Role of skeletal muscle lipids in the pathogenesis of insulin resistance of obesity and type 2 diabetes
ABSTRACT Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from f...
Saved in:
Published in | Journal of diabetes investigation Vol. 12; no. 11; pp. 1934 - 1941 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Japan
John Wiley & Sons, Inc
01.11.2021
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2040-1116 2040-1124 2040-1124 |
DOI | 10.1111/jdi.13614 |
Cover
Loading…
Abstract | ABSTRACT
Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from free fatty acid (FA) to carbohydrate substrates; and (ii) an ectopic accumulation of triglyceride in skeletal muscle, generating a cellular “lipotoxicity”, but triglyceride per se, does not contribute to insulin resistance (“athlete’s paradox”). A large body of evidence supports the idea that a decreased mitochondrial capacity to oxidize FA leads to an accretion of intracellular triglyceride and an accumulation of acyl‐CoAs, which are used to synthesize diacylglycerol and ceramide. These lipid derivatives activate serine kinases, leading to increase of insulin receptor substrate 1 serine phosphorylation, which impairs insulin signaling. A second model proposes that insulin resistance arises from an excessive mitochondrial FA oxidation. Studies have shown that the type of FA, unsaturated or saturated, is critical in the development of insulin resistance. It should be also stressed that FA oversupply activates inflammatory signals, induces endoplasmic reticulum stress, increases mitochondrial oxidative stress and influences the regulation of genes that contributes to impaired glucose metabolism. These cellular insults are thought to engage stress‐sensitive serine kinases disrupting insulin signaling. In conclusion, reduced dietary lipid intake in association with physical exercise could be a therapeutic option to improve insulin sensitivity.
Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. The insulin resistance is related to impaired mitochondrial oxidation of fatty acids, resulting to an accumulation of lipid derivatives, which in turn decrease insulin sensitivity. However, excessive mitochondrial fatty acid oxidation might also lead to impaired insulin effect. |
---|---|
AbstractList | ABSTRACT Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from free fatty acid (FA) to carbohydrate substrates; and (ii) an ectopic accumulation of triglyceride in skeletal muscle, generating a cellular “lipotoxicity”, but triglyceride per se, does not contribute to insulin resistance (“athlete’s paradox”). A large body of evidence supports the idea that a decreased mitochondrial capacity to oxidize FA leads to an accretion of intracellular triglyceride and an accumulation of acyl‐CoAs, which are used to synthesize diacylglycerol and ceramide. These lipid derivatives activate serine kinases, leading to increase of insulin receptor substrate 1 serine phosphorylation, which impairs insulin signaling. A second model proposes that insulin resistance arises from an excessive mitochondrial FA oxidation. Studies have shown that the type of FA, unsaturated or saturated, is critical in the development of insulin resistance. It should be also stressed that FA oversupply activates inflammatory signals, induces endoplasmic reticulum stress, increases mitochondrial oxidative stress and influences the regulation of genes that contributes to impaired glucose metabolism. These cellular insults are thought to engage stress‐sensitive serine kinases disrupting insulin signaling. In conclusion, reduced dietary lipid intake in association with physical exercise could be a therapeutic option to improve insulin sensitivity. ABSTRACT Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from free fatty acid (FA) to carbohydrate substrates; and (ii) an ectopic accumulation of triglyceride in skeletal muscle, generating a cellular “lipotoxicity”, but triglyceride per se, does not contribute to insulin resistance (“athlete’s paradox”). A large body of evidence supports the idea that a decreased mitochondrial capacity to oxidize FA leads to an accretion of intracellular triglyceride and an accumulation of acyl‐CoAs, which are used to synthesize diacylglycerol and ceramide. These lipid derivatives activate serine kinases, leading to increase of insulin receptor substrate 1 serine phosphorylation, which impairs insulin signaling. A second model proposes that insulin resistance arises from an excessive mitochondrial FA oxidation. Studies have shown that the type of FA, unsaturated or saturated, is critical in the development of insulin resistance. It should be also stressed that FA oversupply activates inflammatory signals, induces endoplasmic reticulum stress, increases mitochondrial oxidative stress and influences the regulation of genes that contributes to impaired glucose metabolism. These cellular insults are thought to engage stress‐sensitive serine kinases disrupting insulin signaling. In conclusion, reduced dietary lipid intake in association with physical exercise could be a therapeutic option to improve insulin sensitivity. Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. The insulin resistance is related to impaired mitochondrial oxidation of fatty acids, resulting to an accumulation of lipid derivatives, which in turn decrease insulin sensitivity. However, excessive mitochondrial fatty acid oxidation might also lead to impaired insulin effect. Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from free fatty acid (FA) to carbohydrate substrates; and (ii) an ectopic accumulation of triglyceride in skeletal muscle, generating a cellular “lipotoxicity”, but triglyceride per se, does not contribute to insulin resistance (“athlete’s paradox”). A large body of evidence supports the idea that a decreased mitochondrial capacity to oxidize FA leads to an accretion of intracellular triglyceride and an accumulation of acyl‐CoAs, which are used to synthesize diacylglycerol and ceramide. These lipid derivatives activate serine kinases, leading to increase of insulin receptor substrate 1 serine phosphorylation, which impairs insulin signaling. A second model proposes that insulin resistance arises from an excessive mitochondrial FA oxidation. Studies have shown that the type of FA, unsaturated or saturated, is critical in the development of insulin resistance. It should be also stressed that FA oversupply activates inflammatory signals, induces endoplasmic reticulum stress, increases mitochondrial oxidative stress and influences the regulation of genes that contributes to impaired glucose metabolism. These cellular insults are thought to engage stress‐sensitive serine kinases disrupting insulin signaling. In conclusion, reduced dietary lipid intake in association with physical exercise could be a therapeutic option to improve insulin sensitivity. Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from free fatty acid (FA) to carbohydrate substrates; and (ii) an ectopic accumulation of triglyceride in skeletal muscle, generating a cellular “lipotoxicity”, but triglyceride per se, does not contribute to insulin resistance (“athlete’s paradox”). A large body of evidence supports the idea that a decreased mitochondrial capacity to oxidize FA leads to an accretion of intracellular triglyceride and an accumulation of acyl‐CoAs, which are used to synthesize diacylglycerol and ceramide. These lipid derivatives activate serine kinases, leading to increase of insulin receptor substrate 1 serine phosphorylation, which impairs insulin signaling. A second model proposes that insulin resistance arises from an excessive mitochondrial FA oxidation. Studies have shown that the type of FA, unsaturated or saturated, is critical in the development of insulin resistance. It should be also stressed that FA oversupply activates inflammatory signals, induces endoplasmic reticulum stress, increases mitochondrial oxidative stress and influences the regulation of genes that contributes to impaired glucose metabolism. These cellular insults are thought to engage stress‐sensitive serine kinases disrupting insulin signaling. In conclusion, reduced dietary lipid intake in association with physical exercise could be a therapeutic option to improve insulin sensitivity. Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. The insulin resistance is related to impaired mitochondrial oxidation of fatty acids, resulting to an accumulation of lipid derivatives, which in turn decrease insulin sensitivity. However, excessive mitochondrial fatty acid oxidation might also lead to impaired insulin effect. Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from free fatty acid (FA) to carbohydrate substrates; and (ii) an ectopic accumulation of triglyceride in skeletal muscle, generating a cellular "lipotoxicity", but triglyceride per se, does not contribute to insulin resistance ("athlete's paradox"). A large body of evidence supports the idea that a decreased mitochondrial capacity to oxidize FA leads to an accretion of intracellular triglyceride and an accumulation of acyl-CoAs, which are used to synthesize diacylglycerol and ceramide. These lipid derivatives activate serine kinases, leading to increase of insulin receptor substrate 1 serine phosphorylation, which impairs insulin signaling. A second model proposes that insulin resistance arises from an excessive mitochondrial FA oxidation. Studies have shown that the type of FA, unsaturated or saturated, is critical in the development of insulin resistance. It should be also stressed that FA oversupply activates inflammatory signals, induces endoplasmic reticulum stress, increases mitochondrial oxidative stress and influences the regulation of genes that contributes to impaired glucose metabolism. These cellular insults are thought to engage stress-sensitive serine kinases disrupting insulin signaling. In conclusion, reduced dietary lipid intake in association with physical exercise could be a therapeutic option to improve insulin sensitivity.Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from free fatty acid (FA) to carbohydrate substrates; and (ii) an ectopic accumulation of triglyceride in skeletal muscle, generating a cellular "lipotoxicity", but triglyceride per se, does not contribute to insulin resistance ("athlete's paradox"). A large body of evidence supports the idea that a decreased mitochondrial capacity to oxidize FA leads to an accretion of intracellular triglyceride and an accumulation of acyl-CoAs, which are used to synthesize diacylglycerol and ceramide. These lipid derivatives activate serine kinases, leading to increase of insulin receptor substrate 1 serine phosphorylation, which impairs insulin signaling. A second model proposes that insulin resistance arises from an excessive mitochondrial FA oxidation. Studies have shown that the type of FA, unsaturated or saturated, is critical in the development of insulin resistance. It should be also stressed that FA oversupply activates inflammatory signals, induces endoplasmic reticulum stress, increases mitochondrial oxidative stress and influences the regulation of genes that contributes to impaired glucose metabolism. These cellular insults are thought to engage stress-sensitive serine kinases disrupting insulin signaling. In conclusion, reduced dietary lipid intake in association with physical exercise could be a therapeutic option to improve insulin sensitivity. |
Author | Gilbert, Marc |
AuthorAffiliation | 1 CNRS UMR 8251 Bât. Buffon Paris Diderot University Paris France |
AuthorAffiliation_xml | – name: 1 CNRS UMR 8251 Bât. Buffon Paris Diderot University Paris France |
Author_xml | – sequence: 1 givenname: Marc orcidid: 0000-0001-6553-727X surname: Gilbert fullname: Gilbert, Marc email: marc.gilb12@gmail.com organization: Paris Diderot University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34132491$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9vFCEUxyemxtbag_-AmcSLHrYFBpjhYmJaf6xpYmL0TBh47LKyMA6MZm-9-m_6l8ju1o1tou8CPD7vm--D97g6CjFAVT3F6ByXuFgZd44bjumD6oQgimYYE3p02GN-XJ2ltEIlmq7jvH1UHTcUN4QKfFK5T9FDHW2dvoKHrHy9npIuKe8GZ1LtQp2XUA8qL-MCAiSXtrQLafLlbtwmsgp6pxH7csybWgVT580Av25-kto41UOG9KR6aJVPcHa7nlZf3r75fPl-dv3x3fzy9fVMMyHojCACWFAtmDW9woJ0De8tRgh0R3nfmOIdE0OsxhwbAM6YNn2r-t7ahhT6tJrvdU1UKzmMbq3GjYzKyV0ijgupxuxKjxJxrhGgpmFM0bbliliGwWrohOBW66L1aq81TP0ajIaQR-XviN69CW4pF_G77BhnFPEi8OJWYIzfJkhZrl3S4L0KEKckCaO47UgrWEGf30NXcRpDeapCCUJEUxwW6tnfjg5W_vxoAV7uAT3GlEawBwQjuR0YWQZG7gamsBf3WO2yyi5um3H-fxU_nIfNv6Xlh6v5vuI3ZujSRg |
CitedBy_id | crossref_primary_10_1016_j_bbadis_2024_167552 crossref_primary_10_1016_j_heliyon_2023_e21305 crossref_primary_10_1016_j_gene_2024_148216 crossref_primary_10_1080_10799893_2025_2475441 crossref_primary_10_1134_S0022093022050271 crossref_primary_10_1097_MD_0000000000038855 crossref_primary_10_1016_j_lfs_2022_120467 crossref_primary_10_1002_jcp_31419 crossref_primary_10_1113_JP284721 crossref_primary_10_1186_s40001_023_01424_9 crossref_primary_10_3389_fphys_2024_1492405 crossref_primary_10_3390_ijms25010431 crossref_primary_10_3892_wasj_2023_199 crossref_primary_10_1507_endocrj_EJ23_0151 crossref_primary_10_3390_cimb44090297 crossref_primary_10_1002_oby_23865 crossref_primary_10_1210_clinem_dgae881 crossref_primary_10_3389_fphys_2022_1113860 crossref_primary_10_1186_s12906_023_04320_1 crossref_primary_10_1016_j_cellsig_2023_110794 crossref_primary_10_3390_ijms24097898 crossref_primary_10_1016_j_isci_2024_109032 crossref_primary_10_1021_acsomega_4c04668 crossref_primary_10_2337_db22_0315 crossref_primary_10_1186_s13287_023_03537_8 crossref_primary_10_3389_fendo_2023_1308373 crossref_primary_10_3390_ijerph182413141 crossref_primary_10_3390_biomedicines12010211 crossref_primary_10_62347_NEAS4467 crossref_primary_10_1007_s12602_023_10198_9 crossref_primary_10_1186_s12951_025_03225_0 crossref_primary_10_1016_j_mmm_2022_07_001 crossref_primary_10_3390_metabo15030167 crossref_primary_10_1093_toxres_tfae197 crossref_primary_10_2337_db23_0463 crossref_primary_10_1016_j_abb_2025_110325 crossref_primary_10_3390_antiox13030373 crossref_primary_10_3390_biom13050779 crossref_primary_10_1136_bmjopen_2023_075964 crossref_primary_10_3390_ani14071057 crossref_primary_10_14814_phy2_15898 crossref_primary_10_1016_j_heliyon_2023_e13215 crossref_primary_10_1007_s00592_024_02440_9 crossref_primary_10_1016_j_redox_2025_103541 crossref_primary_10_1002_jcsm_13255 crossref_primary_10_70749_ijbr_v3i1_547 |
Cites_doi | 10.3390/cells8030249 10.1016/j.cmet.2012.04.002 10.1210/en.2010-0250 10.1152/ajpendo.1999.277.6.E1130 10.2337/diabetes.48.6.1270 10.1016/j.bbrc.2011.11.135 10.1016/S0140-6736(63)91500-9 10.1074/jbc.274.36.25308 10.1172/JCI115399 10.1016/j.cell.2007.12.035 10.1007/s001250051123 10.2337/diabetes.51.7.2005 10.2337/diab.40.2.280 10.1126/science.1128294 10.1016/j.cmet.2007.01.002 10.2337/diab.46.2.169 10.2337/diab.37.6.667 10.1007/s00125-006-0140-8 10.1074/jbc.M507621200 10.1038/ncomms2851 10.1152/ajpendo.2000.279.5.E1039 10.1056/NEJMoa031314 10.1126/science.1103160 10.2337/diabetes.49.8.1353 10.1152/ajpendo.00093.2009 10.1073/pnas.0706794104 10.1016/j.cmet.2007.10.013 10.1172/JCI118160 10.1128/MCB.22.4.1016-1026.2002 10.1152/ajpendo.2000.279.3.E554 10.1172/JCI25151 10.1172/JCI37048 10.1371/journal.pone.0065061 10.1046/j.1365-201X.2003.01161.x 10.2337/diabetes.54.11.3148 10.1093/ajcn/83.2.461S 10.2337/diabetes.50.7.1612 10.1007/s00109-006-0077-x 10.2337/diabetes.50.4.817 10.1073/pnas.1409229111 10.1152/ajpendo.00467.2009 10.2337/db06-S002 10.2337/diab.46.1.3 10.1172/JCI200422230 10.1016/j.bbrc.2006.02.177 10.2337/diabetes.51.10.2944 10.1172/JCI30565 10.1074/jbc.M212307200 10.1172/JCI31785 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd. 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd. – notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T5 7TM 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH H94 K9. M0S PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1111/jdi.13614 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Immunology Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea AIDS and Cancer Research Abstracts Immunology Abstracts ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | Muscle lipids and insulin resistance |
EISSN | 2040-1124 |
EndPage | 1941 |
ExternalDocumentID | oai_doaj_org_article_066c0e03355a4776a2f51efce8996fcc PMC8565406 34132491 10_1111_jdi_13614 JDI13614 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- 05W 0R~ 1OC 24P 31~ 4.4 50Y 5DZ 5VS 7X7 8-0 8-1 8FI 8FJ AAHHS AANHP AAZKR ABDBF ABJNI ABUWG ACBWZ ACCFJ ACCMX ACGFO ACPRK ACRPL ACUHS ACXQS ACYXJ ADBBV ADKYN ADNMO ADPDF ADRAZ ADZMN AEEZP AEGXH AENEX AEQDE AFKRA AHMBA AIAGR AIWBW AJBDE ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS ASPBG AVUZU AVWKF AZFZN BAWUL BCNDV BDRZF BENPR BPHCQ BVXVI CAG CCPQU COF DIK EBD EBS EJD FYUFA GODZA GROUPED_DOAJ GX1 HMCUK HYE HZ~ KQ8 LH4 LW6 M48 MY. O9- OK1 OVD PIMPY PQQKQ PROAC RPM RX1 SUPJJ TEORI UKHRP WIN AAYXX AGQPQ CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7T5 7TM 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5994-202e194c95fdba192836bf100ec846b3d34112d2fc161dee655cdb7abbff32283 |
IEDL.DBID | M48 |
ISSN | 2040-1116 2040-1124 |
IngestDate | Wed Aug 27 01:02:58 EDT 2025 Thu Aug 21 18:13:17 EDT 2025 Tue Aug 05 11:34:43 EDT 2025 Mon Jul 14 09:53:50 EDT 2025 Wed Feb 19 02:27:54 EST 2025 Tue Jul 01 02:48:47 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Wed Jan 22 16:28:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Fatty acids Mitochondria Skeletal muscle |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2021 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5994-202e194c95fdba192836bf100ec846b3d34112d2fc161dee655cdb7abbff32283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-6553-727X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/jdi.13614 |
PMID | 34132491 |
PQID | 2592293776 |
PQPubID | 1006415 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_066c0e03355a4776a2f51efce8996fcc pubmedcentral_primary_oai_pubmedcentral_nih_gov_8565406 proquest_miscellaneous_2541782795 proquest_journals_2592293776 pubmed_primary_34132491 crossref_primary_10_1111_jdi_13614 crossref_citationtrail_10_1111_jdi_13614 wiley_primary_10_1111_jdi_13614_JDI13614 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2021 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Richmond – name: Hoboken |
PublicationTitle | Journal of diabetes investigation |
PublicationTitleAlternate | J Diabetes Investig |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 2019; 8 1995; 96 2007; 104 2001; 50 2013; 4 2000; 49 2000; 279 2006; 55 2002; 51 1988; 37 2005; 115 1997; 46 1999; 48 2009; 297 2008; 7 1999; 42 2012; 15 2014; 111 2009; 119 2004; 306 2006; 313 2013; 8 2003; 278 2003; 178 1963; 1 2005; 280 2004; 114 2006; 83 2007; 117 2006; 84 1991; 88 2006; 49 2004; 350 1991; 40 2002; 22 1999; 274 2010; 298 2005; 54 2010; 151 2007; 5 1999; 276 1999; 277 2008; 132 2006; 343 2012; 417 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Ruderman NB (e_1_2_7_12_1) 1999; 276 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 42 start-page: 113 year: 1999 end-page: 116 article-title: Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study publication-title: Diabetologia – volume: 111 start-page: 9597 year: 2014 end-page: 9602 article-title: Role of diacylglycerol activation of PKCθ in lipid‐induced muscle insulin resistance in humans publication-title: Proc Natl Acad Sci U S A – volume: 278 start-page: 10297 year: 2003 end-page: 10303 article-title: A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids publication-title: J Biol Chem – volume: 276 start-page: E1 year: 1999 end-page: E18 article-title: Malonyl‐CoA, fuel sensing, and insulin resistance publication-title: Am J Physiol – volume: 119 start-page: 573 year: 2009 end-page: 581 article-title: Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans publication-title: J Clin Investig – volume: 313 start-page: 1137 year: 2006 end-page: 1140 article-title: Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes publication-title: Science – volume: 15 start-page: 585 year: 2012 end-page: 594 article-title: A ceramide‐centric view of insulin resistance publication-title: Cell Metab – volume: 277 start-page: E1130 year: 1999 end-page: E1141 article-title: Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss publication-title: Am J Physiol‐Endocrinol Metab – volume: 115 start-page: 3587 year: 2005 end-page: 3593 article-title: Reduced mitochondrial density and increased IRS‐1 serine phosphorylation in muscle of insulin‐resistant offspring of type 2 diabetic parents publication-title: J Clin Investig – volume: 7 start-page: 45 year: 2008 end-page: 56 article-title: Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance publication-title: Cell Metab – volume: 88 start-page: 960 year: 1991 end-page: 966 article-title: Effects of fat on insulin‐stimulated carbohydrate metabolism in normal men publication-title: J Clin Investig – volume: 84 start-page: 747 year: 2006 end-page: 752 article-title: Short‐term activation of peroxysome proliferator‐activated receptor β/δ increases fatty acid oxidation but does not restore insulin action in muscle cells from type 2 diabetic patients publication-title: J Mol Med – volume: 49 start-page: 990 year: 2006 end-page: 999 article-title: Activation of liver X receptors promotes lipid accumulation but does not alter insulin action in human skeletal muscle cells publication-title: Diabetologia – volume: 114 start-page: 823 year: 2004 end-page: 827 article-title: PKC‐θ knockout mice are protected from fat‐induced insulin resistance publication-title: J Clin Investig – volume: 22 start-page: 1016 year: 2002 end-page: 1026 article-title: Molecular mechanism of insulin‐induced degradation of insulin receptor substrate 1 publication-title: Mol Cell Biol – volume: 54 start-page: 3148 year: 2005 end-page: 3153 article-title: Effect of a sustained reduction in plasma free fatty acid concentration on intramuscular long‐chain fatty Acyl‐CoAs and insulin action in type 2 diabetic patients publication-title: Diabetes – volume: 297 start-page: E578 year: 2009 end-page: E591 article-title: The Randle cycle revisited: a new head for an old hat publication-title: Am J Physiol‐Endocrinol Metab – volume: 117 start-page: 1679 year: 2007 end-page: 1689 article-title: Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat‐induced insulin resistance publication-title: J Clin Investig – volume: 40 start-page: 280 year: 1991 end-page: 289 article-title: Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega‐3 fatty acids in muscle phospholipid publication-title: Diabetes – volume: 132 start-page: 375 year: 2008 end-page: 386 article-title: Downregulation of diacylglycerol kinase delta contributes to hyperglycemia‐induced insulin resistance publication-title: Cell – volume: 37 start-page: 667 year: 1988 end-page: 687 article-title: The triumvirate: β‐cell, muscle, liver: a collusion responsible for NIDDM publication-title: Diabetes – volume: 46 start-page: 3 year: 1997 end-page: 10 article-title: Role of fatty acids in the pathogenesis of insulin resistance and NIDDM publication-title: Diabetes – volume: 50 start-page: 1612 year: 2001 end-page: 1617 article-title: Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects publication-title: Diabetes – volume: 83 start-page: 461S year: 2006 end-page: S465 article-title: Obesity and the role of adipose tissue in inflammation and metabolism publication-title: Am J Clin Nutr – volume: 8 year: 2013 article-title: Toll‐like receptor 4 knockout mice are protected against endoplasmic reticulum stress induced by a high‐fat diet publication-title: PLoS One – volume: 1 start-page: 785 year: 1963 end-page: 789 article-title: The glucose fatty‐acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus publication-title: Lancet – volume: 50 start-page: 817 year: 2001 end-page: 823 article-title: Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity publication-title: Diabetes – volume: 117 start-page: 3463 year: 2007 end-page: 3474 article-title: Abnormal glucose homeostasis in skeletal muscle‐specific PGC‐1alpha knockout mice reveals skeletal muscle‐pancreatic beta cell crosstalk publication-title: J Clin Investig – volume: 55 start-page: S9 year: 2006 article-title: Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction publication-title: Diabetes – volume: 8 start-page: 249 year: 2019 article-title: Skeletal muscle lipid droplets and the Athlete's paradox publication-title: Cells – volume: 274 start-page: 25308 year: 1999 end-page: 25316 article-title: Insulin activates protein kinases C‐ζ and C‐λ by an autophosphorylation‐dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes publication-title: J Biol Chem – volume: 343 start-page: 361 year: 2006 end-page: 368 article-title: PKCθ is a key player in the development of insulin resistance publication-title: Biochem Biophys Res Comm – volume: 298 start-page: E565 year: 2010 end-page: E576 article-title: Mammalian Tribbles homolog 3 impairs insulin action in skeletal muscle: role in glucose‐induced insulin resistance publication-title: Am J Physiol Endocrinol Metab – volume: 49 start-page: 1353 year: 2000 end-page: 1358 article-title: Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity publication-title: Diabetes – volume: 280 start-page: 33588 year: 2005 end-page: 33598 article-title: Peroxisome proliferator‐activated receptor‐gamma co‐activator 1alpha‐mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid‐induced mitochondrial inefficiency publication-title: J Biol Chem – volume: 51 start-page: 2005 year: 2002 end-page: 2011 article-title: Lipid‐induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB‐α publication-title: Diabetes – volume: 151 start-page: 4187 year: 2010 end-page: 4196 article-title: Saturated‐ and n‐6 polyunsaturated‐fat diets each induce ceramide accumulation in mouse skeletal muscle: reversal and improvement of glucose tolerance by lipid metabolism inhibitors publication-title: Endocrinology – volume: 5 start-page: 167 year: 2007 end-page: 179 article-title: Inhibition of ceramide synthesis ameliorates glucocorticoid‐, saturated‐fat‐, and obesity‐induced insulin resistance publication-title: Cell Metab – volume: 96 start-page: 1261 year: 1995 end-page: 1268 article-title: Effects of fat on glucose uptake and utilization in patients with non‐insulin‐dependent diabetes publication-title: J Clin Investig – volume: 104 start-page: 16480 year: 2007 end-page: 16485 article-title: Continuous fat oxidation in acetyl‐CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity publication-title: Proc Natl Acad Sci U S A – volume: 4 start-page: 1871 year: 2013 article-title: Tribbles 3 mediates endoplasmic reticulum stress‐induced insulin resistance in skeletal muscle publication-title: Nat Commun – volume: 350 start-page: 664 year: 2004 end-page: 671 article-title: Impaired mitochondrial activity in the insulin‐resistant offspring of patients with type 2 diabetes publication-title: N Engl J Med – volume: 178 start-page: 425 year: 2003 end-page: 434 article-title: Peroxisome proliferator‐activated receptors (PPARS): regulators of gene expression in heart and skeletal muscle publication-title: Acta Physiol Scand – volume: 279 start-page: E1039 year: 2000 end-page: E1044 article-title: Lipid oxidation is reduced in obese human skeletal muscle publication-title: Am J Physiol‐Endocrinol Metab – volume: 51 start-page: 2944 year: 2002 end-page: 2950 article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes publication-title: Diabetes – volume: 306 start-page: 457 year: 2004 article-title: Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes publication-title: Science – volume: 417 start-page: 439 year: 2012 end-page: 445 article-title: Reduction of endoplasmic reticulum stress using chemical chaperones or Grp78 overexpression does not protect muscle cells from palmitate‐induced insulin resistance publication-title: Biochem Biophys Res Commun – volume: 48 start-page: 1270 year: 1999 end-page: 1274 article-title: Free fatty acid‐induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade publication-title: Diabetes – volume: 279 start-page: E554 year: 2000 end-page: E560 article-title: Long‐chain acyl‐CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle publication-title: Am J Physiol‐Endocrinol Metab – volume: 46 start-page: 169 year: 1997 end-page: 178 article-title: Alterations in the expression and cellular localization of protein kinase C Isozymes ɛ and θ are associated with insulin resistance in skeletal muscle of the high‐fat–fed rat publication-title: Diabetes – ident: e_1_2_7_13_1 doi: 10.3390/cells8030249 – ident: e_1_2_7_29_1 doi: 10.1016/j.cmet.2012.04.002 – ident: e_1_2_7_26_1 doi: 10.1210/en.2010-0250 – ident: e_1_2_7_33_1 doi: 10.1152/ajpendo.1999.277.6.E1130 – ident: e_1_2_7_19_1 doi: 10.2337/diabetes.48.6.1270 – ident: e_1_2_7_47_1 doi: 10.1016/j.bbrc.2011.11.135 – ident: e_1_2_7_4_1 doi: 10.1016/S0140-6736(63)91500-9 – ident: e_1_2_7_24_1 doi: 10.1074/jbc.274.36.25308 – ident: e_1_2_7_10_1 doi: 10.1172/JCI115399 – ident: e_1_2_7_17_1 doi: 10.1016/j.cell.2007.12.035 – ident: e_1_2_7_3_1 doi: 10.1007/s001250051123 – ident: e_1_2_7_15_1 doi: 10.2337/diabetes.51.7.2005 – ident: e_1_2_7_8_1 doi: 10.2337/diab.40.2.280 – volume: 276 start-page: E1 year: 1999 ident: e_1_2_7_12_1 article-title: Malonyl‐CoA, fuel sensing, and insulin resistance publication-title: Am J Physiol – ident: e_1_2_7_46_1 doi: 10.1126/science.1128294 – ident: e_1_2_7_27_1 doi: 10.1016/j.cmet.2007.01.002 – ident: e_1_2_7_18_1 doi: 10.2337/diab.46.2.169 – ident: e_1_2_7_2_1 doi: 10.2337/diab.37.6.667 – ident: e_1_2_7_14_1 doi: 10.1007/s00125-006-0140-8 – ident: e_1_2_7_39_1 doi: 10.1074/jbc.M507621200 – ident: e_1_2_7_49_1 doi: 10.1038/ncomms2851 – ident: e_1_2_7_31_1 doi: 10.1152/ajpendo.2000.279.5.E1039 – ident: e_1_2_7_37_1 doi: 10.1056/NEJMoa031314 – ident: e_1_2_7_45_1 doi: 10.1126/science.1103160 – ident: e_1_2_7_23_1 doi: 10.2337/diabetes.49.8.1353 – ident: e_1_2_7_42_1 doi: 10.1152/ajpendo.00093.2009 – ident: e_1_2_7_32_1 doi: 10.1073/pnas.0706794104 – ident: e_1_2_7_41_1 doi: 10.1016/j.cmet.2007.10.013 – ident: e_1_2_7_6_1 doi: 10.1172/JCI118160 – ident: e_1_2_7_44_1 doi: 10.1128/MCB.22.4.1016-1026.2002 – ident: e_1_2_7_25_1 doi: 10.1152/ajpendo.2000.279.3.E554 – ident: e_1_2_7_34_1 doi: 10.1172/JCI25151 – ident: e_1_2_7_43_1 doi: 10.1172/JCI37048 – ident: e_1_2_7_51_1 doi: 10.1371/journal.pone.0065061 – ident: e_1_2_7_40_1 doi: 10.1046/j.1365-201X.2003.01161.x – ident: e_1_2_7_9_1 doi: 10.2337/diabetes.54.11.3148 – ident: e_1_2_7_50_1 doi: 10.1093/ajcn/83.2.461S – ident: e_1_2_7_7_1 doi: 10.2337/diabetes.50.7.1612 – ident: e_1_2_7_38_1 doi: 10.1007/s00109-006-0077-x – ident: e_1_2_7_35_1 doi: 10.2337/diabetes.50.4.817 – ident: e_1_2_7_22_1 doi: 10.1073/pnas.1409229111 – ident: e_1_2_7_48_1 doi: 10.1152/ajpendo.00467.2009 – ident: e_1_2_7_11_1 doi: 10.2337/db06-S002 – ident: e_1_2_7_5_1 doi: 10.2337/diab.46.1.3 – ident: e_1_2_7_20_1 doi: 10.1172/JCI200422230 – ident: e_1_2_7_21_1 doi: 10.1016/j.bbrc.2006.02.177 – ident: e_1_2_7_30_1 doi: 10.2337/diabetes.51.10.2944 – ident: e_1_2_7_16_1 doi: 10.1172/JCI30565 – ident: e_1_2_7_28_1 doi: 10.1074/jbc.M212307200 – ident: e_1_2_7_36_1 doi: 10.1172/JCI31785 |
SSID | ssj0000388667 |
Score | 2.4851067 |
SecondaryResourceType | review_article |
Snippet | ABSTRACT
Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role... Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this... ABSTRACT Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1934 |
SubjectTerms | Animals Ceramide Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - etiology Diabetes Mellitus, Type 2 - metabolism Dietary intake Diglycerides Endoplasmic reticulum Fatty acids Fatty Acids - metabolism Gene regulation Glucose metabolism Humans Inflammation Insulin Insulin - metabolism Insulin receptor substrate 1 Insulin Resistance Kinases Lipid Metabolism Lipids Metabolites Mini Review Mitochondria Muscle, Skeletal - metabolism Obesity Obesity - complications Obesity - metabolism Oxidation-Reduction Oxidative stress Phosphorylation Risk factors Serine Signal Transduction Skeletal muscle Triglycerides - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwEB6hKxAN4k3gQAZR0ETEju0kJa_TcdJRIE66LvITIpbkdNntafmb_BJmnGy0Kw7R0EX2FI5nxvNNPPkG4IWXdQKuuaxUyGUMMrdVg1mKKbRN7Cmp2v30oz4-kyfn6nyn1RfVhE30wNPGvcKQ6IpQlBgXjawqbURUPEQXMFHQ0Tk6fTHm7SRT6Qwu61qn9rGCSubQofVMK5TKeHxH5V1c7gWjxNl_FdD8s15yF8emQHR0C27OCJK9nlZ-G66F_g5cP53vyO9C92lYBTZENn7DkILYmn3fjCjJVt1F50fW9QxBH6NWxMMXOum6kaTnonR2SQNrsgUaHaa-Acz0ntHX2l8_fgq2_V57D86O3n9-e5zPDRVyp4gCWBQi8Ea6RkVvDWK7utQ28qIIDmGILT2GNC68iA5xoA9BK-W8rYy1MZbEk3MfDvqhDw-BlYQ0fYxCOCVLo03kZXQVd6gb42WTwcvtzrZuZhunpherdsk6fNcmJWTwfBG9mCg2rhJ6Q-pZBIgVOw2grbSzrbT_spUMDrfKbWdXHVvM_wRiHhTP4NkyjU5GNyemD8OGZCRHKFU1KoMHky0sKyEYgDksz6Das5K9pe7P9N3XRORdI5pGQIV7lezp72_fnrz7kB4e_Y9teAw3BFXmpD8qD-FgfbkJTxBare3T5EW_AbuWIJc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkJcKt4ECjKIA5eIxLGdzQlRaFUqtUIVlXqLHD9KxJJsN7t3rvxNfgkzXm9gReEW2XPwY8bzeTz5BuCVFdMAXFNRSpcK70TalBXeUnSmmsCeErLdT07V0bk4vpAXMeA2xLTKzZkYDmrbG4qRv0GYztE1laV6O79KqWoUva7GEho3YQeP4KmcwM7-wemnszHKQlwnKpSR5ZQ6h4atIr1QSOexLaV55WLLKQXu_usA5995k3_i2eCQDu_AbkSS7N166-_CDdfdg1sn8a38PrRn_cyx3rPhK7oWxNjs22pASTZr560dWNsxBH-MShL3l3TitQNJx-R0tqCGJekEtfbr-gFMd5ZR1Pbn9x-cbeK2D-D88ODz-6M0FlZIjSQqYJ5xl1fCVNLbRiPGmxaq8XmWOYNwpCksuracW-4N4kHrnJLS2KbUTeN9QXw5D2HS9Z17DKwgxGm959xIUWilfV54U-Ymd15bUSXwerOytYms41T8YlaPtw_b1mETEng5is7XVBvXCe3T9owCxI4dGvrFZR2NrUYYZTKXFYiltECN0dxLHI9xeLlU3pgE9jabW0eTHerfCpbAi7EbjY1eUHTn-hXJiBwhVVnJBB6tdWEcCcEBvMvmCZRbWrI11O2erv0SCL2niKoRWOFaBX369-zr4w8fw8eT_8_gKdzmlHsT_pncg8lysXLPEDwtm-fRQn4B74kZZA priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1La9wwEMeHkELppaRvN2lRSw-9GGxZktf01FdIAymlNJCb0TM12dphvXvPNV-zn6Qz8oMsTaG3RR6D1tJYv5FH_wF448QigmsqSulTEbxITVlhlKIzZaJ6Ssx2P_mqjk7F8Zk824F301mYQR9i3nAjz4jva3JwbfqbTu4aytGiItZ36GgtlS_g4tu8wUIyJypWkOWUNYc3qVFZKGbyTHdvrUdRtv821vw7ZfImysa16HAP7o8Qyd4Po_4Adnz7EO6ejJ_JH0HzvVt61gXWX-CqgnjNfm16tGTL5rJxPWtahtzHqBpxd04vu6Yn6zEvna2oYU3TgVq7oXQA061jtGH7--qas2nL9jGcHn7-8fEoHWsqpFaSCjDPuM8rYSsZnNGId4tCmZBnmbdIIqZwuKrl3PFgEQWd90pK60ypjQmhIKmcJ7Dbdq1_Bqwg2HQhcG6lKLTSIS-CLXOb-6CdqBJ4Oz3Z2o6C41T3YlnPgYdr6jgICbyeTS8HlY3bjD7Q8MwGJIwdG7rVeT36WY0EZTOfFYhRWpSl0jxI7I_1GFeqYG0CB9Pg1qO39jWGgByxB80TeDVfRj-jjye69d2GbESONFVWMoGnw1yYe0IkgGFsnkC5NUu2urp9pW1-Ri3vBQI1MhU-qzif_v3v6-NPX-KP5_9vug_3OKXgxKOTB7C7Xm38C2SotXkZfeUPhfAX1g priority: 102 providerName: Wiley-Blackwell |
Title | Role of skeletal muscle lipids in the pathogenesis of insulin resistance of obesity and type 2 diabetes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjdi.13614 https://www.ncbi.nlm.nih.gov/pubmed/34132491 https://www.proquest.com/docview/2592293776 https://www.proquest.com/docview/2541782795 https://pubmed.ncbi.nlm.nih.gov/PMC8565406 https://doaj.org/article/066c0e03355a4776a2f51efce8996fcc |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqp6QbwJlJVBHLgEJY4TJweEKLQqlbaqKlbaW5T40UYsSdnsSnDjyt_klzDjTSIilguXKLLHih9j-xt78g3ASy1SB1x9IWPjC2uEX8oMrZQiSErHnuK83afnyelMnM3j-Q70MTa7Dmy3mnYUT2q2XLz-9vX7W5zwbwavHF2RtxaFs97DDSkh5Z52KN8tyFGaJi6WLCf_OSySdBxDo9IHsE9LOtoj4WiTclz-2wDo336Uf-Jbt0Gd3IHbHbJk7zaqcBd2TH0P9qfd3fl9qC6bhWGNZe1n3GqwuezLukVJtqhuKt2yqmYIBhmFKG6uaAWsWpLunNXZkhJWpCOU2mziCbCi1oxOcX_9-MlZf477AGYnx5_en_pdoAVfxUQNzANuwkyoLLa6LBDzpVFS2jAIjEJ4UkYa-yXkmluF-FAbk8Sx0qUsytLaiPhzHsJu3dTmMbCIEKi2lnMVi6hIChtGVslQhcYWWmQevOp7NlcdCzkFw1jkgzWiq9yNhwcvBtGbDfXGNqEjGp5BgNiyXUKzvMq7yZcjrFKBCSLEVoWQMim4jbE-yqCxmVilPDjsBzfvNTBHu5AjFkJxD54P2Tj56EalqE2zJhkRIsSSWezBo40uDDXpdckDOdKSUVXHOXV17Qi-U0TZCLSwr5w-_bv1-dmHj-7lyX9_5CkccHLTcb9XHsLuark2zxBnrcoJ3OLiAp9yLiewd3R8fnE5cWcWEze_fgOcBytC |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVgIuiDeGAgsCiYuFvX7FB4QobZW0TYSqVurNrPdRrKZ2iBMhblz5M_wofgkz6wdEFG69RetRtN6dxze7428AXqhwYIGrGyaRdkOjQzdPUsxShBfnlj3FVruPJ_HwONw7iU7W4Ef3LQyVVXY-0TpqVUk6I3-NMJ1jaEqS-O3ss0tdo-h2tWuh0ajFvv76BVO2-s1oG_f3Jee7O0fvh27bVcCVEfHgYravMXOXaWRULhDgDII4N77naYmxOA8U-nWfK24kgiGldRxFUuWJyHNjAiKLwf-9AhsIM1K0oo2tncmHw_5Uh7hVYtu2llOpHjqSuKUzsuVDqqCyMj9cCYK2V8BFAPfvOs0_8bMNgLs34UaLXNm7RtVuwZoub8PVcXs3fweKw2qqWWVYfYahDDE9O1_WKMmmxaxQNStKhmCTUQvk6pQ8bFGTdFsMz-Y0sCAdpNGq6VfARKkYnRL__Pads-6c-C4cX8qS34P1sir1A2ABIVxlDOcyCgMRC-MHRia-9LURKkwdeNWtbCZblnNqtjHN-mxHFZndBAee96KzhtrjIqEt2p5egNi47UA1P81a484QtklPewFiNxGihgpuIpyP1JjMxkZKBza7zc1aF1FnvxXagWf9YzRuurERpa6WJBP6COGSNHLgfqML_UwIfmDu7DuQrGjJylRXn5TFJ0sgPkAUj0AO18rq07_fPtvbHtkfD___Bk_h2vBofJAdjCb7j-A6p7of-73mJqwv5kv9GIHbIn_SWguDj5dtoL8A4b1WQQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKq4IN4YCiwIJC5W7fUrOSBESaOmpVFVUak3s95HsQh2iBMhblz5S_wcfgkzm7UhonDrLVqPovXuNzPf7I5nAJ6puG-Jqx9nifZjo2O_yAYYpYggLWz1FJvtfjRJ90_jg7PkbAN-tN_CUFplaxOtoVa1pDPyHaTpHF1TlqU7xqVFHA9Hr2affeogRTetbTuNFUQO9dcvGL41L8dD3OvnnI_23r3Z912HAV8mVBMXI3-NUbwcJEYVAslOP0oLEwaBluiXi0ihjQ-54kYiMVJap0kiVZGJojAmosIx-L9XYDNDr9jvwebu3uT4pDvhoTorqW1hyyltD41K6kob2VQiVVKKWRivOUTbN-Aisvt3zuafXNo6w9F1uOZYLHu9gt0N2NDVTdg6cvf0t6A8qaea1YY1H9GtIb9nn5YNSrJpOStVw8qKIfFk1A65PidrWzYk7RLj2ZwGFoRHGq1XvQuYqBSjE-Of375z1p4Z34bTS1nyO9Cr6krfAxYR21XGcC6TOBKpMGFkZBbKUBuh4oEHL9qVzaWreE6NN6Z5F_moMreb4MHTTnS2KvNxkdAubU8nQJW57UA9P8-doudI4WSggwh5nIgRrYKbBOcjNQa2qZHSg-12c3NnLpr8N7g9eNI9RkWn2xtR6XpJMnGIdC4bJB7cXWGhmwlREYyjQw-yNZSsTXX9SVV-sMXE-8joEb64VhZP_377_GA4tj_u__8NHsMWKmb-djw5fABXOaUA2U83t6G3mC_1Q-Rwi-KRUxYG7y9bP38BotlabQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+skeletal+muscle+lipids+in+the+pathogenesis+of+insulin+resistance+of+obesity+and+type%E2%80%892+diabetes&rft.jtitle=Journal+of+diabetes+investigation&rft.au=Gilbert%2C+Marc&rft.date=2021-11-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=2040-1116&rft.eissn=2040-1124&rft.volume=12&rft.issue=11&rft.spage=1934&rft.epage=1941&rft_id=info:doi/10.1111%2Fjdi.13614&rft_id=info%3Apmid%2F34132491&rft.externalDocID=PMC8565406 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-1116&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-1116&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-1116&client=summon |