A hierarchical latent class model for predicting disability small area counts from survey data
We consider the estimation of the number of severely disabled people by using data from the Italian survey on 'Health conditions and appeal to Medicare'. In this survey, disability is indirectly measured by using a set of categorical items, which consider a set of functions concerning the...
Saved in:
Published in | Journal of the Royal Statistical Society. Series A, Statistics in society Vol. 179; no. 1; pp. 103 - 131 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.01.2016
John Wiley & Sons Ltd Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 0964-1998 1467-985X |
DOI | 10.1111/rssa.12112 |
Cover
Loading…
Abstract | We consider the estimation of the number of severely disabled people by using data from the Italian survey on 'Health conditions and appeal to Medicare'. In this survey, disability is indirectly measured by using a set of categorical items, which consider a set of functions concerning the ability of a person to accomplish everyday tasks. Latent class models can be employed to classify the population according to different levels of a latent variable connected with disability. The survey is designed to provide reliable estimates at the level of administrative regions ('Nomenclature des unités territoriales statistiques', level 2), whereas local authorities are interested in quantifying the number of people who belong to each latent class at a subregional level. Therefore, small area estimation techniques should be used. The challenge is that the variable of interest is not observed. Adopting a full Bayesian approach, we base small area estimation on a latent class model in which the probability of belonging to each latent class changes with covariates and the influence of age is learnt from the data by using penalized splines. Demmler-Reinsch bases are shown to improve speed and mixing of Markov chain Monte Carlo chains used to simulate posteriors. |
---|---|
AbstractList | We consider the estimation of the number of severely disabled people by using data from the Italian survey on ‘Health conditions and appeal to Medicare’. In this survey, disability is indirectly measured by using a set of categorical items, which consider a set of functions concerning the ability of a person to accomplish everyday tasks. Latent class models can be employed to classify the population according to different levels of a latent variable connected with disability. The survey is designed to provide reliable estimates at the level of administrative regions (‘Nomenclature des unités territoriales statistiques’, level 2), whereas local authorities are interested in quantifying the number of people who belong to each latent class at a subregional level. Therefore, small area estimation techniques should be used. The challenge is that the variable of interest is not observed. Adopting a full Bayesian approach, we base small area estimation on a latent class model in which the probability of belonging to each latent class changes with covariates and the influence of age is learnt from the data by using penalized splines. Demmler–Reinsch bases are shown to improve speed and mixing of Markov chain Monte Carlo chains used to simulate posteriors. We consider the estimation of the number of severely disabled people by using data from the Italian survey on 'Health conditions and appeal to Medicare'. In this survey, disability is indirectly measured by using a set of categorical items, which consider a set of functions concerning the ability of a person to accomplish everyday tasks. Latent class models can be employed to classify the population according to different levels of a latent variable connected with disability. The survey is designed to provide reliable estimates at the level of administrative regions ('Nomenclature des unites territoriales statistiques', level 2), whereas local authorities are interested in quantifying the number of people who belong to each latent class at a subregional level. Therefore, small area estimation techniques should be used. The challenge is that the variable of interest is not observed. Adopting a full Bayesian approach, we base small area estimation on a latent class model in which the probability of belonging to each latent class changes with covariates and the influence of age is learnt from the data by using penalized splines. Demmler-Reinsch bases are shown to improve speed and mixing of Markov chain Monte Carlo chains used to simulate posteriors. [web URL: http://onlinelibrary.wiley.com/doi/10.1111/rssa.12112/abstract] We consider the estimation of the number of severely disabled people by using data from the Italian survey on 'Health conditions and appeal to Medicare'. In this survey, disability is indirectly measured by using a set of categorical items, which consider a set of functions concerning the ability of a person to accomplish everyday tasks. Latent class models can be employed to classify the population according to different levels of a latent variable connected with disability. The survey is designed to provide reliable estimates at the level of administrative regions ('Nomenclature des unites territoriales statistiques', level 2), whereas local authorities are interested in quantifying the number of people who belong to each latent class at a subregional level. Therefore, small area estimation techniques should be used. The challenge is that the variable of interest is not observed. Adopting a full Bayesian approach, we base small area estimation on a latent class model in which the probability of belonging to each latent class changes with covariates and the influence of age is learnt from the data by using penalized splines. Demmler-Reinsch bases are shown to improve speed and mixing of Markov chain Monte Carlo chains used to simulate posteriors. Summary We consider the estimation of the number of severely disabled people by using data from the Italian survey on ‘Health conditions and appeal to Medicare’. In this survey, disability is indirectly measured by using a set of categorical items, which consider a set of functions concerning the ability of a person to accomplish everyday tasks. Latent class models can be employed to classify the population according to different levels of a latent variable connected with disability. The survey is designed to provide reliable estimates at the level of administrative regions (‘Nomenclature des unités territoriales statistiques’, level 2), whereas local authorities are interested in quantifying the number of people who belong to each latent class at a subregional level. Therefore, small area estimation techniques should be used. The challenge is that the variable of interest is not observed. Adopting a full Bayesian approach, we base small area estimation on a latent class model in which the probability of belonging to each latent class changes with covariates and the influence of age is learnt from the data by using penalized splines. Demmler–Reinsch bases are shown to improve speed and mixing of Markov chain Monte Carlo chains used to simulate posteriors. |
Author | Fabrizi, Enrico Giovanna Ranalli, M. Montanari, Giorgio E. |
Author_xml | – sequence: 1 givenname: Enrico surname: Fabrizi fullname: Fabrizi, Enrico organization: Università Cattolica del S. Cuore, Piacenza, Italy – sequence: 2 givenname: Giorgio E. surname: Montanari fullname: Montanari, Giorgio E. organization: Università degli Studi di Perugia, Italy – sequence: 3 givenname: M. surname: Giovanna Ranalli fullname: Giovanna Ranalli, M. email: giovanna.ranalli@stat.unipg.it organization: Università degli Studi di Perugia, Italy |
BookMark | eNp9kE1v1DAQhi3USmxbLtyRLHFBSCl24s_jsoLSqgJEQXDCmnUc6sWJF9uB7r8n20APFWIuc5jneTV6j9DBEAeH0GNKTuk0L1LOcEprSusHaEGZkJVW_MsBWhAtWEW1Vg_RUc4bsh8pF-jrEl97lyDZa28h4ADFDQXbADnjPrYu4C4mvE2u9bb44RtufYa1D77scO4hBAzJAbZxHErGXYo9zmP66Xa4hQIn6LCDkN2jP_sYfXr96uPqTXX57ux8tbysLNe6rqRsNGXK1c4KKVph15RxKp0gsnOatJ3gDRW6bhlT0oGUGqDu1JqRtVCWq-YYPZtztyn-GF0upvfZuhBgcHHMhirGFVE1ZxP69B66iWMapu8MlZwpLVRDJ-r5TNkUc06uM9vke0g7Q4nZV232VZvbqieY3IOtL1B8HEoCH_6t0Fn55YPb_SfcfLi6Wv51nszOJpeY7hzWaMGl3pdQzXefi7u5u0P6boRsJDef356Z93L1Ugl1YUjzG0J6q38 |
CitedBy_id | crossref_primary_10_5604_01_3001_0014_0604 crossref_primary_10_1111_rssa_12310 crossref_primary_10_1111_rssa_12552 crossref_primary_10_1214_22_AOAS1699 crossref_primary_10_1007_s11205_021_02801_9 crossref_primary_10_1080_00220388_2015_1107046 crossref_primary_10_14746_rpeis_2024_86_2_12 crossref_primary_10_1111_rssa_12526 crossref_primary_10_1111_sjos_12376 |
Cites_doi | 10.1016/j.csda.2009.03.024 10.1111/1467-9868.00353 10.1111/j.1467-985X.2006.00419.x 10.1001/jama.1963.03060120024016 10.1002/0471722189 10.1017/CBO9780511499531 10.1093/pan/mph001 10.1111/j.1467-9868.2007.00635.x 10.1016/j.jspi.2009.07.022 10.1007/s11136-008-9313-x 10.1017/CBO9780511755453 10.1002/0471249688 10.1007/s10260-010-0148-6 10.1002/env.680 10.1111/j.1541-0420.2010.01502.x 10.1214/08-AOAS205 10.1007/s11336-013-9368-7 10.1214/12-STS395 10.1214/ss/1038425655 |
ContentType | Journal Article |
Copyright | Copyright © 2016 The Royal Statistical Society and John Wiley & Sons Ltd. 2015 Royal Statistical Society Copyright Blackwell Publishing Ltd. Jan 2016 |
Copyright_xml | – notice: Copyright © 2016 The Royal Statistical Society and John Wiley & Sons Ltd. – notice: 2015 Royal Statistical Society – notice: Copyright Blackwell Publishing Ltd. Jan 2016 |
DBID | BSCLL AAYXX CITATION 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D |
DOI | 10.1111/rssa.12112 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef International Bibliography of the Social Sciences (IBSS) Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1467-985X |
EndPage | 131 |
ExternalDocumentID | 3915526811 10_1111_rssa_12112 RSSA12112 43965798 ark_67375_WNG_P7CB868J_0 |
Genre | article Feature |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GrantInformation_xml | – fundername: Umbria – fundername: PRIN‐SURWEY funderid: 2012F42NS8 |
GroupedDBID | -~X .3N .GA .Y3 05W 07C 10A 1OB 1OC 1OL 29L 2AX 3-9 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 66C 7PT 8-0 8-1 8-3 8UM 8VB 930 A03 AAESR AAEVG AAHHS AAONW AARHZ AASGY AAUAY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABFAN ABIVO ABPFR ABPQH ABPTD ABWST ABXSQ ABYAD ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFRR ACGFS ACIWK ACMTB ACNCT ACPOU ACSCC ACTMH ACTWD ACUBG ACXBN ACXQS ADACV ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADODI ADOZA ADQBN ADRDM ADULT ADVEK ADZMN AEEZP AEGXH AEIMD AELPN AEMOZ AEQDE AEUPB AEUQT AFBPY AFEBI AFGKR AFPWT AFVYC AFXHP AFZJQ AIURR AIWBW AJAOE AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANFBD ASPBG AS~ ATGXG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BCRHZ BDRZF BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CJ0 CO8 COF CS3 D-E DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC EBA EBO EBR EBS EBU ECEWR EJD EMK EOH F00 F5P FEDTE FVMVE G-S G.N GODZA H.T H.X H13 HF~ HGD HQ6 HVGLF HZI HZ~ H~9 IHE IPSME IX1 J0M JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG OWPYF P2W P2X P4D PQQKQ Q.N Q11 QB0 QWB R.K RJQFR RNS ROL ROX RX1 SA0 SUPJJ TH9 TN5 UB1 VUG W8V W99 WBKPD WIH WIK WOHZO WQJ WYISQ XBAML XG1 YF5 YQT ZGI ZL0 ZZTAW ~IA ~WT AANHP AAWIL ABAWQ ABDFA ACHJO ACRPL ACYXJ ADNMO AGLNM AGQPQ AHQJS AIHAF AJNCP ALRMG AMVHM NU- AAYXX CITATION 7SC 8BJ 8FD FQK JBE JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c5992-7739148e2ec676d6cb14517e607fe90df6531692d4487ea779aa2f8b40b68c583 |
IEDL.DBID | DR2 |
ISSN | 0964-1998 |
IngestDate | Thu Jul 10 19:11:09 EDT 2025 Wed Aug 13 10:43:27 EDT 2025 Tue Jul 01 00:50:55 EDT 2025 Thu Apr 24 23:03:17 EDT 2025 Wed Jan 22 17:04:02 EST 2025 Thu Jul 03 22:31:17 EDT 2025 Wed Oct 30 09:53:45 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5992-7739148e2ec676d6cb14517e607fe90df6531692d4487ea779aa2f8b40b68c583 |
Notes | Umbria 'A hierarchical latent class model for predicting disability small area counts from survey data: Supplementary Tables'. ArticleID:RSSA12112 PRIN-SURWEY - No. 2012F42NS8 istex:EA042D9F2A83A802BB77534770E94D6309BB0B28 ark:/67375/WNG-P7CB868J-0 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://academic.oup.com/jrsssa/article-pdf/179/1/103/49348084/jrsssa_179_1_103.pdf |
PQID | 1754896831 |
PQPubID | 105636 |
PageCount | 29 |
ParticipantIDs | proquest_miscellaneous_1845808254 proquest_journals_1754896831 crossref_primary_10_1111_rssa_12112 crossref_citationtrail_10_1111_rssa_12112 wiley_primary_10_1111_rssa_12112_RSSA12112 jstor_primary_43965798 istex_primary_ark_67375_WNG_P7CB868J_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Journal of the Royal Statistical Society. Series A, Statistics in society |
PublicationTitleAlternate | J. R. Stat. Soc. A |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons Ltd Oxford University Press |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons Ltd – name: Oxford University Press |
References | Aitkin, M., Liu, C. and Chadwick, T. (2009) Bayesian model comparison and model averaging for small-area estimation. Ann. Appl. Statist., 3, 199-221. Opsomer, J. D., Claeskens, G., Ranalli, M. G., Kauermann, G. and Breidt, F. J. (2008) Non-parametric small area estimation using penalized spline regression. J. R. Statist. Soc. B, 70, 265-286. Ruppert, D., Wand, M. P. and Carroll, R. J. (2003) Semiparametric Regression. New York: Cambridge University Press. Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. Baysn Anal., 1, 515-533. Ghosh, J., Herring, A. H. and Siega-Riez, A. M. A. (2011) Bayesian variable selection for latent class models. Biometrics, 67, 917-925. Pfeffermann, D. (2013) New important developments in small area estimation. Statist. Sci., 28, 40-68. Statistics Canada (2007) 2005 Survey of Financial Security-Public Use Microdata File User Guide. Ottawa: Statistics Canada. (Available from http://www.statcan.gc.ca/pub/13f0026m/13f0026m2007001-eng.htm.) Eilers, P. H. C. and Marx, B. D. (1996) Flexible smoothing with B-splines and penalties. Statist. Sci., 11, 89-121. Katz, S., Ford, A. B., Moskowitz, R. W., Jackson, B. A. and Jaffe, M. W. (1963) Studies of illness in the aged-the index of ADL: a standardized measure of biological and psychosocial function. J. Am. Med. Ass., 185, 914-919. Pan, J.-C. and Huang, G.-H. (2014) Bayesian inferences of latent class models with an unknown number of classes. Psychometrika, 79, 621-646. Hagenaars, J. A. and McCutcheon, A. L. (2002) Applied Latent Class Analysis. Cambridge: Cambridge University Press. Nychka, D. and Cummins, D. (1996) Flexible smoothing with B-splines and penalties-comment. Statist. Sci., 11, 104-105. Montanari, G. E., Ranalli, M. G. and Eusebi, P. (2011) Latent variable modeling of disability in people aged 65 or more. Statist. Meth. Applic., 20, 49-63. Thomas, A., O'Hara, B., Ligges, U. and Sturz, S. (2006) Making bugs open. R News, 6, 12-17. Crespi, C. and Boscardin, W. (2009) Bayesian model checking for multivariate outcome data. Computnl Statist. Data Anal., 53, 3765-3772. Crainiceanu, C., Ruppert, D. and Wand, M. P. (2005) Bayesian analysis for penalized spline regression using winbugs. J. Statist. Softwr., 14, 1-24. Bolck, A., Croon, M. and Hagenaars, J. (2004) Estimating latent structure models with categorical variables: one-step versus three-step estimators. Polit. Anal., 12, 3-27. Agresti, A. (2002) Categorical Data Analysis. New York: Wiley. ISTAT (2008) Condizioni di salute e ricorso di servizi sanitari-Nota metodologica. ISTAT, Rome. (Available from http://www.istat.it/it/archivio/10836.) Mesbah, M. (2004) Measurement and analysis of health related quality of life and environmental data. Envirometrics, 15, 473-481. Fabrizi, E. and Trivisano, C. (2010) Robust linear mixed models for small area estimation. J. Statist. Planng Inf., 140, 433-443. Chung, H., Flaherty, B. P. and Schafer, J. L. (2006) Latent class logistic regression: application to marijuana use and attitudes among high school seniors. J. R. Statist. Soc. A, 169, 723-743. Cabrero-Garcìa, J. and Lòpez-Pina, J. A. (2008) Aggregated measures of functional disability in a nationally representative sample of disabled people: analysis of dimensionality according to gender and severity of disability. Qual. Life Res., 17, 425-436. Rao, J. (2003) Small Area Estimation. New York: Wiley. Lazarsfeld, P. and Henry, N. (1968) Latent Structure Analysis. Boston, Houghton Mifflin. Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc. B, 64, 583-639. 1963; 185 2013; 28 2009; 53 2001 2002; 64 2004; 15 2004; 12 2008; 17 2011; 20 2008 2007 2014; 79 2006; 6 2010; 140 2011; 67 2006; 1 2003 2002 2009; 3 2008; 70 1968 2006; 169 2005; 14 1996; 11 Fabrizi (2023022804490710300_) 2010; 140 Thomas (2023022804490710300_) 2006; 6 Chung (2023022804490710300_) 2006; 169 Agresti (2023022804490710300_) 2002 Opsomer (2023022804490710300_) 2008; 70 Hagenaars (2023022804490710300_) 2002 ISTAT (2023022804490710300_) 2008 Cabrero-Garcìa (2023022804490710300_) 2008; 17 Mesbah (2023022804490710300_) 2004; 15 Ruppert (2023022804490710300_) 2003 Montanari (2023022804490710300_) 2011; 20 Pan (2023022804490710300_) 2014; 79 Eilers (2023022804490710300_) 1996; 11 Ghosh (2023022804490710300_) 2011; 67 Brown (2023022804490710300_) 2001 Crespi (2023022804490710300_) 2009; 53 Pfeffermann (2023022804490710300_) 2013; 28 Spiegelhalter (2023022804490710300_) 2002; 64 Crainiceanu (2023022804490710300_) 2005; 14 Bolck (2023022804490710300_) 2004; 12 Gelman (2023022804490710300_) 2006; 1 Nychka (2023022804490710300_) 1996; 11 Rao (2023022804490710300_) 2003 Katz (2023022804490710300_) 1963; 185 Erosheva (2023022804490710300_) 2002 Aitkin (2023022804490710300_) 2009; 3 Statistics Canada (2023022804490710300_) 2007 Lazarsfeld (2023022804490710300_) 1968 |
References_xml | – reference: Chung, H., Flaherty, B. P. and Schafer, J. L. (2006) Latent class logistic regression: application to marijuana use and attitudes among high school seniors. J. R. Statist. Soc. A, 169, 723-743. – reference: Statistics Canada (2007) 2005 Survey of Financial Security-Public Use Microdata File User Guide. Ottawa: Statistics Canada. (Available from http://www.statcan.gc.ca/pub/13f0026m/13f0026m2007001-eng.htm.) – reference: Pan, J.-C. and Huang, G.-H. (2014) Bayesian inferences of latent class models with an unknown number of classes. Psychometrika, 79, 621-646. – reference: Ruppert, D., Wand, M. P. and Carroll, R. J. (2003) Semiparametric Regression. New York: Cambridge University Press. – reference: Cabrero-Garcìa, J. and Lòpez-Pina, J. A. (2008) Aggregated measures of functional disability in a nationally representative sample of disabled people: analysis of dimensionality according to gender and severity of disability. Qual. Life Res., 17, 425-436. – reference: Pfeffermann, D. (2013) New important developments in small area estimation. Statist. Sci., 28, 40-68. – reference: Rao, J. (2003) Small Area Estimation. New York: Wiley. – reference: ISTAT (2008) Condizioni di salute e ricorso di servizi sanitari-Nota metodologica. ISTAT, Rome. (Available from http://www.istat.it/it/archivio/10836.) – reference: Lazarsfeld, P. and Henry, N. (1968) Latent Structure Analysis. Boston, Houghton Mifflin. – reference: Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. Baysn Anal., 1, 515-533. – reference: Crainiceanu, C., Ruppert, D. and Wand, M. P. (2005) Bayesian analysis for penalized spline regression using winbugs. J. Statist. Softwr., 14, 1-24. – reference: Crespi, C. and Boscardin, W. (2009) Bayesian model checking for multivariate outcome data. Computnl Statist. Data Anal., 53, 3765-3772. – reference: Eilers, P. H. C. and Marx, B. D. (1996) Flexible smoothing with B-splines and penalties. Statist. Sci., 11, 89-121. – reference: Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc. B, 64, 583-639. – reference: Ghosh, J., Herring, A. H. and Siega-Riez, A. M. A. (2011) Bayesian variable selection for latent class models. Biometrics, 67, 917-925. – reference: Thomas, A., O'Hara, B., Ligges, U. and Sturz, S. (2006) Making bugs open. R News, 6, 12-17. – reference: Aitkin, M., Liu, C. and Chadwick, T. (2009) Bayesian model comparison and model averaging for small-area estimation. Ann. Appl. Statist., 3, 199-221. – reference: Montanari, G. E., Ranalli, M. G. and Eusebi, P. (2011) Latent variable modeling of disability in people aged 65 or more. Statist. Meth. Applic., 20, 49-63. – reference: Katz, S., Ford, A. B., Moskowitz, R. W., Jackson, B. A. and Jaffe, M. W. (1963) Studies of illness in the aged-the index of ADL: a standardized measure of biological and psychosocial function. J. Am. Med. Ass., 185, 914-919. – reference: Opsomer, J. D., Claeskens, G., Ranalli, M. G., Kauermann, G. and Breidt, F. J. (2008) Non-parametric small area estimation using penalized spline regression. J. R. Statist. Soc. B, 70, 265-286. – reference: Fabrizi, E. and Trivisano, C. (2010) Robust linear mixed models for small area estimation. J. Statist. Planng Inf., 140, 433-443. – reference: Mesbah, M. (2004) Measurement and analysis of health related quality of life and environmental data. Envirometrics, 15, 473-481. – reference: Bolck, A., Croon, M. and Hagenaars, J. (2004) Estimating latent structure models with categorical variables: one-step versus three-step estimators. Polit. Anal., 12, 3-27. – reference: Agresti, A. (2002) Categorical Data Analysis. New York: Wiley. – reference: Nychka, D. and Cummins, D. (1996) Flexible smoothing with B-splines and penalties-comment. Statist. Sci., 11, 104-105. – reference: Hagenaars, J. A. and McCutcheon, A. L. (2002) Applied Latent Class Analysis. Cambridge: Cambridge University Press. – volume: 53 start-page: 3765 year: 2009 end-page: 3772 article-title: Bayesian model checking for multivariate outcome data publication-title: Computnl Statist. Data Anal. – volume: 28 start-page: 40 year: 2013 end-page: 68 article-title: New important developments in small area estimation publication-title: Statist. Sci. – volume: 15 start-page: 473 year: 2004 end-page: 481 article-title: Measurement and analysis of health related quality of life and environmental data publication-title: Envirometrics – volume: 20 start-page: 49 year: 2011 end-page: 63 article-title: Latent variable modeling of disability in people aged 65 or more publication-title: Statist. Meth. Applic. – volume: 11 start-page: 104 year: 1996 end-page: 105 article-title: Flexible smoothing with B‐splines and penalties—comment publication-title: Statist. Sci. – year: 1968 – year: 2001 – year: 2007 – volume: 6 start-page: 12 year: 2006 end-page: 17 article-title: Making bugs open publication-title: R News – year: 2003 – volume: 64 start-page: 583 year: 2002 end-page: 639 article-title: Bayesian measures of model complexity and fit (with discussion) publication-title: J. R. Statist. Soc. B – volume: 67 start-page: 917 year: 2011 end-page: 925 article-title: Bayesian variable selection for latent class models publication-title: Biometrics – volume: 14 start-page: 1 year: 2005 end-page: 24 article-title: Bayesian analysis for penalized spline regression using winbugs publication-title: J. Statist. Softwr. – volume: 140 start-page: 433 year: 2010 end-page: 443 article-title: Robust linear mixed models for small area estimation publication-title: J. Statist. Planng Inf. – volume: 185 start-page: 914 year: 1963 end-page: 919 article-title: Studies of illness in the aged—the index of ADL: a standardized measure of biological and psychosocial function publication-title: J. Am. Med. Ass. – volume: 17 start-page: 425 year: 2008 end-page: 436 article-title: Aggregated measures of functional disability in a nationally representative sample of disabled people: analysis of dimensionality according to gender and severity of disability publication-title: Qual. Life Res. – volume: 169 start-page: 723 year: 2006 end-page: 743 article-title: Latent class logistic regression: application to marijuana use and attitudes among high school seniors publication-title: J. R. Statist. Soc. A – year: 2002 – volume: 1 start-page: 515 year: 2006 end-page: 533 article-title: Prior distributions for variance parameters in hierarchical models publication-title: Baysn Anal. – volume: 79 start-page: 621 year: 2014 end-page: 646 article-title: Bayesian inferences of latent class models with an unknown number of classes publication-title: Psychometrika – volume: 11 start-page: 89 year: 1996 end-page: 121 article-title: Flexible smoothing with B‐splines and penalties publication-title: Statist. Sci. – year: 2008 – volume: 3 start-page: 199 year: 2009 end-page: 221 article-title: Bayesian model comparison and model averaging for small‐area estimation publication-title: Ann. Appl. Statist. – volume: 12 start-page: 3 year: 2004 end-page: 27 article-title: Estimating latent structure models with categorical variables: one‐step versus three‐step estimators publication-title: Polit. Anal. – volume: 70 start-page: 265 year: 2008 end-page: 286 article-title: Non‐parametric small area estimation using penalized spline regression publication-title: J. R. Statist. Soc. B – volume: 11 start-page: 104 year: 1996 ident: 2023022804490710300_ article-title: Flexible smoothing with B-splines and penalties—comment publication-title: Statist. Sci. – volume: 14 start-page: 1 year: 2005 ident: 2023022804490710300_ article-title: Bayesian analysis for penalized spline regression using winbugs publication-title: J. Statist. Softwr. – volume: 53 start-page: 3765 year: 2009 ident: 2023022804490710300_ article-title: Bayesian model checking for multivariate outcome data publication-title: Computnl Statist. Data Anal. doi: 10.1016/j.csda.2009.03.024 – volume: 64 start-page: 583 year: 2002 ident: 2023022804490710300_ article-title: Bayesian measures of model complexity and fit (with discussion) publication-title: J. R. Statist. Soc. B doi: 10.1111/1467-9868.00353 – volume: 169 start-page: 723 year: 2006 ident: 2023022804490710300_ article-title: Latent class logistic regression: application to marijuana use and attitudes among high school seniors publication-title: J. R. Statist. Soc. A doi: 10.1111/j.1467-985X.2006.00419.x – volume: 185 start-page: 914 year: 1963 ident: 2023022804490710300_ article-title: Studies of illness in the aged—the index of ADL: a standardized measure of biological and psychosocial function publication-title: J. Am. Med. Ass. doi: 10.1001/jama.1963.03060120024016 – volume-title: Small Area Estimation year: 2003 ident: 2023022804490710300_ doi: 10.1002/0471722189 – volume-title: Applied Latent Class Analysis year: 2002 ident: 2023022804490710300_ doi: 10.1017/CBO9780511499531 – volume: 12 start-page: 3 year: 2004 ident: 2023022804490710300_ article-title: Estimating latent structure models with categorical variables: one-step versus three-step estimators publication-title: Polit. Anal. doi: 10.1093/pan/mph001 – volume: 6 start-page: 12 year: 2006 ident: 2023022804490710300_ article-title: Making bugs open publication-title: R News – volume: 70 start-page: 265 year: 2008 ident: 2023022804490710300_ article-title: Non-parametric small area estimation using penalized spline regression publication-title: J. R. Statist. Soc. B doi: 10.1111/j.1467-9868.2007.00635.x – volume: 140 start-page: 433 year: 2010 ident: 2023022804490710300_ article-title: Robust linear mixed models for small area estimation publication-title: J. Statist. Planng Inf. doi: 10.1016/j.jspi.2009.07.022 – volume: 17 start-page: 425 year: 2008 ident: 2023022804490710300_ article-title: Aggregated measures of functional disability in a nationally representative sample of disabled people: analysis of dimensionality according to gender and severity of disability publication-title: Qual. Life Res. doi: 10.1007/s11136-008-9313-x – volume-title: Condizioni di salute e ricorso di servizi sanitari—Nota metodologica year: 2008 ident: 2023022804490710300_ – volume-title: Semiparametric Regression year: 2003 ident: 2023022804490710300_ doi: 10.1017/CBO9780511755453 – volume-title: Categorical Data Analysis year: 2002 ident: 2023022804490710300_ doi: 10.1002/0471249688 – volume: 20 start-page: 49 year: 2011 ident: 2023022804490710300_ article-title: Latent variable modeling of disability in people aged 65 or more publication-title: Statist. Meth. Applic. doi: 10.1007/s10260-010-0148-6 – volume: 15 start-page: 473 year: 2004 ident: 2023022804490710300_ article-title: Measurement and analysis of health related quality of life and environmental data publication-title: Envirometrics doi: 10.1002/env.680 – volume: 1 start-page: 515 year: 2006 ident: 2023022804490710300_ article-title: Prior distributions for variance parameters in hierarchical models publication-title: Baysn Anal. – volume: 67 start-page: 917 year: 2011 ident: 2023022804490710300_ article-title: Bayesian variable selection for latent class models publication-title: Biometrics doi: 10.1111/j.1541-0420.2010.01502.x – volume-title: Latent Structure Analysis year: 1968 ident: 2023022804490710300_ – volume: 3 start-page: 199 year: 2009 ident: 2023022804490710300_ article-title: Bayesian model comparison and model averaging for small-area estimation publication-title: Ann. Appl. Statist. doi: 10.1214/08-AOAS205 – volume: 79 start-page: 621 year: 2014 ident: 2023022804490710300_ article-title: Bayesian inferences of latent class models with an unknown number of classes publication-title: Psychometrika doi: 10.1007/s11336-013-9368-7 – volume-title: Proc. Symp. Achieving Data Quality in a Statistical Agency: a Methodological Perspective year: 2001 ident: 2023022804490710300_ – volume: 28 start-page: 40 year: 2013 ident: 2023022804490710300_ article-title: New important developments in small area estimation publication-title: Statist. Sci. doi: 10.1214/12-STS395 – volume: 11 start-page: 89 year: 1996 ident: 2023022804490710300_ article-title: Flexible smoothing with B-splines and penalties publication-title: Statist. Sci. doi: 10.1214/ss/1038425655 – volume-title: 2005 Survey of Financial Security—Public Use Microdata File User Guide year: 2007 ident: 2023022804490710300_ – volume-title: PhD Dissertation year: 2002 ident: 2023022804490710300_ |
SSID | ssj0000077 |
Score | 2.1476734 |
Snippet | We consider the estimation of the number of severely disabled people by using data from the Italian survey on 'Health conditions and appeal to Medicare'. In... Summary We consider the estimation of the number of severely disabled people by using data from the Italian survey on ‘Health conditions and appeal to... We consider the estimation of the number of severely disabled people by using data from the Italian survey on ‘Health conditions and appeal to Medicare’. In... |
SourceID | proquest crossref wiley jstor istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 103 |
SubjectTerms | Appeals Bayesian analysis Classification Computer simulation Counting Demmler-Reinsch bases Disabilities Disability Estimating techniques Health interview survey Markov analysis Mathematical models Medicare Monte Carlo simulation Non-parametric regression Penalized splines Small area estimation Statistics Tasks Unit level model |
Title | A hierarchical latent class model for predicting disability small area counts from survey data |
URI | https://api.istex.fr/ark:/67375/WNG-P7CB868J-0/fulltext.pdf https://www.jstor.org/stable/43965798 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssa.12112 https://www.proquest.com/docview/1754896831 https://www.proquest.com/docview/1845808254 |
Volume | 179 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9VAEB1KfakPaqvFaC0riqCQsrlJ9gN8uZbWUmiR1mJfNGx29770Ni1Jrlh_vTObj96KCPoWyASS3ZnsmezJOQCvXeJ5JrmJEfqLOHPYsBonTVw6zbXDBc0GO5-jY3Fwlh2e5-cr8H74F6bThxg_uFFlhPc1Fbgpm6Uir5vGkDZCsBgmshYhopMl7SgebBcRomfEplC9NinReG4vvbMa3aOB_TEQE-9AzmXgGlae_YfwdbjnjnBysbNoyx378zc5x_99qEfwoIekbNrl0Dqs-GoD7h-Neq7NBqwRJu0knR_DtykjA-2wBYEzzOYIV6uWWcLhLDjrMETC7LqmPSBiVTPXC_m2N6y5NPM5MwhVWbCpaBj94MKaRf3d3zDiqz6Bs_29z7sHcW_TENucuKtSphqbKj_xVkjhhC3J_Vd6weXMa-5mAutc6InDdJDeSKmNmcxUmfFSKJurdBNWq6vKPwXmZspwk_k08Qk1tnriE2y5UsOV9Qm3EbwdpquwvYY5WWnMi6GXoQEswgBG8GqMve6UO_4Y9SbM-hhi6gviusm8-HL8sfgkdz8ooQ4LHsFmSIsxEJGcyKVWEWwNeVL09d8UCMoypYVKkwhejqexcmk7xlT-aoExKstV6NAjeBeS4i_3WZycnk7D0bN_CX4Oa4jw-m9GW7Da1gv_AlFUW26HavkFclUWaA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2h9kA5FChUDZRiBEICKZWzSfxx3BbKUror1A_RUy3H9l66pFWSRZRfj8fJhi1CSHCLtBNpY8_Eb-yX9wBe2cTRjFMde-jP4sz6hlVbruPCSiqtX9BMsPMZT9joLDs8z887bg5-C9PqQ_QbblgZ4X2NBY4b0ktVXtW1RnEE9BheRUtvNDB4d7ykHkWD8aIH6RnyKUSnTopEnl_33lqPVnFovy-oibdA5zJ0DWvPwf3WYLUOkoVIObncnTfFrvnxm6Djfz_WA1jvUCkZtmn0EO64cgPujXtJ13oD1hCWtqrOj-BiSNBDO5xC-EkmM49Yy4YYhOIkmOsQD4bJdYXHQEisJrbT8m1uSP1Vz2ZEe7RKglNFTfAbF1LPq2_uhiBl9TGcHbw_3R_FnVNDbHKkr3KeSt9XuYEzjDPLTIEGwNwxyqdOUjtlvtSZHFifEdxpzqXWg6koMlowYXKRbsJKeVW6LSB2KjTVmUsTl2BvKwcu8V1XqqkwLqEmgjeL-VKmkzFHN42ZWrQzOIAqDGAEL_vY61a8449Rr8O09yG6ukS6G8_Vl8kH9Znv7wkmDhWNYDPkRR_owRzLuRQRbC8SRXWvgFp5XJYJyUSaRPCi_9kXL57I6NJdzX2MyHIRmvQI3oas-Mv_VMcnJ8Nw9eRfgp_D3dHp-EgdfZx8egprHvB1W0jbsNJUc_fMg6qm2Aml8xPFGhqC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD6MDWQ--GM6rJsaUQSFjvS2TVLw5Tq9zukuY3O4lxnSJH3ZXXdpe8X515uT_vBORNC3Qk8hTc5JvpOcfB_AcxNZmnCqQgf9WZgYl7Aqw1WYm4xmxi1o2sv5HEzZ3kmyf5qersDr_i5Myw8xbLhhZPj5GgN8boqlIK_qWiE3AkoMryXMRQtCoqMl8ijqdRcdRk-wnEJ05KRYx_Pr22vL0Rr27Pe-MvEa5lxGrn7pmdyGs77RbcXJ-c6iyXf0j9_4HP_3r-7ArQ6TknHrRHdhxZYbcPNgIHStN2AdQWnL6XwPvo4JKmj7Mwg3xGTm8GrZEI1AnHhpHeKgMJlXeAiEZdXEdEy-zRWpL9RsRpTDqsTrVNQEb7iQelF9s1cEC1bvw8nk3efdvbDTaQh1isWrnMeZy6rsyGrGmWE6R_lfbhnlhc2oKZgLdJaNjPMHbhXnmVKjQuQJzZnQqYg3YbW8LO0DIKYQiqrExpGNMLPNRjZyOVesqNA2ojqAl_1wSd2RmKOWxkz2yQx2oPQdGMCzwXbeUnf80eqFH_XBRFXnWOzGU_ll-l4e8t03gol9SQPY9G4xGDoox1KeiQC2ez-R3QRQS4fKEpExEUcBPB1eu9DF8xhV2suFsxFJKnyKHsAr7xR_aac8Oj4e-6eH_2L8BG4cvp3ITx-mH7dg3aG9bv9oG1abamEfOUTV5I994PwEfmwZOg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hierarchical+latent+class+model+for+predicting+disability+small+area+counts+from+survey+data&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+A%2C+Statistics+in+society&rft.au=Fabrizi%2C+Enrico&rft.au=Montanari%2C+Giorgio+E&rft.au=Ranalli%2C+M+Giovanna&rft.date=2016-01-01&rft.pub=Oxford+University+Press&rft.issn=0964-1998&rft.eissn=1467-985X&rft.volume=179&rft.issue=1&rft.spage=103&rft_id=info:doi/10.1111%2Frssa.12112&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3915526811 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1998&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1998&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1998&client=summon |