Microbial nutrient niches in the gut

Summary The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mos...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental microbiology Vol. 19; no. 4; pp. 1366 - 1378
Main Authors Pereira, Fátima C., Berry, David
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.04.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche‐driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co‐existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed‐substrate utilization are common strategies for survival in the face of ever‐present nutrient fluctuations.
AbstractList The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche-driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co-existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed-substrate utilization are common strategies for survival in the face of ever-present nutrient fluctuations.The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche-driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co-existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed-substrate utilization are common strategies for survival in the face of ever-present nutrient fluctuations.
The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche‐driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co‐existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed‐substrate utilization are common strategies for survival in the face of ever‐present nutrient fluctuations.
Summary The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche-driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co-existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed-substrate utilization are common strategies for survival in the face of ever-present nutrient fluctuations.
Summary The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche‐driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co‐existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed‐substrate utilization are common strategies for survival in the face of ever‐present nutrient fluctuations.
Author Berry, David
Pereira, Fátima C.
AuthorAffiliation 1 Department of Microbiology and Ecosystem Science, Division of Microbial Ecology University of Vienna Althanstrasse 14 Vienna 1090 Austria
AuthorAffiliation_xml – name: 1 Department of Microbiology and Ecosystem Science, Division of Microbial Ecology University of Vienna Althanstrasse 14 Vienna 1090 Austria
Author_xml – sequence: 1
  givenname: Fátima C.
  surname: Pereira
  fullname: Pereira, Fátima C.
  organization: University of Vienna
– sequence: 2
  givenname: David
  orcidid: 0000-0002-8997-608X
  surname: Berry
  fullname: Berry, David
  email: berry@microbial-ecology.net
  organization: University of Vienna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28035742$$D View this record in MEDLINE/PubMed
BookMark eNqNkTtPwzAUhS0EglKY2VAkGFgKtuNXFiRU8agEYuluOc5Na5Q6JU5A_fe4tFTQpXjx6zvHvvcco31fe0DojOBrEscNYYIOaEbjNhU820O9zcn-Zk3oEToO4Q1jIlOJD9ERVTjlktEeunxxtqlzZ6rEd23jwLeJd3YKIXE-aaeQTLr2BB2Upgpwup77aPxwPx4-DZ5fH0fDu-eB5VmWDXIhgecyzawSYJgsQCoojKE5K3lhCo4NK0pZMgkFtTnOSyuMxFblZUkA0j66XdnOu3wGhY1_aUyl542bmWaha-P03xvvpnpSf2jOSKyYR4OrtUFTv3cQWj1zwUJVGQ91FzTFFCuhMrwbJSojSoqU03-gnAnCKMcRvdhC3-qu8bFnkVKMMay4iNT57zo3Bf6kEoGbFRCjCaGBcoMQrJe562Wyepmy_s49KviWwrrWtK5eNspVu3WfroLFrmf0_ctopfsCfk6-Zw
CitedBy_id crossref_primary_10_1002_1873_3468_13527
crossref_primary_10_1111_mec_14822
crossref_primary_10_1128_mSphere_00528_18
crossref_primary_10_1038_s41564_018_0143_5
crossref_primary_10_1111_1751_7915_14165
crossref_primary_10_1016_j_jff_2020_104074
crossref_primary_10_1128_msystems_01383_21
crossref_primary_10_1016_j_mib_2021_11_004
crossref_primary_10_1128_MMBR_00054_18
crossref_primary_10_3390_ijms242417432
crossref_primary_10_1016_j_micinf_2021_104849
crossref_primary_10_1016_j_foodhyd_2024_111034
crossref_primary_10_1016_j_chom_2023_03_002
crossref_primary_10_1128_spectrum_01696_21
crossref_primary_10_3389_fmicb_2018_00048
crossref_primary_10_1016_j_chmed_2023_03_003
crossref_primary_10_1080_03036758_2019_1695636
crossref_primary_10_1093_ismejo_wrae114
crossref_primary_10_7554_eLife_35987
crossref_primary_10_1017_S0031182024000556
crossref_primary_10_3390_microorganisms7100431
crossref_primary_10_1016_j_aquaculture_2022_738979
crossref_primary_10_1128_ecosalplus_esp_0003_2020
crossref_primary_10_1038_s41559_021_01505_0
crossref_primary_10_3390_ijms25074024
crossref_primary_10_1128_msystems_00532_23
crossref_primary_10_1016_j_aquaculture_2023_740537
crossref_primary_10_1093_femsre_fuab001
crossref_primary_10_1111_obr_12784
crossref_primary_10_36233_0372_9311_192
crossref_primary_10_1016_j_tifs_2021_11_034
crossref_primary_10_3389_fmicb_2022_804986
crossref_primary_10_3389_fnut_2022_821900
crossref_primary_10_3390_v14102197
crossref_primary_10_1371_journal_ppat_1012189
crossref_primary_10_1099_mic_0_001404
crossref_primary_10_1080_19490976_2023_2241209
crossref_primary_10_3389_fmicb_2018_02558
crossref_primary_10_3390_ijms23115985
crossref_primary_10_1093_femsre_fuaa068
crossref_primary_10_1093_femsre_fuac008
crossref_primary_10_1016_j_bioelechem_2019_107334
crossref_primary_10_1016_j_canlet_2021_05_018
crossref_primary_10_1016_j_aquaculture_2018_12_013
crossref_primary_10_1016_j_csbj_2025_02_004
crossref_primary_10_1016_j_tim_2024_02_013
crossref_primary_10_1038_s41467_020_16011_3
crossref_primary_10_3390_ht9030017
crossref_primary_10_1016_j_immuni_2020_01_007
crossref_primary_10_1073_pnas_2322440122
crossref_primary_10_1128_IAI_00131_19
crossref_primary_10_1038_s41467_023_40372_0
crossref_primary_10_1093_femsre_fuaa052
crossref_primary_10_3390_epigenomes8020016
crossref_primary_10_3920_BM2020_0187
crossref_primary_10_1016_j_isci_2024_108900
crossref_primary_10_1089_zeb_2017_1460
crossref_primary_10_3389_fmicb_2020_00859
crossref_primary_10_1111_1751_7915_13741
crossref_primary_10_1093_procel_pwae058
crossref_primary_10_1093_femsre_fuab054
crossref_primary_10_1016_j_anifeedsci_2020_114479
crossref_primary_10_1128_mBio_00886_20
crossref_primary_10_1016_j_physrep_2021_01_003
crossref_primary_10_1016_j_xcrm_2021_100206
crossref_primary_10_1016_j_physa_2020_124422
crossref_primary_10_1152_ajpgi_00283_2019
crossref_primary_10_1038_s41396_022_01255_2
crossref_primary_10_2217_fmb_2022_0155
crossref_primary_10_1038_s41559_018_0519_1
crossref_primary_10_1038_s41587_019_0183_2
crossref_primary_10_1080_19490976_2018_1474322
crossref_primary_10_1038_s41396_019_0564_z
crossref_primary_10_1080_19490976_2023_2271629
crossref_primary_10_1128_AEM_00547_18
crossref_primary_10_1038_s41564_019_0658_4
crossref_primary_10_1155_2024_8925691
crossref_primary_10_1128_spectrum_00970_24
crossref_primary_10_3390_ijms26041757
crossref_primary_10_1016_j_micinf_2021_104815
crossref_primary_10_1016_j_jip_2022_107763
crossref_primary_10_1111_mmi_15267
crossref_primary_10_3389_fmicb_2018_01166
crossref_primary_10_3389_fneur_2019_00663
crossref_primary_10_1016_j_scitotenv_2025_178614
crossref_primary_10_1128_mBio_01824_17
crossref_primary_10_1093_femsec_fiaa007
crossref_primary_10_1371_journal_pone_0218692
crossref_primary_10_1016_j_indcrop_2023_117194
crossref_primary_10_1016_j_csbj_2021_01_007
crossref_primary_10_1016_j_aninu_2020_10_003
crossref_primary_10_1038_s41522_020_00176_2
crossref_primary_10_1128_mSphere_00777_20
crossref_primary_10_1053_j_gastro_2021_12_272
crossref_primary_10_1128_aem_00394_24
crossref_primary_10_3389_fcimb_2020_00481
crossref_primary_10_1038_s41579_023_00969_0
crossref_primary_10_3390_nu14010052
crossref_primary_10_1038_s41559_020_01385_w
crossref_primary_10_1002_ecy_2652
crossref_primary_10_1016_j_ecss_2017_08_016
crossref_primary_10_1016_j_ijmm_2020_151392
crossref_primary_10_1016_j_medmic_2021_100042
crossref_primary_10_3389_fmicb_2022_1074153
crossref_primary_10_3389_fimmu_2022_828758
crossref_primary_10_1097_IM9_0000000000000001
crossref_primary_10_1080_19490976_2021_2021790
crossref_primary_10_1007_s10295_019_02203_4
crossref_primary_10_1016_j_meegid_2022_105267
crossref_primary_10_1093_femsec_fiaa241
crossref_primary_10_1038_s41467_020_18928_1
crossref_primary_10_1038_s41559_022_01930_9
crossref_primary_10_1038_s41576_021_00421_0
crossref_primary_10_1038_s43705_022_00142_3
crossref_primary_10_1016_j_aquaculture_2020_735059
crossref_primary_10_1080_19490976_2021_1979877
crossref_primary_10_3390_ijms22189700
crossref_primary_10_7554_eLife_83664
crossref_primary_10_1371_journal_pcbi_1006558
crossref_primary_10_1080_19490976_2023_2235067
crossref_primary_10_1111_ele_70027
crossref_primary_10_1038_s41385_018_0053_0
crossref_primary_10_1016_j_ppees_2021_125611
crossref_primary_10_1051_medsci_2021095
crossref_primary_10_1093_femsre_fuz013
crossref_primary_10_1128_msphere_00569_22
crossref_primary_10_1128_ecosalplus_esp_0006_2023
crossref_primary_10_3390_ijms241310818
crossref_primary_10_1038_s41396_022_01292_x
crossref_primary_10_3389_fmicb_2022_1006251
crossref_primary_10_1093_burnst_tkad056
crossref_primary_10_1098_rspb_2023_0308
crossref_primary_10_1080_19768354_2023_2282726
crossref_primary_10_1007_s00248_020_01639_x
crossref_primary_10_1016_j_jnutbio_2018_07_010
crossref_primary_10_1073_pnas_1916224116
crossref_primary_10_1038_s41564_017_0072_8
crossref_primary_10_1038_s41579_022_00692_2
crossref_primary_10_14412_1996_7012_2022_6_7_11
crossref_primary_10_1186_s40168_022_01307_x
crossref_primary_10_1038_s41589_023_01395_2
crossref_primary_10_1016_j_tim_2020_04_011
crossref_primary_10_1093_jas_skz395
crossref_primary_10_1055_a_2435_6449
crossref_primary_10_3390_ani12233296
crossref_primary_10_3389_fmicb_2022_831034
crossref_primary_10_1159_000525449
crossref_primary_10_3389_fmicb_2018_02161
crossref_primary_10_1111_raq_12762
crossref_primary_10_3389_fmicb_2021_629023
crossref_primary_10_1016_j_mtbio_2024_101294
crossref_primary_10_1016_j_foodres_2024_115186
crossref_primary_10_1038_s41396_021_01088_5
crossref_primary_10_1111_1462_2920_15317
crossref_primary_10_3390_microorganisms11102453
crossref_primary_10_1016_j_mam_2020_100895
crossref_primary_10_1016_j_aninu_2022_08_005
crossref_primary_10_1007_s00338_022_02259_2
crossref_primary_10_1016_j_ijbiomac_2024_130677
crossref_primary_10_1128_msystems_00163_22
crossref_primary_10_1093_femsec_fiy084
crossref_primary_10_1128_spectrum_00567_23
crossref_primary_10_3389_fbioe_2021_826479
crossref_primary_10_3390_microorganisms10091831
crossref_primary_10_1016_j_watres_2019_115069
crossref_primary_10_1098_rstb_2023_0078
crossref_primary_10_1016_j_ecoenv_2021_112643
crossref_primary_10_1093_ajcn_nqac081
crossref_primary_10_1109_JPROC_2019_2908582
crossref_primary_10_1128_mBio_00853_20
crossref_primary_10_1128_msystems_00729_21
crossref_primary_10_1038_s41598_018_26484_4
crossref_primary_10_1111_1758_2229_13165
crossref_primary_10_1017_S0029665121003694
crossref_primary_10_3390_v11070656
crossref_primary_10_1016_j_addr_2021_113931
crossref_primary_10_1016_j_biortech_2022_127796
crossref_primary_10_1002_mbo3_778
crossref_primary_10_1038_s42003_023_04718_0
crossref_primary_10_1128_msphere_00825_24
crossref_primary_10_3389_fmicb_2023_1261137
crossref_primary_10_7554_eLife_37963
crossref_primary_10_1111_1462_2920_13752
crossref_primary_10_1016_j_copbio_2019_09_003
crossref_primary_10_1111_jam_14427
crossref_primary_10_1080_19490976_2022_2106103
crossref_primary_10_1093_femsre_fuy003
crossref_primary_10_1038_s42255_022_00656_z
crossref_primary_10_1128_spectrum_02618_24
crossref_primary_10_3390_nu11102291
crossref_primary_10_1038_s41522_022_00344_6
crossref_primary_10_1128_spectrum_04344_22
crossref_primary_10_1002_aic_16848
crossref_primary_10_1016_j_chom_2022_04_012
crossref_primary_10_1038_s41522_022_00368_y
crossref_primary_10_1016_j_medmic_2022_100054
crossref_primary_10_1038_s41540_019_0116_1
crossref_primary_10_1002_mbo3_677
crossref_primary_10_3892_mmr_2024_13281
crossref_primary_10_1016_j_chom_2023_05_029
crossref_primary_10_1073_pnas_2115013119
crossref_primary_10_1186_s40168_019_0664_z
crossref_primary_10_1039_D1OB00054C
crossref_primary_10_3389_fmicb_2024_1469543
crossref_primary_10_3390_vetsci7020044
crossref_primary_10_1128_AEM_00230_21
crossref_primary_10_1111_1462_2920_14705
crossref_primary_10_3390_microorganisms11071753
crossref_primary_10_3390_nu14112287
crossref_primary_10_1016_j_envexpbot_2019_103825
crossref_primary_10_1038_s41467_019_12413_0
crossref_primary_10_1007_s00253_019_10214_5
crossref_primary_10_3390_biomedicines10020255
crossref_primary_10_1073_pnas_2203519119
crossref_primary_10_1080_1028415X_2019_1660485
crossref_primary_10_1038_s41396_019_0435_7
crossref_primary_10_1128_msystems_01181_22
crossref_primary_10_1371_journal_pgen_1010177
crossref_primary_10_3390_antibiotics13090817
crossref_primary_10_25122_jml_2020_0065
crossref_primary_10_1186_s12934_022_01926_x
crossref_primary_10_1074_jbc_RA120_014454
crossref_primary_10_1038_s41564_022_01286_7
crossref_primary_10_1038_s44222_023_00119_4
crossref_primary_10_1038_s41396_022_01287_8
Cites_doi 10.1371/journal.pone.0025042
10.1136/gutjnl-2014-307873
10.1073/pnas.1106408108
10.4161/gmic.19897
10.1038/ncomms4654
10.1111/1574-6976.12024
10.1086/282400
10.1371/journal.ppat.1003301
10.1101/SQB.1957.022.01.039
10.1038/ncomms4114
10.1371/journal.pone.0015046
10.2307/1942257
10.1038/sj.embor.7400731
10.1128/microbe.10.324.1
10.1038/ismej.2015.142
10.1038/ismej.2010.71
10.1038/ismej.2010.118
10.1038/ismej.2010.161
10.1128/iai.39.2.676-685.1983
10.1038/ismej.2012.158
10.1126/science.1254009
10.1038/nmicrobiol.2016.93
10.1073/pnas.1206721109
10.1126/science.1224203
10.1073/pnas.1219247110
10.1111/1462-2920.13158
10.1086/504850
10.1111/j.1462-2920.2008.01717.x
10.1038/nature12503
10.1073/pnas.1306070110
10.1111/j.1574-6968.1991.tb04363.x
10.1038/nature17626
10.1038/nature12820
10.1016/j.cell.2014.09.048
10.1146/annurev-ecolsys-110411-160340
10.1073/pnas.1312524110
10.1016/j.tim.2016.02.002
10.1016/j.bpg.2013.03.001
10.1016/j.cell.2014.09.008
10.1016/j.chom.2016.09.001
10.1073/pnas.96.8.4586
10.1017/S0007114508019880
10.1017/S1751731114001827
10.1073/pnas.0307888101
10.1128/AEM.03799-13
10.3389/fphys.2012.00448
10.1038/nrmicro3451
10.1006/anae.1996.0015
10.1038/nature12447
10.1038/ismej.2011.212
10.1128/IAI.01149-13
10.1126/science.1206025
10.1126/science.aac5992
10.1128/IAI.39.2.686-703.1983
10.1016/j.celrep.2016.01.026
10.1038/nrmicro3552
10.1128/MMBR.62.3.646-666.1998
10.1073/pnas.1420406112
10.1186/gb-2014-15-7-r89
10.1038/npjbiofilms.2015.26
10.1371/journal.pone.0074957
10.1128/AEM.00692-09
10.1371/journal.pbio.1001424
10.1126/scitranslmed.3000322
10.1086/282697
10.1038/nmicrobiol.2016.215
10.1111/j.1348-0421.1995.tb02242.x
10.1038/nature11053
10.1098/rstb.2011.0063
10.1186/s12915-015-0224-3
10.1016/j.cub.2013.10.077
10.1111/j.1365-2672.2007.03520.x
10.3389/fgene.2015.00081
10.1016/j.chom.2015.01.015
10.1371/journal.ppat.1002995
10.1126/science.1208344
10.1016/j.chom.2015.03.006
10.1086/282586
10.1111/j.1462-2920.2012.02845.x
10.1053/j.gastro.2008.04.017
10.1038/ismej.2011.161
10.1038/nmicrobiol.2016.152
10.1111/j.1462-2920.2005.00956.x
10.1073/pnas.0902366106
10.1128/IAI.06193-11
10.1093/oxfordjournals.jbchem.a133506
10.1038/ismej.2012.4
10.1038/ajg.2010.281
10.1073/pnas.1005963107
10.1136/gutjnl-2015-309618
10.1128/AAC.00580-13
10.3390/nu7042109
10.4161/gmic.29331
10.1073/pnas.1412673111
10.1126/science.273.5280.1380
10.1016/j.tree.2011.03.024
10.1016/j.celrep.2015.03.049
10.1111/j.1462-2920.2010.02294.x
10.1073/pnas.1319284111
10.1038/ncomms9292
10.1038/srep31448
10.1038/ismej.2013.185
10.1111/j.1574-6941.2007.00379.x
10.1016/j.chom.2013.06.007
10.2307/1312122
10.1128/IAI.73.12.8039-8049.2005
10.1016/j.chom.2014.11.010
10.1371/journal.pone.0053957
10.1186/s12859-015-0858-8
10.1016/j.cmet.2014.11.008
10.1128/iai.56.5.1030-1035.1988
10.1128/mBio.02284-14
ContentType Journal Article
Copyright 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd
2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
2017 Society for Applied Microbiology and John Wiley & Sons Ltd
Copyright_xml – notice: 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd
– notice: 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: 2017 Society for Applied Microbiology and John Wiley & Sons Ltd
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
5PM
DOI 10.1111/1462-2920.13659
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Bacteriology Abstracts (Microbiology B)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Oceanic Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Oceanic Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
MEDLINE


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Microbial nutrient niches in the gut
EISSN 1462-2920
EndPage 1378
ExternalDocumentID PMC5412925
4321468053
28035742
10_1111_1462_2920_13659
EMI13659
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Austrian Science Fund
  funderid: P27831‐B28 ; P26127‐B20
– fundername: Vienna Science and Technology Fund
  funderid: LS12‐001
– fundername: H2020 Marie Skłodowska‐Curie
  funderid: 658718 to FCP
– fundername: Austrian Science Fund FWF
  grantid: P 26127
– fundername: Austrian Science Fund FWF
  grantid: P 27831
– fundername: Austrian Science Fund
  grantid: P27831‐B28 ; P26127‐B20
– fundername: H2020 Marie Skłodowska‐Curie
  grantid: 658718 to FCP
– fundername: Vienna Science and Technology Fund
  grantid: LS12‐001
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
24P
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OIG
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XIH
YUY
ZZTAW
~02
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7ST
7T7
7TN
7U9
7UA
8FD
C1K
F1W
FR3
H94
H95
H97
L.G
M7N
P64
SOI
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5999-b67e5b739c86ea47de78edaa2b4f5dad50a4df7f47ed2cb0bfc6a70c8bff1ee3
IEDL.DBID DR2
ISSN 1462-2912
1462-2920
IngestDate Thu Aug 21 18:30:04 EDT 2025
Fri Jul 11 18:27:34 EDT 2025
Fri Jul 11 05:39:12 EDT 2025
Fri Jul 11 13:48:28 EDT 2025
Fri Jul 25 10:36:34 EDT 2025
Mon Jul 21 06:02:30 EDT 2025
Tue Jul 01 04:00:38 EDT 2025
Thu Apr 24 22:51:20 EDT 2025
Thu Aug 21 01:21:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5999-b67e5b739c86ea47de78edaa2b4f5dad50a4df7f47ed2cb0bfc6a70c8bff1ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8997-608X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.13659
PMID 28035742
PQID 1884440856
PQPubID 1066360
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5412925
proquest_miscellaneous_2020868905
proquest_miscellaneous_1891876352
proquest_miscellaneous_1854614250
proquest_journals_1884440856
pubmed_primary_28035742
crossref_primary_10_1111_1462_2920_13659
crossref_citationtrail_10_1111_1462_2920_13659
wiley_primary_10_1111_1462_2920_13659_EMI13659
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2017
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
– name: Hoboken
PublicationTitle Environmental microbiology
PublicationTitleAlternate Environ Microbiol
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2010; 12
2014b; 505
1981; 90
2012; 486
2013; 27
2010; 107
1995; 39
2010; 105
2014; 24
2008; 104
2013; 7
2013; 8
1983a; 39
2014a; 15
2012; 10
2013; 9
2014; 20
2015; 46
2011; 366
2014; 5
2013; 15
2013; 14
2001
1983b; 39
2013; 57
2005; 73
1999; 96
2013; 110
2011; 26
2007; 62
2014; 8
2012; 336
2010; 5
1996; 2
2010; 4
2006; 167
2004; 101
2015; 13
2015; 1
2011; 334
2011; 333
2012; 80
2015; 17
2015; 6
1976; 46
1970; 104
2013; 501
1993; 43
2015; 11
2015; 10
2013; 502
2016; 10
2006; 7
2006; 8
1988; 56
2008; 10
2016; 18
2014; 111
1998; 62
2016; 17
2011; 6
2014; 82
2011; 5
1969; 103
2015; 7
2016; 14
1957
2014; 159
2012; 109
2015; 350
2016; 6
2013; 37
2012; 3
1966; 100
2016; 1
2011; 108
2014; 80
2016; 2
2009; 75
2015; 64
2015; 112
1991; 61
2016; 65
2016; 20
2009; 101
2016; 533
1996; 273
2008; 135
2012; 6
1927
2009; 1
2014; 345
2016; 24
2012; 8
2009; 106
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
Wadolkowski E.A. (e_1_2_9_102_1) 1988; 56
e_1_2_9_103_1
e_1_2_9_107_1
Hutchinson G.E. (e_1_2_9_42_1) 1957
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
e_1_2_9_115_1
e_1_2_9_26_1
e_1_2_9_49_1
Elton C.S. (e_1_2_9_28_1) 1927
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_114_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
Hubbell S.P. (e_1_2_9_41_1) 2001
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_113_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_112_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
28401677 - Environ Microbiol. 2017 Aug;19(8):2924-2925. doi: 10.1111/1462-2920.13752.
References_xml – volume: 7
  start-page: 2109
  year: 2015
  end-page: 2124
  article-title: Detection of sialic acid‐utilising bacteria in a caecal community batch culture using RNA‐based stable isotope probing
  publication-title: Nutrients
– volume: 46
  start-page: 1
  year: 2015
  end-page: 23
  article-title: Historical contingency in community assembly: integrating niches, species pools, and priority effects
  publication-title: Annu Rev Ecol Evol Syst
– volume: 1
  start-page: 6ra14
  year: 2009
  article-title: The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice
  publication-title: Sci Transl Med
– volume: 100
  start-page: 65
  year: 1966
  end-page: 75
  article-title: Food web complexity and species diversity
  publication-title: Am Nat
– volume: 14
  start-page: 1655
  year: 2016
  end-page: 1661
  article-title: The gut microbiota modulates energy metabolism in the hibernating brown bear
  publication-title: Cell Rep
– volume: 11
  start-page: 527
  year: 2015
  end-page: 538
  article-title: The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes
  publication-title: Cell Rep
– volume: 6
  start-page: 31448
  year: 2016
  article-title: Testing the neutral theory of biodiversity with human microbiome datasets
  publication-title: Sci Rep
– volume: 5
  start-page: 3114
  year: 2014
  article-title: Antibiotic‐induced shifts in the mouse gut microbiome and metabolome increase susceptibility to infection
  publication-title: Nat Commun
– volume: 14
  start-page: 3
  year: 2016
  article-title: Modulation of the human gut microbiota by dietary fibres occurs at the species level
  publication-title: BMC Biol
– volume: 334
  start-page: 105
  year: 2011
  end-page: 108
  article-title: Linking long‐term dietary patterns with gut microbial enterotypes
  publication-title: Science
– volume: 5
  start-page: 220
  year: 2011
  end-page: 230
  article-title: Dominant and diet‐responsive groups of bacteria within the human colonic microbiota
  publication-title: ISME J
– volume: 26
  start-page: 340
  year: 2011
  end-page: 348
  article-title: The unified neutral theory of biodiversity and biogeography at age ten
  publication-title: Trends Ecol Evol
– volume: 505
  start-page: 559
  year: 2014b
  end-page: 563
  article-title: Diet rapidly and reproducibly alters the human gut microbiome
  publication-title: Nature
– volume: 111
  start-page: 17941
  year: 2014
  end-page: 17946
  article-title: Evolutionary limits to cooperation in microbial communities
  publication-title: Proc Natl Acad Sci U S A
– volume: 6
  start-page: e25042
  year: 2011
  article-title: Pyrosequencing‐based analysis of the mucosal microbiota in healthy individuals reveals ubiquitous bacterial groups and micro‐heterogeneity
  publication-title: PLoS One
– volume: 6
  start-page: 1415
  year: 2012
  end-page: 1426
  article-title: The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates
  publication-title: ISME J
– volume: 350
  start-page: aac5992
  year: 2015
  article-title: Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut
  publication-title: Science
– volume: 24
  start-page: 402
  year: 2016
  end-page: 413
  article-title: Functional redundancy‐induced stability of gut microbiota subjected to disturbance
  publication-title: Trends Microbiol
– volume: 43
  start-page: 219
  year: 1993
  end-page: 224
  article-title: The keystone‐species concept in ecology and conservation
  publication-title: Bioscience
– volume: 10
  start-page: e1001424
  year: 2012
  article-title: The evolution of mutualism in gut microbiota via host epithelial selection
  publication-title: PLoS Biol
– volume: 5
  start-page: 627
  year: 2011
  end-page: 638
  article-title: Spatial organization of intestinal microbiota in the mouse ascending colon
  publication-title: ISME J
– volume: 110
  start-page: 13582
  year: 2013
  end-page: 13587
  article-title: Metabolic niche of a prominent sulfate‐reducing human gut bacterium
  publication-title: Proc Natl Acad Sci U S A
– volume: 273
  start-page: 1380
  year: 1996
  end-page: 1383
  article-title: A model of host‐microbial interactions in an open mammalian ecosystem
  publication-title: Science
– volume: 73
  start-page: 8039
  year: 2005
  end-page: 8049
  article-title: Mouse intestine selects nonmotile mutants of MG1655 with increased colonizing ability and better utilization of carbon sources
  publication-title: Infect Immun
– volume: 8
  start-page: e74957
  year: 2013
  article-title: Bacterial community mapping of the mouse gastrointestinal tract
  publication-title: PLoS One
– volume: 14
  start-page: 26
  year: 2013
  end-page: 37
  article-title: Probiotic bacteria reduce Typhimurium intestinal colonization by competing for iron
  publication-title: Cell Host Microbe
– volume: 5
  start-page: 3654
  year: 2014
  article-title: Gut microbiome of the Hadza hunter‐gatherers
  publication-title: Nat Commun
– volume: 1
  start-page: 16152
  year: 2016
  article-title: Transcriptional interactions suggest niche segregation among microorganisms in the human gut
  publication-title: Nat Microbiol
– volume: 17
  start-page: 16
  issue: Suppl 2
  year: 2016
  article-title: Stochastic neutral modelling of the Gut Microbiota‘s relative species abundance from next generation sequencing data
  publication-title: BMC Bioinformatics
– volume: 75
  start-page: 6451
  year: 2009
  end-page: 6456
  article-title: Response of gut microbiota to fasting and hibernation in Syrian hamsters
  publication-title: Appl Environ Microbiol
– volume: 5
  start-page: e15046
  year: 2010
  article-title: Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects
  publication-title: PLoS One
– volume: 333
  start-page: 101
  year: 2011
  end-page: 104
  article-title: Predicting a human gut microbiota‘s response to diet in gnotobiotic mice
  publication-title: Science
– volume: 17
  start-page: 681
  year: 2015
  end-page: 689
  article-title: Effects of diurnal variation of gut microbes and high‐fat feeding on host circadian clock function and metabolism
  publication-title: Cell Host Microbe
– volume: 6
  start-page: 1
  year: 2015
  article-title: Application of a neutral community model to assess structuring of the human lung microbiome
  publication-title: MBio
– volume: 39
  start-page: 686
  year: 1983b
  end-page: 703
  article-title: Survival and implantation of in the intestinal tract
  publication-title: Infect Immun
– volume: 110
  start-page: 17059
  year: 2013
  end-page: 17064
  article-title: Genetically dictated change in host mucus carbohydrate landscape exerts a diet‐dependent effect on the gut microbiota
  publication-title: Proc Natl Acad Sci U S A
– volume: 135
  start-page: 568
  year: 2008
  end-page: 579
  article-title: Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea
  publication-title: Gastroenterology
– volume: 6
  start-page: 1535
  year: 2012
  end-page: 1543
  article-title: is a keystone species for the degradation of resistant starch in the human colon
  publication-title: ISME J
– volume: 6
  start-page: 81
  year: 2015
  article-title: Mucin glycan foraging in the human gut microbiome
  publication-title: Front Genet
– volume: 64
  start-page: 1553
  year: 2015
  end-page: 1561
  article-title: Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers
  publication-title: Gut
– volume: 80
  start-page: 1716
  year: 2012
  end-page: 1727
  article-title: The streptomycin‐treated mouse intestine selects missense mutants that interact with dense and diverse intestinal microbiota
  publication-title: Infect Immun
– volume: 18
  start-page: 2214
  year: 2016
  end-page: 2225
  article-title: Wheat bran promotes enrichment within the human colonic microbiota of butyrate‐producing bacteria that release ferulic acid
  publication-title: Environ Microbiol
– volume: 62
  start-page: 646
  year: 1998
  end-page: 666
  article-title: Growth kinetics of suspended microbial cells: from single‐substrate‐controlled growth to mixed‐substrate kinetics
  publication-title: Microbiol Mol Biol Rev
– volume: 103
  start-page: 91
  year: 1969
  end-page: 93
  article-title: A note on trophic complexity and community stability
  publication-title: Am Nat
– volume: 27
  start-page: 25
  year: 2013
  end-page: 38
  article-title: Glycobiome: bacteria and mucus at the epithelial interface
  publication-title: Best Pract Res Clin Gastroenterol
– volume: 159
  start-page: 253
  year: 2014
  end-page: 266
  article-title: Bacteria from diverse habitats colonize and compete in the mouse gut
  publication-title: Cell
– volume: 90
  start-page: 559
  year: 1981
  end-page: 561
  article-title: Appearance of fucolipid after conventionalization of germ‐free mice
  publication-title: J Biochem
– volume: 57
  start-page: 5266
  year: 2013
  end-page: 5270
  article-title: Nontoxigenic protects hamsters against challenge with historic and epidemic strains of toxigenic BI/NAP1/027
  publication-title: Antimicrob Agents Chemother
– volume: 486
  start-page: 222
  year: 2012
  end-page: 227
  article-title: Human gut microbiome viewed across age and geography
  publication-title: Nature
– volume: 101
  start-page: 7427
  year: 2004
  end-page: 7432
  article-title: Carbon nutrition of in the mouse intestine
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: 1777
  year: 2014
  end-page: 1787
  article-title: Fermentable non‐starch polysaccharides increases the abundance of ‐ ‐ in ileal microbial community of growing pigs
  publication-title: Animal
– volume: 366
  start-page: 2351
  year: 2011
  end-page: 2363
  article-title: Disentangling the importance of ecological niches from stochastic processes across scales
  publication-title: Philos Trans R Soc B Biol Sci
– volume: 105
  start-page: 2420
  year: 2010
  end-page: 2428
  article-title: Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria
  publication-title: Am J Gastroenterol
– volume: 3
  start-page: 448
  year: 2012
  article-title: Microbial pathways in colonic sulfur metabolism and links with health and disease
  publication-title: Front Physiol
– volume: 4
  start-page: 1375
  year: 2010
  end-page: 1385
  article-title: Postprandial remodeling of the gut microbiota in Burmese pythons
  publication-title: ISME J
– volume: 336
  start-page: 1255
  year: 2012
  end-page: 1262
  article-title: The application of ecological theory toward an understanding of the human microbiome
  publication-title: Science
– volume: 24
  start-page: 40
  year: 2014
  end-page: 49
  article-title: An ecological network of polysaccharide utilization among human intestinal symbionts
  publication-title: Curr Biol
– volume: 1
  start-page: 16093
  year: 2016
  article-title: Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut
  publication-title: Nat Microbiol
– volume: 533
  start-page: 255
  year: 2016
  end-page: 259
  article-title: The evolution of cooperation within the gut microbiota
  publication-title: Nature
– volume: 37
  start-page: 793
  year: 2013
  end-page: 829
  article-title: Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single‐cell technology to explore the intestinal jungle
  publication-title: FEMS Microbiol Rev
– volume: 107
  start-page: 14691
  year: 2010
  end-page: 14696
  article-title: Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa
  publication-title: Proc Natl Acad Sci U S A
– year: 2001
– volume: 7
  start-page: 949
  year: 2013
  end-page: 961
  article-title: Butyrate‐producing cluster XIVa species specifically colonize mucins in an in vitro gut model
  publication-title: ISME J
– volume: 345
  start-page: 1254009
  year: 2014
  article-title: Innate lymphoid cells regulate intestinal epithelial cell glycosylation
  publication-title: Science
– volume: 159
  start-page: 514
  year: 2014
  end-page: 529
  article-title: Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis
  publication-title: Cell
– year: 1927
– volume: 39
  start-page: 676
  year: 1983a
  end-page: 685
  article-title: Mechanisms that control bacterial populations in continuous‐flow culture models of mouse large intestinal flora
  publication-title: Infect Immun
– volume: 104
  start-page: 305
  year: 2008
  end-page: 344
  article-title: Bacterial metabolism and health‐related effects of galacto‐oligosaccharides and other prebiotics
  publication-title: J Appl Microbiol
– volume: 56
  start-page: 1030
  year: 1988
  end-page: 1035
  article-title: Colonization of the streptomycin‐treated mouse large intestine by a human fecal strain: role of growth in mucus
  publication-title: Infect Immun
– volume: 12
  start-page: 3213
  year: 2010
  end-page: 3227
  article-title: High temporal and inter‐individual variation detected in the human ileal microbiota
  publication-title: Environ Microbiol
– volume: 6
  start-page: 927
  year: 2012
  end-page: 938
  article-title: Resource partitioning in relation to cohabitation of species in the mouse forestomach
  publication-title: ISME J
– volume: 14
  start-page: 20
  year: 2016
  end-page: 32
  article-title: Gut biogeography of the bacterial microbiota
  publication-title: Nat Rev Microbiol
– volume: 10
  start-page: 3275
  year: 2008
  end-page: 3283
  article-title: The species composition of the human intestinal microbiota differs between particle‐associated and liquid phase communities
  publication-title: Environ Microbiol
– volume: 3
  start-page: 289
  year: 2012
  end-page: 306
  article-title: Microbial degradation of complex carbohydrates in the gut
  publication-title: Gut Microbes
– volume: 8
  start-page: 881
  year: 2014
  end-page: 893
  article-title: Spatial heterogeneity and co‐occurrence patterns of human mucosal‐associated intestinal microbiota
  publication-title: ISME J
– volume: 10
  start-page: 324
  year: 2015
  end-page: 328
  article-title: Applying the restaurant hypothesis to intestinal microbiota
  publication-title: Microbe Magazine
– volume: 61
  start-page: 289
  year: 1991
  end-page: 293
  article-title: Formation of glycoprotein degrading enzymes by
  publication-title: FEMS Microbiol Lett
– volume: 108
  start-page: 19030
  year: 2011
  end-page: 19035
  article-title: Colonic mucosa‐associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype
  publication-title: Proc Natl Acad Sci U S A
– volume: 9
  start-page: e1003301
  year: 2013
  article-title: Parallel exploitation of diverse host nutrients enhances virulence
  publication-title: PLoS Pathog
– volume: 502
  start-page: 96
  year: 2013
  end-page: 99
  article-title: Microbiota‐liberated host sugars facilitate post‐antibiotic expansion of enteric pathogens
  publication-title: Nature
– volume: 111
  start-page: E2329
  year: 2014
  end-page: E2338
  article-title: Relating the metatranscriptome and metagenome of the human gut
  publication-title: Proc Natl Acad Sci U S A
– volume: 39
  start-page: 555
  year: 1995
  end-page: 562
  article-title: Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex‐germ‐free mouse
  publication-title: Microbiol Immunol
– start-page: 415
  year: 1957
  end-page: 427
  article-title: Concluding remarks
  publication-title: Cold Spring Harb Symp Quant Biol
– volume: 104
  start-page: 592
  year: 1970
  end-page: 597
  article-title: On r‐ and K‐Selection
  publication-title: Am Nat
– volume: 46
  start-page: 327
  year: 1976
  end-page: 354
  article-title: Community structure: a neutral model analysis
  publication-title: Ecol Monogr
– volume: 110
  start-page: 4720
  year: 2013
  end-page: 4725
  article-title: Host‐compound foraging by intestinal microbiota revealed by single‐cell stable isotope probing
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: 732
  year: 2006
  end-page: 740
  article-title: Quantifying the roles of immigration and chance in shaping prokaryote community structure
  publication-title: Environ Microbiol
– volume: 112
  start-page: E194
  year: 2015
  end-page: E203
  article-title: Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells
  publication-title: Proc Natl Acad Sci U S A
– volume: 7
  start-page: 688
  year: 2006
  end-page: 693
  article-title: The gut flora as a forgotten organ
  publication-title: EMBO Rep
– volume: 96
  start-page: 4586
  year: 1999
  end-page: 4591
  article-title: Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging
  publication-title: Proc Natl Acad Sci U S A
– volume: 15
  start-page: R89
  year: 2014a
  article-title: Host lifestyle affects human microbiota on daily timescales
  publication-title: Genome Biol
– volume: 5
  start-page: 544
  year: 2014
  end-page: 551
  article-title: Intestinal microbiota in metabolic diseases: from bacterial community structure and functions to species of pathophysiological relevance
  publication-title: Gut Microbes
– volume: 106
  start-page: 11276
  year: 2009
  end-page: 11281
  article-title: Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: e53957
  year: 2013
  article-title: Nutritional basis for colonization resistance by human commensal strains HS and Nissle 1917 against O157:H7 in the mouse intestine
  publication-title: PLoS One
– volume: 20
  start-page: 1006
  year: 2014
  end-page: 1017
  article-title: Diet and feeding pattern affect the diurnal dynamics of the gut microbiome
  publication-title: Cell Metab
– volume: 2
  start-page: 16215
  year: 2016
  article-title: Genome‐guided design of a defined mouse microbiota that confers colonization resistance against serovar Typhimurium
  publication-title: Nat Microbiol
– volume: 109
  start-page: 9692
  year: 2012
  end-page: 9698
  article-title: Quantification of the relative roles of niche and neutral processes in structuring gastrointestinal microbiomes
  publication-title: Proc Natl Acad Sci U S A
– volume: 17
  start-page: 385
  year: 2015
  end-page: 391
  article-title: Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque
  publication-title: Cell Host Microbe
– volume: 501
  start-page: 426
  year: 2013
  end-page: 429
  article-title: Bacterial colonization factors control specificity and stability of the gut microbiota
  publication-title: Nature
– volume: 1
  start-page: 15026
  year: 2015
  article-title: Micromanagement in the gut: microenvironmental factors govern colon mucosal biofilm structure and functionality
  publication-title: NPJ Biofilms Microbiomes
– volume: 65
  start-page: 57
  year: 2016
  end-page: 62
  article-title: Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates
  publication-title: Gut
– volume: 167
  start-page: 913
  year: 2006
  end-page: 924
  article-title: Dispersal and species diversity: a meta‐analysis
  publication-title: Am Nat
– volume: 62
  start-page: 171
  year: 2007
  end-page: 180
  article-title: Neutral assembly of bacterial communities
  publication-title: FEMS Microbiol Ecol
– volume: 13
  start-page: 360
  year: 2015
  end-page: 372
  article-title: Sequencing and beyond: integrating molecular ‚omics‘ for microbial community profiling
  publication-title: Nat Rev Microbiol
– volume: 101
  start-page: 541
  year: 2009
  end-page: 550
  article-title: Effect of inulin on the human gut microbiota: stimulation of and
  publication-title: Br J Nutr
– volume: 8
  start-page: e1002995
  year: 2012
  article-title: Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing disease in mice
  publication-title: PLoS Pathog
– volume: 15
  start-page: 211
  year: 2013
  end-page: 226
  article-title: Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure
  publication-title: Environ Microbiol
– volume: 2
  start-page: 117
  year: 1996
  end-page: 122
  article-title: In vitro effects of mucin fermentation on the growth of human colonic sulphate‐reducing bacteria
  publication-title: Anaerobe
– volume: 17
  start-page: 72
  year: 2015
  end-page: 84
  article-title: Diet dominates host genotype in shaping the murine gut microbiota
  publication-title: Cell Host Microbe
– volume: 82
  start-page: 670
  year: 2014
  end-page: 682
  article-title: An Nissle 1917 missense mutant colonizes the streptomycin‐treated mouse intestine better than the wild type but is not a better probiotic
  publication-title: Infect Immun
– volume: 10
  start-page: 655
  year: 2016
  end-page: 664
  article-title: Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development
  publication-title: ISME J
– volume: 6
  start-page: 8292
  year: 2015
  article-title: The outer mucus layer hosts a distinct intestinal microbial niche
  publication-title: Nat Commun
– volume: 20
  start-page: 515
  year: 2016
  end-page: 526
  article-title: Stable engraftment of AH1206 in the human gut depends on individualized features of the resident microbiome
  publication-title: Cell Host Microbe
– volume: 80
  start-page: 2240
  year: 2014
  end-page: 2247
  article-title: RNA‐stable‐isotope probing shows utilization of carbon from inulin by specific bacterial populations in the rat large bowel
  publication-title: Appl Environ Microbiol
– ident: e_1_2_9_40_1
  doi: 10.1371/journal.pone.0025042
– ident: e_1_2_9_47_1
  doi: 10.1136/gutjnl-2014-307873
– ident: e_1_2_9_77_1
  doi: 10.1073/pnas.1106408108
– ident: e_1_2_9_31_1
  doi: 10.4161/gmic.19897
– ident: e_1_2_9_83_1
  doi: 10.1038/ncomms4654
– ident: e_1_2_9_88_1
  doi: 10.1111/1574-6976.12024
– ident: e_1_2_9_69_1
  doi: 10.1086/282400
– ident: e_1_2_9_89_1
  doi: 10.1371/journal.ppat.1003301
– start-page: 415
  year: 1957
  ident: e_1_2_9_42_1
  article-title: Concluding remarks
  publication-title: Cold Spring Harb Symp Quant Biol
  doi: 10.1101/SQB.1957.022.01.039
– ident: e_1_2_9_95_1
  doi: 10.1038/ncomms4114
– ident: e_1_2_9_60_1
  doi: 10.1371/journal.pone.0015046
– ident: e_1_2_9_12_1
  doi: 10.2307/1942257
– ident: e_1_2_9_66_1
  doi: 10.1038/sj.embor.7400731
– volume-title: Animal Ecology
  year: 1927
  ident: e_1_2_9_28_1
– ident: e_1_2_9_17_1
  doi: 10.1128/microbe.10.324.1
– ident: e_1_2_9_8_1
  doi: 10.1038/ismej.2015.142
– ident: e_1_2_9_18_1
  doi: 10.1038/ismej.2010.71
– ident: e_1_2_9_104_1
  doi: 10.1038/ismej.2010.118
– ident: e_1_2_9_64_1
  doi: 10.1038/ismej.2010.161
– ident: e_1_2_9_34_1
  doi: 10.1128/iai.39.2.676-685.1983
– ident: e_1_2_9_99_1
  doi: 10.1038/ismej.2012.158
– ident: e_1_2_9_37_1
  doi: 10.1126/science.1254009
– ident: e_1_2_9_79_1
  doi: 10.1038/nmicrobiol.2016.93
– volume-title: The Unified Neutral Theory of Biodiversity and Biogeography
  year: 2001
  ident: e_1_2_9_41_1
– ident: e_1_2_9_44_1
  doi: 10.1073/pnas.1206721109
– ident: e_1_2_9_19_1
  doi: 10.1126/science.1224203
– ident: e_1_2_9_3_1
  doi: 10.1073/pnas.1219247110
– ident: e_1_2_9_27_1
  doi: 10.1111/1462-2920.13158
– ident: e_1_2_9_9_1
  doi: 10.1086/504850
– ident: e_1_2_9_103_1
  doi: 10.1111/j.1462-2920.2008.01717.x
– ident: e_1_2_9_65_1
  doi: 10.1038/nature12503
– ident: e_1_2_9_45_1
  doi: 10.1073/pnas.1306070110
– ident: e_1_2_9_55_1
  doi: 10.1111/j.1574-6968.1991.tb04363.x
– ident: e_1_2_9_75_1
  doi: 10.1038/nature17626
– ident: e_1_2_9_22_1
  doi: 10.1038/nature12820
– ident: e_1_2_9_94_1
  doi: 10.1016/j.cell.2014.09.048
– ident: e_1_2_9_36_1
  doi: 10.1146/annurev-ecolsys-110411-160340
– ident: e_1_2_9_78_1
  doi: 10.1073/pnas.1312524110
– ident: e_1_2_9_62_1
  doi: 10.1016/j.tim.2016.02.002
– ident: e_1_2_9_68_1
  doi: 10.1016/j.bpg.2013.03.001
– ident: e_1_2_9_84_1
  doi: 10.1016/j.cell.2014.09.008
– ident: e_1_2_9_57_1
  doi: 10.1016/j.chom.2016.09.001
– ident: e_1_2_9_39_1
  doi: 10.1073/pnas.96.8.4586
– ident: e_1_2_9_76_1
  doi: 10.1017/S0007114508019880
– ident: e_1_2_9_43_1
  doi: 10.1017/S1751731114001827
– ident: e_1_2_9_13_1
  doi: 10.1073/pnas.0307888101
– ident: e_1_2_9_93_1
  doi: 10.1128/AEM.03799-13
– ident: e_1_2_9_10_1
  doi: 10.3389/fphys.2012.00448
– ident: e_1_2_9_33_1
  doi: 10.1038/nrmicro3451
– ident: e_1_2_9_105_1
  doi: 10.1006/anae.1996.0015
– ident: e_1_2_9_51_1
  doi: 10.1038/nature12447
– ident: e_1_2_9_115_1
  doi: 10.1038/ismej.2011.212
– ident: e_1_2_9_2_1
  doi: 10.1128/IAI.01149-13
– ident: e_1_2_9_29_1
  doi: 10.1126/science.1206025
– ident: e_1_2_9_108_1
  doi: 10.1126/science.aac5992
– ident: e_1_2_9_35_1
  doi: 10.1128/IAI.39.2.686-703.1983
– ident: e_1_2_9_86_1
  doi: 10.1016/j.celrep.2016.01.026
– ident: e_1_2_9_26_1
  doi: 10.1038/nrmicro3552
– ident: e_1_2_9_46_1
  doi: 10.1128/MMBR.62.3.646-666.1998
– ident: e_1_2_9_4_1
  doi: 10.1073/pnas.1420406112
– ident: e_1_2_9_21_1
  doi: 10.1186/gb-2014-15-7-r89
– ident: e_1_2_9_24_1
  doi: 10.1038/npjbiofilms.2015.26
– ident: e_1_2_9_38_1
  doi: 10.1371/journal.pone.0074957
– ident: e_1_2_9_87_1
  doi: 10.1128/AEM.00692-09
– ident: e_1_2_9_82_1
  doi: 10.1371/journal.pbio.1001424
– ident: e_1_2_9_96_1
  doi: 10.1126/scitranslmed.3000322
– ident: e_1_2_9_71_1
  doi: 10.1086/282697
– ident: e_1_2_9_6_1
  doi: 10.1038/nmicrobiol.2016.215
– ident: e_1_2_9_98_1
  doi: 10.1111/j.1348-0421.1995.tb02242.x
– ident: e_1_2_9_110_1
  doi: 10.1038/nature11053
– ident: e_1_2_9_14_1
  doi: 10.1098/rstb.2011.0063
– ident: e_1_2_9_15_1
  doi: 10.1186/s12915-015-0224-3
– ident: e_1_2_9_74_1
  doi: 10.1016/j.cub.2013.10.077
– ident: e_1_2_9_56_1
  doi: 10.1111/j.1365-2672.2007.03520.x
– ident: e_1_2_9_91_1
  doi: 10.3389/fgene.2015.00081
– ident: e_1_2_9_109_1
  doi: 10.1016/j.chom.2015.01.015
– ident: e_1_2_9_48_1
  doi: 10.1371/journal.ppat.1002995
– ident: e_1_2_9_107_1
  doi: 10.1126/science.1208344
– ident: e_1_2_9_52_1
  doi: 10.1016/j.chom.2015.03.006
– ident: e_1_2_9_70_1
  doi: 10.1086/282586
– ident: e_1_2_9_30_1
  doi: 10.1111/j.1462-2920.2012.02845.x
– ident: e_1_2_9_90_1
  doi: 10.1053/j.gastro.2008.04.017
– ident: e_1_2_9_92_1
  doi: 10.1038/ismej.2011.161
– ident: e_1_2_9_72_1
  doi: 10.1038/nmicrobiol.2016.152
– ident: e_1_2_9_85_1
  doi: 10.1111/j.1462-2920.2005.00956.x
– ident: e_1_2_9_20_1
  doi: 10.1073/pnas.0902366106
– ident: e_1_2_9_49_1
  doi: 10.1128/IAI.06193-11
– ident: e_1_2_9_97_1
  doi: 10.1093/oxfordjournals.jbchem.a133506
– ident: e_1_2_9_113_1
  doi: 10.1038/ismej.2012.4
– ident: e_1_2_9_73_1
  doi: 10.1038/ajg.2010.281
– ident: e_1_2_9_23_1
  doi: 10.1073/pnas.1005963107
– ident: e_1_2_9_100_1
  doi: 10.1136/gutjnl-2015-309618
– ident: e_1_2_9_63_1
  doi: 10.1128/AAC.00580-13
– ident: e_1_2_9_111_1
  doi: 10.3390/nu7042109
– ident: e_1_2_9_16_1
  doi: 10.4161/gmic.29331
– ident: e_1_2_9_67_1
  doi: 10.1073/pnas.1412673111
– ident: e_1_2_9_7_1
  doi: 10.1126/science.273.5280.1380
– ident: e_1_2_9_80_1
  doi: 10.1016/j.tree.2011.03.024
– ident: e_1_2_9_59_1
  doi: 10.1016/j.celrep.2015.03.049
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1462-2920.2010.02294.x
– ident: e_1_2_9_32_1
  doi: 10.1073/pnas.1319284111
– ident: e_1_2_9_53_1
  doi: 10.1038/ncomms9292
– ident: e_1_2_9_54_1
  doi: 10.1038/srep31448
– ident: e_1_2_9_114_1
  doi: 10.1038/ismej.2013.185
– ident: e_1_2_9_106_1
  doi: 10.1111/j.1574-6941.2007.00379.x
– ident: e_1_2_9_25_1
  doi: 10.1016/j.chom.2013.06.007
– ident: e_1_2_9_61_1
  doi: 10.2307/1312122
– ident: e_1_2_9_50_1
  doi: 10.1128/IAI.73.12.8039-8049.2005
– ident: e_1_2_9_11_1
  doi: 10.1016/j.chom.2014.11.010
– ident: e_1_2_9_58_1
  doi: 10.1371/journal.pone.0053957
– ident: e_1_2_9_81_1
  doi: 10.1186/s12859-015-0858-8
– ident: e_1_2_9_112_1
  doi: 10.1016/j.cmet.2014.11.008
– volume: 56
  start-page: 1030
  year: 1988
  ident: e_1_2_9_102_1
  article-title: Colonization of the streptomycin‐treated mouse large intestine by a human fecal Escherichia coli strain: role of growth in mucus
  publication-title: Infect Immun
  doi: 10.1128/iai.56.5.1030-1035.1988
– ident: e_1_2_9_101_1
  doi: 10.1128/mBio.02284-14
– reference: 28401677 - Environ Microbiol. 2017 Aug;19(8):2924-2925. doi: 10.1111/1462-2920.13752.
SSID ssj0017370
Score 2.6066742
SecondaryResourceType review_article
Snippet Summary The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the...
The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly...
Summary The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1366
SubjectTerms Animals
Cellular Microenvironment
digestive system
Environmental factors
Gastrointestinal Microbiome
Humans
intestinal microorganisms
landscapes
Limiting nutrients
mammals
microbial growth
Microorganisms
Minireview
Minireviews
niches
Nutrient availability
Nutrient utilization
nutrients
space and time
Title Microbial nutrient niches in the gut
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.13659
https://www.ncbi.nlm.nih.gov/pubmed/28035742
https://www.proquest.com/docview/1884440856
https://www.proquest.com/docview/1854614250
https://www.proquest.com/docview/1891876352
https://www.proquest.com/docview/2020868905
https://pubmed.ncbi.nlm.nih.gov/PMC5412925
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS91AEB6sIPjSems93ojggy85JJvd7OZRRBFBEbHQt7DX9tASxXPOQ_vrO7O54FGsFJ8S2JmQSebLftlMvgE4YobrXJc2zbQKKS-CTKvSsTR44zA_KictrXdcXZcXX_nlN9FXE9K_MK0-xLDgRsiIz2sCuDbTJyBHiLOUei3FSi36hY-2RItuBwGpXBaxXVxnm7NO3IdqeZ75L85LL8jmy5rJp1w2Tkbnn8D0YbQ1KD_H85kZ2z_PFB7fFecafOyoanLS5tY6LPlmA1ba5pW_N-HoahJFnNCkIUl_POOkocLSaTJpEuSVyff5bAvuzs_uTi_SrudCagUJEphSemFkUVlVes2l81J5pzXe0yCcdiLT3AUZuPSOWZOZYEstM6tMCLn3xWdYbu4bvw0JwtviYYjPMK6MVE4H5CJWFlbzQmcjGPcXvLadHjm1xfhV9-8lFHlNkdcx8hEcDw4PrRTH66Z7_R2sO0xO61wpTv21RTmCw2EY0USfSHTj7-dkIzgSFuSF_7Kp8qjjx163YdT7tFRVJkbwpU2c4ZypH5iQHL3lQkoNBqT4vTjSTH5E5W_BkZ4xPGabMW9dhhqhHHd2_tdhF1YZ8ZdYorQHy7PHud9H9jUzB_CB8ZuDCLO_lo4jsA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB0BFaKXfkHbFGhdiQMXR_Z617s-VqgoUMIBBYmbtZ9t1MpUJTm0v74za8dKQBRV3Cx5duWx59nP6_F7AAfMcJ3r0qaZViHlRZBpVTqWBm8c1kflpKX1jvF5Obrkp1fiaulfmFYfol9wI2TE-zUBnBakl1COGGcpmS3FVq1qHZ6Qr3d8rbroJaRyWUTDuC44Z528D3Xz3Jpg9cl0h27e7ZpcZrPxcXT8HOwikbYL5ftwPjND--eWxuPjMn0Bzzq2mnxqy-slrPnmFWy2_pW_t-FgPI06ThjSkKo_HnLSUG_pTTJtEqSWydf5bAcmx58nR6O0s11IrSBNAlNKL4wsKqtKr7l0XirvtMbLGoTTTmSauyADl94xazITbKllZpUJIfe-eA0bzXXj30KCCLc4DVEaxpWRyumAdMTKwmpe6GwAw8UZr20nSU7OGD_qxasJZV5T5nXMfACH_YCfrRrH_aF7i0tYd7C8qXOlOFlsi3IAH_vdCCj6SqIbfz2nGMGRsyA1_FdMlUcpP3Z_DCP701JVmRjAm7Zy-mMmSzAhOY6WKzXVB5Do9-qeZvotin8LjgyN4ZxtyTx0GmpEc9x4978DPsDWaDI-q89Ozr_swlNGdCZ2LO3BxuzX3O8jGZuZ9xFtfwHtVSb0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VViAu0PJcKDRIPXDJKnH8yrFqWbVAK4SKxC3yE1agtKK7B_j1zDgPdVsVhLhF8tjy2PMlX5zJNwC7zHJTGunywuiY8yqqvJae5TFYj_FRe-XovOP4RB5-4m8_iyGbkP6F6fQhxgM3Qka6XxPAz328BHKEOMup1lLK1KpvwQaXhabAPvg4KkiVqkr14nrjkvXqPpTMc2WA1QfTNbZ5PWnyMplNT6PZfbCDH10SyrfpcmGn7tcVicf_cnQT7vVcNdvrgmsL1kL7AG531St_PoTd43lScUKTljT9ccZZS5mlF9m8zZBYZl-Wi0dwOntzun-Y90UXcidIkcBKFYRVVe20DIYrH5QO3hjc1Ci88aIw3EcVuQqeOVvY6KRRhdM2xjKE6jGst2dteAoZ4tvhMERoGNdWaW8ikhGnKmd4ZYoJTIcFb1wvSE51Mb43w4sJed6Q503yfAKvxw7nnRbHzabbww42PSgvmlJrTgW2hZzAq7EZ4UTfSEwbzpZkIzgyFiSGf7KpyyTkx262YVT8VOq6EBN40gXOOGcqCCYUx95qJaRGA5L8Xm1p51-T9LfgyM8YjtlFzN-WoUEsp4tn_9phB-58OJg1749O3j2Hu4y4TEpX2ob1xY9leIFMbGFfJqz9BmpMJaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+nutrient+niches+in+the+gut&rft.jtitle=Environmental+microbiology&rft.au=Pereira%2C+F%C3%A1tima+C.&rft.au=Berry%2C+David&rft.date=2017-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=19&rft.issue=4&rft.spage=1366&rft.epage=1378&rft_id=info:doi/10.1111%2F1462-2920.13659&rft_id=info%3Apmid%2F28035742&rft.externalDocID=PMC5412925
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon