Role of skeletal muscle lipids in the pathogenesis of insulin resistance of obesity and type 2 diabetes

ABSTRACT Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from f...

Full description

Saved in:
Bibliographic Details
Published inJournal of diabetes investigation Vol. 12; no. 11; pp. 1934 - 1941
Main Author Gilbert, Marc
Format Journal Article
LanguageEnglish
Published Japan John Wiley & Sons, Inc 01.11.2021
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text
ISSN2040-1116
2040-1124
2040-1124
DOI10.1111/jdi.13614

Cover

Loading…
Abstract ABSTRACT Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from free fatty acid (FA) to carbohydrate substrates; and (ii) an ectopic accumulation of triglyceride in skeletal muscle, generating a cellular “lipotoxicity”, but triglyceride per se, does not contribute to insulin resistance (“athlete’s paradox”). A large body of evidence supports the idea that a decreased mitochondrial capacity to oxidize FA leads to an accretion of intracellular triglyceride and an accumulation of acyl‐CoAs, which are used to synthesize diacylglycerol and ceramide. These lipid derivatives activate serine kinases, leading to increase of insulin receptor substrate 1 serine phosphorylation, which impairs insulin signaling. A second model proposes that insulin resistance arises from an excessive mitochondrial FA oxidation. Studies have shown that the type of FA, unsaturated or saturated, is critical in the development of insulin resistance. It should be also stressed that FA oversupply activates inflammatory signals, induces endoplasmic reticulum stress, increases mitochondrial oxidative stress and influences the regulation of genes that contributes to impaired glucose metabolism. These cellular insults are thought to engage stress‐sensitive serine kinases disrupting insulin signaling. In conclusion, reduced dietary lipid intake in association with physical exercise could be a therapeutic option to improve insulin sensitivity. Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. The insulin resistance is related to impaired mitochondrial oxidation of fatty acids, resulting to an accumulation of lipid derivatives, which in turn decrease insulin sensitivity. However, excessive mitochondrial fatty acid oxidation might also lead to impaired insulin effect.
AbstractList ABSTRACT Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from free fatty acid (FA) to carbohydrate substrates; and (ii) an ectopic accumulation of triglyceride in skeletal muscle, generating a cellular “lipotoxicity”, but triglyceride per se, does not contribute to insulin resistance (“athlete’s paradox”). A large body of evidence supports the idea that a decreased mitochondrial capacity to oxidize FA leads to an accretion of intracellular triglyceride and an accumulation of acyl‐CoAs, which are used to synthesize diacylglycerol and ceramide. These lipid derivatives activate serine kinases, leading to increase of insulin receptor substrate 1 serine phosphorylation, which impairs insulin signaling. A second model proposes that insulin resistance arises from an excessive mitochondrial FA oxidation. Studies have shown that the type of FA, unsaturated or saturated, is critical in the development of insulin resistance. It should be also stressed that FA oversupply activates inflammatory signals, induces endoplasmic reticulum stress, increases mitochondrial oxidative stress and influences the regulation of genes that contributes to impaired glucose metabolism. These cellular insults are thought to engage stress‐sensitive serine kinases disrupting insulin signaling. In conclusion, reduced dietary lipid intake in association with physical exercise could be a therapeutic option to improve insulin sensitivity.
ABSTRACT Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from free fatty acid (FA) to carbohydrate substrates; and (ii) an ectopic accumulation of triglyceride in skeletal muscle, generating a cellular “lipotoxicity”, but triglyceride per se, does not contribute to insulin resistance (“athlete’s paradox”). A large body of evidence supports the idea that a decreased mitochondrial capacity to oxidize FA leads to an accretion of intracellular triglyceride and an accumulation of acyl‐CoAs, which are used to synthesize diacylglycerol and ceramide. These lipid derivatives activate serine kinases, leading to increase of insulin receptor substrate 1 serine phosphorylation, which impairs insulin signaling. A second model proposes that insulin resistance arises from an excessive mitochondrial FA oxidation. Studies have shown that the type of FA, unsaturated or saturated, is critical in the development of insulin resistance. It should be also stressed that FA oversupply activates inflammatory signals, induces endoplasmic reticulum stress, increases mitochondrial oxidative stress and influences the regulation of genes that contributes to impaired glucose metabolism. These cellular insults are thought to engage stress‐sensitive serine kinases disrupting insulin signaling. In conclusion, reduced dietary lipid intake in association with physical exercise could be a therapeutic option to improve insulin sensitivity. Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. The insulin resistance is related to impaired mitochondrial oxidation of fatty acids, resulting to an accumulation of lipid derivatives, which in turn decrease insulin sensitivity. However, excessive mitochondrial fatty acid oxidation might also lead to impaired insulin effect.
Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from free fatty acid (FA) to carbohydrate substrates; and (ii) an ectopic accumulation of triglyceride in skeletal muscle, generating a cellular “lipotoxicity”, but triglyceride per se, does not contribute to insulin resistance (“athlete’s paradox”). A large body of evidence supports the idea that a decreased mitochondrial capacity to oxidize FA leads to an accretion of intracellular triglyceride and an accumulation of acyl‐CoAs, which are used to synthesize diacylglycerol and ceramide. These lipid derivatives activate serine kinases, leading to increase of insulin receptor substrate 1 serine phosphorylation, which impairs insulin signaling. A second model proposes that insulin resistance arises from an excessive mitochondrial FA oxidation. Studies have shown that the type of FA, unsaturated or saturated, is critical in the development of insulin resistance. It should be also stressed that FA oversupply activates inflammatory signals, induces endoplasmic reticulum stress, increases mitochondrial oxidative stress and influences the regulation of genes that contributes to impaired glucose metabolism. These cellular insults are thought to engage stress‐sensitive serine kinases disrupting insulin signaling. In conclusion, reduced dietary lipid intake in association with physical exercise could be a therapeutic option to improve insulin sensitivity.
Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from free fatty acid (FA) to carbohydrate substrates; and (ii) an ectopic accumulation of triglyceride in skeletal muscle, generating a cellular “lipotoxicity”, but triglyceride per se, does not contribute to insulin resistance (“athlete’s paradox”). A large body of evidence supports the idea that a decreased mitochondrial capacity to oxidize FA leads to an accretion of intracellular triglyceride and an accumulation of acyl‐CoAs, which are used to synthesize diacylglycerol and ceramide. These lipid derivatives activate serine kinases, leading to increase of insulin receptor substrate 1 serine phosphorylation, which impairs insulin signaling. A second model proposes that insulin resistance arises from an excessive mitochondrial FA oxidation. Studies have shown that the type of FA, unsaturated or saturated, is critical in the development of insulin resistance. It should be also stressed that FA oversupply activates inflammatory signals, induces endoplasmic reticulum stress, increases mitochondrial oxidative stress and influences the regulation of genes that contributes to impaired glucose metabolism. These cellular insults are thought to engage stress‐sensitive serine kinases disrupting insulin signaling. In conclusion, reduced dietary lipid intake in association with physical exercise could be a therapeutic option to improve insulin sensitivity. Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. The insulin resistance is related to impaired mitochondrial oxidation of fatty acids, resulting to an accumulation of lipid derivatives, which in turn decrease insulin sensitivity. However, excessive mitochondrial fatty acid oxidation might also lead to impaired insulin effect.
Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from free fatty acid (FA) to carbohydrate substrates; and (ii) an ectopic accumulation of triglyceride in skeletal muscle, generating a cellular "lipotoxicity", but triglyceride per se, does not contribute to insulin resistance ("athlete's paradox"). A large body of evidence supports the idea that a decreased mitochondrial capacity to oxidize FA leads to an accretion of intracellular triglyceride and an accumulation of acyl-CoAs, which are used to synthesize diacylglycerol and ceramide. These lipid derivatives activate serine kinases, leading to increase of insulin receptor substrate 1 serine phosphorylation, which impairs insulin signaling. A second model proposes that insulin resistance arises from an excessive mitochondrial FA oxidation. Studies have shown that the type of FA, unsaturated or saturated, is critical in the development of insulin resistance. It should be also stressed that FA oversupply activates inflammatory signals, induces endoplasmic reticulum stress, increases mitochondrial oxidative stress and influences the regulation of genes that contributes to impaired glucose metabolism. These cellular insults are thought to engage stress-sensitive serine kinases disrupting insulin signaling. In conclusion, reduced dietary lipid intake in association with physical exercise could be a therapeutic option to improve insulin sensitivity.Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this phenomenon. Insulin resistance is associated with: (i) a metabolic inflexibility characterized by a reduced impaired switching from free fatty acid (FA) to carbohydrate substrates; and (ii) an ectopic accumulation of triglyceride in skeletal muscle, generating a cellular "lipotoxicity", but triglyceride per se, does not contribute to insulin resistance ("athlete's paradox"). A large body of evidence supports the idea that a decreased mitochondrial capacity to oxidize FA leads to an accretion of intracellular triglyceride and an accumulation of acyl-CoAs, which are used to synthesize diacylglycerol and ceramide. These lipid derivatives activate serine kinases, leading to increase of insulin receptor substrate 1 serine phosphorylation, which impairs insulin signaling. A second model proposes that insulin resistance arises from an excessive mitochondrial FA oxidation. Studies have shown that the type of FA, unsaturated or saturated, is critical in the development of insulin resistance. It should be also stressed that FA oversupply activates inflammatory signals, induces endoplasmic reticulum stress, increases mitochondrial oxidative stress and influences the regulation of genes that contributes to impaired glucose metabolism. These cellular insults are thought to engage stress-sensitive serine kinases disrupting insulin signaling. In conclusion, reduced dietary lipid intake in association with physical exercise could be a therapeutic option to improve insulin sensitivity.
Author Gilbert, Marc
AuthorAffiliation 1 CNRS UMR 8251 Bât. Buffon Paris Diderot University Paris France
AuthorAffiliation_xml – name: 1 CNRS UMR 8251 Bât. Buffon Paris Diderot University Paris France
Author_xml – sequence: 1
  givenname: Marc
  orcidid: 0000-0001-6553-727X
  surname: Gilbert
  fullname: Gilbert, Marc
  email: marc.gilb12@gmail.com
  organization: Paris Diderot University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34132491$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9vFCEUxyemxtbag_-AmcSLHrYFBpjhYmJaf6xpYmL0TBh47LKyMA6MZm-9-m_6l8ju1o1tou8CPD7vm--D97g6CjFAVT3F6ByXuFgZd44bjumD6oQgimYYE3p02GN-XJ2ltEIlmq7jvH1UHTcUN4QKfFK5T9FDHW2dvoKHrHy9npIuKe8GZ1LtQp2XUA8qL-MCAiSXtrQLafLlbtwmsgp6pxH7csybWgVT580Av25-kto41UOG9KR6aJVPcHa7nlZf3r75fPl-dv3x3fzy9fVMMyHojCACWFAtmDW9woJ0De8tRgh0R3nfmOIdE0OsxhwbAM6YNn2r-t7ahhT6tJrvdU1UKzmMbq3GjYzKyV0ijgupxuxKjxJxrhGgpmFM0bbliliGwWrohOBW66L1aq81TP0ajIaQR-XviN69CW4pF_G77BhnFPEi8OJWYIzfJkhZrl3S4L0KEKckCaO47UgrWEGf30NXcRpDeapCCUJEUxwW6tnfjg5W_vxoAV7uAT3GlEawBwQjuR0YWQZG7gamsBf3WO2yyi5um3H-fxU_nIfNv6Xlh6v5vuI3ZujSRg
CitedBy_id crossref_primary_10_1016_j_bbadis_2024_167552
crossref_primary_10_1016_j_heliyon_2023_e21305
crossref_primary_10_1016_j_gene_2024_148216
crossref_primary_10_1080_10799893_2025_2475441
crossref_primary_10_1134_S0022093022050271
crossref_primary_10_1097_MD_0000000000038855
crossref_primary_10_1016_j_lfs_2022_120467
crossref_primary_10_1002_jcp_31419
crossref_primary_10_1113_JP284721
crossref_primary_10_1186_s40001_023_01424_9
crossref_primary_10_3389_fphys_2024_1492405
crossref_primary_10_3390_ijms25010431
crossref_primary_10_3892_wasj_2023_199
crossref_primary_10_1507_endocrj_EJ23_0151
crossref_primary_10_3390_cimb44090297
crossref_primary_10_1002_oby_23865
crossref_primary_10_1210_clinem_dgae881
crossref_primary_10_3389_fphys_2022_1113860
crossref_primary_10_1186_s12906_023_04320_1
crossref_primary_10_1016_j_cellsig_2023_110794
crossref_primary_10_3390_ijms24097898
crossref_primary_10_1016_j_isci_2024_109032
crossref_primary_10_1021_acsomega_4c04668
crossref_primary_10_2337_db22_0315
crossref_primary_10_1186_s13287_023_03537_8
crossref_primary_10_3389_fendo_2023_1308373
crossref_primary_10_3390_ijerph182413141
crossref_primary_10_3390_biomedicines12010211
crossref_primary_10_62347_NEAS4467
crossref_primary_10_1007_s12602_023_10198_9
crossref_primary_10_1186_s12951_025_03225_0
crossref_primary_10_1016_j_mmm_2022_07_001
crossref_primary_10_3390_metabo15030167
crossref_primary_10_1093_toxres_tfae197
crossref_primary_10_2337_db23_0463
crossref_primary_10_1016_j_abb_2025_110325
crossref_primary_10_3390_antiox13030373
crossref_primary_10_3390_biom13050779
crossref_primary_10_1136_bmjopen_2023_075964
crossref_primary_10_3390_ani14071057
crossref_primary_10_14814_phy2_15898
crossref_primary_10_1016_j_heliyon_2023_e13215
crossref_primary_10_1007_s00592_024_02440_9
crossref_primary_10_1016_j_redox_2025_103541
crossref_primary_10_1002_jcsm_13255
crossref_primary_10_70749_ijbr_v3i1_547
Cites_doi 10.3390/cells8030249
10.1016/j.cmet.2012.04.002
10.1210/en.2010-0250
10.1152/ajpendo.1999.277.6.E1130
10.2337/diabetes.48.6.1270
10.1016/j.bbrc.2011.11.135
10.1016/S0140-6736(63)91500-9
10.1074/jbc.274.36.25308
10.1172/JCI115399
10.1016/j.cell.2007.12.035
10.1007/s001250051123
10.2337/diabetes.51.7.2005
10.2337/diab.40.2.280
10.1126/science.1128294
10.1016/j.cmet.2007.01.002
10.2337/diab.46.2.169
10.2337/diab.37.6.667
10.1007/s00125-006-0140-8
10.1074/jbc.M507621200
10.1038/ncomms2851
10.1152/ajpendo.2000.279.5.E1039
10.1056/NEJMoa031314
10.1126/science.1103160
10.2337/diabetes.49.8.1353
10.1152/ajpendo.00093.2009
10.1073/pnas.0706794104
10.1016/j.cmet.2007.10.013
10.1172/JCI118160
10.1128/MCB.22.4.1016-1026.2002
10.1152/ajpendo.2000.279.3.E554
10.1172/JCI25151
10.1172/JCI37048
10.1371/journal.pone.0065061
10.1046/j.1365-201X.2003.01161.x
10.2337/diabetes.54.11.3148
10.1093/ajcn/83.2.461S
10.2337/diabetes.50.7.1612
10.1007/s00109-006-0077-x
10.2337/diabetes.50.4.817
10.1073/pnas.1409229111
10.1152/ajpendo.00467.2009
10.2337/db06-S002
10.2337/diab.46.1.3
10.1172/JCI200422230
10.1016/j.bbrc.2006.02.177
10.2337/diabetes.51.10.2944
10.1172/JCI30565
10.1074/jbc.M212307200
10.1172/JCI31785
ContentType Journal Article
Copyright 2021 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.
2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.
– notice: 2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7TM
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
H94
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1111/jdi.13614
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
AIDS and Cancer Research Abstracts
Immunology Abstracts
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Muscle lipids and insulin resistance
EISSN 2040-1124
EndPage 1941
ExternalDocumentID oai_doaj_org_article_066c0e03355a4776a2f51efce8996fcc
PMC8565406
34132491
10_1111_jdi_13614
JDI13614
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
05W
0R~
1OC
24P
31~
4.4
50Y
5DZ
5VS
7X7
8-0
8-1
8FI
8FJ
AAHHS
AANHP
AAZKR
ABDBF
ABJNI
ABUWG
ACBWZ
ACCFJ
ACCMX
ACGFO
ACPRK
ACRPL
ACUHS
ACXQS
ACYXJ
ADBBV
ADKYN
ADNMO
ADPDF
ADRAZ
ADZMN
AEEZP
AEGXH
AENEX
AEQDE
AFKRA
AHMBA
AIAGR
AIWBW
AJBDE
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
ASPBG
AVUZU
AVWKF
AZFZN
BAWUL
BCNDV
BDRZF
BENPR
BPHCQ
BVXVI
CAG
CCPQU
COF
DIK
EBD
EBS
EJD
FYUFA
GODZA
GROUPED_DOAJ
GX1
HMCUK
HYE
HZ~
KQ8
LH4
LW6
M48
MY.
O9-
OK1
OVD
PIMPY
PQQKQ
PROAC
RPM
RX1
SUPJJ
TEORI
UKHRP
WIN
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7TM
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5994-202e194c95fdba192836bf100ec846b3d34112d2fc161dee655cdb7abbff32283
IEDL.DBID M48
ISSN 2040-1116
2040-1124
IngestDate Wed Aug 27 01:02:58 EDT 2025
Thu Aug 21 18:13:17 EDT 2025
Tue Aug 05 11:34:43 EDT 2025
Mon Jul 14 09:53:50 EDT 2025
Wed Feb 19 02:27:54 EST 2025
Tue Jul 01 02:48:47 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Wed Jan 22 16:28:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Fatty acids
Mitochondria
Skeletal muscle
Language English
License Attribution-NonCommercial-NoDerivs
2021 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5994-202e194c95fdba192836bf100ec846b3d34112d2fc161dee655cdb7abbff32283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6553-727X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/jdi.13614
PMID 34132491
PQID 2592293776
PQPubID 1006415
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_066c0e03355a4776a2f51efce8996fcc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8565406
proquest_miscellaneous_2541782795
proquest_journals_2592293776
pubmed_primary_34132491
crossref_primary_10_1111_jdi_13614
crossref_citationtrail_10_1111_jdi_13614
wiley_primary_10_1111_jdi_13614_JDI13614
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2021
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Richmond
– name: Hoboken
PublicationTitle Journal of diabetes investigation
PublicationTitleAlternate J Diabetes Investig
PublicationYear 2021
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2019; 8
1995; 96
2007; 104
2001; 50
2013; 4
2000; 49
2000; 279
2006; 55
2002; 51
1988; 37
2005; 115
1997; 46
1999; 48
2009; 297
2008; 7
1999; 42
2012; 15
2014; 111
2009; 119
2004; 306
2006; 313
2013; 8
2003; 278
2003; 178
1963; 1
2005; 280
2004; 114
2006; 83
2007; 117
2006; 84
1991; 88
2006; 49
2004; 350
1991; 40
2002; 22
1999; 274
2010; 298
2005; 54
2010; 151
2007; 5
1999; 276
1999; 277
2008; 132
2006; 343
2012; 417
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Ruderman NB (e_1_2_7_12_1) 1999; 276
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 42
  start-page: 113
  year: 1999
  end-page: 116
  article-title: Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study
  publication-title: Diabetologia
– volume: 111
  start-page: 9597
  year: 2014
  end-page: 9602
  article-title: Role of diacylglycerol activation of PKCθ in lipid‐induced muscle insulin resistance in humans
  publication-title: Proc Natl Acad Sci U S A
– volume: 278
  start-page: 10297
  year: 2003
  end-page: 10303
  article-title: A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids
  publication-title: J Biol Chem
– volume: 276
  start-page: E1
  year: 1999
  end-page: E18
  article-title: Malonyl‐CoA, fuel sensing, and insulin resistance
  publication-title: Am J Physiol
– volume: 119
  start-page: 573
  year: 2009
  end-page: 581
  article-title: Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans
  publication-title: J Clin Investig
– volume: 313
  start-page: 1137
  year: 2006
  end-page: 1140
  article-title: Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes
  publication-title: Science
– volume: 15
  start-page: 585
  year: 2012
  end-page: 594
  article-title: A ceramide‐centric view of insulin resistance
  publication-title: Cell Metab
– volume: 277
  start-page: E1130
  year: 1999
  end-page: E1141
  article-title: Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss
  publication-title: Am J Physiol‐Endocrinol Metab
– volume: 115
  start-page: 3587
  year: 2005
  end-page: 3593
  article-title: Reduced mitochondrial density and increased IRS‐1 serine phosphorylation in muscle of insulin‐resistant offspring of type 2 diabetic parents
  publication-title: J Clin Investig
– volume: 7
  start-page: 45
  year: 2008
  end-page: 56
  article-title: Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance
  publication-title: Cell Metab
– volume: 88
  start-page: 960
  year: 1991
  end-page: 966
  article-title: Effects of fat on insulin‐stimulated carbohydrate metabolism in normal men
  publication-title: J Clin Investig
– volume: 84
  start-page: 747
  year: 2006
  end-page: 752
  article-title: Short‐term activation of peroxysome proliferator‐activated receptor β/δ increases fatty acid oxidation but does not restore insulin action in muscle cells from type 2 diabetic patients
  publication-title: J Mol Med
– volume: 49
  start-page: 990
  year: 2006
  end-page: 999
  article-title: Activation of liver X receptors promotes lipid accumulation but does not alter insulin action in human skeletal muscle cells
  publication-title: Diabetologia
– volume: 114
  start-page: 823
  year: 2004
  end-page: 827
  article-title: PKC‐θ knockout mice are protected from fat‐induced insulin resistance
  publication-title: J Clin Investig
– volume: 22
  start-page: 1016
  year: 2002
  end-page: 1026
  article-title: Molecular mechanism of insulin‐induced degradation of insulin receptor substrate 1
  publication-title: Mol Cell Biol
– volume: 54
  start-page: 3148
  year: 2005
  end-page: 3153
  article-title: Effect of a sustained reduction in plasma free fatty acid concentration on intramuscular long‐chain fatty Acyl‐CoAs and insulin action in type 2 diabetic patients
  publication-title: Diabetes
– volume: 297
  start-page: E578
  year: 2009
  end-page: E591
  article-title: The Randle cycle revisited: a new head for an old hat
  publication-title: Am J Physiol‐Endocrinol Metab
– volume: 117
  start-page: 1679
  year: 2007
  end-page: 1689
  article-title: Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat‐induced insulin resistance
  publication-title: J Clin Investig
– volume: 40
  start-page: 280
  year: 1991
  end-page: 289
  article-title: Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega‐3 fatty acids in muscle phospholipid
  publication-title: Diabetes
– volume: 132
  start-page: 375
  year: 2008
  end-page: 386
  article-title: Downregulation of diacylglycerol kinase delta contributes to hyperglycemia‐induced insulin resistance
  publication-title: Cell
– volume: 37
  start-page: 667
  year: 1988
  end-page: 687
  article-title: The triumvirate: β‐cell, muscle, liver: a collusion responsible for NIDDM
  publication-title: Diabetes
– volume: 46
  start-page: 3
  year: 1997
  end-page: 10
  article-title: Role of fatty acids in the pathogenesis of insulin resistance and NIDDM
  publication-title: Diabetes
– volume: 50
  start-page: 1612
  year: 2001
  end-page: 1617
  article-title: Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects
  publication-title: Diabetes
– volume: 83
  start-page: 461S
  year: 2006
  end-page: S465
  article-title: Obesity and the role of adipose tissue in inflammation and metabolism
  publication-title: Am J Clin Nutr
– volume: 8
  year: 2013
  article-title: Toll‐like receptor 4 knockout mice are protected against endoplasmic reticulum stress induced by a high‐fat diet
  publication-title: PLoS One
– volume: 1
  start-page: 785
  year: 1963
  end-page: 789
  article-title: The glucose fatty‐acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus
  publication-title: Lancet
– volume: 50
  start-page: 817
  year: 2001
  end-page: 823
  article-title: Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity
  publication-title: Diabetes
– volume: 117
  start-page: 3463
  year: 2007
  end-page: 3474
  article-title: Abnormal glucose homeostasis in skeletal muscle‐specific PGC‐1alpha knockout mice reveals skeletal muscle‐pancreatic beta cell crosstalk
  publication-title: J Clin Investig
– volume: 55
  start-page: S9
  year: 2006
  article-title: Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction
  publication-title: Diabetes
– volume: 8
  start-page: 249
  year: 2019
  article-title: Skeletal muscle lipid droplets and the Athlete's paradox
  publication-title: Cells
– volume: 274
  start-page: 25308
  year: 1999
  end-page: 25316
  article-title: Insulin activates protein kinases C‐ζ and C‐λ by an autophosphorylation‐dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes
  publication-title: J Biol Chem
– volume: 343
  start-page: 361
  year: 2006
  end-page: 368
  article-title: PKCθ is a key player in the development of insulin resistance
  publication-title: Biochem Biophys Res Comm
– volume: 298
  start-page: E565
  year: 2010
  end-page: E576
  article-title: Mammalian Tribbles homolog 3 impairs insulin action in skeletal muscle: role in glucose‐induced insulin resistance
  publication-title: Am J Physiol Endocrinol Metab
– volume: 49
  start-page: 1353
  year: 2000
  end-page: 1358
  article-title: Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity
  publication-title: Diabetes
– volume: 280
  start-page: 33588
  year: 2005
  end-page: 33598
  article-title: Peroxisome proliferator‐activated receptor‐gamma co‐activator 1alpha‐mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid‐induced mitochondrial inefficiency
  publication-title: J Biol Chem
– volume: 51
  start-page: 2005
  year: 2002
  end-page: 2011
  article-title: Lipid‐induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IκB‐α
  publication-title: Diabetes
– volume: 151
  start-page: 4187
  year: 2010
  end-page: 4196
  article-title: Saturated‐ and n‐6 polyunsaturated‐fat diets each induce ceramide accumulation in mouse skeletal muscle: reversal and improvement of glucose tolerance by lipid metabolism inhibitors
  publication-title: Endocrinology
– volume: 5
  start-page: 167
  year: 2007
  end-page: 179
  article-title: Inhibition of ceramide synthesis ameliorates glucocorticoid‐, saturated‐fat‐, and obesity‐induced insulin resistance
  publication-title: Cell Metab
– volume: 96
  start-page: 1261
  year: 1995
  end-page: 1268
  article-title: Effects of fat on glucose uptake and utilization in patients with non‐insulin‐dependent diabetes
  publication-title: J Clin Investig
– volume: 104
  start-page: 16480
  year: 2007
  end-page: 16485
  article-title: Continuous fat oxidation in acetyl‐CoA carboxylase 2 knockout mice increases total energy expenditure, reduces fat mass, and improves insulin sensitivity
  publication-title: Proc Natl Acad Sci U S A
– volume: 4
  start-page: 1871
  year: 2013
  article-title: Tribbles 3 mediates endoplasmic reticulum stress‐induced insulin resistance in skeletal muscle
  publication-title: Nat Commun
– volume: 350
  start-page: 664
  year: 2004
  end-page: 671
  article-title: Impaired mitochondrial activity in the insulin‐resistant offspring of patients with type 2 diabetes
  publication-title: N Engl J Med
– volume: 178
  start-page: 425
  year: 2003
  end-page: 434
  article-title: Peroxisome proliferator‐activated receptors (PPARS): regulators of gene expression in heart and skeletal muscle
  publication-title: Acta Physiol Scand
– volume: 279
  start-page: E1039
  year: 2000
  end-page: E1044
  article-title: Lipid oxidation is reduced in obese human skeletal muscle
  publication-title: Am J Physiol‐Endocrinol Metab
– volume: 51
  start-page: 2944
  year: 2002
  end-page: 2950
  article-title: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes
  publication-title: Diabetes
– volume: 306
  start-page: 457
  year: 2004
  article-title: Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes
  publication-title: Science
– volume: 417
  start-page: 439
  year: 2012
  end-page: 445
  article-title: Reduction of endoplasmic reticulum stress using chemical chaperones or Grp78 overexpression does not protect muscle cells from palmitate‐induced insulin resistance
  publication-title: Biochem Biophys Res Commun
– volume: 48
  start-page: 1270
  year: 1999
  end-page: 1274
  article-title: Free fatty acid‐induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade
  publication-title: Diabetes
– volume: 279
  start-page: E554
  year: 2000
  end-page: E560
  article-title: Long‐chain acyl‐CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle
  publication-title: Am J Physiol‐Endocrinol Metab
– volume: 46
  start-page: 169
  year: 1997
  end-page: 178
  article-title: Alterations in the expression and cellular localization of protein kinase C Isozymes ɛ and θ are associated with insulin resistance in skeletal muscle of the high‐fat–fed rat
  publication-title: Diabetes
– ident: e_1_2_7_13_1
  doi: 10.3390/cells8030249
– ident: e_1_2_7_29_1
  doi: 10.1016/j.cmet.2012.04.002
– ident: e_1_2_7_26_1
  doi: 10.1210/en.2010-0250
– ident: e_1_2_7_33_1
  doi: 10.1152/ajpendo.1999.277.6.E1130
– ident: e_1_2_7_19_1
  doi: 10.2337/diabetes.48.6.1270
– ident: e_1_2_7_47_1
  doi: 10.1016/j.bbrc.2011.11.135
– ident: e_1_2_7_4_1
  doi: 10.1016/S0140-6736(63)91500-9
– ident: e_1_2_7_24_1
  doi: 10.1074/jbc.274.36.25308
– ident: e_1_2_7_10_1
  doi: 10.1172/JCI115399
– ident: e_1_2_7_17_1
  doi: 10.1016/j.cell.2007.12.035
– ident: e_1_2_7_3_1
  doi: 10.1007/s001250051123
– ident: e_1_2_7_15_1
  doi: 10.2337/diabetes.51.7.2005
– ident: e_1_2_7_8_1
  doi: 10.2337/diab.40.2.280
– volume: 276
  start-page: E1
  year: 1999
  ident: e_1_2_7_12_1
  article-title: Malonyl‐CoA, fuel sensing, and insulin resistance
  publication-title: Am J Physiol
– ident: e_1_2_7_46_1
  doi: 10.1126/science.1128294
– ident: e_1_2_7_27_1
  doi: 10.1016/j.cmet.2007.01.002
– ident: e_1_2_7_18_1
  doi: 10.2337/diab.46.2.169
– ident: e_1_2_7_2_1
  doi: 10.2337/diab.37.6.667
– ident: e_1_2_7_14_1
  doi: 10.1007/s00125-006-0140-8
– ident: e_1_2_7_39_1
  doi: 10.1074/jbc.M507621200
– ident: e_1_2_7_49_1
  doi: 10.1038/ncomms2851
– ident: e_1_2_7_31_1
  doi: 10.1152/ajpendo.2000.279.5.E1039
– ident: e_1_2_7_37_1
  doi: 10.1056/NEJMoa031314
– ident: e_1_2_7_45_1
  doi: 10.1126/science.1103160
– ident: e_1_2_7_23_1
  doi: 10.2337/diabetes.49.8.1353
– ident: e_1_2_7_42_1
  doi: 10.1152/ajpendo.00093.2009
– ident: e_1_2_7_32_1
  doi: 10.1073/pnas.0706794104
– ident: e_1_2_7_41_1
  doi: 10.1016/j.cmet.2007.10.013
– ident: e_1_2_7_6_1
  doi: 10.1172/JCI118160
– ident: e_1_2_7_44_1
  doi: 10.1128/MCB.22.4.1016-1026.2002
– ident: e_1_2_7_25_1
  doi: 10.1152/ajpendo.2000.279.3.E554
– ident: e_1_2_7_34_1
  doi: 10.1172/JCI25151
– ident: e_1_2_7_43_1
  doi: 10.1172/JCI37048
– ident: e_1_2_7_51_1
  doi: 10.1371/journal.pone.0065061
– ident: e_1_2_7_40_1
  doi: 10.1046/j.1365-201X.2003.01161.x
– ident: e_1_2_7_9_1
  doi: 10.2337/diabetes.54.11.3148
– ident: e_1_2_7_50_1
  doi: 10.1093/ajcn/83.2.461S
– ident: e_1_2_7_7_1
  doi: 10.2337/diabetes.50.7.1612
– ident: e_1_2_7_38_1
  doi: 10.1007/s00109-006-0077-x
– ident: e_1_2_7_35_1
  doi: 10.2337/diabetes.50.4.817
– ident: e_1_2_7_22_1
  doi: 10.1073/pnas.1409229111
– ident: e_1_2_7_48_1
  doi: 10.1152/ajpendo.00467.2009
– ident: e_1_2_7_11_1
  doi: 10.2337/db06-S002
– ident: e_1_2_7_5_1
  doi: 10.2337/diab.46.1.3
– ident: e_1_2_7_20_1
  doi: 10.1172/JCI200422230
– ident: e_1_2_7_21_1
  doi: 10.1016/j.bbrc.2006.02.177
– ident: e_1_2_7_30_1
  doi: 10.2337/diabetes.51.10.2944
– ident: e_1_2_7_16_1
  doi: 10.1172/JCI30565
– ident: e_1_2_7_28_1
  doi: 10.1074/jbc.M212307200
– ident: e_1_2_7_36_1
  doi: 10.1172/JCI31785
SSID ssj0000388667
Score 2.4851067
SecondaryResourceType review_article
Snippet ABSTRACT Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role...
Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role in this...
ABSTRACT Obesity predisposes individuals to the development of insulin resistance, which is a risk factor for type 2 diabetes, and muscle plays a central role...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1934
SubjectTerms Animals
Ceramide
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - etiology
Diabetes Mellitus, Type 2 - metabolism
Dietary intake
Diglycerides
Endoplasmic reticulum
Fatty acids
Fatty Acids - metabolism
Gene regulation
Glucose metabolism
Humans
Inflammation
Insulin
Insulin - metabolism
Insulin receptor substrate 1
Insulin Resistance
Kinases
Lipid Metabolism
Lipids
Metabolites
Mini Review
Mitochondria
Muscle, Skeletal - metabolism
Obesity
Obesity - complications
Obesity - metabolism
Oxidation-Reduction
Oxidative stress
Phosphorylation
Risk factors
Serine
Signal Transduction
Skeletal muscle
Triglycerides - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07j9QwEB6hKxAN4k3gQAZR0ETEju0kJa_TcdJRIE66LvITIpbkdNntafmb_BJmnGy0Kw7R0EX2FI5nxvNNPPkG4IWXdQKuuaxUyGUMMrdVg1mKKbRN7Cmp2v30oz4-kyfn6nyn1RfVhE30wNPGvcKQ6IpQlBgXjawqbURUPEQXMFHQ0Tk6fTHm7SRT6Qwu61qn9rGCSubQofVMK5TKeHxH5V1c7gWjxNl_FdD8s15yF8emQHR0C27OCJK9nlZ-G66F_g5cP53vyO9C92lYBTZENn7DkILYmn3fjCjJVt1F50fW9QxBH6NWxMMXOum6kaTnonR2SQNrsgUaHaa-Acz0ntHX2l8_fgq2_V57D86O3n9-e5zPDRVyp4gCWBQi8Ea6RkVvDWK7utQ28qIIDmGILT2GNC68iA5xoA9BK-W8rYy1MZbEk3MfDvqhDw-BlYQ0fYxCOCVLo03kZXQVd6gb42WTwcvtzrZuZhunpherdsk6fNcmJWTwfBG9mCg2rhJ6Q-pZBIgVOw2grbSzrbT_spUMDrfKbWdXHVvM_wRiHhTP4NkyjU5GNyemD8OGZCRHKFU1KoMHky0sKyEYgDksz6Das5K9pe7P9N3XRORdI5pGQIV7lezp72_fnrz7kB4e_Y9teAw3BFXmpD8qD-FgfbkJTxBare3T5EW_AbuWIJc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVkJcKt4ECjKIA5eIxLGdzQlRaFUqtUIVlXqLHD9KxJJsN7t3rvxNfgkzXm9gReEW2XPwY8bzeTz5BuCVFdMAXFNRSpcK70TalBXeUnSmmsCeErLdT07V0bk4vpAXMeA2xLTKzZkYDmrbG4qRv0GYztE1laV6O79KqWoUva7GEho3YQeP4KmcwM7-wemnszHKQlwnKpSR5ZQ6h4atIr1QSOexLaV55WLLKQXu_usA5995k3_i2eCQDu_AbkSS7N166-_CDdfdg1sn8a38PrRn_cyx3rPhK7oWxNjs22pASTZr560dWNsxBH-MShL3l3TitQNJx-R0tqCGJekEtfbr-gFMd5ZR1Pbn9x-cbeK2D-D88ODz-6M0FlZIjSQqYJ5xl1fCVNLbRiPGmxaq8XmWOYNwpCksuracW-4N4kHrnJLS2KbUTeN9QXw5D2HS9Z17DKwgxGm959xIUWilfV54U-Ymd15bUSXwerOytYms41T8YlaPtw_b1mETEng5is7XVBvXCe3T9owCxI4dGvrFZR2NrUYYZTKXFYiltECN0dxLHI9xeLlU3pgE9jabW0eTHerfCpbAi7EbjY1eUHTn-hXJiBwhVVnJBB6tdWEcCcEBvMvmCZRbWrI11O2erv0SCL2niKoRWOFaBX369-zr4w8fw8eT_8_gKdzmlHsT_pncg8lysXLPEDwtm-fRQn4B74kZZA
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1La9wwEMeHkELppaRvN2lRSw-9GGxZktf01FdIAymlNJCb0TM12dphvXvPNV-zn6Qz8oMsTaG3RR6D1tJYv5FH_wF448QigmsqSulTEbxITVlhlKIzZaJ6Ssx2P_mqjk7F8Zk824F301mYQR9i3nAjz4jva3JwbfqbTu4aytGiItZ36GgtlS_g4tu8wUIyJypWkOWUNYc3qVFZKGbyTHdvrUdRtv821vw7ZfImysa16HAP7o8Qyd4Po_4Adnz7EO6ejJ_JH0HzvVt61gXWX-CqgnjNfm16tGTL5rJxPWtahtzHqBpxd04vu6Yn6zEvna2oYU3TgVq7oXQA061jtGH7--qas2nL9jGcHn7-8fEoHWsqpFaSCjDPuM8rYSsZnNGId4tCmZBnmbdIIqZwuKrl3PFgEQWd90pK60ypjQmhIKmcJ7Dbdq1_Bqwg2HQhcG6lKLTSIS-CLXOb-6CdqBJ4Oz3Z2o6C41T3YlnPgYdr6jgICbyeTS8HlY3bjD7Q8MwGJIwdG7rVeT36WY0EZTOfFYhRWpSl0jxI7I_1GFeqYG0CB9Pg1qO39jWGgByxB80TeDVfRj-jjye69d2GbESONFVWMoGnw1yYe0IkgGFsnkC5NUu2urp9pW1-Ri3vBQI1MhU-qzif_v3v6-NPX-KP5_9vug_3OKXgxKOTB7C7Xm38C2SotXkZfeUPhfAX1g
  priority: 102
  providerName: Wiley-Blackwell
Title Role of skeletal muscle lipids in the pathogenesis of insulin resistance of obesity and type 2 diabetes
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjdi.13614
https://www.ncbi.nlm.nih.gov/pubmed/34132491
https://www.proquest.com/docview/2592293776
https://www.proquest.com/docview/2541782795
https://pubmed.ncbi.nlm.nih.gov/PMC8565406
https://doaj.org/article/066c0e03355a4776a2f51efce8996fcc
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVqp6QbwJlJVBHLgEJY4TJweEKLQqlbaqKlbaW5T40UYsSdnsSnDjyt_klzDjTSIilguXKLLHih9j-xt78g3ASy1SB1x9IWPjC2uEX8oMrZQiSErHnuK83afnyelMnM3j-Q70MTa7Dmy3mnYUT2q2XLz-9vX7W5zwbwavHF2RtxaFs97DDSkh5Z52KN8tyFGaJi6WLCf_OSySdBxDo9IHsE9LOtoj4WiTclz-2wDo336Uf-Jbt0Gd3IHbHbJk7zaqcBd2TH0P9qfd3fl9qC6bhWGNZe1n3GqwuezLukVJtqhuKt2yqmYIBhmFKG6uaAWsWpLunNXZkhJWpCOU2mziCbCi1oxOcX_9-MlZf477AGYnx5_en_pdoAVfxUQNzANuwkyoLLa6LBDzpVFS2jAIjEJ4UkYa-yXkmluF-FAbk8Sx0qUsytLaiPhzHsJu3dTmMbCIEKi2lnMVi6hIChtGVslQhcYWWmQevOp7NlcdCzkFw1jkgzWiq9yNhwcvBtGbDfXGNqEjGp5BgNiyXUKzvMq7yZcjrFKBCSLEVoWQMim4jbE-yqCxmVilPDjsBzfvNTBHu5AjFkJxD54P2Tj56EalqE2zJhkRIsSSWezBo40uDDXpdckDOdKSUVXHOXV17Qi-U0TZCLSwr5w-_bv1-dmHj-7lyX9_5CkccHLTcb9XHsLuark2zxBnrcoJ3OLiAp9yLiewd3R8fnE5cWcWEze_fgOcBytC
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVgIuiDeGAgsCiYuFvX7FB4QobZW0TYSqVurNrPdRrKZ2iBMhblz5M_wofgkz6wdEFG69RetRtN6dxze7428AXqhwYIGrGyaRdkOjQzdPUsxShBfnlj3FVruPJ_HwONw7iU7W4Ef3LQyVVXY-0TpqVUk6I3-NMJ1jaEqS-O3ss0tdo-h2tWuh0ajFvv76BVO2-s1oG_f3Jee7O0fvh27bVcCVEfHgYravMXOXaWRULhDgDII4N77naYmxOA8U-nWfK24kgiGldRxFUuWJyHNjAiKLwf-9AhsIM1K0oo2tncmHw_5Uh7hVYtu2llOpHjqSuKUzsuVDqqCyMj9cCYK2V8BFAPfvOs0_8bMNgLs34UaLXNm7RtVuwZoub8PVcXs3fweKw2qqWWVYfYahDDE9O1_WKMmmxaxQNStKhmCTUQvk6pQ8bFGTdFsMz-Y0sCAdpNGq6VfARKkYnRL__Pads-6c-C4cX8qS34P1sir1A2ABIVxlDOcyCgMRC-MHRia-9LURKkwdeNWtbCZblnNqtjHN-mxHFZndBAee96KzhtrjIqEt2p5egNi47UA1P81a484QtklPewFiNxGihgpuIpyP1JjMxkZKBza7zc1aF1FnvxXagWf9YzRuurERpa6WJBP6COGSNHLgfqML_UwIfmDu7DuQrGjJylRXn5TFJ0sgPkAUj0AO18rq07_fPtvbHtkfD___Bk_h2vBofJAdjCb7j-A6p7of-73mJqwv5kv9GIHbIn_SWguDj5dtoL8A4b1WQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKq4IN4YCiwIJC5W7fUrOSBESaOmpVFVUak3s95HsQh2iBMhblz5S_wcfgkzm7UhonDrLVqPovXuNzPf7I5nAJ6puG-Jqx9nifZjo2O_yAYYpYggLWz1FJvtfjRJ90_jg7PkbAN-tN_CUFplaxOtoVa1pDPyHaTpHF1TlqU7xqVFHA9Hr2affeogRTetbTuNFUQO9dcvGL41L8dD3OvnnI_23r3Z912HAV8mVBMXI3-NUbwcJEYVAslOP0oLEwaBluiXi0ihjQ-54kYiMVJap0kiVZGJojAmosIx-L9XYDNDr9jvwebu3uT4pDvhoTorqW1hyyltD41K6kob2VQiVVKKWRivOUTbN-Aisvt3zuafXNo6w9F1uOZYLHu9gt0N2NDVTdg6cvf0t6A8qaea1YY1H9GtIb9nn5YNSrJpOStVw8qKIfFk1A65PidrWzYk7RLj2ZwGFoRHGq1XvQuYqBSjE-Of375z1p4Z34bTS1nyO9Cr6krfAxYR21XGcC6TOBKpMGFkZBbKUBuh4oEHL9qVzaWreE6NN6Z5F_moMreb4MHTTnS2KvNxkdAubU8nQJW57UA9P8-doudI4WSggwh5nIgRrYKbBOcjNQa2qZHSg-12c3NnLpr8N7g9eNI9RkWn2xtR6XpJMnGIdC4bJB7cXWGhmwlREYyjQw-yNZSsTXX9SVV-sMXE-8joEb64VhZP_377_GA4tj_u__8NHsMWKmb-djw5fABXOaUA2U83t6G3mC_1Q-Rwi-KRUxYG7y9bP38BotlabQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Role+of+skeletal+muscle+lipids+in+the+pathogenesis+of+insulin+resistance+of+obesity+and+type%E2%80%892+diabetes&rft.jtitle=Journal+of+diabetes+investigation&rft.au=Gilbert%2C+Marc&rft.date=2021-11-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=2040-1116&rft.eissn=2040-1124&rft.volume=12&rft.issue=11&rft.spage=1934&rft.epage=1941&rft_id=info:doi/10.1111%2Fjdi.13614&rft_id=info%3Apmid%2F34132491&rft.externalDocID=PMC8565406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-1116&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-1116&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-1116&client=summon