A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins
Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular com...
Saved in:
Published in | FEBS letters Vol. 589; no. 19; pp. 2570 - 2577 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
14.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X-ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented. |
---|---|
AbstractList | Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X-ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented. Small‐angle X‐ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X‐ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented. Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X-ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented.Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X-ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental and in silico techniques to characterize completely, or partially unstructured proteins, are presented. Small‐angle X‐ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution. SAXS provides low resolution information on the shape, conformation and assembly state of proteins, nucleic acids and various macromolecular complexes. The technique also offers powerful means for the quantitative analysis of flexible systems, including intrinsically disordered proteins (IDPs). Here, the basic principles of SAXS are presented, and profits and pitfalls of the characterization of multidomain flexible proteins and IDPs using SAXS are discussed from the practical point of view. Examples of the synergistic use of SAXS with high resolution methods like X‐ray crystallography and nuclear magnetic resonance (NMR), as well as other experimental andin silico techniques to characterize completely, or partially unstructured proteins, are presented. |
Author | Svergun, Dmitri I. Kikhney, Alexey G. |
Author_xml | – sequence: 1 givenname: Alexey G. surname: Kikhney fullname: Kikhney, Alexey G. – sequence: 2 givenname: Dmitri I. surname: Svergun fullname: Svergun, Dmitri I. email: d.svergun@embl-hamburg.de |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26320411$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9vEzEQxS1URNPARwD5WA672N7Ya4sDClX_IFXiEJB6s2zvbOTI2S22U8i3x0tCD1zCybbm995Y8-YCnQ3jAAi9paSmhIoPm7oHmwLkmhHKayJrwtoXaEZl21TNQsgzNCOELirequYcXaS0IeUtqXqFzploGFlQOkObJX6MxmXvTMDrne8A5xGnrQkBm2EdAD9U0exxciZniH5Y48vV8mH1Ho897gP88rYwZuiwH3Ipp8ko7HHn0xg7iNAV_zFDqbxGL3sTErw5nnP0_eb629Vddf_19svV8r5yXClVWbCOS8bBMrrohSW2V0LaFrjkvVRWcCpZ56wiouFCKNc7YVprG7BguoY2c3R58C2Nf-wgZb31yUEIZoBxlzQrc2CLZtKfQmlLJWkb9cf13RHd2S10-jH6rYl7_XeUBeAHwMUxpQj9M0KJniLTG32MTE-RaSJ1iazoPv6jcz6b7McyT-PDSfXdQf3TB9j_X0t9c_2ZrablmHaDckJaVi5z9OlgBSWcJw9RJ-dhcND5CC7rbvQnPvMbiKfK6w |
CitedBy_id | crossref_primary_10_1007_s40042_020_00042_6 crossref_primary_10_1016_j_jsb_2020_107630 crossref_primary_10_1021_acs_jpclett_3c02600 crossref_primary_10_1016_j_jbc_2021_100270 crossref_primary_10_1016_j_vaccine_2019_09_005 crossref_primary_10_1016_j_foodhyd_2024_110973 crossref_primary_10_1021_jacsau_4c00359 crossref_primary_10_1063_1_5029274 crossref_primary_10_3389_fmolb_2022_913860 crossref_primary_10_1007_s42860_023_00229_5 crossref_primary_10_1016_j_crstbi_2024_100156 crossref_primary_10_1021_acs_biomac_0c00546 crossref_primary_10_1080_15548627_2023_2259707 crossref_primary_10_1074_jbc_M116_747485 crossref_primary_10_1038_s41598_021_00495_0 crossref_primary_10_3389_fmolb_2022_981312 crossref_primary_10_1021_acs_molpharmaceut_3c00508 crossref_primary_10_1107_S2059798317011597 crossref_primary_10_3390_biom10060946 crossref_primary_10_1080_07391102_2024_2404531 crossref_primary_10_1016_j_abb_2019_07_020 crossref_primary_10_1002_ange_201702904 crossref_primary_10_1093_nar_gkad809 crossref_primary_10_1039_c8pp00034d crossref_primary_10_1139_bcb_2022_0118 crossref_primary_10_3390_pharmaceutics13101654 crossref_primary_10_1016_j_csbj_2021_07_036 crossref_primary_10_1016_j_jsb_2020_107531 crossref_primary_10_1039_D4SM00907J crossref_primary_10_1016_j_isci_2024_109689 crossref_primary_10_1016_j_jscs_2018_02_005 crossref_primary_10_1016_j_jmb_2018_07_006 crossref_primary_10_1039_C8SM01967C crossref_primary_10_1371_journal_pcbi_1007710 crossref_primary_10_1021_acsmacrolett_4c00656 crossref_primary_10_1021_acsnano_3c12314 crossref_primary_10_1016_j_jbc_2024_107727 crossref_primary_10_3389_fmolb_2016_00047 crossref_primary_10_7554_eLife_36258 crossref_primary_10_1016_j_crstbi_2024_100138 crossref_primary_10_1016_j_cej_2024_150329 crossref_primary_10_1016_j_ndteint_2023_103004 crossref_primary_10_1128_JB_00734_17 crossref_primary_10_3390_molecules25040873 crossref_primary_10_1016_j_foodchem_2021_131821 crossref_primary_10_3390_cryst9120612 crossref_primary_10_1016_j_vacuum_2024_113936 crossref_primary_10_1016_j_bpj_2019_02_015 crossref_primary_10_1016_j_bbagen_2016_05_008 crossref_primary_10_1038_s41524_022_00725_7 crossref_primary_10_1007_s43450_025_00634_y crossref_primary_10_1021_acs_langmuir_9b02541 crossref_primary_10_1128_jb_00340_22 crossref_primary_10_1002_anie_201702904 crossref_primary_10_7554_eLife_90259_3 crossref_primary_10_1107_S1600576717017101 crossref_primary_10_1016_j_molliq_2018_08_096 crossref_primary_10_1002_ijch_202000007 crossref_primary_10_1016_j_csbj_2022_07_009 crossref_primary_10_1128_JVI_01789_19 crossref_primary_10_1021_acs_jctc_3c00190 crossref_primary_10_1016_j_ijbiomac_2019_07_118 crossref_primary_10_1177_1469066717722256 crossref_primary_10_1016_j_jphotochem_2020_112430 crossref_primary_10_1107_S2052252524004032 crossref_primary_10_3389_fphar_2019_01127 crossref_primary_10_1038_s41598_018_30190_6 crossref_primary_10_1080_07391102_2020_1856721 crossref_primary_10_1002_ange_202312517 crossref_primary_10_1002_asia_202400389 crossref_primary_10_1016_j_biochi_2024_07_018 crossref_primary_10_1021_jasms_2c00253 crossref_primary_10_1038_s41467_022_28264_1 crossref_primary_10_1021_acs_jpcb_9b07502 crossref_primary_10_3390_cells9020470 crossref_primary_10_1063_1_5050926 crossref_primary_10_1039_D1NR00611H crossref_primary_10_1038_s41586_022_04537_z crossref_primary_10_1107_S2052252521005613 crossref_primary_10_3389_fchem_2021_718405 crossref_primary_10_1007_s11095_024_03671_9 crossref_primary_10_1016_j_microc_2023_109659 crossref_primary_10_1093_bbb_zbad082 crossref_primary_10_1021_acs_jcim_2c01196 crossref_primary_10_1038_s41598_022_12885_z crossref_primary_10_1002_prot_26442 crossref_primary_10_3390_pr9020345 crossref_primary_10_1016_j_bpj_2018_01_001 crossref_primary_10_1016_j_jsb_2020_107463 crossref_primary_10_3389_fmolb_2021_787368 crossref_primary_10_3390_genes13050915 crossref_primary_10_1002_mabi_202300579 crossref_primary_10_1177_09673911231196380 crossref_primary_10_1016_j_bbamem_2020_183202 crossref_primary_10_1093_nar_gky031 crossref_primary_10_3390_molecules27030984 crossref_primary_10_1002_adma_201801246 crossref_primary_10_1039_C9RA01510H crossref_primary_10_1002_prot_25000 crossref_primary_10_1002_xrs_3141 crossref_primary_10_1038_s41598_018_25355_2 crossref_primary_10_1021_acs_jpclett_1c03614 crossref_primary_10_1016_j_bbagen_2019_129420 crossref_primary_10_1021_acs_jctc_8b00715 crossref_primary_10_1021_acs_jpca_7b05279 crossref_primary_10_1073_pnas_2211855120 crossref_primary_10_26599_NR_2025_94907183 crossref_primary_10_1016_j_jmb_2023_167988 crossref_primary_10_1360_SSC_2023_0165 crossref_primary_10_1021_acs_biomac_4c00995 crossref_primary_10_1021_acschemneuro_0c00479 crossref_primary_10_1021_acschembio_6b00791 crossref_primary_10_1002_chem_202103025 crossref_primary_10_1042_ETLS20170138 crossref_primary_10_1016_j_cis_2020_102268 crossref_primary_10_1016_j_foodhyd_2020_105778 crossref_primary_10_1016_j_bpj_2017_07_023 crossref_primary_10_1093_nar_gky1092 crossref_primary_10_1016_j_sbi_2016_05_003 crossref_primary_10_3389_fchem_2021_603639 crossref_primary_10_1021_acsami_2c00181 crossref_primary_10_1002_pro_4085 crossref_primary_10_1002_jccs_202000498 crossref_primary_10_3389_fmolb_2019_00064 crossref_primary_10_1021_acs_jpcb_8b08371 crossref_primary_10_1016_j_foodhyd_2024_110202 crossref_primary_10_1016_j_jmb_2018_05_024 crossref_primary_10_1021_acs_biochem_5b01061 crossref_primary_10_3390_ijms17081305 crossref_primary_10_1016_j_molliq_2024_124970 crossref_primary_10_1016_j_str_2020_02_001 crossref_primary_10_1016_j_jocs_2024_102497 crossref_primary_10_1021_acs_jcim_8b00928 crossref_primary_10_1002_adhm_202403385 crossref_primary_10_1149_1945_7111_ad07fe crossref_primary_10_1021_acs_macromol_2c02165 crossref_primary_10_1093_nar_gkac565 crossref_primary_10_1016_j_ijbiomac_2022_05_032 crossref_primary_10_1002_cite_201800079 crossref_primary_10_1093_nar_gkaa107 crossref_primary_10_1016_j_bbamem_2020_183191 crossref_primary_10_1016_j_bpj_2017_08_044 crossref_primary_10_1021_acs_biochem_5b01171 crossref_primary_10_1016_j_polymer_2025_128299 crossref_primary_10_1016_j_bbapap_2020_140404 crossref_primary_10_3389_fimmu_2024_1434463 crossref_primary_10_1038_s41598_019_44385_y crossref_primary_10_1021_acs_jpcb_9b07036 crossref_primary_10_1002_elan_202060316 crossref_primary_10_1021_acs_jpcb_6b09154 crossref_primary_10_1021_acs_jafc_9b04595 crossref_primary_10_1098_rsta_2022_0350 crossref_primary_10_1093_nar_gkac414 crossref_primary_10_3762_bjoc_20_220 crossref_primary_10_1016_j_csbj_2023_04_028 crossref_primary_10_1002_1873_3468_13954 crossref_primary_10_1016_j_jsb_2018_05_006 crossref_primary_10_1016_j_molliq_2018_08_015 crossref_primary_10_1021_jacs_0c07285 crossref_primary_10_1107_S160057672300910X crossref_primary_10_1016_j_dnarep_2018_02_012 crossref_primary_10_1016_j_foodhyd_2024_110533 crossref_primary_10_1134_S0006297924140116 crossref_primary_10_3389_fpls_2021_672035 crossref_primary_10_1016_j_jmb_2022_167708 crossref_primary_10_1038_s41594_024_01212_x crossref_primary_10_1088_1478_3975_aa776a crossref_primary_10_1146_annurev_biophys_101122_071930 crossref_primary_10_1016_j_bpj_2021_04_010 crossref_primary_10_1021_acs_biomac_9b01390 crossref_primary_10_1080_07391102_2023_2298734 crossref_primary_10_1093_nar_gkw1147 crossref_primary_10_3390_ijms18122623 crossref_primary_10_1021_acsmacrolett_2c00665 crossref_primary_10_3390_ijms21249413 crossref_primary_10_1038_s42003_024_06644_1 crossref_primary_10_1093_mtomcs_mfad007 crossref_primary_10_1021_acs_biochem_8b00441 crossref_primary_10_3389_fmolb_2021_749052 crossref_primary_10_1016_j_bpj_2021_10_003 crossref_primary_10_3390_dj11040098 crossref_primary_10_1016_j_foodhyd_2022_108052 crossref_primary_10_1038_s41598_017_16959_1 crossref_primary_10_1021_acs_chemrev_1c00786 crossref_primary_10_1021_acsabm_4c01621 crossref_primary_10_3799_dqkx_2024_028 crossref_primary_10_1140_epjb_s10051_021_00186_9 crossref_primary_10_1021_acs_jctc_2c01090 crossref_primary_10_1016_j_str_2025_01_017 crossref_primary_10_1021_acs_jpcb_2c04344 crossref_primary_10_1021_acs_jpclett_4c00825 crossref_primary_10_1073_pnas_1818206116 crossref_primary_10_1103_PhysRevB_97_184202 crossref_primary_10_1021_acs_jpcb_9b05071 crossref_primary_10_1021_acs_biomac_4c00204 crossref_primary_10_3390_biom10081095 crossref_primary_10_1016_j_jmb_2018_04_008 crossref_primary_10_1016_j_bmc_2024_117873 crossref_primary_10_1007_s41048_017_0044_9 crossref_primary_10_1016_j_ijbiomac_2023_125792 crossref_primary_10_1016_j_cep_2018_09_022 crossref_primary_10_1080_15476286_2024_2448391 crossref_primary_10_1039_C9PY01342C crossref_primary_10_1016_j_jmb_2018_03_007 crossref_primary_10_1038_nprot_2016_113 crossref_primary_10_1038_s41598_019_52344_w crossref_primary_10_1021_acs_jpcb_0c07449 crossref_primary_10_1016_j_ijbiomac_2022_10_227 crossref_primary_10_1021_acsnano_4c01534 crossref_primary_10_1088_1361_648X_abdf91 crossref_primary_10_1016_j_ijbiomac_2024_133212 crossref_primary_10_1007_s12551_016_0194_x crossref_primary_10_1016_j_jmb_2018_03_002 crossref_primary_10_1063_1_5041949 crossref_primary_10_1021_acs_biomac_4c00479 crossref_primary_10_1021_acssusresmgt_4c00294 crossref_primary_10_3390_cells14050383 crossref_primary_10_1080_17425247_2022_2138329 crossref_primary_10_1002_1873_3468_14055 crossref_primary_10_1002_pro_4805 crossref_primary_10_3390_ijms21113920 crossref_primary_10_1039_D0LC01048K crossref_primary_10_1080_19420862_2022_2127172 crossref_primary_10_1021_acs_chemrev_1c00237 crossref_primary_10_3390_ijms22042172 crossref_primary_10_1039_D2LC00622G crossref_primary_10_1093_nar_gkac1274 crossref_primary_10_1007_s12221_017_7123_x crossref_primary_10_18632_oncotarget_17371 crossref_primary_10_1002_adma_201901556 crossref_primary_10_1101_gad_341925_120 crossref_primary_10_1016_j_foodres_2023_112484 crossref_primary_10_1016_j_molliq_2024_126086 crossref_primary_10_1016_j_bbamem_2018_03_020 crossref_primary_10_1021_acs_chemrev_6b00790 crossref_primary_10_1002_bkcs_12119 crossref_primary_10_1002_ange_201712286 crossref_primary_10_1016_j_bioorg_2021_105162 crossref_primary_10_1021_jacs_2c13525 crossref_primary_10_1002_wcms_1685 crossref_primary_10_1021_acs_biomac_2c01370 crossref_primary_10_3390_molecules26030602 crossref_primary_10_1002_cplu_202300260 crossref_primary_10_3389_fmolb_2017_00012 crossref_primary_10_1016_j_bpj_2020_01_031 crossref_primary_10_1093_nar_gkad223 crossref_primary_10_1007_s12038_020_0010_4 crossref_primary_10_1093_gigascience_giac118 crossref_primary_10_3390_cryst11020203 crossref_primary_10_1002_anie_201712286 crossref_primary_10_1039_D3SC06370D crossref_primary_10_1128_mBio_00448_20 crossref_primary_10_1107_S1600576720013412 crossref_primary_10_1016_j_biotechadv_2024_108316 crossref_primary_10_7554_eLife_90259 crossref_primary_10_1016_j_pbiomolbio_2018_08_008 crossref_primary_10_1021_acs_macromol_3c00907 crossref_primary_10_1073_pnas_2009044117 crossref_primary_10_1021_jacsau_3c00124 crossref_primary_10_1016_j_celrep_2022_110959 crossref_primary_10_1039_C7CP00717E crossref_primary_10_1039_C9SC03961A crossref_primary_10_1016_j_cell_2018_03_003 crossref_primary_10_1016_j_nima_2023_168719 crossref_primary_10_1107_S1600576723011159 crossref_primary_10_1039_C9SC02630D crossref_primary_10_1016_j_ijbiomac_2023_127898 crossref_primary_10_1016_j_molliq_2019_111794 crossref_primary_10_1016_j_mtchem_2023_101850 crossref_primary_10_1063_4_0000171 crossref_primary_10_1002_adfm_202301447 crossref_primary_10_1021_acssuschemeng_3c06094 crossref_primary_10_3390_life10120320 crossref_primary_10_1021_acs_jctc_3c00864 crossref_primary_10_1038_s41467_023_42012_z crossref_primary_10_1016_j_csbj_2019_04_011 crossref_primary_10_1016_j_jsb_2024_108131 crossref_primary_10_1016_j_foodres_2023_113787 crossref_primary_10_1021_acs_langmuir_2c00172 crossref_primary_10_1016_j_colsurfa_2020_124571 crossref_primary_10_3390_ijms20153653 crossref_primary_10_1021_acs_jpcb_1c02453 crossref_primary_10_1016_j_foodhyd_2019_01_033 crossref_primary_10_1016_j_jbc_2025_108242 crossref_primary_10_1016_j_jcis_2023_10_139 crossref_primary_10_1021_acs_jcim_6b00789 crossref_primary_10_1093_narcan_zcaa007 crossref_primary_10_1016_j_powtec_2019_08_089 crossref_primary_10_1002_fob2_12016 crossref_primary_10_1016_j_bpc_2021_106552 crossref_primary_10_1016_j_eurpolymj_2018_11_034 crossref_primary_10_1073_pnas_2409139121 crossref_primary_10_1107_S1600576723011019 crossref_primary_10_1016_j_biotechadv_2022_108055 crossref_primary_10_1007_s12551_018_0464_x crossref_primary_10_1002_anie_202312517 crossref_primary_10_1038_s41564_019_0622_3 crossref_primary_10_1016_j_csbj_2022_03_012 crossref_primary_10_1016_j_ultsonch_2023_106510 crossref_primary_10_1002_app_48627 crossref_primary_10_15252_embj_2020107500 crossref_primary_10_1016_j_pbiomolbio_2023_06_002 crossref_primary_10_1002_cm_21954 crossref_primary_10_1038_s43586_021_00064_9 crossref_primary_10_3390_ijms22094947 crossref_primary_10_3390_biom12010095 crossref_primary_10_1016_j_jsb_2018_10_009 crossref_primary_10_1107_S2059798320010700 crossref_primary_10_1016_j_bbamem_2018_02_012 crossref_primary_10_3390_biom12081111 crossref_primary_10_3390_biom12121876 crossref_primary_10_1021_acs_biomac_2c01158 crossref_primary_10_3389_fmolb_2022_862910 crossref_primary_10_1021_acs_langmuir_0c02015 crossref_primary_10_1021_acs_jmedchem_5c00134 crossref_primary_10_1093_nar_gkac182 crossref_primary_10_1002_wcms_1359 crossref_primary_10_1021_acs_biochem_6b00658 crossref_primary_10_1038_s41598_024_74335_2 crossref_primary_10_1016_j_petsci_2022_01_012 crossref_primary_10_1021_acs_jctc_2c01140 crossref_primary_10_1016_j_ymeth_2016_12_002 crossref_primary_10_1021_acs_langmuir_9b03059 crossref_primary_10_1039_D2EN00408A crossref_primary_10_1002_mas_21596 crossref_primary_10_1016_j_carbpol_2025_123411 crossref_primary_10_1016_j_carbpol_2024_123011 crossref_primary_10_1039_D4CP02564D crossref_primary_10_1021_acs_jpcb_4c00219 crossref_primary_10_1021_acs_langmuir_4c03661 crossref_primary_10_1002_jctb_5682 crossref_primary_10_1016_j_ymeth_2018_02_020 crossref_primary_10_1021_acs_jpcb_0c07169 crossref_primary_10_1002_adts_201800175 crossref_primary_10_1016_j_jmb_2020_03_014 crossref_primary_10_1021_acs_biochem_6b00988 crossref_primary_10_3389_fbinf_2022_781949 crossref_primary_10_1002_app_56116 crossref_primary_10_1016_j_mbplus_2021_100081 crossref_primary_10_1002_bip_23558 crossref_primary_10_1016_j_jbc_2025_108289 crossref_primary_10_1093_nar_gkaa1285 crossref_primary_10_1021_acs_jpcb_2c01591 crossref_primary_10_1021_acsomega_2c05576 crossref_primary_10_1016_j_ijbiomac_2022_08_145 crossref_primary_10_1021_acs_jpclett_4c02667 crossref_primary_10_1021_acs_jpcb_8b03354 crossref_primary_10_1039_D2NA00303A crossref_primary_10_3390_molecules28217414 crossref_primary_10_1074_jbc_M117_775858 crossref_primary_10_1107_S205979831900264X crossref_primary_10_3390_ijms19113633 crossref_primary_10_3390_diagnostics13081375 crossref_primary_10_1038_s41598_019_40966_z crossref_primary_10_1107_S2053273324007988 crossref_primary_10_1021_acs_accounts_2c00519 crossref_primary_10_1016_j_ijbiomac_2020_08_148 crossref_primary_10_1021_acs_jpclett_4c01544 crossref_primary_10_3390_pr10030457 crossref_primary_10_1016_j_ifset_2024_103831 crossref_primary_10_1016_j_bbapap_2017_07_013 crossref_primary_10_1016_j_isci_2022_104586 crossref_primary_10_1038_s41598_020_58868_w crossref_primary_10_1002_pol_20230530 crossref_primary_10_3390_ijms232214050 crossref_primary_10_1039_D3CP04780F crossref_primary_10_1016_j_bbabio_2017_01_010 crossref_primary_10_7554_eLife_43630 crossref_primary_10_1021_acs_jpcb_8b05797 crossref_primary_10_3390_cells8040316 crossref_primary_10_1021_acsmacrolett_4c00269 crossref_primary_10_1261_rna_069476_118 crossref_primary_10_7554_eLife_55607 crossref_primary_10_1016_j_cis_2024_103242 crossref_primary_10_1038_s41580_023_00673_0 crossref_primary_10_1107_S2052252523003482 crossref_primary_10_1038_s42003_024_06672_x crossref_primary_10_1080_19420862_2020_1752529 crossref_primary_10_1021_acs_jpcb_7b08925 crossref_primary_10_1016_j_jfoodeng_2024_112444 crossref_primary_10_1016_j_memsci_2022_120788 crossref_primary_10_1021_acs_macromol_1c02304 crossref_primary_10_1063_5_0087583 crossref_primary_10_1107_S1600576722003685 crossref_primary_10_1107_S2059798320002016 crossref_primary_10_1073_pnas_2319998121 crossref_primary_10_1371_journal_pcbi_1006641 crossref_primary_10_1021_acs_jpclett_9b03154 crossref_primary_10_1016_j_foodhyd_2018_12_013 crossref_primary_10_1021_acs_jctc_9b01010 crossref_primary_10_1021_acs_biochem_3c00176 crossref_primary_10_1021_acssensors_4c01677 crossref_primary_10_1074_jbc_RA120_013939 crossref_primary_10_1080_15567036_2023_2282733 crossref_primary_10_3389_fmolb_2020_631232 crossref_primary_10_1107_S2052252520004169 crossref_primary_10_1016_j_bpj_2024_10_021 crossref_primary_10_1016_j_jcis_2022_12_024 crossref_primary_10_1021_acsinfecdis_2c00627 crossref_primary_10_1016_j_cbpa_2019_05_003 crossref_primary_10_1002_pro_3754 crossref_primary_10_1016_j_bbagen_2022_130101 crossref_primary_10_1002_cpz1_802 crossref_primary_10_1063_5_0007158 crossref_primary_10_1016_j_ymeth_2020_06_004 crossref_primary_10_1021_acs_jpcb_9b02575 crossref_primary_10_1002_app_49325 crossref_primary_10_1128_spectrum_02373_23 crossref_primary_10_3390_app142210346 crossref_primary_10_3390_membranes10020033 crossref_primary_10_1186_s12900_016_0068_2 crossref_primary_10_1007_s11120_017_0342_6 crossref_primary_10_1016_j_str_2021_08_002 crossref_primary_10_1088_1674_1056_ad8b36 crossref_primary_10_1038_s41467_019_08865_z crossref_primary_10_1016_j_sbi_2018_03_005 crossref_primary_10_1016_j_cplett_2019_07_004 crossref_primary_10_1038_s41565_020_00798_9 crossref_primary_10_1093_nar_gkaf043 crossref_primary_10_1016_j_bbapap_2022_140767 crossref_primary_10_1021_jacs_0c02088 crossref_primary_10_3390_cells10071697 crossref_primary_10_3390_polym11122104 crossref_primary_10_1042_BCJ20160631 crossref_primary_10_1111_febs_14493 crossref_primary_10_1038_s41598_018_29871_z crossref_primary_10_1107_S1600577522005136 crossref_primary_10_1073_pnas_1914866117 crossref_primary_10_1146_annurev_physchem_052516_050851 crossref_primary_10_1016_j_bios_2019_05_019 crossref_primary_10_1107_S1600577521012923 crossref_primary_10_1021_acs_jpcb_2c07182 crossref_primary_10_1021_acsphyschemau_4c00048 crossref_primary_10_1016_j_bbapap_2022_140755 crossref_primary_10_1016_j_jconrel_2023_10_033 crossref_primary_10_1038_s42003_023_05416_7 crossref_primary_10_1021_acssynbio_8b00007 |
Cites_doi | 10.1016/S1093-3263(00)00138-8 10.1073/pnas.0506202102 10.4149/gpb_2009_02_174 10.1016/j.str.2010.07.011 10.1016/j.bbapap.2010.01.017 10.1038/nrm1589 10.1073/pnas.1004569107 10.1021/bi9019934 10.1529/biophysj.104.048645 10.1016/S0076-6879(09)69012-1 10.1107/S1600577515000375 10.1021/bi801115g 10.1016/j.molcel.2007.04.024 10.1016/S0167-4838(97)00092-7 10.1021/bi991765q 10.1021/ja105485b 10.1016/j.nima.2012.06.008 10.1002/pro.351 10.1016/j.jmb.2008.02.009 10.1107/S0907444913018714 10.1371/journal.pone.0074783 10.1021/ja076216j 10.1073/pnas.0404236101 10.1016/j.bpj.2009.08.044 10.1016/S0968-0004(02)02169-2 10.1146/annurev.biophys.37.032807.125924 10.1016/j.str.2010.09.009 10.1073/pnas.0506078102 10.1016/j.str.2010.10.006 10.1093/nar/gkt960 10.1021/ja069124n 10.1016/j.tibs.2007.10.003 10.1016/0301-4622(94)00081-6 10.1110/ps.062115406 10.1021/ja801332d 10.1038/nsmb1278 10.1093/nar/gku1047 10.1021/bi060532d 10.1002/bip.20747 10.1016/j.jmb.2008.08.039 10.1529/biophysj.105.064154 10.1007/s00249-009-0549-3 10.1006/bbrc.1999.2013 10.1016/S0022-2836(03)00033-0 10.1093/nar/gkq837 10.1016/j.jmb.2009.06.001 10.1021/ja1063923 10.1107/S205225251500202X 10.1006/jmbi.2001.4611 10.1073/pnas.0705069104 10.1016/j.cell.2010.05.039 10.1093/nar/gkr005 10.1021/bi991584o 10.1021/bi036269n 10.1002/prot.23033 10.1016/j.jmb.2009.10.010 10.1073/pnas.0801353105 10.1016/j.jmb.2004.06.094 10.1016/j.sbi.2008.10.002 10.1021/bi050196l 10.1002/prot.22311 10.1016/j.jmb.2007.01.038 10.1016/j.jsb.2010.06.012 10.1021/bi00040a037 10.1016/j.bpc.2010.01.002 10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7 10.1038/4681046a 10.1107/S0021889803012779 10.1021/ja054342m 10.1021/ja902528f 10.1039/C1MB05275F 10.1006/jmbi.2001.4720 10.1021/ja0618649 10.1074/jbc.M809627200 10.1016/j.str.2009.08.001 10.1107/S0021889892001663 10.1016/S0161-813X(02)00066-9 10.1146/annurev.biochem.75.101304.123901 10.1073/pnas.0402690101 10.1021/bi990752 10.1002/prot.22135 10.1186/1472-6807-11-29 10.1098/rsob.130090 10.1042/BJ20100314 10.1107/S0021889895007047 10.1074/jbc.M500159200 10.1073/pnas.0403643101 10.1107/S0021889808021018 10.1038/nmeth.1353 10.1016/j.sbi.2011.03.012 10.1016/j.str.2005.04.009 |
ContentType | Journal Article |
Copyright | 2015 The Authors FEBS Letters 589 (2015) 0014-5793 ©2015 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2015 The Authors – notice: FEBS Letters 589 (2015) 0014-5793 ©2015 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. – notice: Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.febslet.2015.08.027 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Wiley Online Library Open Access - NZ CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (Activated by CARLI) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1873-3468 |
EndPage | 2577 |
ExternalDocumentID | 26320411 10_1016_j_febslet_2015_08_027 FEB2S0014579315007279 S0014579315007279 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K -~X .~1 0R~ 0SF 1B1 1OC 1~. 1~5 24P 2WC 33P 4.4 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ AABNK AACTN AAEDW AAESR AAFTH AAHHS AAIKJ AAJUZ AALRI AANLZ AAQFI AASGY AAXRX AAXUO AAZKR ABBQC ABCUV ABFNM ABFRF ABGSF ABHUG ABJNI ABLJU ABMAC ABQWH ABVKL ABXGK ACAHQ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIUM ACMXC ACNCT ACPOU ACXBN ACXQS ADAWD ADBBV ADBTR ADDAD ADEOM ADEZE ADKYN ADMGS ADOZA ADQTV ADUVX ADXAS ADZMN ADZOD AEEZP AEFWE AEGXH AEKER AENEX AEQDE AEQOU AEUQT AEUYR AEXQZ AFBPY AFFNX AFFPM AFGKR AFPWT AFVGU AFZJQ AGJLS AGYEJ AHBTC AIACR AIAGR AITUG AIURR AIWBW AJBDE AJRQY ALMA_UNASSIGNED_HOLDINGS AMRAJ AMYDB AZFZN AZVAB BAWUL BFHJK BMXJE C45 CBWCG CS3 DCZOG DIK DOVZS DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FNPLU FUBAC G-Q GBLVA GX1 HVGLF IHE IXB J1W KBYEO L7B LATKE LCYCR LEEKS LITHE LOXES LUTES LX3 LYRES M41 MEWTI MO0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N9A NCXOZ O-L O9- OK1 OVD OZT P-8 P-9 P2P P2W PC. Q38 R9- RIG RNS ROL RPZ SCC SDF SDG SDP SEL SES SFE SSZ SUPJJ TEORI TR2 UHB UNMZH WBKPD WH7 WIH WIJ WIK WIN WOHZO WXSBR YK3 ZA5 ZZTAW ~02 AAHBH AAHQN AAIPD AAMNL AAYCA ADVLN AFWVQ AITYG AKRWK ALUQN ALVPJ HGLYW AAYWO AAYXX ACVFH ADCNI AEUPX AEYWJ AFPUW AGYGG AIGII AKBMS AKYEP CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5999-bebc5825eb214f6b0bf968b7e585f89b65182dcb90635669cfc6a7bb3ebead313 |
IEDL.DBID | 24P |
ISSN | 0014-5793 1873-3468 |
IngestDate | Fri Jul 11 09:56:11 EDT 2025 Fri Jul 11 10:32:05 EDT 2025 Mon Jul 21 06:05:08 EDT 2025 Thu Apr 24 23:00:28 EDT 2025 Tue Jul 01 02:46:42 EDT 2025 Wed Jan 22 16:32:51 EST 2025 Fri Feb 23 02:33:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Keywords | Small angle scattering Intrinsically disordered protein Flexibility Disorder Small-angle X-ray scattering |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 Attribution-NonCommercial-NoDerivs Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5999-bebc5825eb214f6b0bf968b7e585f89b65182dcb90635669cfc6a7bb3ebead313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1016%2Fj.febslet.2015.08.027 |
PMID | 26320411 |
PQID | 1718073931 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000243906 proquest_miscellaneous_1718073931 pubmed_primary_26320411 crossref_primary_10_1016_j_febslet_2015_08_027 crossref_citationtrail_10_1016_j_febslet_2015_08_027 wiley_primary_10_1016_j_febslet_2015_08_027_FEB2S0014579315007279 elsevier_sciencedirect_doi_10_1016_j_febslet_2015_08_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 14, 2015 |
PublicationDateYYYYMMDD | 2015-09-14 |
PublicationDate_xml | – month: 09 year: 2015 text: September 14, 2015 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | FEBS letters |
PublicationTitleAlternate | FEBS Lett |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Tidow (b0330) 2007; 104 Li, Uversky, Fink (b0355) 2002; 23 Bernado, Blackledge (b0155) 2009; 97 Elliott, Goult, Kopp, Bate, Grossmann, Roberts, Critchley, Barsukov (b0455) 2010; 18 A. Guinier, La diffraction des rayons X aux tr‘es petits angles: application ‘a l’étude de phénom‘enes ultramicroscopiquesed, Univ. de Paris, Paris, 1939, pp. 3, p.l., 80, 2, p. 1 l. Fitzkee, Rose (b0260) 2004; 101 Calmettes, Durand, Desmadril, Minard, Receveur, Smith (b0135) 1994; 53 Zhou, Silverman (b0250) 2002 Binolfi, Rasia, Bertoncini, Ceolin, Zweckstetter, Griesinger, Jovin, Fernandez (b0310) 2006; 128 Garcia-Pino (b0445) 2010; 142 Jacques, Trewhella (b0115) 2010; 19 Hura (b0040) 2009; 6 Svergun, Barberato, Koch (b0230) 1995; 28 Perez, Vachette, Russo, Desmadril, Durand (b0150) 2001; 308 Shi (b0440) 2010; 431 Hong, Fink, Uversky (b0315) 2008; 383 Bertini, Fragai, Luchinat, Melikian, Mylonas, Sarti, Svergun (b0450) 2009; 284 Bernado, Blanchard, Timmins, Marion, Ruigrok, Blackledge (b0180) 2005; 102 Kojima, Tanokura, Maeda, Kimura, Amemiya, Kihara, Takahashi (b0025) 2000; 39 Uversky (b0365) 2000; 267 Baker, Hudson, Kanelis, Choy, Thibodeau, Thomas, Forman-Kay (b0285) 2007; 14 Tria, Mertens, Kachala, Svergun (b0210) 2015; 2 Hammel, Yu, Fang, Lees-Miller, Tainer (b0320) 2010; 18 Marsh, Neale, Jack, Choy, Lee, Crowhurst, Forman-Kay (b0400) 2007; 367 Yang, Blachowicz, Makowski, Roux (b0220) 2010; 107 Grishaev, Wu, Trewhella, Bax (b0385) 2005; 127 Kohn (b0005) 2004; 101 Nardini (b0340) 2006; 15 Tran, Wang, Pappu (b0265) 2005; 44 Tompa (b0080) 2002; 27 Gast (b0415) 1995; 34 Edwards, Lee, Tsutakawa, Williams, Nazeer, Kleiman, Tainer, Glover (b0465) 2008; 47 Chiti, Dobson (b0065) 2006; 75 Round (b0035) 2008; 41 Jensen, Markwick, Meier, Griesinger, Zweckstetter, Grzesiek, Bernado, Blackledge (b0185) 2009; 17 Varadi (b0475) 2014; 42 Stumpe, Grubmuller (b0015) 2007; 129 Shkumatov, Chinnathambi, Mandelkow, Svergun (b0370) 2011; 79 Moncoq, Broutin, Craescu, Vachette, Ducruix, Durand (b0430) 2004; 87 Uversky, Gillespie, Fink (b0380) 2000; 41 Dunker, Silman, Uversky, Sussman (b0090) 2008; 18 Mertens, Svergun (b0110) 2010; 172 Bernado, Blackledge (b0200) 2010; 468 Fukuchi, Hosoda, Homma, Gojobori, Nishikawa (b0055) 2011; 11 Svergun (b0145) 1992; 25 Jensen, Houben, Lescop, Blanchard, Ruigrok, Blackledge (b0420) 2008; 130 Jha, Colubri, Freed, Sosnick (b0050) 2005; 102 Wang, Trewhella, Goldenberg (b0280) 2008; 377 Goldenberg (b0255) 2003; 326 Tompa (b0085) 2011; 21 Schmidt (b0425) 2010; 395 Pelikan, Hura, Hammel (b0215) 2009; 28 Bernado, Mylonas, Petoukhov, Blackledge, Svergun (b0205) 2007; 129 Paoletti (b0335) 2009; 75 Yang, van der Woerd, Muthurajan, Hansen, Luger (b0100) 2011; 39 Shell, Putnam, Kolodner (b0105) 2007; 26 Uversky (b0360) 1999; 38 Galantini, Leggio, Konarev, Pavel (b0020) 2010; 147 Jeffries, Graewert, Svergun, Blanchet (b0125) 2015; 22 Lima (b0435) 2006; 45 Bernadó (b0460) 2010; 39 Uversky, Dunker (b0060) 2010; 1804 Schwieters, Suh, Grishaev, Ghirlando, Takayama, Clore (b0395) 2010; 132 Franke, Kikhney, Svergun (b0120) 2012; 689 Pollack, Doniach (b0030) 2009; 469 Glatter (b0140) 1977; 47 Zhou (b0195) 2004; 43 Kim (b0350) 2011; 39 Valentini, Kikhney, Previtali, Jeffries, Svergun (b0470) 2015; 43 He, Ramachandran, Dahl, George, Schultz, Cookson, Veis, George (b0305) 2005; 280 Bertini, Giachetti, Luchinat, Parigi, Petoukhov, Pierattelli, Ravera, Svergun (b0410) 2010; 132 Konno, Tanaka, Kataoka, Takano, Maki (b0295) 1997; 1342 Konarev, Volkov, Sokolova, Koch, Svergun (b0170) 2003; 36 Moller (b0245) 2013; 8 Marsh, Forman-Kay (b0405) 2009; 391 Dyson, Wright (b0075) 2005; 6 Wilkins, Grimshaw, Receveur, Dobson, Jones, Smith (b0010) 1999; 38 Sander, Tria, Shkumatov, Kim, Grossmann, Tessmer, Svergun, Schindelin (b0240) 2013; 69 Aslam, Perkins (b0045) 2001; 309 Munishkina, Fink, Uversky (b0300) 2004; 342 Lanza, Silva, Assmann, Quaresma, Bressan, Torriani, Kobarg (b0325) 2009; 74 Wang, Plaxco, Makarov (b0275) 2007; 86 Tompa, Fuxreiter (b0095) 2008; 33 Pretto, Tsutakawa, Brosey, Castillo, Chagot, Smith, Tainer, Chazin (b0290) 2010; 49 Wells (b0190) 2008; 105 Ding, Jha, Dokholyan (b0270) 2005; 13 Uversky, Oldfield, Dunker (b0070) 2008; 37 Bernado, Svergun (b0165) 2012; 8 Wang (b0390) 2009; 131 Rozycki, Kim, Hummer (b0225) 2011; 19 Schulte (b0235) 2014; 4 Petoukhov, Svergun (b0175) 2005; 89 Kingston, Hamel, Gay, Dahlquist, Matthews (b0345) 2004; 101 Flory (b0160) 1953 Dunker (b0375) 2001; 19 2007; 104 2006; 75 2013; 69 2010; 107 2010; 19 2010; 468 2010; 18 2010; 147 1995; 34 2000; 41 2008; 37 2011; 11 2010; 142 2008; 105 2001; 309 2008; 33 2013; 8 2001; 308 2011; 19 2012; 689 2008; 383 2014; 4 2003; 326 2009; 97 1995; 28 2005; 102 2010; 431 2015; 43 2001; 19 2011; 21 2010; 395 2010; 1804 2009; 284 2006; 128 2007; 26 2009; 17 2004; 101 2004; 43 2015; 2 2007; 367 2004; 87 2004; 342 2007; 129 1997; 1342 1977; 47 2010; 39 2008; 18 2006; 15 1953 2003; 36 2011; 79 2002 2009; 131 2011; 39 2005; 44 2005; 89 2007; 14 2009; 28 2014; 42 2002; 27 2005; 280 2010; 49 2009; 74 2000; 39 2009; 75 2000; 267 2006; 45 2009; 391 2002; 23 1999; 38 2015; 22 2005; 127 2010; 132 2008; 47 2005; 6 2010; 172 2009; 6 1992; 25 2008; 41 2008; 377 2007; 86 2008; 130 2012; 8 2005; 13 2009; 469 1994; 53 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_92_1 Zhou R. (e_1_2_9_51_1) 2002 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 Glatter O. (e_1_2_9_29_1) 1977; 47 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_95_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 |
References_xml | – volume: 41 start-page: 913 year: 2008 end-page: 917 ident: b0035 article-title: Automated sample-changing robot for solution scattering experiments at the EMBL Hamburg SAXS station X33 publication-title: J. Appl. Crystallogr. – volume: 23 start-page: 553 year: 2002 end-page: 567 ident: b0355 article-title: Conformational behavior of human alpha-synuclein is modulated by familial Parkinson’s disease point mutations A30P and A53T publication-title: Neurotoxicology – volume: 469 start-page: 253 year: 2009 end-page: 268 ident: b0030 article-title: Time-resolved X-ray scattering and RNA folding publication-title: Methods Enzymol. – volume: 25 start-page: 495 year: 1992 end-page: 503 ident: b0145 article-title: Determination of the regularization parameter in indirect-transform methods using perceptual criteria publication-title: J. Appl. Crystallogr. – volume: 79 start-page: 2122 year: 2011 end-page: 2131 ident: b0370 article-title: Structural memory of natively unfolded tau protein detected by small-angle X-ray scattering publication-title: Proteins – volume: 27 start-page: 527 year: 2002 end-page: 533 ident: b0080 article-title: Intrinsically unstructured proteins publication-title: Trends Biochem. Sci. – volume: 326 start-page: 1615 year: 2003 end-page: 1633 ident: b0255 article-title: Computational simulation of the statistical properties of unfolded proteins publication-title: J. Mol. Biol. – volume: 377 start-page: 1576 year: 2008 end-page: 1592 ident: b0280 article-title: Small-angle X-ray scattering of reduced ribonuclease A: effects of solution conditions and comparisons with a computational model of unfolded proteins publication-title: J. Mol. Biol. – volume: 44 start-page: 11369 year: 2005 end-page: 11380 ident: b0265 article-title: Reconciling observations of sequence-specific conformational propensities with the generic polymeric behavior of denatured proteins publication-title: Biochemistry – volume: 41 start-page: 415 year: 2000 end-page: 427 ident: b0380 article-title: Why are “natively unfolded” proteins unstructured under physiologic conditions? publication-title: Proteins – volume: 104 start-page: 12324 year: 2007 end-page: 12329 ident: b0330 article-title: From the cover: quaternary structures of tumor suppressor p53 and a specific p53 DNA complex publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 129 start-page: 16126 year: 2007 end-page: 16131 ident: b0015 article-title: Interaction of urea with amino acids: implications for urea-induced protein denaturation publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 151 year: 2012 end-page: 167 ident: b0165 article-title: Structural analysis of intrinsically disordered proteins by small-angle X-ray scattering publication-title: Mol. Biosyst. – volume: 128 start-page: 9893 year: 2006 end-page: 9901 ident: b0310 article-title: Interaction of alpha-synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 419 year: 2011 end-page: 425 ident: b0085 article-title: Unstructural biology coming of age publication-title: Curr. Opin. Struct. Biol. – volume: 38 start-page: 16424 year: 1999 end-page: 16431 ident: b0010 article-title: Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques publication-title: Biochemistry – volume: 49 start-page: 2880 year: 2010 end-page: 2889 ident: b0290 article-title: Structural dynamics and single-stranded DNA binding activity of the three N-terminal domains of the large subunit of replication protein A from small angle X-ray scattering publication-title: Biochemistry – volume: 37 start-page: 215 year: 2008 end-page: 246 ident: b0070 article-title: Intrinsically disordered proteins in human diseases: introducing the D2 concept publication-title: Annu. Rev. Biophys. – volume: 1342 start-page: 73 year: 1997 end-page: 82 ident: b0295 article-title: A circular dichroism study of preferential hydration and alcohol effects on a denatured protein, pig calpastatin domain I publication-title: Biochim. Biophys. Acta – volume: 308 start-page: 721 year: 2001 end-page: 743 ident: b0150 article-title: Heat-induced unfolding of neocarzinostatin, a small all-beta protein investigated by small-angle X-ray scattering publication-title: J. Mol. Biol. – volume: 142 start-page: 101 year: 2010 end-page: 111 ident: b0445 article-title: Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity publication-title: Cell – volume: 39 start-page: 1364 year: 2000 end-page: 1372 ident: b0025 article-title: PH-dependent unfolding of aspergillopepsin II studied by small-angle X-ray scattering publication-title: Biochemistry – volume: 468 start-page: 1046 year: 2010 end-page: 1048 ident: b0200 article-title: Structural biology: proteins in dynamic equilibrium publication-title: Nature – volume: 127 start-page: 16621 year: 2005 end-page: 16628 ident: b0385 article-title: Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and NMR data publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 9180 year: 2006 end-page: 9187 ident: b0435 article-title: Structural insights into the interaction between prion protein and nucleic acid publication-title: Biochemistry – volume: 43 year: 2015 ident: b0470 article-title: SASBDB, a repository for biological small-angle scattering data publication-title: Nucleic Acids Res. – volume: 17 start-page: 1169 year: 2009 end-page: 1185 ident: b0185 article-title: Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings publication-title: Structure – volume: 105 start-page: 5762 year: 2008 end-page: 5767 ident: b0190 article-title: Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 75 start-page: 333 year: 2006 end-page: 366 ident: b0065 article-title: Protein misfolding, functional amyloid, and human disease publication-title: Annu. Rev. Biochem. – volume: 39 start-page: 769 year: 2010 end-page: 780 ident: b0460 article-title: Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering publication-title: Eur. Biophys. J. – volume: 14 start-page: 738 year: 2007 end-page: 745 ident: b0285 article-title: CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices publication-title: Nat. Struct. Mol. Biol. – volume: 132 start-page: 13553 year: 2010 end-page: 13558 ident: b0410 article-title: Conformational space of flexible biological macromolecules from average data publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 207 year: 2015 end-page: 217 ident: b0210 article-title: Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering publication-title: Iucrj – volume: 53 start-page: 105 year: 1994 end-page: 113 ident: b0135 article-title: How random is a highly denatured protein? publication-title: Biophys. Chem. – volume: 309 start-page: 1117 year: 2001 end-page: 1138 ident: b0045 article-title: Folded-back solution structure of monomeric factor H of human complement by synchrotron X-ray and neutron scattering, analytical ultracentrifugation and constrained molecular modelling publication-title: J. Mol. Biol. – volume: 6 start-page: 606 year: 2009 end-page: 612 ident: b0040 article-title: Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS) publication-title: Nat. Methods – volume: 431 start-page: 93 year: 2010 end-page: 102 ident: b0440 article-title: Identification and biophysical assessment of the molecular recognition mechanisms between the human haemopoietic cell kinase Src homology domain 3 and ALG-2-interacting protein X publication-title: Biochem. J. – volume: 130 start-page: 8055 year: 2008 end-page: 8061 ident: b0420 article-title: Quantitative conformational analysis of partially folded proteins from residual dipolar couplings: application to the molecular recognition element of Sendai virus nucleoprotein publication-title: J. Am. Chem. Soc. – volume: 101 start-page: 12497 year: 2004 end-page: 12502 ident: b0260 article-title: Reassessing random-coil statistics in unfolded proteins publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 129 start-page: 5656 year: 2007 end-page: 5664 ident: b0205 article-title: Structural characterization of flexible proteins using small-angle X-ray scattering publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 197 year: 2005 end-page: 208 ident: b0075 article-title: Intrinsically unstructured proteins and their functions publication-title: Nat. Rev. Mol. Cell Biol. – volume: 47 start-page: 83 year: 1977 end-page: 102 ident: b0140 article-title: Data evaluation in small-angle scattering – calculation of radial electron-density distribution by means of indirect fourier transformation publication-title: Acta Phys. Aust. – volume: 4 start-page: 130090 year: 2014 ident: b0235 article-title: The basic keratin 10-binding domain of the virulence-associated pneumococcal serine-rich protein PsrP adopts a novel MSCRAMM fold publication-title: Open Biol. – volume: 38 start-page: 15009 year: 1999 end-page: 15016 ident: b0360 article-title: Natively unfolded human prothymosin alpha adopts partially folded collapsed conformation at acidic pH publication-title: Biochemistry – volume: 13 start-page: 1047 year: 2005 end-page: 1054 ident: b0270 article-title: Scaling behavior and structure of denatured proteins publication-title: Structure – volume: 28 start-page: 174 year: 2009 end-page: 189 ident: b0215 article-title: Structure and flexibility within proteins as identified through small angle X-ray scattering publication-title: Gen. Physiol. Biophys. – volume: 43 start-page: 2141 year: 2004 end-page: 2154 ident: b0195 article-title: Polymer models of protein stability, folding, and interactions publication-title: Biochemistry – volume: 11 start-page: 29 year: 2011 ident: b0055 article-title: Binary classification of protein molecules into intrinsically disordered and ordered segments publication-title: BMC Struct. Biol. – volume: 18 start-page: 1431 year: 2010 end-page: 1442 ident: b0320 article-title: XLF regulates filament architecture of the XRCC4.ligase IV complex publication-title: Structure – volume: 267 start-page: 663 year: 2000 end-page: 668 ident: b0365 article-title: Zn(2+)-mediated structure formation and compaction of the “natively unfolded” human prothymosin alpha publication-title: Biochem. Biophys. Res. Commun. – volume: 1804 start-page: 1231 year: 2010 end-page: 1264 ident: b0060 article-title: Understanding protein non-folding publication-title: Biochim. Biophys. Acta – volume: 107 start-page: 15757 year: 2010 end-page: 15762 ident: b0220 article-title: Multidomain assembled states of Hck tyrosine kinase in solution publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 28 start-page: 768 year: 1995 end-page: 773 ident: b0230 article-title: CRYSOL – a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates publication-title: J. Appl. Crystallogr. – volume: 131 start-page: 10507 year: 2009 end-page: 10515 ident: b0390 article-title: Determination of multicomponent protein structures in solution using global orientation and shape restraints publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 1289 year: 2010 end-page: 1299 ident: b0455 article-title: The structure of the talin head reveals a novel extended conformation of the FERM domain publication-title: Structure – volume: 19 start-page: 26 year: 2001 end-page: 59 ident: b0375 article-title: Intrinsically disordered protein publication-title: J. Mol. Graph. Model. – volume: 33 start-page: 2 year: 2008 end-page: 8 ident: b0095 article-title: Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions publication-title: Trends Biochem. Sci. – volume: 69 start-page: 2050 year: 2013 end-page: 2060 ident: b0240 article-title: Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. – volume: 132 start-page: 13026 year: 2010 end-page: 13045 ident: b0395 article-title: Solution structure of the 128 kDa enzyme I dimer from publication-title: J. Am. Chem. Soc. – volume: 89 start-page: 1237 year: 2005 end-page: 1250 ident: b0175 article-title: Global rigid body modeling of macromolecular complexes against small-angle scattering data publication-title: Biophys. J. – volume: 74 start-page: 104 year: 2009 end-page: 121 ident: b0325 article-title: Human FEZ1 has characteristics of a natively unfolded protein and dimerizes in solution publication-title: Proteins – volume: 86 start-page: 321 year: 2007 end-page: 328 ident: b0275 article-title: Influence of local and residual structures on the scaling behavior and dimensions of unfolded proteins publication-title: Biopolymers – volume: 280 start-page: 33109 year: 2005 end-page: 33114 ident: b0305 article-title: Phosphorylation of phosphophoryn is crucial for its function as a mediator of biomineralization publication-title: J. Biol. Chem. – start-page: 673 year: 2002 end-page: 684 ident: b0250 article-title: Detecting native protein folds among large decoy sets with hydrophobic moment profiling publication-title: Pac. Symp. Biocomput. – volume: 34 start-page: 13211 year: 1995 end-page: 13218 ident: b0415 article-title: Prothymosin alpha: a biologically active protein with random coil conformation publication-title: Biochemistry – volume: 102 start-page: 13099 year: 2005 end-page: 13104 ident: b0050 article-title: Statistical coil model of the unfolded state: resolving the reconciliation problem publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 36 start-page: 1277 year: 2003 end-page: 1282 ident: b0170 article-title: PRIMUS – a Windows-PC based system for small-angle scattering data analysis publication-title: J. Appl. Crystallogr. – volume: 19 start-page: 109 year: 2011 end-page: 116 ident: b0225 article-title: SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions publication-title: Structure – year: 1953 ident: b0160 article-title: Principles of Polymer Chemistry – volume: 18 start-page: 756 year: 2008 end-page: 764 ident: b0090 article-title: Function and structure of inherently disordered proteins publication-title: Curr. Opin. Struct. Biol. – volume: 367 start-page: 1494 year: 2007 end-page: 1510 ident: b0400 article-title: Improved structural characterizations of the drkN SH3 domain unfolded state suggest a compact ensemble with native-like and non-native structure publication-title: J. Mol. Biol. – volume: 391 start-page: 359 year: 2009 end-page: 374 ident: b0405 article-title: Structure and disorder in an unfolded state under nondenaturing conditions from ensemble models consistent with a large number of experimental restraints publication-title: J. Mol. Biol. – volume: 284 start-page: 12821 year: 2009 end-page: 12828 ident: b0450 article-title: Interdomain flexibility in full-length matrix metalloproteinase-1 (MMP-1) publication-title: J. Biol. Chem. – volume: 75 start-page: 990 year: 2009 end-page: 1009 ident: b0335 article-title: Intrinsic structural disorder of mouse proNGF publication-title: Proteins – volume: 42 start-page: D326 year: 2014 end-page: D335 ident: b0475 article-title: PE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins publication-title: Nucleic Acids Res. – volume: 19 start-page: 642 year: 2010 end-page: 657 ident: b0115 article-title: Small-angle scattering for structural biology–expanding the frontier while avoiding the pitfalls publication-title: Protein Sci. – volume: 22 start-page: 273 year: 2015 end-page: 279 ident: b0125 article-title: Limiting radiation damage for high-brilliance biological solution scattering: practical experience at the EMBL P12 beamline PETRAIII publication-title: J. Synchrotron Radiat. – volume: 47 start-page: 11446 year: 2008 end-page: 11456 ident: b0465 article-title: The BARD1 C-terminal domain structure and interactions with polyadenylation factor CstF-50 publication-title: Biochemistry – volume: 147 start-page: 111 year: 2010 end-page: 122 ident: b0020 article-title: Human serum albumin binding ibuprofen: a 3D description of the unfolding pathway in urea publication-title: Biophys. Chem. – volume: 172 start-page: 128 year: 2010 end-page: 141 ident: b0110 article-title: Structural characterization of proteins and complexes using small-angle X-ray solution scattering publication-title: J. Struct. Biol. – volume: 101 start-page: 8301 year: 2004 end-page: 8306 ident: b0345 article-title: Structural basis for the attachment of a paramyxoviral polymerase to its template publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 26 start-page: 565 year: 2007 end-page: 578 ident: b0105 article-title: The N terminus of publication-title: Mol. Cell – volume: 15 start-page: 1042 year: 2006 end-page: 1050 ident: b0340 article-title: The C-terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured publication-title: Protein Sci. – volume: 102 start-page: 17002 year: 2005 end-page: 17007 ident: b0180 article-title: A structural model for unfolded proteins from residual dipolar couplings and small-angle X-ray scattering publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 342 start-page: 1305 year: 2004 end-page: 1324 ident: b0300 article-title: Conformational prerequisites for formation of amyloid fibrils from histones publication-title: J. Mol. Biol. – reference: A. Guinier, La diffraction des rayons X aux tr‘es petits angles: application ‘a l’étude de phénom‘enes ultramicroscopiquesed, Univ. de Paris, Paris, 1939, pp. 3, p.l., 80, 2, p. 1 l. – volume: 97 start-page: 2839 year: 2009 end-page: 2845 ident: b0155 article-title: A self-consistent description of the conformational behavior of chemically denatured proteins from NMR and small angle scattering publication-title: Biophys. J. – volume: 39 start-page: 1117 year: 2011 end-page: 1130 ident: b0350 article-title: Different modes of interaction by TIAR and HuR with target RNA and DNA publication-title: Nucleic Acids Res. – volume: 39 start-page: 4122 year: 2011 end-page: 4135 ident: b0100 article-title: Biophysical analysis and small-angle X-ray scattering-derived structures of MeCP2–nucleosome complexes publication-title: Nucleic Acids Res. – volume: 8 start-page: e74783 year: 2013 ident: b0245 article-title: Small angle X-ray scattering studies of mitochondrial glutaminase C reveal extended flexible regions, and link oligomeric state with enzyme activity publication-title: PLoS One – volume: 689 start-page: 52 year: 2012 end-page: 59 ident: b0120 article-title: Automated acquisition and analysis of small angle X-ray scattering data publication-title: Nuclear Instrum. Methods Phys. Res. A – volume: 87 start-page: 4056 year: 2004 end-page: 4064 ident: b0430 article-title: SAXS study of the PIR domain from the Grb14 molecular adaptor: a natively unfolded protein with a transient structure primer? publication-title: Biophys. J. – volume: 395 start-page: 105 year: 2010 end-page: 122 ident: b0425 article-title: The central portion of factor H (modules 10–15) is compact and contains a structurally deviant CCP module publication-title: J. Mol. Biol. – volume: 101 start-page: 12491 year: 2004 end-page: 12496 ident: b0005 article-title: Random-coil behavior and the dimensions of chemically unfolded proteins publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 383 start-page: 214 year: 2008 end-page: 223 ident: b0315 article-title: Structural characteristics of alpha-synuclein oligomers stabilized by the flavonoid baicalein publication-title: J. Mol. Biol. – volume: 19 start-page: 109 year: 2011 end-page: 116 article-title: SAXS ensemble refinement of ESCRT‐III CHMP3 conformational transitions publication-title: Structure – volume: 367 start-page: 1494 year: 2007 end-page: 1510 article-title: Improved structural characterizations of the drkN SH3 domain unfolded state suggest a compact ensemble with native‐like and non‐native structure publication-title: J. Mol. Biol. – volume: 102 start-page: 17002 year: 2005 end-page: 17007 article-title: A structural model for unfolded proteins from residual dipolar couplings and small‐angle X‐ray scattering publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 75 start-page: 333 year: 2006 end-page: 366 article-title: Protein misfolding, functional amyloid, and human disease publication-title: Annu. Rev. Biochem. – volume: 383 start-page: 214 year: 2008 end-page: 223 article-title: Structural characteristics of alpha‐synuclein oligomers stabilized by the flavonoid baicalein publication-title: J. Mol. Biol. – volume: 142 start-page: 101 year: 2010 end-page: 111 article-title: Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity publication-title: Cell – volume: 42 start-page: D326 year: 2014 end-page: D335 article-title: PE‐DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins publication-title: Nucleic Acids Res. – volume: 43 start-page: 2141 year: 2004 end-page: 2154 article-title: Polymer models of protein stability, folding, and interactions publication-title: Biochemistry – volume: 39 start-page: 769 year: 2010 end-page: 780 article-title: Effect of interdomain dynamics on the structure determination of modular proteins by small‐angle scattering publication-title: Eur. Biophys. J. – volume: 97 start-page: 2839 year: 2009 end-page: 2845 article-title: A self‐consistent description of the conformational behavior of chemically denatured proteins from NMR and small angle scattering publication-title: Biophys. J. – volume: 689 start-page: 52 year: 2012 end-page: 59 article-title: Automated acquisition and analysis of small angle X‐ray scattering data publication-title: Nuclear Instrum. Methods Phys. Res. A – volume: 34 start-page: 13211 year: 1995 end-page: 13218 article-title: Prothymosin alpha: a biologically active protein with random coil conformation publication-title: Biochemistry – volume: 131 start-page: 10507 year: 2009 end-page: 10515 article-title: Determination of multicomponent protein structures in solution using global orientation and shape restraints publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 768 year: 1995 end-page: 773 article-title: CRYSOL – a program to evaluate X‐ray solution scattering of biological macromolecules from atomic coordinates publication-title: J. Appl. Crystallogr. – volume: 18 start-page: 1431 year: 2010 end-page: 1442 article-title: XLF regulates filament architecture of the XRCC4.ligase IV complex publication-title: Structure – volume: 89 start-page: 1237 year: 2005 end-page: 1250 article-title: Global rigid body modeling of macromolecular complexes against small‐angle scattering data publication-title: Biophys. J. – volume: 75 start-page: 990 year: 2009 end-page: 1009 article-title: Intrinsic structural disorder of mouse proNGF publication-title: Proteins – volume: 8 start-page: 151 year: 2012 end-page: 167 article-title: Structural analysis of intrinsically disordered proteins by small‐angle X‐ray scattering publication-title: Mol. Biosyst. – volume: 129 start-page: 5656 year: 2007 end-page: 5664 article-title: Structural characterization of flexible proteins using small‐angle X‐ray scattering publication-title: J. Am. Chem. Soc. – volume: 8 start-page: e74783 year: 2013 article-title: Small angle X‐ray scattering studies of mitochondrial glutaminase C reveal extended flexible regions, and link oligomeric state with enzyme activity publication-title: PLoS One – volume: 102 start-page: 13099 year: 2005 end-page: 13104 article-title: Statistical coil model of the unfolded state: resolving the reconciliation problem publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 1342 start-page: 73 year: 1997 end-page: 82 article-title: A circular dichroism study of preferential hydration and alcohol effects on a denatured protein, pig calpastatin domain I publication-title: Biochim. Biophys. Acta – volume: 37 start-page: 215 year: 2008 end-page: 246 article-title: Intrinsically disordered proteins in human diseases: introducing the D2 concept publication-title: Annu. Rev. Biophys. – volume: 15 start-page: 1042 year: 2006 end-page: 1050 article-title: The C‐terminal domain of the transcriptional corepressor CtBP is intrinsically unstructured publication-title: Protein Sci. – volume: 6 start-page: 606 year: 2009 end-page: 612 article-title: Robust, high‐throughput solution structural analyses by small angle X‐ray scattering (SAXS) publication-title: Nat. Methods – volume: 43 year: 2015 article-title: SASBDB, a repository for biological small‐angle scattering data publication-title: Nucleic Acids Res. – volume: 6 start-page: 197 year: 2005 end-page: 208 article-title: Intrinsically unstructured proteins and their functions publication-title: Nat. Rev. Mol. Cell Biol. – volume: 86 start-page: 321 year: 2007 end-page: 328 article-title: Influence of local and residual structures on the scaling behavior and dimensions of unfolded proteins publication-title: Biopolymers – volume: 280 start-page: 33109 year: 2005 end-page: 33114 article-title: Phosphorylation of phosphophoryn is crucial for its function as a mediator of biomineralization publication-title: J. Biol. Chem. – volume: 132 start-page: 13553 year: 2010 end-page: 13558 article-title: Conformational space of flexible biological macromolecules from average data publication-title: J. Am. Chem. Soc. – volume: 377 start-page: 1576 year: 2008 end-page: 1592 article-title: Small‐angle X‐ray scattering of reduced ribonuclease A: effects of solution conditions and comparisons with a computational model of unfolded proteins publication-title: J. Mol. Biol. – year: 1953 article-title: Principles of Polymer Chemistry – volume: 74 start-page: 104 year: 2009 end-page: 121 article-title: Human FEZ1 has characteristics of a natively unfolded protein and dimerizes in solution publication-title: Proteins – volume: 267 start-page: 663 year: 2000 end-page: 668 article-title: Zn(2+)‐mediated structure formation and compaction of the “natively unfolded” human prothymosin alpha publication-title: Biochem. Biophys. Res. Commun. – volume: 11 start-page: 29 year: 2011 article-title: Binary classification of protein molecules into intrinsically disordered and ordered segments publication-title: BMC Struct. Biol. – volume: 25 start-page: 495 year: 1992 end-page: 503 article-title: Determination of the regularization parameter in indirect‐transform methods using perceptual criteria publication-title: J. Appl. Crystallogr. – volume: 47 start-page: 83 year: 1977 end-page: 102 article-title: Data evaluation in small‐angle scattering – calculation of radial electron‐density distribution by means of indirect fourier transformation publication-title: Acta Phys. Aust. – volume: 19 start-page: 26 year: 2001 end-page: 59 article-title: Intrinsically disordered protein publication-title: J. Mol. Graph. Model. – volume: 27 start-page: 527 year: 2002 end-page: 533 article-title: Intrinsically unstructured proteins publication-title: Trends Biochem. Sci. – volume: 4 start-page: 130090 year: 2014 article-title: The basic keratin 10‐binding domain of the virulence‐associated pneumococcal serine‐rich protein PsrP adopts a novel MSCRAMM fold publication-title: Open Biol. – volume: 45 start-page: 9180 year: 2006 end-page: 9187 article-title: Structural insights into the interaction between prion protein and nucleic acid publication-title: Biochemistry – volume: 105 start-page: 5762 year: 2008 end-page: 5767 article-title: Structure of tumor suppressor p53 and its intrinsically disordered N‐terminal transactivation domain publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 107 start-page: 15757 year: 2010 end-page: 15762 article-title: Multidomain assembled states of Hck tyrosine kinase in solution publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 104 start-page: 12324 year: 2007 end-page: 12329 article-title: From the cover: quaternary structures of tumor suppressor p53 and a specific p53 DNA complex publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 39 start-page: 1364 year: 2000 end-page: 1372 article-title: PH‐dependent unfolding of aspergillopepsin II studied by small‐angle X‐ray scattering publication-title: Biochemistry – volume: 101 start-page: 12491 year: 2004 end-page: 12496 article-title: Random‐coil behavior and the dimensions of chemically unfolded proteins publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 172 start-page: 128 year: 2010 end-page: 141 article-title: Structural characterization of proteins and complexes using small‐angle X‐ray solution scattering publication-title: J. Struct. Biol. – volume: 41 start-page: 913 year: 2008 end-page: 917 article-title: Automated sample‐changing robot for solution scattering experiments at the EMBL Hamburg SAXS station X33 publication-title: J. Appl. Crystallogr. – volume: 2 start-page: 207 year: 2015 end-page: 217 article-title: Advanced ensemble modelling of flexible macromolecules using X‐ray solution scattering publication-title: Iucrj – volume: 49 start-page: 2880 year: 2010 end-page: 2889 article-title: Structural dynamics and single‐stranded DNA binding activity of the three N‐terminal domains of the large subunit of replication protein A from small angle X‐ray scattering publication-title: Biochemistry – volume: 87 start-page: 4056 year: 2004 end-page: 4064 article-title: SAXS study of the PIR domain from the Grb14 molecular adaptor: a natively unfolded protein with a transient structure primer? publication-title: Biophys. J. – volume: 308 start-page: 721 year: 2001 end-page: 743 article-title: Heat‐induced unfolding of neocarzinostatin, a small all‐beta protein investigated by small‐angle X‐ray scattering publication-title: J. Mol. Biol. – volume: 14 start-page: 738 year: 2007 end-page: 745 article-title: CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices publication-title: Nat. Struct. Mol. Biol. – volume: 36 start-page: 1277 year: 2003 end-page: 1282 article-title: PRIMUS – a Windows‐PC based system for small‐angle scattering data analysis publication-title: J. Appl. Crystallogr. – volume: 326 start-page: 1615 year: 2003 end-page: 1633 article-title: Computational simulation of the statistical properties of unfolded proteins publication-title: J. Mol. Biol. – volume: 101 start-page: 8301 year: 2004 end-page: 8306 article-title: Structural basis for the attachment of a paramyxoviral polymerase to its template publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 79 start-page: 2122 year: 2011 end-page: 2131 article-title: Structural memory of natively unfolded tau protein detected by small‐angle X‐ray scattering publication-title: Proteins – volume: 309 start-page: 1117 year: 2001 end-page: 1138 article-title: Folded‐back solution structure of monomeric factor H of human complement by synchrotron X‐ray and neutron scattering, analytical ultracentrifugation and constrained molecular modelling publication-title: J. Mol. Biol. – volume: 28 start-page: 174 year: 2009 end-page: 189 article-title: Structure and flexibility within proteins as identified through small angle X‐ray scattering publication-title: Gen. Physiol. Biophys. – volume: 33 start-page: 2 year: 2008 end-page: 8 article-title: Fuzzy complexes: polymorphism and structural disorder in protein‐protein interactions publication-title: Trends Biochem. Sci. – volume: 53 start-page: 105 year: 1994 end-page: 113 article-title: How random is a highly denatured protein? publication-title: Biophys. Chem. – volume: 18 start-page: 756 year: 2008 end-page: 764 article-title: Function and structure of inherently disordered proteins publication-title: Curr. Opin. Struct. Biol. – volume: 39 start-page: 1117 year: 2011 end-page: 1130 article-title: Different modes of interaction by TIAR and HuR with target RNA and DNA publication-title: Nucleic Acids Res. – volume: 44 start-page: 11369 year: 2005 end-page: 11380 article-title: Reconciling observations of sequence‐specific conformational propensities with the generic polymeric behavior of denatured proteins publication-title: Biochemistry – volume: 38 start-page: 16424 year: 1999 end-page: 16431 article-title: Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques publication-title: Biochemistry – volume: 69 start-page: 2050 year: 2013 end-page: 2060 article-title: Structural characterization of gephyrin by AFM and SAXS reveals a mixture of compact and extended states publication-title: Acta Crystallogr. Sect. D Biol. Crystallogr. – volume: 469 start-page: 253 year: 2009 end-page: 268 article-title: Time‐resolved X‐ray scattering and RNA folding publication-title: Methods Enzymol. – volume: 284 start-page: 12821 year: 2009 end-page: 12828 article-title: Interdomain flexibility in full‐length matrix metalloproteinase‐1 (MMP‐1) publication-title: J. Biol. Chem. – volume: 147 start-page: 111 year: 2010 end-page: 122 article-title: Human serum albumin binding ibuprofen: a 3D description of the unfolding pathway in urea publication-title: Biophys. Chem. – volume: 101 start-page: 12497 year: 2004 end-page: 12502 article-title: Reassessing random‐coil statistics in unfolded proteins publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 128 start-page: 9893 year: 2006 end-page: 9901 article-title: Interaction of alpha‐synuclein with divalent metal ions reveals key differences: a link between structure, binding specificity and fibrillation enhancement publication-title: J. Am. Chem. Soc. – volume: 127 start-page: 16621 year: 2005 end-page: 16628 article-title: Refinement of multidomain protein structures by combination of solution small‐angle X‐ray scattering and NMR data publication-title: J. Am. Chem. Soc. – volume: 38 start-page: 15009 year: 1999 end-page: 15016 article-title: Natively unfolded human prothymosin alpha adopts partially folded collapsed conformation at acidic pH publication-title: Biochemistry – volume: 39 start-page: 4122 year: 2011 end-page: 4135 article-title: Biophysical analysis and small‐angle X‐ray scattering‐derived structures of MeCP2–nucleosome complexes publication-title: Nucleic Acids Res. – volume: 19 start-page: 642 year: 2010 end-page: 657 article-title: Small‐angle scattering for structural biology–expanding the frontier while avoiding the pitfalls publication-title: Protein Sci. – volume: 13 start-page: 1047 year: 2005 end-page: 1054 article-title: Scaling behavior and structure of denatured proteins publication-title: Structure – volume: 41 start-page: 415 year: 2000 end-page: 427 article-title: Why are “natively unfolded” proteins unstructured under physiologic conditions? publication-title: Proteins – volume: 21 start-page: 419 year: 2011 end-page: 425 article-title: Unstructural biology coming of age publication-title: Curr. Opin. Struct. Biol. – start-page: 673 year: 2002 end-page: 684 article-title: Detecting native protein folds among large decoy sets with hydrophobic moment profiling publication-title: Pac. Symp. Biocomput. – volume: 23 start-page: 553 year: 2002 end-page: 567 article-title: Conformational behavior of human alpha‐synuclein is modulated by familial Parkinson's disease point mutations A30P and A53T publication-title: Neurotoxicology – volume: 395 start-page: 105 year: 2010 end-page: 122 article-title: The central portion of factor H (modules 10–15) is compact and contains a structurally deviant CCP module publication-title: J. Mol. Biol. – volume: 129 start-page: 16126 year: 2007 end-page: 16131 article-title: Interaction of urea with amino acids: implications for urea‐induced protein denaturation publication-title: J. Am. Chem. Soc. – volume: 431 start-page: 93 year: 2010 end-page: 102 article-title: Identification and biophysical assessment of the molecular recognition mechanisms between the human haemopoietic cell kinase Src homology domain 3 and ALG‐2‐interacting protein X publication-title: Biochem. J. – volume: 342 start-page: 1305 year: 2004 end-page: 1324 article-title: Conformational prerequisites for formation of amyloid fibrils from histones publication-title: J. Mol. Biol. – volume: 17 start-page: 1169 year: 2009 end-page: 1185 article-title: Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings publication-title: Structure – volume: 18 start-page: 1289 year: 2010 end-page: 1299 article-title: The structure of the talin head reveals a novel extended conformation of the FERM domain publication-title: Structure – volume: 47 start-page: 11446 year: 2008 end-page: 11456 article-title: The BARD1 C‐terminal domain structure and interactions with polyadenylation factor CstF‐50 publication-title: Biochemistry – volume: 1804 start-page: 1231 year: 2010 end-page: 1264 article-title: Understanding protein non‐folding publication-title: Biochim. Biophys. Acta – volume: 22 start-page: 273 year: 2015 end-page: 279 article-title: Limiting radiation damage for high‐brilliance biological solution scattering: practical experience at the EMBL P12 beamline PETRAIII publication-title: J. Synchrotron Radiat. – volume: 132 start-page: 13026 year: 2010 end-page: 13045 article-title: Solution structure of the 128 kDa enzyme I dimer from and its 146 kDa complex with HPr using residual dipolar couplings and small‐ and wide‐angle X‐ray scattering publication-title: J. Am. Chem. Soc. – volume: 26 start-page: 565 year: 2007 end-page: 578 article-title: The N terminus of Msh6 is an unstructured tether to PCNA publication-title: Mol. Cell – volume: 130 start-page: 8055 year: 2008 end-page: 8061 article-title: Quantitative conformational analysis of partially folded proteins from residual dipolar couplings: application to the molecular recognition element of Sendai virus nucleoprotein publication-title: J. Am. Chem. Soc. – volume: 468 start-page: 1046 year: 2010 end-page: 1048 article-title: Structural biology: proteins in dynamic equilibrium publication-title: Nature – volume: 391 start-page: 359 year: 2009 end-page: 374 article-title: Structure and disorder in an unfolded state under nondenaturing conditions from ensemble models consistent with a large number of experimental restraints publication-title: J. Mol. Biol. – ident: e_1_2_9_76_1 doi: 10.1016/S1093-3263(00)00138-8 – ident: e_1_2_9_37_1 doi: 10.1073/pnas.0506202102 – ident: e_1_2_9_44_1 doi: 10.4149/gpb_2009_02_174 – ident: e_1_2_9_92_1 doi: 10.1016/j.str.2010.07.011 – ident: e_1_2_9_13_1 doi: 10.1016/j.bbapap.2010.01.017 – ident: e_1_2_9_16_1 doi: 10.1038/nrm1589 – ident: e_1_2_9_45_1 doi: 10.1073/pnas.1004569107 – ident: e_1_2_9_59_1 doi: 10.1021/bi9019934 – ident: e_1_2_9_87_1 doi: 10.1529/biophysj.104.048645 – ident: e_1_2_9_7_1 doi: 10.1016/S0076-6879(09)69012-1 – ident: e_1_2_9_26_1 doi: 10.1107/S1600577515000375 – ident: e_1_2_9_94_1 doi: 10.1021/bi801115g – ident: e_1_2_9_22_1 doi: 10.1016/j.molcel.2007.04.024 – ident: e_1_2_9_60_1 doi: 10.1016/S0167-4838(97)00092-7 – ident: e_1_2_9_3_1 doi: 10.1021/bi991765q – ident: e_1_2_9_80_1 doi: 10.1021/ja105485b – ident: e_1_2_9_25_1 doi: 10.1016/j.nima.2012.06.008 – ident: e_1_2_9_24_1 doi: 10.1002/pro.351 – ident: e_1_2_9_57_1 doi: 10.1016/j.jmb.2008.02.009 – ident: e_1_2_9_49_1 doi: 10.1107/S0907444913018714 – ident: e_1_2_9_50_1 doi: 10.1371/journal.pone.0074783 – ident: e_1_2_9_4_1 doi: 10.1021/ja076216j – ident: e_1_2_9_53_1 doi: 10.1073/pnas.0404236101 – ident: e_1_2_9_32_1 doi: 10.1016/j.bpj.2009.08.044 – ident: e_1_2_9_17_1 doi: 10.1016/S0968-0004(02)02169-2 – ident: e_1_2_9_15_1 doi: 10.1146/annurev.biophys.37.032807.125924 – ident: e_1_2_9_27_1 – ident: e_1_2_9_65_1 doi: 10.1016/j.str.2010.09.009 – ident: e_1_2_9_11_1 doi: 10.1073/pnas.0506078102 – ident: e_1_2_9_46_1 doi: 10.1016/j.str.2010.10.006 – ident: e_1_2_9_96_1 doi: 10.1093/nar/gkt960 – ident: e_1_2_9_42_1 doi: 10.1021/ja069124n – ident: e_1_2_9_33_1 – ident: e_1_2_9_20_1 doi: 10.1016/j.tibs.2007.10.003 – ident: e_1_2_9_28_1 doi: 10.1016/0301-4622(94)00081-6 – ident: e_1_2_9_69_1 doi: 10.1110/ps.062115406 – ident: e_1_2_9_85_1 doi: 10.1021/ja801332d – ident: e_1_2_9_58_1 doi: 10.1038/nsmb1278 – ident: e_1_2_9_95_1 doi: 10.1093/nar/gku1047 – ident: e_1_2_9_88_1 doi: 10.1021/bi060532d – ident: e_1_2_9_56_1 doi: 10.1002/bip.20747 – ident: e_1_2_9_64_1 doi: 10.1016/j.jmb.2008.08.039 – ident: e_1_2_9_36_1 doi: 10.1529/biophysj.105.064154 – ident: e_1_2_9_93_1 doi: 10.1007/s00249-009-0549-3 – ident: e_1_2_9_74_1 doi: 10.1006/bbrc.1999.2013 – ident: e_1_2_9_52_1 doi: 10.1016/S0022-2836(03)00033-0 – ident: e_1_2_9_71_1 doi: 10.1093/nar/gkq837 – ident: e_1_2_9_82_1 doi: 10.1016/j.jmb.2009.06.001 – ident: e_1_2_9_83_1 doi: 10.1021/ja1063923 – ident: e_1_2_9_43_1 doi: 10.1107/S205225251500202X – ident: e_1_2_9_31_1 doi: 10.1006/jmbi.2001.4611 – ident: e_1_2_9_67_1 doi: 10.1073/pnas.0705069104 – ident: e_1_2_9_90_1 doi: 10.1016/j.cell.2010.05.039 – ident: e_1_2_9_21_1 doi: 10.1093/nar/gkr005 – ident: e_1_2_9_6_1 doi: 10.1021/bi991584o – ident: e_1_2_9_40_1 doi: 10.1021/bi036269n – ident: e_1_2_9_75_1 doi: 10.1002/prot.23033 – ident: e_1_2_9_86_1 doi: 10.1016/j.jmb.2009.10.010 – ident: e_1_2_9_39_1 doi: 10.1073/pnas.0801353105 – ident: e_1_2_9_61_1 doi: 10.1016/j.jmb.2004.06.094 – ident: e_1_2_9_19_1 doi: 10.1016/j.sbi.2008.10.002 – start-page: 673 year: 2002 ident: e_1_2_9_51_1 article-title: Detecting native protein folds among large decoy sets with hydrophobic moment profiling publication-title: Pac. Symp. Biocomput. – ident: e_1_2_9_54_1 doi: 10.1021/bi050196l – ident: e_1_2_9_68_1 doi: 10.1002/prot.22311 – ident: e_1_2_9_81_1 doi: 10.1016/j.jmb.2007.01.038 – ident: e_1_2_9_23_1 doi: 10.1016/j.jsb.2010.06.012 – ident: e_1_2_9_84_1 doi: 10.1021/bi00040a037 – ident: e_1_2_9_5_1 doi: 10.1016/j.bpc.2010.01.002 – ident: e_1_2_9_77_1 doi: 10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7 – volume: 47 start-page: 83 year: 1977 ident: e_1_2_9_29_1 article-title: Data evaluation in small‐angle scattering – calculation of radial electron‐density distribution by means of indirect fourier transformation publication-title: Acta Phys. Aust. – ident: e_1_2_9_41_1 doi: 10.1038/4681046a – ident: e_1_2_9_35_1 doi: 10.1107/S0021889803012779 – ident: e_1_2_9_78_1 doi: 10.1021/ja054342m – ident: e_1_2_9_79_1 doi: 10.1021/ja902528f – ident: e_1_2_9_34_1 doi: 10.1039/C1MB05275F – ident: e_1_2_9_10_1 doi: 10.1006/jmbi.2001.4720 – ident: e_1_2_9_63_1 doi: 10.1021/ja0618649 – ident: e_1_2_9_91_1 doi: 10.1074/jbc.M809627200 – ident: e_1_2_9_38_1 doi: 10.1016/j.str.2009.08.001 – ident: e_1_2_9_30_1 doi: 10.1107/S0021889892001663 – ident: e_1_2_9_72_1 doi: 10.1016/S0161-813X(02)00066-9 – ident: e_1_2_9_14_1 doi: 10.1146/annurev.biochem.75.101304.123901 – ident: e_1_2_9_70_1 doi: 10.1073/pnas.0402690101 – ident: e_1_2_9_73_1 doi: 10.1021/bi990752 – ident: e_1_2_9_66_1 doi: 10.1002/prot.22135 – ident: e_1_2_9_12_1 doi: 10.1186/1472-6807-11-29 – ident: e_1_2_9_48_1 doi: 10.1098/rsob.130090 – ident: e_1_2_9_89_1 doi: 10.1042/BJ20100314 – ident: e_1_2_9_47_1 doi: 10.1107/S0021889895007047 – ident: e_1_2_9_62_1 doi: 10.1074/jbc.M500159200 – ident: e_1_2_9_2_1 doi: 10.1073/pnas.0403643101 – ident: e_1_2_9_8_1 doi: 10.1107/S0021889808021018 – ident: e_1_2_9_9_1 doi: 10.1038/nmeth.1353 – ident: e_1_2_9_18_1 doi: 10.1016/j.sbi.2011.03.012 – ident: e_1_2_9_55_1 doi: 10.1016/j.str.2005.04.009 |
SSID | ssj0001819 |
Score | 2.633051 |
SecondaryResourceType | review_article |
Snippet | Small-angle X-ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution.... Small‐angle X‐ray scattering (SAXS) is a biophysical method to study the overall shape and structural transitions of biological macromolecules in solution.... |
SourceID | proquest pubmed crossref wiley elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2570 |
SubjectTerms | Algorithms Computer Simulation Disorder Flexibility Intrinsically disordered protein Intrinsically Disordered Proteins - chemistry Models, Molecular nuclear magnetic resonance spectroscopy nucleic acids Pliability profits and margins Protein Conformation Protein Folding proteins quantitative analysis Scattering, Small Angle Small angle scattering Small-angle X-ray scattering X-radiation X-ray diffraction X-Ray Diffraction - instrumentation X-Ray Diffraction - methods |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBelULaXsbb7yNoNDcbYHpxYtvyRRzc0lMH20hXyJnSWVBJcpzTJQ172t-9OlltKN1r6ZluSkXVn3Z19v98x9sXpWprYEBoHikjqUkRaizxKJQiXGqKsI3Dyz1_52YX8MctmO2zSY2EorTLs_d2e7nfrcGUUVnN0PZ8TxlfIDNULXZoYrTCB-KQsSMuHf-7SPNCCdS6wkBH1vkPxjBZDZ2GFy0MZXpln8qTiMv-2Tw_9z_vurLdH09fsVXAkedXNdZ_t2PaAHVYtBtFXW_6V-9RO_838gO2d9EcvJn2Bt0O2qHjASOF9LjdzY_l6yVdXumm4bi8by2fRjd7yVe05ONHG8W_n1ez8O1867ohIE7CPbg2ft2ts9vJuttwEQk9ruGeBwJY37GJ6-ntyFoXSC1GdES8BWKgzDB4x7hbS5RCDG-clFBajC1eOIc8wLjE1jGPit8vHtatzXQCkqBPapCJ9y3bbZWvfM57EqcmytAAJsQRZaJ2UIHUSAwaftoABk_2CqzrwklN5jEb1CWgLFeSkSE6KymYmxYANb4ddd8Qcjw0oe2mqexqm0Hg8NvRzL32FMqJfKrq1y81KCTTtnlRQ_L8PgaES9PvifMDedapzO2Niy4-lwNGV16WnPYqanp4kD_T_w_Mf8Ii9pDPKgxHymO2ubzb2Izpba_jk36a_adAkOw priority: 102 providerName: Elsevier |
Title | A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins |
URI | https://dx.doi.org/10.1016/j.febslet.2015.08.027 https://onlinelibrary.wiley.com/doi/abs/10.1016%2Fj.febslet.2015.08.027 https://www.ncbi.nlm.nih.gov/pubmed/26320411 https://www.proquest.com/docview/1718073931 https://www.proquest.com/docview/2000243906 |
Volume | 589 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELb6EIILgpbHFlgZCSE4ZIkT53XMVl0KFQixVOzN8sRO1SrNVs3uYS-In8Bv5Jcw4yQLCKpy4JYothVnxp5vnJlvGHtW6kIa31A2DiSe1KnwtBaxF0oQZWiIso6Sk9-9jw-P5dtZNNtgr_tcmJYfYn3gRivD7de0wDU0v_ibZ6PSQoOTo_isyPFwBskm26Y0W4rtC-SH9ZaMZqzFwUJ6EWrkz1SeV38d5ioj9ScI_R3TOqM0ucNud2iS563477INW--w3bxGT_p8xZ9zF9_pDs532I1xf3Vzv6_ytsuqnHeJUjjOyfLUWL6Y8-ZcVxXX9Ull-ez712-XesWbwlFxoqnjL6b5bPqSz0teEp8mYCtdG35aL_CxE3u14qbj9bSGOzIIfHKPHU8OPu0fel0FBq-IiJ4ALBQR-pDofgtZxuBDmcUpJBadjDLNII7QPTEFZD7R3MVZURaxTgBCVA1tQhHeZ1v1vLYPGQ_80ERRmIAEX4JMtA5SkDrwAX1Qm8CAyf6Tq6KjJ6cqGZXq49DOVCcpRZJSVD0zSAZstO520fJzXNch7eWpOpDRggeFKnZd16e9_BVKif6s6NrOl40SaOEdt6C4ug3lRAUI__x4wB60yrN-YyLN96XA3rnTpn-bipocjIMpKTXpNCJ7H8FotvcfxnjEblEbiosR8jHbWlwu7RMEXwsYss3RFzF0y2vItvOjj5-P8O7NbPwDi_wpwQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKESoXBC0_y6-RAMEhJXacZHPgkJautvRHSNtKe3M9iVO1SrOo2RXaG4_A4_A8PAkzTrKAoCoHeosU24ozM5lvnJlvGHtRmEzlfk7VOBB7yvSFZ4yIvECBKIKcKOuoOHlvPxoeqg_jcLzEvnW1MA0_xOLAjSzDfa_JwOlA-peA83S9sFDj7ihBK3REnDJu0yt37PwzBm_1u-33KOmXUg62DjaHXttfwMtCKr4HC1mIERIGl0IVEfhQJFEfYosQuugnEIUIvvMMEp9I3KIkK7LIxAABbtzkgQhw3WvsuopkTL0TpPq48AHoNxvgLZQXogn8rB16-9fHvsgr_ol6fwfRzgsObrNbLXzlaaNvd9iSrVbZWlph6H4256-4Syh1J_Wr7MZGd7Wy2bWVW2NlytvKLFzneHaSWz6d8PrMlCU31XFp-fj7l6_nZs7rzHF_om_lr0fpePSGTwpeEIEn4ChT5fykmuJtp2flnOctkajNuWOfwDt32eGViOQeW64mlX3AuPSDPAyDGBT4ClRsjOyDMtIHDHptDD2muleus5YPndpylLpLfDvVraQ0SUpTu04Z99j6YtqnhhDksgn9Tp66RTUNWtGo05dNfd7JX6OU6FeOqexkVmuBkMKRGYqLx1ARlkS86Uc9dr9RnsUTE0u_rwTOTp02_dtW9GBrQ45IqUmnMZTwEf0mD__DGs_YyvBgb1fvbu_vPGI3aTwl5Qj1mC1Pz2f2CSK_KTx1RsbZ0VVb9Q8sUWSg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEZQLghbo8jQSIHpIiR3ndeCQPlYtharSUmlvxo7tqlWarbq7QnvjJ_Bv-D_8EmacZAFBVQ70FskPxZmZzDf2zGdCXjhVChMarMbRaSBUxgKlWBJEQjMXGaSsw-LkD_vJzqF4N4yHC-RbVwvT8EPMN9zQMvz_Gg38zLhf4s2TdWf1GBaH-Vmx5-HkaZtduWdnnyF2G7_d3QJBv-S8v_1xcydorxcIyhhr77XVZQwBEsSWTLhEh9rlSaZTCwjaZblOYsDeptR5iBxuSV66MlGp1hGsW5mIRTDvNXIdDxoxl4yLg7kLALfZ4G4mghgs4Gfp0Ju_vvZFTvFP0Ps7hvZOsH-H3G7RKy0adbtLFmy9TFaKGiL30xl9RX0-qd-oXyY3Nrqnpc3uVrkVUhW0LcyCeY6mx8bSyYiOT1VVUVUfVZYOv3_5eq5mdFx66k9wrfT1oBgO1ujIUYf8nRp6qdrQ43oCzV7Nqhk1LY-oNdSTT0DLPXJ4JSK5TxbrUW1XCeVhZOI4SrXQodAiVYpnWigeaoh5bap7RHSfXJYtHTreylHJLu_tRLaSkigpibd18rRH1ufDzho-kMsGZJ08ZQtqGrAiQaUvG_q8k78EKeFJjqrtaDqWDBCF5zJkF_fBGiwOcDNMeuRBozzzN0aS_lAwGF14bfq3pcj-9gYfoFKjTkMkEQL4zR_-hzmekZsHW335fnd_7xG5hd0xJYeJx2Rxcj61TwD3TfRTb2OUfLpqo_4BokNj0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+practical+guide+to+small+angle+X%E2%80%90ray+scattering+%28SAXS%29+of+flexible+and+intrinsically+disordered+proteins&rft.jtitle=FEBS+letters&rft.au=Kikhney%2C+Alexey+G.&rft.au=Svergun%2C+Dmitri+I.&rft.date=2015-09-14&rft.issn=0014-5793&rft.eissn=1873-3468&rft.volume=589&rft.issue=19PartA&rft.spage=2570&rft.epage=2577&rft_id=info:doi/10.1016%2Fj.febslet.2015.08.027&rft.externalDBID=10.1016%252Fj.febslet.2015.08.027&rft.externalDocID=FEB2S0014579315007279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-5793&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-5793&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-5793&client=summon |