Microbial nutrient niches in the gut
Summary The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mos...
Saved in:
Published in | Environmental microbiology Vol. 19; no. 4; pp. 1366 - 1378 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.04.2017
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche‐driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co‐existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed‐substrate utilization are common strategies for survival in the face of ever‐present nutrient fluctuations. |
---|---|
AbstractList | The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche-driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co-existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed-substrate utilization are common strategies for survival in the face of ever-present nutrient fluctuations.The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche-driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co-existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed-substrate utilization are common strategies for survival in the face of ever-present nutrient fluctuations. The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche‐driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co‐existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed‐substrate utilization are common strategies for survival in the face of ever‐present nutrient fluctuations. Summary The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche-driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co-existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed-substrate utilization are common strategies for survival in the face of ever-present nutrient fluctuations. Summary The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly and structure of this complex community remain incompletely understood. Processes that shape the gut microbiota are thought to be mostly niche‐driven, with environmental factors such as the composition of available nutrients largely determining whether or not an organism can establish. The concept that the nutrient landscape dictates which organisms can successfully colonize and persist in the gut was first proposed in Rolf Freter's nutrient niche theory. In a situation where nutrients are perfectly mixed and there is balanced microbial growth, Freter postulated that an organism can only survive if it is able to utilize one or a few limiting nutrients more efficiently than its competitors. Recent experimental work indicates, however, that nutrients in the gut vary in space and time. We propose that in such a scenario, Freter's nutrient niche theory must be expanded to account for the co‐existence of microorganisms utilizing the same nutrients but in distinct sites or at different times, and that metabolic flexibility and mixed‐substrate utilization are common strategies for survival in the face of ever‐present nutrient fluctuations. |
Author | Berry, David Pereira, Fátima C. |
AuthorAffiliation | 1 Department of Microbiology and Ecosystem Science, Division of Microbial Ecology University of Vienna Althanstrasse 14 Vienna 1090 Austria |
AuthorAffiliation_xml | – name: 1 Department of Microbiology and Ecosystem Science, Division of Microbial Ecology University of Vienna Althanstrasse 14 Vienna 1090 Austria |
Author_xml | – sequence: 1 givenname: Fátima C. surname: Pereira fullname: Pereira, Fátima C. organization: University of Vienna – sequence: 2 givenname: David orcidid: 0000-0002-8997-608X surname: Berry fullname: Berry, David email: berry@microbial-ecology.net organization: University of Vienna |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28035742$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkTtPwzAUhS0EglKY2VAkGFgKtuNXFiRU8agEYuluOc5Na5Q6JU5A_fe4tFTQpXjx6zvHvvcco31fe0DojOBrEscNYYIOaEbjNhU820O9zcn-Zk3oEToO4Q1jIlOJD9ERVTjlktEeunxxtqlzZ6rEd23jwLeJd3YKIXE-aaeQTLr2BB2Upgpwup77aPxwPx4-DZ5fH0fDu-eB5VmWDXIhgecyzawSYJgsQCoojKE5K3lhCo4NK0pZMgkFtTnOSyuMxFblZUkA0j66XdnOu3wGhY1_aUyl542bmWaha-P03xvvpnpSf2jOSKyYR4OrtUFTv3cQWj1zwUJVGQ91FzTFFCuhMrwbJSojSoqU03-gnAnCKMcRvdhC3-qu8bFnkVKMMay4iNT57zo3Bf6kEoGbFRCjCaGBcoMQrJe562Wyepmy_s49KviWwrrWtK5eNspVu3WfroLFrmf0_ctopfsCfk6-Zw |
CitedBy_id | crossref_primary_10_1002_1873_3468_13527 crossref_primary_10_1111_mec_14822 crossref_primary_10_1128_mSphere_00528_18 crossref_primary_10_1038_s41564_018_0143_5 crossref_primary_10_1111_1751_7915_14165 crossref_primary_10_1016_j_jff_2020_104074 crossref_primary_10_1128_msystems_01383_21 crossref_primary_10_1016_j_mib_2021_11_004 crossref_primary_10_1128_MMBR_00054_18 crossref_primary_10_3390_ijms242417432 crossref_primary_10_1016_j_micinf_2021_104849 crossref_primary_10_1016_j_foodhyd_2024_111034 crossref_primary_10_1016_j_chom_2023_03_002 crossref_primary_10_1128_spectrum_01696_21 crossref_primary_10_3389_fmicb_2018_00048 crossref_primary_10_1016_j_chmed_2023_03_003 crossref_primary_10_1080_03036758_2019_1695636 crossref_primary_10_1093_ismejo_wrae114 crossref_primary_10_7554_eLife_35987 crossref_primary_10_1017_S0031182024000556 crossref_primary_10_3390_microorganisms7100431 crossref_primary_10_1016_j_aquaculture_2022_738979 crossref_primary_10_1128_ecosalplus_esp_0003_2020 crossref_primary_10_1038_s41559_021_01505_0 crossref_primary_10_3390_ijms25074024 crossref_primary_10_1128_msystems_00532_23 crossref_primary_10_1016_j_aquaculture_2023_740537 crossref_primary_10_1093_femsre_fuab001 crossref_primary_10_1111_obr_12784 crossref_primary_10_36233_0372_9311_192 crossref_primary_10_1016_j_tifs_2021_11_034 crossref_primary_10_3389_fmicb_2022_804986 crossref_primary_10_3389_fnut_2022_821900 crossref_primary_10_3390_v14102197 crossref_primary_10_1371_journal_ppat_1012189 crossref_primary_10_1099_mic_0_001404 crossref_primary_10_1080_19490976_2023_2241209 crossref_primary_10_3389_fmicb_2018_02558 crossref_primary_10_3390_ijms23115985 crossref_primary_10_1093_femsre_fuaa068 crossref_primary_10_1093_femsre_fuac008 crossref_primary_10_1016_j_bioelechem_2019_107334 crossref_primary_10_1016_j_canlet_2021_05_018 crossref_primary_10_1016_j_aquaculture_2018_12_013 crossref_primary_10_1016_j_csbj_2025_02_004 crossref_primary_10_1016_j_tim_2024_02_013 crossref_primary_10_1038_s41467_020_16011_3 crossref_primary_10_3390_ht9030017 crossref_primary_10_1016_j_immuni_2020_01_007 crossref_primary_10_1073_pnas_2322440122 crossref_primary_10_1128_IAI_00131_19 crossref_primary_10_1038_s41467_023_40372_0 crossref_primary_10_1093_femsre_fuaa052 crossref_primary_10_3390_epigenomes8020016 crossref_primary_10_3920_BM2020_0187 crossref_primary_10_1016_j_isci_2024_108900 crossref_primary_10_1089_zeb_2017_1460 crossref_primary_10_3389_fmicb_2020_00859 crossref_primary_10_1111_1751_7915_13741 crossref_primary_10_1093_procel_pwae058 crossref_primary_10_1093_femsre_fuab054 crossref_primary_10_1016_j_anifeedsci_2020_114479 crossref_primary_10_1128_mBio_00886_20 crossref_primary_10_1016_j_physrep_2021_01_003 crossref_primary_10_1016_j_xcrm_2021_100206 crossref_primary_10_1016_j_physa_2020_124422 crossref_primary_10_1152_ajpgi_00283_2019 crossref_primary_10_1038_s41396_022_01255_2 crossref_primary_10_2217_fmb_2022_0155 crossref_primary_10_1038_s41559_018_0519_1 crossref_primary_10_1038_s41587_019_0183_2 crossref_primary_10_1080_19490976_2018_1474322 crossref_primary_10_1038_s41396_019_0564_z crossref_primary_10_1080_19490976_2023_2271629 crossref_primary_10_1128_AEM_00547_18 crossref_primary_10_1038_s41564_019_0658_4 crossref_primary_10_1155_2024_8925691 crossref_primary_10_1128_spectrum_00970_24 crossref_primary_10_3390_ijms26041757 crossref_primary_10_1016_j_micinf_2021_104815 crossref_primary_10_1016_j_jip_2022_107763 crossref_primary_10_1111_mmi_15267 crossref_primary_10_3389_fmicb_2018_01166 crossref_primary_10_3389_fneur_2019_00663 crossref_primary_10_1016_j_scitotenv_2025_178614 crossref_primary_10_1128_mBio_01824_17 crossref_primary_10_1093_femsec_fiaa007 crossref_primary_10_1371_journal_pone_0218692 crossref_primary_10_1016_j_indcrop_2023_117194 crossref_primary_10_1016_j_csbj_2021_01_007 crossref_primary_10_1016_j_aninu_2020_10_003 crossref_primary_10_1038_s41522_020_00176_2 crossref_primary_10_1128_mSphere_00777_20 crossref_primary_10_1053_j_gastro_2021_12_272 crossref_primary_10_1128_aem_00394_24 crossref_primary_10_3389_fcimb_2020_00481 crossref_primary_10_1038_s41579_023_00969_0 crossref_primary_10_3390_nu14010052 crossref_primary_10_1038_s41559_020_01385_w crossref_primary_10_1002_ecy_2652 crossref_primary_10_1016_j_ecss_2017_08_016 crossref_primary_10_1016_j_ijmm_2020_151392 crossref_primary_10_1016_j_medmic_2021_100042 crossref_primary_10_3389_fmicb_2022_1074153 crossref_primary_10_3389_fimmu_2022_828758 crossref_primary_10_1097_IM9_0000000000000001 crossref_primary_10_1080_19490976_2021_2021790 crossref_primary_10_1007_s10295_019_02203_4 crossref_primary_10_1016_j_meegid_2022_105267 crossref_primary_10_1093_femsec_fiaa241 crossref_primary_10_1038_s41467_020_18928_1 crossref_primary_10_1038_s41559_022_01930_9 crossref_primary_10_1038_s41576_021_00421_0 crossref_primary_10_1038_s43705_022_00142_3 crossref_primary_10_1016_j_aquaculture_2020_735059 crossref_primary_10_1080_19490976_2021_1979877 crossref_primary_10_3390_ijms22189700 crossref_primary_10_7554_eLife_83664 crossref_primary_10_1371_journal_pcbi_1006558 crossref_primary_10_1080_19490976_2023_2235067 crossref_primary_10_1111_ele_70027 crossref_primary_10_1038_s41385_018_0053_0 crossref_primary_10_1016_j_ppees_2021_125611 crossref_primary_10_1051_medsci_2021095 crossref_primary_10_1093_femsre_fuz013 crossref_primary_10_1128_msphere_00569_22 crossref_primary_10_1128_ecosalplus_esp_0006_2023 crossref_primary_10_3390_ijms241310818 crossref_primary_10_1038_s41396_022_01292_x crossref_primary_10_3389_fmicb_2022_1006251 crossref_primary_10_1093_burnst_tkad056 crossref_primary_10_1098_rspb_2023_0308 crossref_primary_10_1080_19768354_2023_2282726 crossref_primary_10_1007_s00248_020_01639_x crossref_primary_10_1016_j_jnutbio_2018_07_010 crossref_primary_10_1073_pnas_1916224116 crossref_primary_10_1038_s41564_017_0072_8 crossref_primary_10_1038_s41579_022_00692_2 crossref_primary_10_14412_1996_7012_2022_6_7_11 crossref_primary_10_1186_s40168_022_01307_x crossref_primary_10_1038_s41589_023_01395_2 crossref_primary_10_1016_j_tim_2020_04_011 crossref_primary_10_1093_jas_skz395 crossref_primary_10_1055_a_2435_6449 crossref_primary_10_3390_ani12233296 crossref_primary_10_3389_fmicb_2022_831034 crossref_primary_10_1159_000525449 crossref_primary_10_3389_fmicb_2018_02161 crossref_primary_10_1111_raq_12762 crossref_primary_10_3389_fmicb_2021_629023 crossref_primary_10_1016_j_mtbio_2024_101294 crossref_primary_10_1016_j_foodres_2024_115186 crossref_primary_10_1038_s41396_021_01088_5 crossref_primary_10_1111_1462_2920_15317 crossref_primary_10_3390_microorganisms11102453 crossref_primary_10_1016_j_mam_2020_100895 crossref_primary_10_1016_j_aninu_2022_08_005 crossref_primary_10_1007_s00338_022_02259_2 crossref_primary_10_1016_j_ijbiomac_2024_130677 crossref_primary_10_1128_msystems_00163_22 crossref_primary_10_1093_femsec_fiy084 crossref_primary_10_1128_spectrum_00567_23 crossref_primary_10_3389_fbioe_2021_826479 crossref_primary_10_3390_microorganisms10091831 crossref_primary_10_1016_j_watres_2019_115069 crossref_primary_10_1098_rstb_2023_0078 crossref_primary_10_1016_j_ecoenv_2021_112643 crossref_primary_10_1093_ajcn_nqac081 crossref_primary_10_1109_JPROC_2019_2908582 crossref_primary_10_1128_mBio_00853_20 crossref_primary_10_1128_msystems_00729_21 crossref_primary_10_1038_s41598_018_26484_4 crossref_primary_10_1111_1758_2229_13165 crossref_primary_10_1017_S0029665121003694 crossref_primary_10_3390_v11070656 crossref_primary_10_1016_j_addr_2021_113931 crossref_primary_10_1016_j_biortech_2022_127796 crossref_primary_10_1002_mbo3_778 crossref_primary_10_1038_s42003_023_04718_0 crossref_primary_10_1128_msphere_00825_24 crossref_primary_10_3389_fmicb_2023_1261137 crossref_primary_10_7554_eLife_37963 crossref_primary_10_1111_1462_2920_13752 crossref_primary_10_1016_j_copbio_2019_09_003 crossref_primary_10_1111_jam_14427 crossref_primary_10_1080_19490976_2022_2106103 crossref_primary_10_1093_femsre_fuy003 crossref_primary_10_1038_s42255_022_00656_z crossref_primary_10_1128_spectrum_02618_24 crossref_primary_10_3390_nu11102291 crossref_primary_10_1038_s41522_022_00344_6 crossref_primary_10_1128_spectrum_04344_22 crossref_primary_10_1002_aic_16848 crossref_primary_10_1016_j_chom_2022_04_012 crossref_primary_10_1038_s41522_022_00368_y crossref_primary_10_1016_j_medmic_2022_100054 crossref_primary_10_1038_s41540_019_0116_1 crossref_primary_10_1002_mbo3_677 crossref_primary_10_3892_mmr_2024_13281 crossref_primary_10_1016_j_chom_2023_05_029 crossref_primary_10_1073_pnas_2115013119 crossref_primary_10_1186_s40168_019_0664_z crossref_primary_10_1039_D1OB00054C crossref_primary_10_3389_fmicb_2024_1469543 crossref_primary_10_3390_vetsci7020044 crossref_primary_10_1128_AEM_00230_21 crossref_primary_10_1111_1462_2920_14705 crossref_primary_10_3390_microorganisms11071753 crossref_primary_10_3390_nu14112287 crossref_primary_10_1016_j_envexpbot_2019_103825 crossref_primary_10_1038_s41467_019_12413_0 crossref_primary_10_1007_s00253_019_10214_5 crossref_primary_10_3390_biomedicines10020255 crossref_primary_10_1073_pnas_2203519119 crossref_primary_10_1080_1028415X_2019_1660485 crossref_primary_10_1038_s41396_019_0435_7 crossref_primary_10_1128_msystems_01181_22 crossref_primary_10_1371_journal_pgen_1010177 crossref_primary_10_3390_antibiotics13090817 crossref_primary_10_25122_jml_2020_0065 crossref_primary_10_1186_s12934_022_01926_x crossref_primary_10_1074_jbc_RA120_014454 crossref_primary_10_1038_s41564_022_01286_7 crossref_primary_10_1038_s44222_023_00119_4 crossref_primary_10_1038_s41396_022_01287_8 |
Cites_doi | 10.1371/journal.pone.0025042 10.1136/gutjnl-2014-307873 10.1073/pnas.1106408108 10.4161/gmic.19897 10.1038/ncomms4654 10.1111/1574-6976.12024 10.1086/282400 10.1371/journal.ppat.1003301 10.1101/SQB.1957.022.01.039 10.1038/ncomms4114 10.1371/journal.pone.0015046 10.2307/1942257 10.1038/sj.embor.7400731 10.1128/microbe.10.324.1 10.1038/ismej.2015.142 10.1038/ismej.2010.71 10.1038/ismej.2010.118 10.1038/ismej.2010.161 10.1128/iai.39.2.676-685.1983 10.1038/ismej.2012.158 10.1126/science.1254009 10.1038/nmicrobiol.2016.93 10.1073/pnas.1206721109 10.1126/science.1224203 10.1073/pnas.1219247110 10.1111/1462-2920.13158 10.1086/504850 10.1111/j.1462-2920.2008.01717.x 10.1038/nature12503 10.1073/pnas.1306070110 10.1111/j.1574-6968.1991.tb04363.x 10.1038/nature17626 10.1038/nature12820 10.1016/j.cell.2014.09.048 10.1146/annurev-ecolsys-110411-160340 10.1073/pnas.1312524110 10.1016/j.tim.2016.02.002 10.1016/j.bpg.2013.03.001 10.1016/j.cell.2014.09.008 10.1016/j.chom.2016.09.001 10.1073/pnas.96.8.4586 10.1017/S0007114508019880 10.1017/S1751731114001827 10.1073/pnas.0307888101 10.1128/AEM.03799-13 10.3389/fphys.2012.00448 10.1038/nrmicro3451 10.1006/anae.1996.0015 10.1038/nature12447 10.1038/ismej.2011.212 10.1128/IAI.01149-13 10.1126/science.1206025 10.1126/science.aac5992 10.1128/IAI.39.2.686-703.1983 10.1016/j.celrep.2016.01.026 10.1038/nrmicro3552 10.1128/MMBR.62.3.646-666.1998 10.1073/pnas.1420406112 10.1186/gb-2014-15-7-r89 10.1038/npjbiofilms.2015.26 10.1371/journal.pone.0074957 10.1128/AEM.00692-09 10.1371/journal.pbio.1001424 10.1126/scitranslmed.3000322 10.1086/282697 10.1038/nmicrobiol.2016.215 10.1111/j.1348-0421.1995.tb02242.x 10.1038/nature11053 10.1098/rstb.2011.0063 10.1186/s12915-015-0224-3 10.1016/j.cub.2013.10.077 10.1111/j.1365-2672.2007.03520.x 10.3389/fgene.2015.00081 10.1016/j.chom.2015.01.015 10.1371/journal.ppat.1002995 10.1126/science.1208344 10.1016/j.chom.2015.03.006 10.1086/282586 10.1111/j.1462-2920.2012.02845.x 10.1053/j.gastro.2008.04.017 10.1038/ismej.2011.161 10.1038/nmicrobiol.2016.152 10.1111/j.1462-2920.2005.00956.x 10.1073/pnas.0902366106 10.1128/IAI.06193-11 10.1093/oxfordjournals.jbchem.a133506 10.1038/ismej.2012.4 10.1038/ajg.2010.281 10.1073/pnas.1005963107 10.1136/gutjnl-2015-309618 10.1128/AAC.00580-13 10.3390/nu7042109 10.4161/gmic.29331 10.1073/pnas.1412673111 10.1126/science.273.5280.1380 10.1016/j.tree.2011.03.024 10.1016/j.celrep.2015.03.049 10.1111/j.1462-2920.2010.02294.x 10.1073/pnas.1319284111 10.1038/ncomms9292 10.1038/srep31448 10.1038/ismej.2013.185 10.1111/j.1574-6941.2007.00379.x 10.1016/j.chom.2013.06.007 10.2307/1312122 10.1128/IAI.73.12.8039-8049.2005 10.1016/j.chom.2014.11.010 10.1371/journal.pone.0053957 10.1186/s12859-015-0858-8 10.1016/j.cmet.2014.11.008 10.1128/iai.56.5.1030-1035.1988 10.1128/mBio.02284-14 |
ContentType | Journal Article |
Copyright | 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. 2017 Society for Applied Microbiology and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd – notice: 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2017 Society for Applied Microbiology and John Wiley & Sons Ltd |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 5PM |
DOI | 10.1111/1462-2920.13659 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aqualine Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (WRLC) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Microbial nutrient niches in the gut |
EISSN | 1462-2920 |
EndPage | 1378 |
ExternalDocumentID | PMC5412925 4321468053 28035742 10_1111_1462_2920_13659 EMI13659 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Austrian Science Fund funderid: P27831‐B28 ; P26127‐B20 – fundername: Vienna Science and Technology Fund funderid: LS12‐001 – fundername: H2020 Marie Skłodowska‐Curie funderid: 658718 to FCP – fundername: Austrian Science Fund FWF grantid: P 26127 – fundername: Austrian Science Fund FWF grantid: P 27831 – fundername: Austrian Science Fund grantid: P27831‐B28 ; P26127‐B20 – fundername: H2020 Marie Skłodowska‐Curie grantid: 658718 to FCP – fundername: Vienna Science and Technology Fund grantid: LS12‐001 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 24P 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5999-b67e5b739c86ea47de78edaa2b4f5dad50a4df7f47ed2cb0bfc6a70c8bff1ee3 |
IEDL.DBID | DR2 |
ISSN | 1462-2912 1462-2920 |
IngestDate | Thu Aug 21 18:30:04 EDT 2025 Fri Jul 11 18:27:34 EDT 2025 Fri Jul 11 05:39:12 EDT 2025 Fri Jul 11 13:48:28 EDT 2025 Fri Jul 25 10:36:34 EDT 2025 Mon Jul 21 06:02:30 EDT 2025 Tue Jul 01 04:00:38 EDT 2025 Thu Apr 24 22:51:20 EDT 2025 Thu Aug 21 01:21:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5999-b67e5b739c86ea47de78edaa2b4f5dad50a4df7f47ed2cb0bfc6a70c8bff1ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8997-608X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.13659 |
PMID | 28035742 |
PQID | 1884440856 |
PQPubID | 1066360 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5412925 proquest_miscellaneous_2020868905 proquest_miscellaneous_1891876352 proquest_miscellaneous_1854614250 proquest_journals_1884440856 pubmed_primary_28035742 crossref_primary_10_1111_1462_2920_13659 crossref_citationtrail_10_1111_1462_2920_13659 wiley_primary_10_1111_1462_2920_13659_EMI13659 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2017 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: April 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford – name: Hoboken |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2010; 12 2014b; 505 1981; 90 2012; 486 2013; 27 2010; 107 1995; 39 2010; 105 2014; 24 2008; 104 2013; 7 2013; 8 1983a; 39 2014a; 15 2012; 10 2013; 9 2014; 20 2015; 46 2011; 366 2014; 5 2013; 15 2013; 14 2001 1983b; 39 2013; 57 2005; 73 1999; 96 2013; 110 2011; 26 2007; 62 2014; 8 2012; 336 2010; 5 1996; 2 2010; 4 2006; 167 2004; 101 2015; 13 2015; 1 2011; 334 2011; 333 2012; 80 2015; 17 2015; 6 1976; 46 1970; 104 2013; 501 1993; 43 2015; 11 2015; 10 2013; 502 2016; 10 2006; 7 2006; 8 1988; 56 2008; 10 2016; 18 2014; 111 1998; 62 2016; 17 2011; 6 2014; 82 2011; 5 1969; 103 2015; 7 2016; 14 1957 2014; 159 2012; 109 2015; 350 2016; 6 2013; 37 2012; 3 1966; 100 2016; 1 2011; 108 2014; 80 2016; 2 2009; 75 2015; 64 2015; 112 1991; 61 2016; 65 2016; 20 2009; 101 2016; 533 1996; 273 2008; 135 2012; 6 1927 2009; 1 2014; 345 2016; 24 2012; 8 2009; 106 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 Wadolkowski E.A. (e_1_2_9_102_1) 1988; 56 e_1_2_9_103_1 e_1_2_9_107_1 Hutchinson G.E. (e_1_2_9_42_1) 1957 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_115_1 e_1_2_9_26_1 e_1_2_9_49_1 Elton C.S. (e_1_2_9_28_1) 1927 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_114_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 Hubbell S.P. (e_1_2_9_41_1) 2001 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_113_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_112_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 28401677 - Environ Microbiol. 2017 Aug;19(8):2924-2925. doi: 10.1111/1462-2920.13752. |
References_xml | – volume: 7 start-page: 2109 year: 2015 end-page: 2124 article-title: Detection of sialic acid‐utilising bacteria in a caecal community batch culture using RNA‐based stable isotope probing publication-title: Nutrients – volume: 46 start-page: 1 year: 2015 end-page: 23 article-title: Historical contingency in community assembly: integrating niches, species pools, and priority effects publication-title: Annu Rev Ecol Evol Syst – volume: 1 start-page: 6ra14 year: 2009 article-title: The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice publication-title: Sci Transl Med – volume: 100 start-page: 65 year: 1966 end-page: 75 article-title: Food web complexity and species diversity publication-title: Am Nat – volume: 14 start-page: 1655 year: 2016 end-page: 1661 article-title: The gut microbiota modulates energy metabolism in the hibernating brown bear publication-title: Cell Rep – volume: 11 start-page: 527 year: 2015 end-page: 538 article-title: The gut microbiota of rural papua new guineans: composition, diversity patterns, and ecological processes publication-title: Cell Rep – volume: 6 start-page: 31448 year: 2016 article-title: Testing the neutral theory of biodiversity with human microbiome datasets publication-title: Sci Rep – volume: 5 start-page: 3114 year: 2014 article-title: Antibiotic‐induced shifts in the mouse gut microbiome and metabolome increase susceptibility to infection publication-title: Nat Commun – volume: 14 start-page: 3 year: 2016 article-title: Modulation of the human gut microbiota by dietary fibres occurs at the species level publication-title: BMC Biol – volume: 334 start-page: 105 year: 2011 end-page: 108 article-title: Linking long‐term dietary patterns with gut microbial enterotypes publication-title: Science – volume: 5 start-page: 220 year: 2011 end-page: 230 article-title: Dominant and diet‐responsive groups of bacteria within the human colonic microbiota publication-title: ISME J – volume: 26 start-page: 340 year: 2011 end-page: 348 article-title: The unified neutral theory of biodiversity and biogeography at age ten publication-title: Trends Ecol Evol – volume: 505 start-page: 559 year: 2014b end-page: 563 article-title: Diet rapidly and reproducibly alters the human gut microbiome publication-title: Nature – volume: 111 start-page: 17941 year: 2014 end-page: 17946 article-title: Evolutionary limits to cooperation in microbial communities publication-title: Proc Natl Acad Sci U S A – volume: 6 start-page: e25042 year: 2011 article-title: Pyrosequencing‐based analysis of the mucosal microbiota in healthy individuals reveals ubiquitous bacterial groups and micro‐heterogeneity publication-title: PLoS One – volume: 6 start-page: 1415 year: 2012 end-page: 1426 article-title: The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates publication-title: ISME J – volume: 350 start-page: aac5992 year: 2015 article-title: Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut publication-title: Science – volume: 24 start-page: 402 year: 2016 end-page: 413 article-title: Functional redundancy‐induced stability of gut microbiota subjected to disturbance publication-title: Trends Microbiol – volume: 43 start-page: 219 year: 1993 end-page: 224 article-title: The keystone‐species concept in ecology and conservation publication-title: Bioscience – volume: 10 start-page: e1001424 year: 2012 article-title: The evolution of mutualism in gut microbiota via host epithelial selection publication-title: PLoS Biol – volume: 5 start-page: 627 year: 2011 end-page: 638 article-title: Spatial organization of intestinal microbiota in the mouse ascending colon publication-title: ISME J – volume: 110 start-page: 13582 year: 2013 end-page: 13587 article-title: Metabolic niche of a prominent sulfate‐reducing human gut bacterium publication-title: Proc Natl Acad Sci U S A – volume: 273 start-page: 1380 year: 1996 end-page: 1383 article-title: A model of host‐microbial interactions in an open mammalian ecosystem publication-title: Science – volume: 73 start-page: 8039 year: 2005 end-page: 8049 article-title: Mouse intestine selects nonmotile mutants of MG1655 with increased colonizing ability and better utilization of carbon sources publication-title: Infect Immun – volume: 8 start-page: e74957 year: 2013 article-title: Bacterial community mapping of the mouse gastrointestinal tract publication-title: PLoS One – volume: 14 start-page: 26 year: 2013 end-page: 37 article-title: Probiotic bacteria reduce Typhimurium intestinal colonization by competing for iron publication-title: Cell Host Microbe – volume: 5 start-page: 3654 year: 2014 article-title: Gut microbiome of the Hadza hunter‐gatherers publication-title: Nat Commun – volume: 1 start-page: 16152 year: 2016 article-title: Transcriptional interactions suggest niche segregation among microorganisms in the human gut publication-title: Nat Microbiol – volume: 17 start-page: 16 issue: Suppl 2 year: 2016 article-title: Stochastic neutral modelling of the Gut Microbiota‘s relative species abundance from next generation sequencing data publication-title: BMC Bioinformatics – volume: 75 start-page: 6451 year: 2009 end-page: 6456 article-title: Response of gut microbiota to fasting and hibernation in Syrian hamsters publication-title: Appl Environ Microbiol – volume: 5 start-page: e15046 year: 2010 article-title: Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects publication-title: PLoS One – volume: 333 start-page: 101 year: 2011 end-page: 104 article-title: Predicting a human gut microbiota‘s response to diet in gnotobiotic mice publication-title: Science – volume: 17 start-page: 681 year: 2015 end-page: 689 article-title: Effects of diurnal variation of gut microbes and high‐fat feeding on host circadian clock function and metabolism publication-title: Cell Host Microbe – volume: 6 start-page: 1 year: 2015 article-title: Application of a neutral community model to assess structuring of the human lung microbiome publication-title: MBio – volume: 39 start-page: 686 year: 1983b end-page: 703 article-title: Survival and implantation of in the intestinal tract publication-title: Infect Immun – volume: 110 start-page: 17059 year: 2013 end-page: 17064 article-title: Genetically dictated change in host mucus carbohydrate landscape exerts a diet‐dependent effect on the gut microbiota publication-title: Proc Natl Acad Sci U S A – volume: 135 start-page: 568 year: 2008 end-page: 579 article-title: Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea publication-title: Gastroenterology – volume: 6 start-page: 1535 year: 2012 end-page: 1543 article-title: is a keystone species for the degradation of resistant starch in the human colon publication-title: ISME J – volume: 6 start-page: 81 year: 2015 article-title: Mucin glycan foraging in the human gut microbiome publication-title: Front Genet – volume: 64 start-page: 1553 year: 2015 end-page: 1561 article-title: Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers publication-title: Gut – volume: 80 start-page: 1716 year: 2012 end-page: 1727 article-title: The streptomycin‐treated mouse intestine selects missense mutants that interact with dense and diverse intestinal microbiota publication-title: Infect Immun – volume: 18 start-page: 2214 year: 2016 end-page: 2225 article-title: Wheat bran promotes enrichment within the human colonic microbiota of butyrate‐producing bacteria that release ferulic acid publication-title: Environ Microbiol – volume: 62 start-page: 646 year: 1998 end-page: 666 article-title: Growth kinetics of suspended microbial cells: from single‐substrate‐controlled growth to mixed‐substrate kinetics publication-title: Microbiol Mol Biol Rev – volume: 103 start-page: 91 year: 1969 end-page: 93 article-title: A note on trophic complexity and community stability publication-title: Am Nat – volume: 27 start-page: 25 year: 2013 end-page: 38 article-title: Glycobiome: bacteria and mucus at the epithelial interface publication-title: Best Pract Res Clin Gastroenterol – volume: 159 start-page: 253 year: 2014 end-page: 266 article-title: Bacteria from diverse habitats colonize and compete in the mouse gut publication-title: Cell – volume: 90 start-page: 559 year: 1981 end-page: 561 article-title: Appearance of fucolipid after conventionalization of germ‐free mice publication-title: J Biochem – volume: 57 start-page: 5266 year: 2013 end-page: 5270 article-title: Nontoxigenic protects hamsters against challenge with historic and epidemic strains of toxigenic BI/NAP1/027 publication-title: Antimicrob Agents Chemother – volume: 486 start-page: 222 year: 2012 end-page: 227 article-title: Human gut microbiome viewed across age and geography publication-title: Nature – volume: 101 start-page: 7427 year: 2004 end-page: 7432 article-title: Carbon nutrition of in the mouse intestine publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: 1777 year: 2014 end-page: 1787 article-title: Fermentable non‐starch polysaccharides increases the abundance of ‐ ‐ in ileal microbial community of growing pigs publication-title: Animal – volume: 366 start-page: 2351 year: 2011 end-page: 2363 article-title: Disentangling the importance of ecological niches from stochastic processes across scales publication-title: Philos Trans R Soc B Biol Sci – volume: 105 start-page: 2420 year: 2010 end-page: 2428 article-title: Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria publication-title: Am J Gastroenterol – volume: 3 start-page: 448 year: 2012 article-title: Microbial pathways in colonic sulfur metabolism and links with health and disease publication-title: Front Physiol – volume: 4 start-page: 1375 year: 2010 end-page: 1385 article-title: Postprandial remodeling of the gut microbiota in Burmese pythons publication-title: ISME J – volume: 336 start-page: 1255 year: 2012 end-page: 1262 article-title: The application of ecological theory toward an understanding of the human microbiome publication-title: Science – volume: 24 start-page: 40 year: 2014 end-page: 49 article-title: An ecological network of polysaccharide utilization among human intestinal symbionts publication-title: Curr Biol – volume: 1 start-page: 16093 year: 2016 article-title: Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut publication-title: Nat Microbiol – volume: 533 start-page: 255 year: 2016 end-page: 259 article-title: The evolution of cooperation within the gut microbiota publication-title: Nature – volume: 37 start-page: 793 year: 2013 end-page: 829 article-title: Colonization resistance and microbial ecophysiology: using gnotobiotic mouse models and single‐cell technology to explore the intestinal jungle publication-title: FEMS Microbiol Rev – volume: 107 start-page: 14691 year: 2010 end-page: 14696 article-title: Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa publication-title: Proc Natl Acad Sci U S A – year: 2001 – volume: 7 start-page: 949 year: 2013 end-page: 961 article-title: Butyrate‐producing cluster XIVa species specifically colonize mucins in an in vitro gut model publication-title: ISME J – volume: 345 start-page: 1254009 year: 2014 article-title: Innate lymphoid cells regulate intestinal epithelial cell glycosylation publication-title: Science – volume: 159 start-page: 514 year: 2014 end-page: 529 article-title: Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis publication-title: Cell – year: 1927 – volume: 39 start-page: 676 year: 1983a end-page: 685 article-title: Mechanisms that control bacterial populations in continuous‐flow culture models of mouse large intestinal flora publication-title: Infect Immun – volume: 104 start-page: 305 year: 2008 end-page: 344 article-title: Bacterial metabolism and health‐related effects of galacto‐oligosaccharides and other prebiotics publication-title: J Appl Microbiol – volume: 56 start-page: 1030 year: 1988 end-page: 1035 article-title: Colonization of the streptomycin‐treated mouse large intestine by a human fecal strain: role of growth in mucus publication-title: Infect Immun – volume: 12 start-page: 3213 year: 2010 end-page: 3227 article-title: High temporal and inter‐individual variation detected in the human ileal microbiota publication-title: Environ Microbiol – volume: 6 start-page: 927 year: 2012 end-page: 938 article-title: Resource partitioning in relation to cohabitation of species in the mouse forestomach publication-title: ISME J – volume: 14 start-page: 20 year: 2016 end-page: 32 article-title: Gut biogeography of the bacterial microbiota publication-title: Nat Rev Microbiol – volume: 10 start-page: 3275 year: 2008 end-page: 3283 article-title: The species composition of the human intestinal microbiota differs between particle‐associated and liquid phase communities publication-title: Environ Microbiol – volume: 3 start-page: 289 year: 2012 end-page: 306 article-title: Microbial degradation of complex carbohydrates in the gut publication-title: Gut Microbes – volume: 8 start-page: 881 year: 2014 end-page: 893 article-title: Spatial heterogeneity and co‐occurrence patterns of human mucosal‐associated intestinal microbiota publication-title: ISME J – volume: 10 start-page: 324 year: 2015 end-page: 328 article-title: Applying the restaurant hypothesis to intestinal microbiota publication-title: Microbe Magazine – volume: 61 start-page: 289 year: 1991 end-page: 293 article-title: Formation of glycoprotein degrading enzymes by publication-title: FEMS Microbiol Lett – volume: 108 start-page: 19030 year: 2011 end-page: 19035 article-title: Colonic mucosa‐associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype publication-title: Proc Natl Acad Sci U S A – volume: 9 start-page: e1003301 year: 2013 article-title: Parallel exploitation of diverse host nutrients enhances virulence publication-title: PLoS Pathog – volume: 502 start-page: 96 year: 2013 end-page: 99 article-title: Microbiota‐liberated host sugars facilitate post‐antibiotic expansion of enteric pathogens publication-title: Nature – volume: 111 start-page: E2329 year: 2014 end-page: E2338 article-title: Relating the metatranscriptome and metagenome of the human gut publication-title: Proc Natl Acad Sci U S A – volume: 39 start-page: 555 year: 1995 end-page: 562 article-title: Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex‐germ‐free mouse publication-title: Microbiol Immunol – start-page: 415 year: 1957 end-page: 427 article-title: Concluding remarks publication-title: Cold Spring Harb Symp Quant Biol – volume: 104 start-page: 592 year: 1970 end-page: 597 article-title: On r‐ and K‐Selection publication-title: Am Nat – volume: 46 start-page: 327 year: 1976 end-page: 354 article-title: Community structure: a neutral model analysis publication-title: Ecol Monogr – volume: 110 start-page: 4720 year: 2013 end-page: 4725 article-title: Host‐compound foraging by intestinal microbiota revealed by single‐cell stable isotope probing publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: 732 year: 2006 end-page: 740 article-title: Quantifying the roles of immigration and chance in shaping prokaryote community structure publication-title: Environ Microbiol – volume: 112 start-page: E194 year: 2015 end-page: E203 article-title: Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells publication-title: Proc Natl Acad Sci U S A – volume: 7 start-page: 688 year: 2006 end-page: 693 article-title: The gut flora as a forgotten organ publication-title: EMBO Rep – volume: 96 start-page: 4586 year: 1999 end-page: 4591 article-title: Noninvasive measurement of anatomic structure and intraluminal oxygenation in the gastrointestinal tract of living mice with spatial and spectral EPR imaging publication-title: Proc Natl Acad Sci U S A – volume: 15 start-page: R89 year: 2014a article-title: Host lifestyle affects human microbiota on daily timescales publication-title: Genome Biol – volume: 5 start-page: 544 year: 2014 end-page: 551 article-title: Intestinal microbiota in metabolic diseases: from bacterial community structure and functions to species of pathophysiological relevance publication-title: Gut Microbes – volume: 106 start-page: 11276 year: 2009 end-page: 11281 article-title: Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: e53957 year: 2013 article-title: Nutritional basis for colonization resistance by human commensal strains HS and Nissle 1917 against O157:H7 in the mouse intestine publication-title: PLoS One – volume: 20 start-page: 1006 year: 2014 end-page: 1017 article-title: Diet and feeding pattern affect the diurnal dynamics of the gut microbiome publication-title: Cell Metab – volume: 2 start-page: 16215 year: 2016 article-title: Genome‐guided design of a defined mouse microbiota that confers colonization resistance against serovar Typhimurium publication-title: Nat Microbiol – volume: 109 start-page: 9692 year: 2012 end-page: 9698 article-title: Quantification of the relative roles of niche and neutral processes in structuring gastrointestinal microbiomes publication-title: Proc Natl Acad Sci U S A – volume: 17 start-page: 385 year: 2015 end-page: 391 article-title: Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque publication-title: Cell Host Microbe – volume: 501 start-page: 426 year: 2013 end-page: 429 article-title: Bacterial colonization factors control specificity and stability of the gut microbiota publication-title: Nature – volume: 1 start-page: 15026 year: 2015 article-title: Micromanagement in the gut: microenvironmental factors govern colon mucosal biofilm structure and functionality publication-title: NPJ Biofilms Microbiomes – volume: 65 start-page: 57 year: 2016 end-page: 62 article-title: Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates publication-title: Gut – volume: 167 start-page: 913 year: 2006 end-page: 924 article-title: Dispersal and species diversity: a meta‐analysis publication-title: Am Nat – volume: 62 start-page: 171 year: 2007 end-page: 180 article-title: Neutral assembly of bacterial communities publication-title: FEMS Microbiol Ecol – volume: 13 start-page: 360 year: 2015 end-page: 372 article-title: Sequencing and beyond: integrating molecular ‚omics‘ for microbial community profiling publication-title: Nat Rev Microbiol – volume: 101 start-page: 541 year: 2009 end-page: 550 article-title: Effect of inulin on the human gut microbiota: stimulation of and publication-title: Br J Nutr – volume: 8 start-page: e1002995 year: 2012 article-title: Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing disease in mice publication-title: PLoS Pathog – volume: 15 start-page: 211 year: 2013 end-page: 226 article-title: Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure publication-title: Environ Microbiol – volume: 2 start-page: 117 year: 1996 end-page: 122 article-title: In vitro effects of mucin fermentation on the growth of human colonic sulphate‐reducing bacteria publication-title: Anaerobe – volume: 17 start-page: 72 year: 2015 end-page: 84 article-title: Diet dominates host genotype in shaping the murine gut microbiota publication-title: Cell Host Microbe – volume: 82 start-page: 670 year: 2014 end-page: 682 article-title: An Nissle 1917 missense mutant colonizes the streptomycin‐treated mouse intestine better than the wild type but is not a better probiotic publication-title: Infect Immun – volume: 10 start-page: 655 year: 2016 end-page: 664 article-title: Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development publication-title: ISME J – volume: 6 start-page: 8292 year: 2015 article-title: The outer mucus layer hosts a distinct intestinal microbial niche publication-title: Nat Commun – volume: 20 start-page: 515 year: 2016 end-page: 526 article-title: Stable engraftment of AH1206 in the human gut depends on individualized features of the resident microbiome publication-title: Cell Host Microbe – volume: 80 start-page: 2240 year: 2014 end-page: 2247 article-title: RNA‐stable‐isotope probing shows utilization of carbon from inulin by specific bacterial populations in the rat large bowel publication-title: Appl Environ Microbiol – ident: e_1_2_9_40_1 doi: 10.1371/journal.pone.0025042 – ident: e_1_2_9_47_1 doi: 10.1136/gutjnl-2014-307873 – ident: e_1_2_9_77_1 doi: 10.1073/pnas.1106408108 – ident: e_1_2_9_31_1 doi: 10.4161/gmic.19897 – ident: e_1_2_9_83_1 doi: 10.1038/ncomms4654 – ident: e_1_2_9_88_1 doi: 10.1111/1574-6976.12024 – ident: e_1_2_9_69_1 doi: 10.1086/282400 – ident: e_1_2_9_89_1 doi: 10.1371/journal.ppat.1003301 – start-page: 415 year: 1957 ident: e_1_2_9_42_1 article-title: Concluding remarks publication-title: Cold Spring Harb Symp Quant Biol doi: 10.1101/SQB.1957.022.01.039 – ident: e_1_2_9_95_1 doi: 10.1038/ncomms4114 – ident: e_1_2_9_60_1 doi: 10.1371/journal.pone.0015046 – ident: e_1_2_9_12_1 doi: 10.2307/1942257 – ident: e_1_2_9_66_1 doi: 10.1038/sj.embor.7400731 – volume-title: Animal Ecology year: 1927 ident: e_1_2_9_28_1 – ident: e_1_2_9_17_1 doi: 10.1128/microbe.10.324.1 – ident: e_1_2_9_8_1 doi: 10.1038/ismej.2015.142 – ident: e_1_2_9_18_1 doi: 10.1038/ismej.2010.71 – ident: e_1_2_9_104_1 doi: 10.1038/ismej.2010.118 – ident: e_1_2_9_64_1 doi: 10.1038/ismej.2010.161 – ident: e_1_2_9_34_1 doi: 10.1128/iai.39.2.676-685.1983 – ident: e_1_2_9_99_1 doi: 10.1038/ismej.2012.158 – ident: e_1_2_9_37_1 doi: 10.1126/science.1254009 – ident: e_1_2_9_79_1 doi: 10.1038/nmicrobiol.2016.93 – volume-title: The Unified Neutral Theory of Biodiversity and Biogeography year: 2001 ident: e_1_2_9_41_1 – ident: e_1_2_9_44_1 doi: 10.1073/pnas.1206721109 – ident: e_1_2_9_19_1 doi: 10.1126/science.1224203 – ident: e_1_2_9_3_1 doi: 10.1073/pnas.1219247110 – ident: e_1_2_9_27_1 doi: 10.1111/1462-2920.13158 – ident: e_1_2_9_9_1 doi: 10.1086/504850 – ident: e_1_2_9_103_1 doi: 10.1111/j.1462-2920.2008.01717.x – ident: e_1_2_9_65_1 doi: 10.1038/nature12503 – ident: e_1_2_9_45_1 doi: 10.1073/pnas.1306070110 – ident: e_1_2_9_55_1 doi: 10.1111/j.1574-6968.1991.tb04363.x – ident: e_1_2_9_75_1 doi: 10.1038/nature17626 – ident: e_1_2_9_22_1 doi: 10.1038/nature12820 – ident: e_1_2_9_94_1 doi: 10.1016/j.cell.2014.09.048 – ident: e_1_2_9_36_1 doi: 10.1146/annurev-ecolsys-110411-160340 – ident: e_1_2_9_78_1 doi: 10.1073/pnas.1312524110 – ident: e_1_2_9_62_1 doi: 10.1016/j.tim.2016.02.002 – ident: e_1_2_9_68_1 doi: 10.1016/j.bpg.2013.03.001 – ident: e_1_2_9_84_1 doi: 10.1016/j.cell.2014.09.008 – ident: e_1_2_9_57_1 doi: 10.1016/j.chom.2016.09.001 – ident: e_1_2_9_39_1 doi: 10.1073/pnas.96.8.4586 – ident: e_1_2_9_76_1 doi: 10.1017/S0007114508019880 – ident: e_1_2_9_43_1 doi: 10.1017/S1751731114001827 – ident: e_1_2_9_13_1 doi: 10.1073/pnas.0307888101 – ident: e_1_2_9_93_1 doi: 10.1128/AEM.03799-13 – ident: e_1_2_9_10_1 doi: 10.3389/fphys.2012.00448 – ident: e_1_2_9_33_1 doi: 10.1038/nrmicro3451 – ident: e_1_2_9_105_1 doi: 10.1006/anae.1996.0015 – ident: e_1_2_9_51_1 doi: 10.1038/nature12447 – ident: e_1_2_9_115_1 doi: 10.1038/ismej.2011.212 – ident: e_1_2_9_2_1 doi: 10.1128/IAI.01149-13 – ident: e_1_2_9_29_1 doi: 10.1126/science.1206025 – ident: e_1_2_9_108_1 doi: 10.1126/science.aac5992 – ident: e_1_2_9_35_1 doi: 10.1128/IAI.39.2.686-703.1983 – ident: e_1_2_9_86_1 doi: 10.1016/j.celrep.2016.01.026 – ident: e_1_2_9_26_1 doi: 10.1038/nrmicro3552 – ident: e_1_2_9_46_1 doi: 10.1128/MMBR.62.3.646-666.1998 – ident: e_1_2_9_4_1 doi: 10.1073/pnas.1420406112 – ident: e_1_2_9_21_1 doi: 10.1186/gb-2014-15-7-r89 – ident: e_1_2_9_24_1 doi: 10.1038/npjbiofilms.2015.26 – ident: e_1_2_9_38_1 doi: 10.1371/journal.pone.0074957 – ident: e_1_2_9_87_1 doi: 10.1128/AEM.00692-09 – ident: e_1_2_9_82_1 doi: 10.1371/journal.pbio.1001424 – ident: e_1_2_9_96_1 doi: 10.1126/scitranslmed.3000322 – ident: e_1_2_9_71_1 doi: 10.1086/282697 – ident: e_1_2_9_6_1 doi: 10.1038/nmicrobiol.2016.215 – ident: e_1_2_9_98_1 doi: 10.1111/j.1348-0421.1995.tb02242.x – ident: e_1_2_9_110_1 doi: 10.1038/nature11053 – ident: e_1_2_9_14_1 doi: 10.1098/rstb.2011.0063 – ident: e_1_2_9_15_1 doi: 10.1186/s12915-015-0224-3 – ident: e_1_2_9_74_1 doi: 10.1016/j.cub.2013.10.077 – ident: e_1_2_9_56_1 doi: 10.1111/j.1365-2672.2007.03520.x – ident: e_1_2_9_91_1 doi: 10.3389/fgene.2015.00081 – ident: e_1_2_9_109_1 doi: 10.1016/j.chom.2015.01.015 – ident: e_1_2_9_48_1 doi: 10.1371/journal.ppat.1002995 – ident: e_1_2_9_107_1 doi: 10.1126/science.1208344 – ident: e_1_2_9_52_1 doi: 10.1016/j.chom.2015.03.006 – ident: e_1_2_9_70_1 doi: 10.1086/282586 – ident: e_1_2_9_30_1 doi: 10.1111/j.1462-2920.2012.02845.x – ident: e_1_2_9_90_1 doi: 10.1053/j.gastro.2008.04.017 – ident: e_1_2_9_92_1 doi: 10.1038/ismej.2011.161 – ident: e_1_2_9_72_1 doi: 10.1038/nmicrobiol.2016.152 – ident: e_1_2_9_85_1 doi: 10.1111/j.1462-2920.2005.00956.x – ident: e_1_2_9_20_1 doi: 10.1073/pnas.0902366106 – ident: e_1_2_9_49_1 doi: 10.1128/IAI.06193-11 – ident: e_1_2_9_97_1 doi: 10.1093/oxfordjournals.jbchem.a133506 – ident: e_1_2_9_113_1 doi: 10.1038/ismej.2012.4 – ident: e_1_2_9_73_1 doi: 10.1038/ajg.2010.281 – ident: e_1_2_9_23_1 doi: 10.1073/pnas.1005963107 – ident: e_1_2_9_100_1 doi: 10.1136/gutjnl-2015-309618 – ident: e_1_2_9_63_1 doi: 10.1128/AAC.00580-13 – ident: e_1_2_9_111_1 doi: 10.3390/nu7042109 – ident: e_1_2_9_16_1 doi: 10.4161/gmic.29331 – ident: e_1_2_9_67_1 doi: 10.1073/pnas.1412673111 – ident: e_1_2_9_7_1 doi: 10.1126/science.273.5280.1380 – ident: e_1_2_9_80_1 doi: 10.1016/j.tree.2011.03.024 – ident: e_1_2_9_59_1 doi: 10.1016/j.celrep.2015.03.049 – ident: e_1_2_9_5_1 doi: 10.1111/j.1462-2920.2010.02294.x – ident: e_1_2_9_32_1 doi: 10.1073/pnas.1319284111 – ident: e_1_2_9_53_1 doi: 10.1038/ncomms9292 – ident: e_1_2_9_54_1 doi: 10.1038/srep31448 – ident: e_1_2_9_114_1 doi: 10.1038/ismej.2013.185 – ident: e_1_2_9_106_1 doi: 10.1111/j.1574-6941.2007.00379.x – ident: e_1_2_9_25_1 doi: 10.1016/j.chom.2013.06.007 – ident: e_1_2_9_61_1 doi: 10.2307/1312122 – ident: e_1_2_9_50_1 doi: 10.1128/IAI.73.12.8039-8049.2005 – ident: e_1_2_9_11_1 doi: 10.1016/j.chom.2014.11.010 – ident: e_1_2_9_58_1 doi: 10.1371/journal.pone.0053957 – ident: e_1_2_9_81_1 doi: 10.1186/s12859-015-0858-8 – ident: e_1_2_9_112_1 doi: 10.1016/j.cmet.2014.11.008 – volume: 56 start-page: 1030 year: 1988 ident: e_1_2_9_102_1 article-title: Colonization of the streptomycin‐treated mouse large intestine by a human fecal Escherichia coli strain: role of growth in mucus publication-title: Infect Immun doi: 10.1128/iai.56.5.1030-1035.1988 – ident: e_1_2_9_101_1 doi: 10.1128/mBio.02284-14 – reference: 28401677 - Environ Microbiol. 2017 Aug;19(8):2924-2925. doi: 10.1111/1462-2920.13752. |
SSID | ssj0017370 |
Score | 2.6066742 |
SecondaryResourceType | review_article |
Snippet | Summary
The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the... The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the assembly... Summary The composition and function of the mammalian gut microbiota has been the subject of much research in recent years, but the principles underlying the... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1366 |
SubjectTerms | Animals Cellular Microenvironment digestive system Environmental factors Gastrointestinal Microbiome Humans intestinal microorganisms landscapes Limiting nutrients mammals microbial growth Microorganisms Minireview Minireviews niches Nutrient availability Nutrient utilization nutrients space and time |
Title | Microbial nutrient niches in the gut |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.13659 https://www.ncbi.nlm.nih.gov/pubmed/28035742 https://www.proquest.com/docview/1884440856 https://www.proquest.com/docview/1854614250 https://www.proquest.com/docview/1891876352 https://www.proquest.com/docview/2020868905 https://pubmed.ncbi.nlm.nih.gov/PMC5412925 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS91AEB6sIPjSems93ojggy85JJvd7OZRRBFBEbHQt7DX9tASxXPOQ_vrO7O54FGsFJ8S2JmQSebLftlMvgE4YobrXJc2zbQKKS-CTKvSsTR44zA_KictrXdcXZcXX_nlN9FXE9K_MK0-xLDgRsiIz2sCuDbTJyBHiLOUei3FSi36hY-2RItuBwGpXBaxXVxnm7NO3IdqeZ75L85LL8jmy5rJp1w2Tkbnn8D0YbQ1KD_H85kZ2z_PFB7fFecafOyoanLS5tY6LPlmA1ba5pW_N-HoahJFnNCkIUl_POOkocLSaTJpEuSVyff5bAvuzs_uTi_SrudCagUJEphSemFkUVlVes2l81J5pzXe0yCcdiLT3AUZuPSOWZOZYEstM6tMCLn3xWdYbu4bvw0JwtviYYjPMK6MVE4H5CJWFlbzQmcjGPcXvLadHjm1xfhV9-8lFHlNkdcx8hEcDw4PrRTH66Z7_R2sO0xO61wpTv21RTmCw2EY0USfSHTj7-dkIzgSFuSF_7Kp8qjjx163YdT7tFRVJkbwpU2c4ZypH5iQHL3lQkoNBqT4vTjSTH5E5W_BkZ4xPGabMW9dhhqhHHd2_tdhF1YZ8ZdYorQHy7PHud9H9jUzB_CB8ZuDCLO_lo4jsA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEB0BFaKXfkHbFGhdiQMXR_Z617s-VqgoUMIBBYmbtZ9t1MpUJTm0v74za8dKQBRV3Cx5duWx59nP6_F7AAfMcJ3r0qaZViHlRZBpVTqWBm8c1kflpKX1jvF5Obrkp1fiaulfmFYfol9wI2TE-zUBnBakl1COGGcpmS3FVq1qHZ6Qr3d8rbroJaRyWUTDuC44Z528D3Xz3Jpg9cl0h27e7ZpcZrPxcXT8HOwikbYL5ftwPjND--eWxuPjMn0Bzzq2mnxqy-slrPnmFWy2_pW_t-FgPI06ThjSkKo_HnLSUG_pTTJtEqSWydf5bAcmx58nR6O0s11IrSBNAlNKL4wsKqtKr7l0XirvtMbLGoTTTmSauyADl94xazITbKllZpUJIfe-eA0bzXXj30KCCLc4DVEaxpWRyumAdMTKwmpe6GwAw8UZr20nSU7OGD_qxasJZV5T5nXMfACH_YCfrRrH_aF7i0tYd7C8qXOlOFlsi3IAH_vdCCj6SqIbfz2nGMGRsyA1_FdMlUcpP3Z_DCP701JVmRjAm7Zy-mMmSzAhOY6WKzXVB5Do9-qeZvotin8LjgyN4ZxtyTx0GmpEc9x4978DPsDWaDI-q89Ozr_swlNGdCZ2LO3BxuzX3O8jGZuZ9xFtfwHtVSb0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VViAu0PJcKDRIPXDJKnH8yrFqWbVAK4SKxC3yE1agtKK7B_j1zDgPdVsVhLhF8tjy2PMlX5zJNwC7zHJTGunywuiY8yqqvJae5TFYj_FRe-XovOP4RB5-4m8_iyGbkP6F6fQhxgM3Qka6XxPAz328BHKEOMup1lLK1KpvwQaXhabAPvg4KkiVqkr14nrjkvXqPpTMc2WA1QfTNbZ5PWnyMplNT6PZfbCDH10SyrfpcmGn7tcVicf_cnQT7vVcNdvrgmsL1kL7AG531St_PoTd43lScUKTljT9ccZZS5mlF9m8zZBYZl-Wi0dwOntzun-Y90UXcidIkcBKFYRVVe20DIYrH5QO3hjc1Ci88aIw3EcVuQqeOVvY6KRRhdM2xjKE6jGst2dteAoZ4tvhMERoGNdWaW8ikhGnKmd4ZYoJTIcFb1wvSE51Mb43w4sJed6Q503yfAKvxw7nnRbHzabbww42PSgvmlJrTgW2hZzAq7EZ4UTfSEwbzpZkIzgyFiSGf7KpyyTkx262YVT8VOq6EBN40gXOOGcqCCYUx95qJaRGA5L8Xm1p51-T9LfgyM8YjtlFzN-WoUEsp4tn_9phB-58OJg1749O3j2Hu4y4TEpX2ob1xY9leIFMbGFfJqz9BmpMJaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+nutrient+niches+in+the+gut&rft.jtitle=Environmental+microbiology&rft.au=Pereira%2C+F%C3%A1tima+C.&rft.au=Berry%2C+David&rft.date=2017-04-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=19&rft.issue=4&rft.spage=1366&rft.epage=1378&rft_id=info:doi/10.1111%2F1462-2920.13659&rft_id=info%3Apmid%2F28035742&rft.externalDocID=PMC5412925 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |