-title: Improved structural characterizations of the drkN SH3 domain unfolded state suggest a compact ensemble with native-like and non-native structure
  publication-title: J. Mol. Biol.
– volume: 391
  start-page: 359
  year: 2009
  end-page: 374
  ident: b0405
  article-title: Structure and disorder in an unfolded state under nondenaturing conditions from ensemble models consistent with a large number of experimental restraints
  publication-title: J. Mol. Biol.
– volume: 284
  start-page: 12821
  year: 2009
  end-page: 12828
  ident: b0450
  article-title: Interdomain flexibility in full-length matrix metalloproteinase-1 (MMP-1)
  publication-title: J. Biol. Chem.
– volume: 75
  start-page: 990
  year: 2009
  end-page: 1009
  ident: b0335
  article-title: Intrinsic structural disorder of mouse proNGF
  publication-title: Proteins
– volume: 42
  start-page: D326
  year: 2014
  end-page: D335
  ident: b0475
  article-title: PE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins
  publication-title: Nucleic Acids Res.
– volume: 19
  start-page: 642
  year: 2010
  end-page: 657
  ident: b0115
  article-title: Small-angle scattering for structural biology–expanding the frontier while avoiding the pitfalls
  publication-title: Protein Sci.
– volume: 22
  start-page: 273
  year: 2015
  end-page: 279
  ident: b0125
  article-title: Limiting radiation damage for high-brilliance biological solution scattering: practical experience at the EMBL P12 beamline PETRAIII
  publication-title: J. Synchrotron Radiat.
– volume: 47
  start-page: 11446
  year: 2008
  end-page: 11456
  ident: b0465
  article-title: The BARD1 C-terminal domain structure and interactions with polyadenylation factor CstF-50
  publication-title: Biochemistry
– volume: 147
  start-page: 111
  year: 2010
  end-page: 122
  ident: b0020
  article-title: Human serum albumin binding ibuprofen: a 3D description of the unfolding pathway in urea
  publication-title: Biophys. Chem.
– volume: 172
  start-page: 128
  year: 2010
  end-page: 141
  ident: b0110
  article-title: Structural characterization of proteins and complexes using small-angle X-ray solution scattering
  publication-title: J. Struct. Biol.
– volume: 101
  start-page: 8301
  year: 2004
  end-page: 8306
  ident: b0345
  article-title: Structural basis for the attachment of a paramyxoviral polymerase to its template
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 26
  start-page: 565
  year: 2007
  end-page: 578
  ident: b0105
  article-title: The N terminus of
  publication-title: Mol. Cell
– volume: 15
  start-page: 1042
  year: 2006
  end-page: 1050
  ident: b0340
  article-title: The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured
  publication-title: Protein Sci.
– volume: 102
  start-page: 17002
  year: 2005
  end-page: 17007
  ident: b0180
  article-title: A structural model for unfolded proteins from residual dipolar couplings and small-angle X-ray scattering
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 342
  start-page: 1305
  year: 2004
  end-page: 1324
  ident: b0300
  article-title: Conformational prerequisites for formation of amyloid fibrils from histones
  publication-title: J. Mol. Biol.
– reference: A. Guinier, La diffraction des rayons X aux tr‘es petits angles: application ‘a l’étude de phénom‘enes ultramicroscopiquesed, Univ. de Paris, Paris, 1939, pp. 3, p.l., 80, 2, p. 1 l.
– volume: 97
  start-page: 2839
  year: 2009
  end-page: 2845
  ident: b0155
  article-title: A self-consistent description of the conformational behavior of chemically denatured proteins from NMR and small angle scattering
  publication-title: Biophys. J.
– volume: 39
  start-page: 1117
  year: 2011
  end-page: 1130
  ident: b0350
  article-title: Different modes of interaction by TIAR and HuR with target RNA and DNA
  publication-title: Nucleic Acids Res.
– volume: 39
  start-page: 4122
  year: 2011
  end-page: 4135
  ident: b0100
  article-title: Biophysical analysis and small-angle X-ray scattering-derived structures of MeCP2–nucleosome complexes
  publication-title: Nucleic Acids Res.
– volume: 8
  start-page: e74783
  year: 2013
  ident: b0245
  article-title: Small angle X-ray scattering studies of mitochondrial glutaminase C reveal extended flexible regions, and link oligomeric state with enzyme activity
  publication-title: PLoS One
– volume: 689
  start-page: 52
  year: 2012
  end-page: 59
  ident: b0120
  article-title: Automated acquisition and analysis of small angle X-ray scattering data
  publication-title: Nuclear Instrum. Methods Phys. Res. A
– volume: 87
  start-page: 4056
  year: 2004
  end-page: 4064
  ident: b0430
  article-title: SAXS study of the PIR domain from the Grb14 molecular adaptor: a natively unfolded protein with a transient structure primer?
  publication-title: Biophys. J.
– volume: 395
  start-page: 105
  year: 2010
  end-page: 122
  ident: b0425
  article-title: The central portion of factor H (modules 10–15) is compact and contains a structurally deviant CCP module
  publication-title: J. Mol. Biol.
– volume: 101
  start-page: 12491
  year: 2004
  end-page: 12496
  ident: b0005
  article-title: Random-coil behavior and the dimensions of chemically unfolded proteins
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 383
  start-page: 214
  year: 2008
  end-page: 223
  ident: b0315
  article-title: Structural characteristics of alpha-synuclein oligomers stabilized by the flavonoid baicalein
  publication-title: J. Mol. Biol.
– volume: 19
  start-page: 109
  year: 2011
  end-page: 116
  article-title: SAXS ensemble refinement of ESCRT‐III CHMP3 conformational transitions
  publication-title: Structure
– volume: 367
  start-page: 1494
  year: 2007
  end-page: 1510
  article-title: Improved structural characterizations of the drkN SH3 domain unfolded state suggest a compact ensemble with native‐like and non‐native structure
  publication-title: J. Mol. Biol.
– volume: 102
  start-page: 17002
  year: 2005
  end-page: 17007
  article-title: A structural model for unfolded proteins from residual dipolar couplings and small‐angle X‐ray scattering
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 75
  start-page: 333
  year: 2006
  end-page: 366
  article-title: Protein misfolding, functional amyloid, and human disease
  publication-title: Annu. Rev. Biochem.
– volume: 383
  start-page: 214
  year: 2008
  end-page: 223
  article-title: Structural characteristics of alpha‐synuclein oligomers stabilized by the flavonoid baicalein
  publication-title: J. Mol. Biol.
– volume: 142
  start-page: 101
  year: 2010
  end-page: 111
  article-title: Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity
  publication-title: Cell
– volume: 42
  start-page: D326
  year: 2014
  end-page: D335
  article-title: PE‐DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins
  publication-title: Nucleic Acids Res.
– volume: 43
  start-page: 2141
  year: 2004
  end-page: 2154
  article-title: Polymer models of protein stability, folding, and interactions
  publication-title: Biochemistry
– volume: 39
  start-page: 769
  year: 2010
  end-page: 780
  article-title: Effect of interdomain dynamics on the structure determination of modular proteins by small‐angle scattering
  publication-title: Eur. Biophys. J.
– volume: 97
  start-page: 2839
  year: 2009
  end-page: 2845
  article-title: A self‐consistent description of the conformational behavior of chemically denatured proteins from NMR and small angle scattering
  publication-title: Biophys. J.
– volume: 689
  start-page: 52
  year: 2012
  end-page: 59
  article-title: Automated acquisition and analysis of small angle X‐ray scattering data
  publication-title: Nuclear Instrum. Methods Phys. Res. A
– volume: 34
  start-page: 13211
  year: 1995
  end-page: 13218
  article-title: Prothymosin alpha: a biologically active protein with random coil conformation
  publication-title: Biochemistry
– volume: 131
  start-page: 10507
  year: 2009
  end-page: 10515
  article-title: Determination of multicomponent protein structures in solution using global orientation and shape restraints
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 768
  year: 1995
  end-page: 773
  article-title: CRYSOL – a program to evaluate X‐ray solution scattering of biological macromolecules from atomic coordinates
  publication-title: J. Appl. Crystallogr.
– volume: 18
  start-page: 1431
  year: 2010
  end-page: 1442
  article-title: XLF regulates filament architecture of the XRCC4.ligase IV complex
  publication-title: Structure
– volume: 89
  start-page: 1237
  year: 2005
  end-page: 1250
  article-title: Global rigid body modeling of macromolecular complexes against small‐angle scattering data
  publication-title: Biophys. J.
– volume: 75
  start-page: 990
  year: 2009
  end-page: 1009
  article-title: Intrinsic structural disorder of mouse proNGF
  publication-title: Proteins
– volume: 8
  start-page: 151
  year: 2012
  end-page: 167
  article-title: Structural analysis of intrinsically disordered proteins by small‐angle X‐ray scattering
  publication-title: Mol. Biosyst.
– volume: 129
  start-page: 5656
  year: 2007
  end-page: 5664
  article-title: Structural characterization of flexible proteins using small‐angle X‐ray scattering
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: e74783
  year: 2013
  article-title: Small angle X‐ray scattering studies of mitochondrial glutaminase C reveal extended flexible regions, and link oligomeric state with enzyme activity
  publication-title: PLoS One
– volume: 102
  start-page: 13099
  year: 2005
  end-page: 13104
  article-title: Statistical coil model of the unfolded state: resolving the reconciliation problem
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 1342
  start-page: 73
  year: 1997
  end-page: 82
  article-title: A circular dichroism study of preferential hydration and alcohol effects on a denatured protein, pig calpastatin domain I
  publication-title: Biochim. Biophys. Acta
– volume: 37
  start-page: 215
  year: 2008
  end-page: 246
  article-title: Intrinsically disordered proteins in human diseases: introducing the D2 concept
  publication-title: Annu. Rev. Biophys.
– volume: 15
  start-page: 1042
  year: 2006
  end-page: 1050
  article-title: The C‐terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured
  publication-title: Protein Sci.
– volume: 6
  start-page: 606
  year: 2009
  end-page: 612
  article-title: Robust, high‐throughput solution structural analyses by small angle X‐ray scattering (SAXS)
  publication-title: Nat. Methods
– volume: 43
  year: 2015
  article-title: SASBDB, a repository for biological small‐angle scattering data
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: 197
  year: 2005
  end-page: 208
  article-title: Intrinsically unstructured proteins and their functions
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 86
  start-page: 321
  year: 2007
  end-page: 328
  article-title: Influence of local and residual structures on the scaling behavior and dimensions of unfolded proteins
  publication-title: Biopolymers
– volume: 280
  start-page: 33109
  year: 2005
  end-page: 33114
  article-title: Phosphorylation of phosphophoryn is crucial for its function as a mediator of biomineralization
  publication-title: J. Biol. Chem.
– volume: 132
  start-page: 13553
  year: 2010
  end-page: 13558
  article-title: Conformational space of flexible biological macromolecules from average data
  publication-title: J. Am. Chem. Soc.
– volume: 377
  start-page: 1576
  year: 2008
  end-page: 1592
  article-title: Small‐angle X‐ray scattering of reduced ribonuclease A: effects of solution conditions and comparisons with a computational model of unfolded proteins
  publication-title: J. Mol. Biol.
– year: 1953
  article-title: Principles of Polymer Chemistry
– volume: 74
  start-page: 104
  year: 2009
  end-page: 121
  article-title: Human FEZ1 has characteristics of a natively unfolded protein and dimerizes in solution
  publication-title: Proteins
– volume: 267
  start-page: 663
  year: 2000
  end-page: 668
  article-title: Zn(2+)‐mediated structure formation and compaction of the “natively unfolded” human prothymosin alpha
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 11
  start-page: 29
  year: 2011
  article-title: Binary classification of protein molecules into intrinsically disordered and ordered segments
  publication-title: BMC Struct. Biol.
– volume: 25
  start-page: 495
  year: 1992
  end-page: 503
  article-title: Determination of the regularization parameter in indirect‐transform methods using perceptual criteria
  publication-title: J. Appl. Crystallogr.
– volume: 47
  start-page: 83
  year: 1977
  end-page: 102
  article-title: Data evaluation in small‐angle scattering – calculation of radial electron‐density distribution by means of indirect fourier transformation
  publication-title: Acta Phys. Aust.
– volume: 19
  start-page: 26
  year: 2001
  end-page: 59
  article-title: Intrinsically disordered protein
  publication-title: J. Mol. Graph. Model.
– volume: 27
  start-page: 527
  year: 2002
  end-page: 533
  article-title: Intrinsically unstructured proteins
  publication-title: Trends Biochem. Sci.
– volume: 4
  start-page: 130090
  year: 2014
  article-title: The basic keratin 10‐binding domain of the virulence‐associated pneumococcal serine‐rich protein PsrP adopts a novel MSCRAMM fold
  publication-title: Open Biol.
– volume: 45
  start-page: 9180
  year: 2006
  end-page: 9187
  article-title: Structural insights into the interaction between prion protein and nucleic acid
  publication-title: Biochemistry
– volume: 105
  start-page: 5762
  year: 2008
  end-page: 5767
  article-title: Structure of tumor suppressor p53 and its intrinsically disordered N‐terminal transactivation domain
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 107
  start-page: 15757
  year: 2010
  end-page: 15762
  article-title: Multidomain assembled states of Hck tyrosine kinase in solution
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 104
  start-page: 12324
  year: 2007
  end-page: 12329
  article-title: From the cover: quaternary structures of tumor suppressor p53 and a specific p53 DNA complex
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 39
  start-page: 1364
  year: 2000
  end-page: 1372
  article-title: PH‐dependent unfolding of aspergillopepsin II studied by small‐angle X‐ray scattering
  publication-title: Biochemistry
– volume: 101
  start-page: 12491
  year: 2004
  end-page: 12496
  article-title: Random‐coil behavior and the dimensions of chemically unfolded proteins
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 172
  start-page: 128
  year: 2010
  end-page: 141
  article-title: Structural characterization of proteins and complexes using small‐angle X‐ray solution scattering
  publication-title: J. Struct. Biol.
– volume: 41
  start-page: 913
  year: 2008
  end-page: 917
  article-title: Automated sample‐changing robot for solution scattering experiments at the EMBL Hamburg SAXS station X33
  publication-title: J. Appl. Crystallogr.
– volume: 2
  start-page: 207
  year: 2015
  end-page: 217
  article-title: Advanced ensemble modelling of flexible macromolecules using X‐ray solution scattering
  publication-title: Iucrj
– volume: 49
  start-page: 2880
  year: 2010
  end-page: 2889
  article-title: Structural dynamics and single‐stranded DNA binding activity of the three N‐terminal domains of the large subunit of replication protein A from small angle X‐ray scattering
  publication-title: Biochemistry
– volume: 87
  start-page: 4056
  year: 2004
  end-page: 4064
  article-title: SAXS study of the PIR domain from the Grb14 molecular adaptor: a natively unfolded protein with a transient structure primer?
  publication-title: Biophys. J.
– volume: 308
  start-page: 721
  year: 2001
  end-page: 743
  article-title: Heat‐induced unfolding of neocarzinostatin, a small all‐beta protein investigated by small‐angle X‐ray scattering
  publication-title: J. Mol. Biol.
– volume: 14
  start-page: 738
  year: 2007
  end-page: 745
  article-title: CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices
  publication-title: Nat. Struct. Mol. Biol.
– volume: 36
  start-page: 1277
  year: 2003
  end-page: 1282
  article-title: PRIMUS – a Windows‐PC based system for small‐angle scattering data analysis
  publication-title: J. Appl. Crystallogr.
– volume: 326
  start-page: 1615
  year: 2003
  end-page: 1633
  article-title: Computational simulation of the statistical properties of unfolded proteins
  publication-title: J. Mol. Biol.
– volume: 101
  start-page: 8301
  year: 2004
  end-page: 8306
  article-title: Structural basis for the attachment of a paramyxoviral polymerase to its template
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 79
  start-page: 2122
  year: 2011
  end-page: 2131
  article-title: Structural memory of natively unfolded tau protein detected by small‐angle X‐ray scattering
  publication-title: Proteins
– volume: 309
  start-page: 1117
  year: 2001
  end-page: 1138
  article-title: Folded‐back solution structure of monomeric factor H of human complement by synchrotron X‐ray and neutron scattering, analytical ultracentrifugation and constrained molecular modelling
  publication-title: J. Mol. Biol.
– volume: 28
  start-page: 174
  year: 2009
  end-page: 189
  article-title: Structure and flexibility within proteins as identified through small angle X‐ray scattering
  publication-title: Gen. Physiol. Biophys.
– volume: 33
  start-page: 2
  year: 2008
  end-page: 8
  article-title: Fuzzy complexes: polymorphism and structural disorder in protein‐protein interactions
  publication-title: Trends Biochem. Sci.
– volume: 53
  start-page: 105
  year: 1994
  end-page: 113
  article-title: How random is a highly denatured protein?
  publication-title: Biophys. Chem.
– volume: 18
  start-page: 756
  year: 2008
  end-page: 764
  article-title: Function and structure of inherently disordered proteins
  publication-title: Curr. Opin. Struct. Biol.
– volume: 39
  start-page: 1117
  year: 2011
  end-page: 1130
  article-title: Different modes of interaction by TIAR and HuR with target RNA and DNA
  publication-title: Nucleic Acids Res.
– volume: 44
  start-page: 11369
  year: 2005
  end-page: 11380
  article-title: Reconciling observations of sequence‐specific conformational propensities with the generic polymeric behavior of denatured proteins
  publication-title: Biochemistry
– volume: 38
  start-page: 16424
  year: 1999
  end-page: 16431
  article-title: Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques
  publication-title: Biochemistry
– volume: 69
  start-page: 2050
  year: 2013
  end-page: 2060
  article-title: Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states
  publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr.
– volume: 469
  start-page: 253
  year: 2009
  end-page: 268
  article-title: Time‐resolved X‐ray scattering and RNA folding
  publication-title: Methods Enzymol.
– volume: 284
  start-page: 12821
  year: 2009
  end-page: 12828
  article-title: Interdomain flexibility in full‐length matrix metalloproteinase‐1 (MMP‐1)
  publication-title: J. Biol. Chem.
– volume: 147
  start-page: 111
  year: 2010
  end-page: 122
  article-title: Human serum albumin binding ibuprofen: a 3D description of the unfolding pathway in urea
  publication-title: Biophys. Chem.
– volume: 101
  start-page: 12497
  year: 2004
  end-page: 12502
  article-title: Reassessing random‐coil statistics in unfolded proteins
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 128
  start-page: 9893
  year: 2006
  end-page: 9901
  article-title: Interaction of alpha‐synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement
  publication-title: J. Am. Chem. Soc.
– volume: 127
  start-page: 16621
  year: 2005
  end-page: 16628
  article-title: Refinement of multidomain protein structures by combination of solution small‐angle X‐ray scattering and NMR data
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 15009
  year: 1999
  end-page: 15016
  article-title: Natively unfolded human prothymosin alpha adopts partially folded collapsed conformation at acidic pH
  publication-title: Biochemistry
– volume: 39
  start-page: 4122
  year: 2011
  end-page: 4135
  article-title: Biophysical analysis and small‐angle X‐ray scattering‐derived structures of MeCP2–nucleosome complexes
  publication-title: Nucleic Acids Res.
– volume: 19
  start-page: 642
  year: 2010
  end-page: 657
  article-title: Small‐angle scattering for structural biology–expanding the frontier while avoiding the pitfalls
  publication-title: Protein Sci.
– volume: 13
  start-page: 1047
  year: 2005
  end-page: 1054
  article-title: Scaling behavior and structure of denatured proteins
  publication-title: Structure
– volume: 41
  start-page: 415
  year: 2000
  end-page: 427
  article-title: Why are “natively unfolded” proteins unstructured under physiologic conditions?
  publication-title: Proteins
– volume: 21
  start-page: 419
  year: 2011
  end-page: 425
  article-title: Unstructural biology coming of age
  publication-title: Curr. Opin. Struct. Biol.
– start-page: 673
  year: 2002
  end-page: 684
  article-title: Detecting native protein folds among large decoy sets with hydrophobic moment profiling
  publication-title: Pac. Symp. Biocomput.
– volume: 23
  start-page: 553
  year: 2002
  end-page: 567
  article-title: Conformational behavior of human alpha‐synuclein is modulated by familial Parkinson's disease point mutations A30P and A53T
  publication-title: Neurotoxicology
– volume: 395
  start-page: 105
  year: 2010
  end-page: 122
  article-title: The central portion of factor H (modules 10–15) is compact and contains a structurally deviant CCP module
  publication-title: J. Mol. Biol.
– volume: 129
  start-page: 16126
  year: 2007
  end-page: 16131
  article-title: Interaction of urea with amino acids: implications for urea‐induced protein denaturation
  publication-title: J. Am. Chem. Soc.
– volume: 431
  start-page: 93
  year: 2010
  end-page: 102
  article-title: Identification and biophysical assessment of the molecular recognition mechanisms between the human haemopoietic cell kinase Src homology domain 3 and ALG‐2‐interacting protein X
  publication-title: Biochem. J.
– volume: 342
  start-page: 1305
  year: 2004
  end-page: 1324
  article-title: Conformational prerequisites for formation of amyloid fibrils from histones
  publication-title: J. Mol. Biol.
– volume: 17
  start-page: 1169
  year: 2009
  end-page: 1185
  article-title: Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings
  publication-title: Structure
– volume: 18
  start-page: 1289
  year: 2010
  end-page: 1299
  article-title: The structure of the talin head reveals a novel extended conformation of the FERM domain
  publication-title: Structure
– volume: 47
  start-page: 11446
  year: 2008
  end-page: 11456
  article-title: The BARD1 C‐terminal domain structure and interactions with polyadenylation factor CstF‐50
  publication-title: Biochemistry
– volume: 1804
  start-page: 1231
  year: 2010
  end-page: 1264
  article-title: Understanding protein non‐folding
  publication-title: Biochim. Biophys. Acta
– volume: 22
  start-page: 273
  year: 2015
  end-page: 279
  article-title: Limiting radiation damage for high‐brilliance biological solution scattering: practical experience at the EMBL P12 beamline PETRAIII
  publication-title: J. Synchrotron Radiat.
– volume: 132
  start-page: 13026
  year: 2010
  end-page: 13045
  article-title: Solution structure of the 128 kDa enzyme I dimer from and its 146 kDa complex with HPr using residual dipolar couplings and small‐ and wide‐angle X‐ray scattering
  publication-title: J. Am. Chem. Soc.
– volume: 26
  start-page: 565
  year: 2007
  end-page: 578
  article-title: The N terminus of Msh6 is an unstructured tether to PCNA
  publication-title: Mol. Cell
– volume: 130
  start-page: 8055
  year: 2008
  end-page: 8061
  article-title: Quantitative conformational analysis of partially folded proteins from residual dipolar couplings: application to the molecular recognition element of Sendai virus nucleoprotein
  publication-title: J. Am. Chem. Soc.
– volume: 468
  start-page: 1046
  year: 2010
  end-page: 1048
  article-title: Structural biology: proteins in dynamic equilibrium
  publication-title: Nature
– volume: 391
  start-page: 359
  year: 2009
  end-page: 374
  article-title: Structure and disorder in an unfolded state under nondenaturing conditions from ensemble models consistent with a large number of experimental restraints
  publication-title: J. Mol. Biol.
– ident: e_1_2_9_76_1
  doi: 10.1016/S1093-3263(00)00138-8
– ident: e_1_2_9_37_1
  doi: 10.1073/pnas.0506202102
– ident: e_1_2_9_44_1
  doi: 10.4149/gpb_2009_02_174
– ident: e_1_2_9_92_1
  doi: 10.1016/j.str.2010.07.011
– ident: e_1_2_9_13_1
  doi: 10.1016/j.bbapap.2010.01.017
– ident: e_1_2_9_16_1
  doi: 10.1038/nrm1589
– ident: e_1_2_9_45_1
  doi: 10.1073/pnas.1004569107
– ident: e_1_2_9_59_1
  doi: 10.1021/bi9019934
– ident: e_1_2_9_87_1
  doi: 10.1529/biophysj.104.048645
– ident: e_1_2_9_7_1
  doi: 10.1016/S0076-6879(09)69012-1
– ident: e_1_2_9_26_1
  doi: 10.1107/S1600577515000375
– ident: e_1_2_9_94_1
  doi: 10.1021/bi801115g
– ident: e_1_2_9_22_1
  doi: 10.1016/j.molcel.2007.04.024
– ident: e_1_2_9_60_1
  doi: 10.1016/S0167-4838(97)00092-7
– ident: e_1_2_9_3_1
  doi: 10.1021/bi991765q
– ident: e_1_2_9_80_1
  doi: 10.1021/ja105485b
– ident: e_1_2_9_25_1
  doi: 10.1016/j.nima.2012.06.008
– ident: e_1_2_9_24_1
  doi: 10.1002/pro.351
– ident: e_1_2_9_57_1
  doi: 10.1016/j.jmb.2008.02.009
– ident: e_1_2_9_49_1
  doi: 10.1107/S0907444913018714
– ident: e_1_2_9_50_1
  doi: 10.1371/journal.pone.0074783
– ident: e_1_2_9_4_1
  doi: 10.1021/ja076216j
– ident: e_1_2_9_53_1
  doi: 10.1073/pnas.0404236101
– ident: e_1_2_9_32_1
  doi: 10.1016/j.bpj.2009.08.044
– ident: e_1_2_9_17_1
  doi: 10.1016/S0968-0004(02)02169-2
– ident: e_1_2_9_15_1
  doi: 10.1146/annurev.biophys.37.032807.125924
– ident: e_1_2_9_27_1
– ident: e_1_2_9_65_1
  doi: 10.1016/j.str.2010.09.009
– ident: e_1_2_9_11_1
  doi: 10.1073/pnas.0506078102
– ident: e_1_2_9_46_1
  doi: 10.1016/j.str.2010.10.006
– ident: e_1_2_9_96_1
  doi: 10.1093/nar/gkt960
– ident: e_1_2_9_42_1
  doi: 10.1021/ja069124n
– ident: e_1_2_9_33_1
– ident: e_1_2_9_20_1
  doi: 10.1016/j.tibs.2007.10.003
– ident: e_1_2_9_28_1
  doi: 10.1016/0301-4622(94)00081-6
– ident: e_1_2_9_69_1
  doi: 10.1110/ps.062115406
– ident: e_1_2_9_85_1
  doi: 10.1021/ja801332d
– ident: e_1_2_9_58_1
  doi: 10.1038/nsmb1278
– ident: e_1_2_9_95_1
  doi: 10.1093/nar/gku1047
– ident: e_1_2_9_88_1
  doi: 10.1021/bi060532d
– ident: e_1_2_9_56_1
  doi: 10.1002/bip.20747
– ident: e_1_2_9_64_1
  doi: 10.1016/j.jmb.2008.08.039
– ident: e_1_2_9_36_1
  doi: 10.1529/biophysj.105.064154
– ident: e_1_2_9_93_1
  doi: 10.1007/s00249-009-0549-3
– ident: e_1_2_9_74_1
  doi: 10.1006/bbrc.1999.2013
– ident: e_1_2_9_52_1
  doi: 10.1016/S0022-2836(03)00033-0
– ident: e_1_2_9_71_1
  doi: 10.1093/nar/gkq837
– ident: e_1_2_9_82_1
  doi: 10.1016/j.jmb.2009.06.001
– ident: e_1_2_9_83_1
  doi: 10.1021/ja1063923
– ident: e_1_2_9_43_1
  doi: 10.1107/S205225251500202X
– ident: e_1_2_9_31_1
  doi: 10.1006/jmbi.2001.4611
– ident: e_1_2_9_67_1
  doi: 10.1073/pnas.0705069104
– ident: e_1_2_9_90_1
  doi: 10.1016/j.cell.2010.05.039
– ident: e_1_2_9_21_1
  doi: 10.1093/nar/gkr005
– ident: e_1_2_9_6_1
  doi: 10.1021/bi991584o
– ident: e_1_2_9_40_1
  doi: 10.1021/bi036269n
– ident: e_1_2_9_75_1
  doi: 10.1002/prot.23033
– ident: e_1_2_9_86_1
  doi: 10.1016/j.jmb.2009.10.010
– ident: e_1_2_9_39_1
  doi: 10.1073/pnas.0801353105
– ident: e_1_2_9_61_1
  doi: 10.1016/j.jmb.2004.06.094
– ident: e_1_2_9_19_1
  doi: 10.1016/j.sbi.2008.10.002
– start-page: 673
  year: 2002
  ident: e_1_2_9_51_1
  article-title: Detecting native protein folds among large decoy sets with hydrophobic moment profiling
  publication-title: Pac. Symp. Biocomput.
– ident: e_1_2_9_54_1
  doi: 10.1021/bi050196l
– ident: e_1_2_9_68_1
  doi: 10.1002/prot.22311
– ident: e_1_2_9_81_1
  doi: 10.1016/j.jmb.2007.01.038
– ident: e_1_2_9_23_1
  doi: 10.1016/j.jsb.2010.06.012
– ident: e_1_2_9_84_1
  doi: 10.1021/bi00040a037
– ident: e_1_2_9_5_1
  doi: 10.1016/j.bpc.2010.01.002
– ident: e_1_2_9_77_1
  doi: 10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7
– volume: 47
  start-page: 83
  year: 1977
  ident: e_1_2_9_29_1
  article-title: Data evaluation in small‐angle scattering – calculation of radial electron‐density distribution by means of indirect fourier transformation
  publication-title: Acta Phys. Aust.
– ident: e_1_2_9_41_1
  doi: 10.1038/4681046a
– ident: e_1_2_9_35_1
  doi: 10.1107/S0021889803012779
– ident: e_1_2_9_78_1
  doi: 10.1021/ja054342m
– ident: e_1_2_9_79_1
  doi: 10.1021/ja902528f
– ident: e_1_2_9_34_1
  doi: 10.1039/C1MB05275F
– ident: e_1_2_9_10_1
  doi: 10.1006/jmbi.2001.4720
– ident: e_1_2_9_63_1
  doi: 10.1021/ja0618649
– ident: e_1_2_9_91_1
  doi: 10.1074/jbc.M809627200
– ident: e_1_2_9_38_1
  doi: 10.1016/j.str.2009.08.001
– ident: e_1_2_9_30_1
  doi: 10.1107/S0021889892001663
– ident: e_1_2_9_72_1
  doi: 10.1016/S0161-813X(02)00066-9
– ident: e_1_2_9_14_1
  doi: 10.1146/annurev.biochem.75.101304.123901
– ident: e_1_2_9_70_1
  doi: 10.1073/pnas.0402690101
– ident: e_1_2_9_73_1
  doi: 10.1021/bi990752
– ident: e_1_2_9_66_1
  doi: 10.1002/prot.22135
– ident: e_1_2_9_12_1
  doi: 10.1186/1472-6807-11-29
– ident: e_1_2_9_48_1
  doi: 10.1098/rsob.130090
– ident: e_1_2_9_89_1
  doi: 10.1042/BJ20100314
– ident: e_1_2_9_47_1
  doi: 10.1107/S0021889895007047
– ident: e_1_2_9_62_1
  doi: 10.1074/jbc.M500159200
– ident: e_1_2_9_2_1
  doi: 10.1073/pnas.0403643101
– ident: e_1_2_9_8_1
  doi: 10.1107/S0021889808021018
– ident: e_1_2_9_9_1
  doi: 10.1038/nmeth.1353
– ident: e_1_2_9_18_1
  doi: 10.1016/j.sbi.2011.03.012
– ident: e_1_2_9_55_1
  doi: 10.1016/j.str.2005.04.009
SSID ssj0001819
Score 2.633051
SecondaryResourceType review_article
Snippet Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution....
Small‐angle X‐ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution....
SourceID proquest
pubmed
crossref
wiley
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2570
SubjectTerms Algorithms
Computer Simulation
Disorder
Flexibility
Intrinsically disordered protein
Intrinsically Disordered Proteins - chemistry
Models, Molecular
nuclear magnetic resonance spectroscopy
nucleic acids
Pliability
profits and margins
Protein Conformation
Protein Folding
proteins
quantitative analysis
Scattering, Small Angle
Small angle scattering
Small-angle X-ray scattering
X-radiation
X-ray diffraction
X-Ray Diffraction - instrumentation
X-Ray Diffraction - methods
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelULaXsbb7yNoNDcbYHpxYtvyRRzc0lMH20hXyJnSWVBJcpzTJQ172t-9OlltKN1r6ZluSkXVn3Z19v98x9sXpWprYEBoHikjqUkRaizxKJQiXGqKsI3Dyz1_52YX8MctmO2zSY2EorTLs_d2e7nfrcGUUVnN0PZ8TxlfIDNULXZoYrTCB-KQsSMuHf-7SPNCCdS6wkBH1vkPxjBZDZ2GFy0MZXpln8qTiMv-2Tw_9z_vurLdH09fsVXAkedXNdZ_t2PaAHVYtBtFXW_6V-9RO_838gO2d9EcvJn2Bt0O2qHjASOF9LjdzY_l6yVdXumm4bi8by2fRjd7yVe05ONHG8W_n1ez8O1867ohIE7CPbg2ft2ts9vJuttwEQk9ruGeBwJY37GJ6-ntyFoXSC1GdES8BWKgzDB4x7hbS5RCDG-clFBajC1eOIc8wLjE1jGPit8vHtatzXQCkqBPapCJ9y3bbZWvfM57EqcmytAAJsQRZaJ2UIHUSAwaftoABk_2CqzrwklN5jEb1CWgLFeSkSE6KymYmxYANb4ddd8Qcjw0oe2mqexqm0Hg8NvRzL32FMqJfKrq1y81KCTTtnlRQ_L8PgaES9PvifMDedapzO2Niy4-lwNGV16WnPYqanp4kD_T_w_Mf8Ii9pDPKgxHymO2ubzb2Izpba_jk36a_adAkOw
  priority: 102
  providerName: Elsevier
Title A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins
URI https://dx.doi.org/10.1016/j.febslet.2015.08.027
https://onlinelibrary.wiley.com/doi/abs/10.1016%2Fj.febslet.2015.08.027
https://www.ncbi.nlm.nih.gov/pubmed/26320411
https://www.proquest.com/docview/1718073931
https://www.proquest.com/docview/2000243906
Volume 589
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELb6EIILgpbHFlgZCSE4ZIkT53XMVl0KFQixVOzN8sRO1SrNVs3uYS-In8Bv5Jcw4yQLCKpy4JYothVnxp5vnJlvGHtW6kIa31A2DiSe1KnwtBaxF0oQZWiIso6Sk9-9jw-P5dtZNNtgr_tcmJYfYn3gRivD7de0wDU0v_ibZ6PSQoOTo_isyPFwBskm26Y0W4rtC-SH9ZaMZqzFwUJ6EWrkz1SeV38d5ioj9ScI_R3TOqM0ucNud2iS563477INW--w3bxGT_p8xZ9zF9_pDs532I1xf3Vzv6_ytsuqnHeJUjjOyfLUWL6Y8-ZcVxXX9Ull-ez712-XesWbwlFxoqnjL6b5bPqSz0teEp8mYCtdG35aL_CxE3u14qbj9bSGOzIIfHKPHU8OPu0fel0FBq-IiJ4ALBQR-pDofgtZxuBDmcUpJBadjDLNII7QPTEFZD7R3MVZURaxTgBCVA1tQhHeZ1v1vLYPGQ_80ERRmIAEX4JMtA5SkDrwAX1Qm8CAyf6Tq6KjJ6cqGZXq49DOVCcpRZJSVD0zSAZstO520fJzXNch7eWpOpDRggeFKnZd16e9_BVKif6s6NrOl40SaOEdt6C4ug3lRAUI__x4wB60yrN-YyLN96XA3rnTpn-bipocjIMpKTXpNCJ7H8FotvcfxnjEblEbiosR8jHbWlwu7RMEXwsYss3RFzF0y2vItvOjj5-P8O7NbPwDi_wpwQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKESoXBC0_y6-RAMEhJXacZHPgkJautvRHSNtKe3M9iVO1SrOo2RXaG4_A4_A8PAkzTrKAoCoHeosU24ozM5lvnJlvGHtRmEzlfk7VOBB7yvSFZ4yIvECBKIKcKOuoOHlvPxoeqg_jcLzEvnW1MA0_xOLAjSzDfa_JwOlA-peA83S9sFDj7ihBK3REnDJu0yt37PwzBm_1u-33KOmXUg62DjaHXttfwMtCKr4HC1mIERIGl0IVEfhQJFEfYosQuugnEIUIvvMMEp9I3KIkK7LIxAABbtzkgQhw3WvsuopkTL0TpPq48AHoNxvgLZQXogn8rB16-9fHvsgr_ol6fwfRzgsObrNbLXzlaaNvd9iSrVbZWlph6H4256-4Syh1J_Wr7MZGd7Wy2bWVW2NlytvKLFzneHaSWz6d8PrMlCU31XFp-fj7l6_nZs7rzHF_om_lr0fpePSGTwpeEIEn4ChT5fykmuJtp2flnOctkajNuWOfwDt32eGViOQeW64mlX3AuPSDPAyDGBT4ClRsjOyDMtIHDHptDD2muleus5YPndpylLpLfDvVraQ0SUpTu04Z99j6YtqnhhDksgn9Tp66RTUNWtGo05dNfd7JX6OU6FeOqexkVmuBkMKRGYqLx1ARlkS86Uc9dr9RnsUTE0u_rwTOTp02_dtW9GBrQ45IqUmnMZTwEf0mD__DGs_YyvBgb1fvbu_vPGI3aTwl5Qj1mC1Pz2f2CSK_KTx1RsbZ0VVb9Q8sUWSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEZQLghbo8jQSIHpIiR3ndeCQPlYtharSUmlvxo7tqlWarbq7QnvjJ_Bv-D_8EmacZAFBVQ70FskPxZmZzDf2zGdCXjhVChMarMbRaSBUxgKlWBJEQjMXGaSsw-LkD_vJzqF4N4yHC-RbVwvT8EPMN9zQMvz_Gg38zLhf4s2TdWf1GBaH-Vmx5-HkaZtduWdnnyF2G7_d3QJBv-S8v_1xcydorxcIyhhr77XVZQwBEsSWTLhEh9rlSaZTCwjaZblOYsDeptR5iBxuSV66MlGp1hGsW5mIRTDvNXIdDxoxl4yLg7kLALfZ4G4mghgs4Gfp0Ju_vvZFTvFP0Ps7hvZOsH-H3G7RKy0adbtLFmy9TFaKGiL30xl9RX0-qd-oXyY3Nrqnpc3uVrkVUhW0LcyCeY6mx8bSyYiOT1VVUVUfVZYOv3_5eq5mdFx66k9wrfT1oBgO1ujIUYf8nRp6qdrQ43oCzV7Nqhk1LY-oNdSTT0DLPXJ4JSK5TxbrUW1XCeVhZOI4SrXQodAiVYpnWigeaoh5bap7RHSfXJYtHTreylHJLu_tRLaSkigpibd18rRH1ufDzho-kMsGZJ08ZQtqGrAiQaUvG_q8k78EKeFJjqrtaDqWDBCF5zJkF_fBGiwOcDNMeuRBozzzN0aS_lAwGF14bfq3pcj-9gYfoFKjTkMkEQL4zR_-hzmekZsHW335fnd_7xG5hd0xJYeJx2Rxcj61TwD3TfRTb2OUfLpqo_4BokNj0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+practical+guide+to+small+angle+X%E2%80%90ray+scattering+%28SAXS%29+of+flexible+and+intrinsically+disordered+proteins&rft.jtitle=FEBS+letters&rft.au=Kikhney%2C+Alexey+G.&rft.au=Svergun%2C+Dmitri+I.&rft.date=2015-09-14&rft.issn=0014-5793&rft.eissn=1873-3468&rft.volume=589&rft.issue=19PartA&rft.spage=2570&rft.epage=2577&rft_id=info:doi/10.1016%2Fj.febslet.2015.08.027&rft.externalDBID=10.1016%252Fj.febslet.2015.08.027&rft.externalDocID=FEB2S0014579315007279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon