A hierarchical latent class model for predicting disability small area counts from survey data

We consider the estimation of the number of severely disabled people by using data from the Italian survey on 'Health conditions and appeal to Medicare'. In this survey, disability is indirectly measured by using a set of categorical items, which consider a set of functions concerning the...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Royal Statistical Society. Series A, Statistics in society Vol. 179; no. 1; pp. 103 - 131
Main Authors Fabrizi, Enrico, Montanari, Giorgio E., Giovanna Ranalli, M.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.01.2016
John Wiley & Sons Ltd
Oxford University Press
Subjects
Online AccessGet full text
ISSN0964-1998
1467-985X
DOI10.1111/rssa.12112

Cover

Loading…
Abstract We consider the estimation of the number of severely disabled people by using data from the Italian survey on 'Health conditions and appeal to Medicare'. In this survey, disability is indirectly measured by using a set of categorical items, which consider a set of functions concerning the ability of a person to accomplish everyday tasks. Latent class models can be employed to classify the population according to different levels of a latent variable connected with disability. The survey is designed to provide reliable estimates at the level of administrative regions ('Nomenclature des unités territoriales statistiques', level 2), whereas local authorities are interested in quantifying the number of people who belong to each latent class at a subregional level. Therefore, small area estimation techniques should be used. The challenge is that the variable of interest is not observed. Adopting a full Bayesian approach, we base small area estimation on a latent class model in which the probability of belonging to each latent class changes with covariates and the influence of age is learnt from the data by using penalized splines. Demmler-Reinsch bases are shown to improve speed and mixing of Markov chain Monte Carlo chains used to simulate posteriors.
AbstractList We consider the estimation of the number of severely disabled people by using data from the Italian survey on ‘Health conditions and appeal to Medicare’. In this survey, disability is indirectly measured by using a set of categorical items, which consider a set of functions concerning the ability of a person to accomplish everyday tasks. Latent class models can be employed to classify the population according to different levels of a latent variable connected with disability. The survey is designed to provide reliable estimates at the level of administrative regions (‘Nomenclature des unités territoriales statistiques’, level 2), whereas local authorities are interested in quantifying the number of people who belong to each latent class at a subregional level. Therefore, small area estimation techniques should be used. The challenge is that the variable of interest is not observed. Adopting a full Bayesian approach, we base small area estimation on a latent class model in which the probability of belonging to each latent class changes with covariates and the influence of age is learnt from the data by using penalized splines. Demmler–Reinsch bases are shown to improve speed and mixing of Markov chain Monte Carlo chains used to simulate posteriors.
We consider the estimation of the number of severely disabled people by using data from the Italian survey on 'Health conditions and appeal to Medicare'. In this survey, disability is indirectly measured by using a set of categorical items, which consider a set of functions concerning the ability of a person to accomplish everyday tasks. Latent class models can be employed to classify the population according to different levels of a latent variable connected with disability. The survey is designed to provide reliable estimates at the level of administrative regions ('Nomenclature des unites territoriales statistiques', level 2), whereas local authorities are interested in quantifying the number of people who belong to each latent class at a subregional level. Therefore, small area estimation techniques should be used. The challenge is that the variable of interest is not observed. Adopting a full Bayesian approach, we base small area estimation on a latent class model in which the probability of belonging to each latent class changes with covariates and the influence of age is learnt from the data by using penalized splines. Demmler-Reinsch bases are shown to improve speed and mixing of Markov chain Monte Carlo chains used to simulate posteriors. [web URL: http://onlinelibrary.wiley.com/doi/10.1111/rssa.12112/abstract]
We consider the estimation of the number of severely disabled people by using data from the Italian survey on 'Health conditions and appeal to Medicare'. In this survey, disability is indirectly measured by using a set of categorical items, which consider a set of functions concerning the ability of a person to accomplish everyday tasks. Latent class models can be employed to classify the population according to different levels of a latent variable connected with disability. The survey is designed to provide reliable estimates at the level of administrative regions ('Nomenclature des unites territoriales statistiques', level 2), whereas local authorities are interested in quantifying the number of people who belong to each latent class at a subregional level. Therefore, small area estimation techniques should be used. The challenge is that the variable of interest is not observed. Adopting a full Bayesian approach, we base small area estimation on a latent class model in which the probability of belonging to each latent class changes with covariates and the influence of age is learnt from the data by using penalized splines. Demmler-Reinsch bases are shown to improve speed and mixing of Markov chain Monte Carlo chains used to simulate posteriors.
Summary We consider the estimation of the number of severely disabled people by using data from the Italian survey on ‘Health conditions and appeal to Medicare’. In this survey, disability is indirectly measured by using a set of categorical items, which consider a set of functions concerning the ability of a person to accomplish everyday tasks. Latent class models can be employed to classify the population according to different levels of a latent variable connected with disability. The survey is designed to provide reliable estimates at the level of administrative regions (‘Nomenclature des unités territoriales statistiques’, level 2), whereas local authorities are interested in quantifying the number of people who belong to each latent class at a subregional level. Therefore, small area estimation techniques should be used. The challenge is that the variable of interest is not observed. Adopting a full Bayesian approach, we base small area estimation on a latent class model in which the probability of belonging to each latent class changes with covariates and the influence of age is learnt from the data by using penalized splines. Demmler–Reinsch bases are shown to improve speed and mixing of Markov chain Monte Carlo chains used to simulate posteriors.
Author Fabrizi, Enrico
Giovanna Ranalli, M.
Montanari, Giorgio E.
Author_xml – sequence: 1
  givenname: Enrico
  surname: Fabrizi
  fullname: Fabrizi, Enrico
  organization: Università Cattolica del S. Cuore, Piacenza, Italy
– sequence: 2
  givenname: Giorgio E.
  surname: Montanari
  fullname: Montanari, Giorgio E.
  organization: Università degli Studi di Perugia, Italy
– sequence: 3
  givenname: M.
  surname: Giovanna Ranalli
  fullname: Giovanna Ranalli, M.
  email: giovanna.ranalli@stat.unipg.it
  organization: Università degli Studi di Perugia, Italy
BookMark eNp9kE1v1DAQhi3USmxbLtyRLHFBSCl24s_jsoLSqgJEQXDCmnUc6sWJF9uB7r8n20APFWIuc5jneTV6j9DBEAeH0GNKTuk0L1LOcEprSusHaEGZkJVW_MsBWhAtWEW1Vg_RUc4bsh8pF-jrEl97lyDZa28h4ADFDQXbADnjPrYu4C4mvE2u9bb44RtufYa1D77scO4hBAzJAbZxHErGXYo9zmP66Xa4hQIn6LCDkN2jP_sYfXr96uPqTXX57ux8tbysLNe6rqRsNGXK1c4KKVph15RxKp0gsnOatJ3gDRW6bhlT0oGUGqDu1JqRtVCWq-YYPZtztyn-GF0upvfZuhBgcHHMhirGFVE1ZxP69B66iWMapu8MlZwpLVRDJ-r5TNkUc06uM9vke0g7Q4nZV232VZvbqieY3IOtL1B8HEoCH_6t0Fn55YPb_SfcfLi6Wv51nszOJpeY7hzWaMGl3pdQzXefi7u5u0P6boRsJDef356Z93L1Ugl1YUjzG0J6q38
CitedBy_id crossref_primary_10_5604_01_3001_0014_0604
crossref_primary_10_1111_rssa_12310
crossref_primary_10_1111_rssa_12552
crossref_primary_10_1214_22_AOAS1699
crossref_primary_10_1007_s11205_021_02801_9
crossref_primary_10_1080_00220388_2015_1107046
crossref_primary_10_14746_rpeis_2024_86_2_12
crossref_primary_10_1111_rssa_12526
crossref_primary_10_1111_sjos_12376
Cites_doi 10.1016/j.csda.2009.03.024
10.1111/1467-9868.00353
10.1111/j.1467-985X.2006.00419.x
10.1001/jama.1963.03060120024016
10.1002/0471722189
10.1017/CBO9780511499531
10.1093/pan/mph001
10.1111/j.1467-9868.2007.00635.x
10.1016/j.jspi.2009.07.022
10.1007/s11136-008-9313-x
10.1017/CBO9780511755453
10.1002/0471249688
10.1007/s10260-010-0148-6
10.1002/env.680
10.1111/j.1541-0420.2010.01502.x
10.1214/08-AOAS205
10.1007/s11336-013-9368-7
10.1214/12-STS395
10.1214/ss/1038425655
ContentType Journal Article
Copyright Copyright © 2016 The Royal Statistical Society and John Wiley & Sons Ltd.
2015 Royal Statistical Society
Copyright Blackwell Publishing Ltd. Jan 2016
Copyright_xml – notice: Copyright © 2016 The Royal Statistical Society and John Wiley & Sons Ltd.
– notice: 2015 Royal Statistical Society
– notice: Copyright Blackwell Publishing Ltd. Jan 2016
DBID BSCLL
AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
DOI 10.1111/rssa.12112
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
International Bibliography of the Social Sciences (IBSS)
Computer and Information Systems Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1467-985X
EndPage 131
ExternalDocumentID 3915526811
10_1111_rssa_12112
RSSA12112
43965798
ark_67375_WNG_P7CB868J_0
Genre article
Feature
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GrantInformation_xml – fundername: Umbria
– fundername: PRIN‐SURWEY
  funderid: 2012F42NS8
GroupedDBID -~X
.3N
.GA
.Y3
05W
07C
10A
1OB
1OC
1OL
29L
2AX
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
66C
7PT
8-0
8-1
8-3
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AAONW
AARHZ
AASGY
AAUAY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABFAN
ABIVO
ABPFR
ABPQH
ABPTD
ABWST
ABXSQ
ABYAD
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFRR
ACGFS
ACIWK
ACMTB
ACNCT
ACPOU
ACSCC
ACTMH
ACTWD
ACUBG
ACXBN
ACXQS
ADACV
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADQBN
ADRDM
ADULT
ADVEK
ADZMN
AEEZP
AEGXH
AEIMD
AELPN
AEMOZ
AEQDE
AEUPB
AEUQT
AFBPY
AFEBI
AFGKR
AFPWT
AFVYC
AFXHP
AFZJQ
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANFBD
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CJ0
CO8
COF
CS3
D-E
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
EBA
EBO
EBR
EBS
EBU
ECEWR
EJD
EMK
EOH
F00
F5P
FEDTE
FVMVE
G-S
G.N
GODZA
H.T
H.X
H13
HF~
HGD
HQ6
HVGLF
HZI
HZ~
H~9
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
OWPYF
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RJQFR
RNS
ROL
ROX
RX1
SA0
SUPJJ
TH9
TN5
UB1
VUG
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WYISQ
XBAML
XG1
YF5
YQT
ZGI
ZL0
ZZTAW
~IA
~WT
AANHP
AAWIL
ABAWQ
ABDFA
ACHJO
ACRPL
ACYXJ
ADNMO
AGLNM
AGQPQ
AHQJS
AIHAF
AJNCP
ALRMG
AMVHM
NU-
AAYXX
CITATION
7SC
8BJ
8FD
FQK
JBE
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c5992-7739148e2ec676d6cb14517e607fe90df6531692d4487ea779aa2f8b40b68c583
IEDL.DBID DR2
ISSN 0964-1998
IngestDate Thu Jul 10 19:11:09 EDT 2025
Wed Aug 13 10:43:27 EDT 2025
Tue Jul 01 00:50:55 EDT 2025
Thu Apr 24 23:03:17 EDT 2025
Wed Jan 22 17:04:02 EST 2025
Thu Jul 03 22:31:17 EDT 2025
Wed Oct 30 09:53:45 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5992-7739148e2ec676d6cb14517e607fe90df6531692d4487ea779aa2f8b40b68c583
Notes Umbria
'A hierarchical latent class model for predicting disability small area counts from survey data: Supplementary Tables'.
ArticleID:RSSA12112
PRIN-SURWEY - No. 2012F42NS8
istex:EA042D9F2A83A802BB77534770E94D6309BB0B28
ark:/67375/WNG-P7CB868J-0
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/jrsssa/article-pdf/179/1/103/49348084/jrsssa_179_1_103.pdf
PQID 1754896831
PQPubID 105636
PageCount 29
ParticipantIDs proquest_miscellaneous_1845808254
proquest_journals_1754896831
crossref_primary_10_1111_rssa_12112
crossref_citationtrail_10_1111_rssa_12112
wiley_primary_10_1111_rssa_12112_RSSA12112
jstor_primary_43965798
istex_primary_ark_67375_WNG_P7CB868J_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Journal of the Royal Statistical Society. Series A, Statistics in society
PublicationTitleAlternate J. R. Stat. Soc. A
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons Ltd
Oxford University Press
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Oxford University Press
References Aitkin, M., Liu, C. and Chadwick, T. (2009) Bayesian model comparison and model averaging for small-area estimation. Ann. Appl. Statist., 3, 199-221.
Opsomer, J. D., Claeskens, G., Ranalli, M. G., Kauermann, G. and Breidt, F. J. (2008) Non-parametric small area estimation using penalized spline regression. J. R. Statist. Soc. B, 70, 265-286.
Ruppert, D., Wand, M. P. and Carroll, R. J. (2003) Semiparametric Regression. New York: Cambridge University Press.
Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. Baysn Anal., 1, 515-533.
Ghosh, J., Herring, A. H. and Siega-Riez, A. M. A. (2011) Bayesian variable selection for latent class models. Biometrics, 67, 917-925.
Pfeffermann, D. (2013) New important developments in small area estimation. Statist. Sci., 28, 40-68.
Statistics Canada (2007) 2005 Survey of Financial Security-Public Use Microdata File User Guide. Ottawa: Statistics Canada. (Available from http://www.statcan.gc.ca/pub/13f0026m/13f0026m2007001-eng.htm.)
Eilers, P. H. C. and Marx, B. D. (1996) Flexible smoothing with B-splines and penalties. Statist. Sci., 11, 89-121.
Katz, S., Ford, A. B., Moskowitz, R. W., Jackson, B. A. and Jaffe, M. W. (1963) Studies of illness in the aged-the index of ADL: a standardized measure of biological and psychosocial function. J. Am. Med. Ass., 185, 914-919.
Pan, J.-C. and Huang, G.-H. (2014) Bayesian inferences of latent class models with an unknown number of classes. Psychometrika, 79, 621-646.
Hagenaars, J. A. and McCutcheon, A. L. (2002) Applied Latent Class Analysis. Cambridge: Cambridge University Press.
Nychka, D. and Cummins, D. (1996) Flexible smoothing with B-splines and penalties-comment. Statist. Sci., 11, 104-105.
Montanari, G. E., Ranalli, M. G. and Eusebi, P. (2011) Latent variable modeling of disability in people aged 65 or more. Statist. Meth. Applic., 20, 49-63.
Thomas, A., O'Hara, B., Ligges, U. and Sturz, S. (2006) Making bugs open. R News, 6, 12-17.
Crespi, C. and Boscardin, W. (2009) Bayesian model checking for multivariate outcome data. Computnl Statist. Data Anal., 53, 3765-3772.
Crainiceanu, C., Ruppert, D. and Wand, M. P. (2005) Bayesian analysis for penalized spline regression using winbugs. J. Statist. Softwr., 14, 1-24.
Bolck, A., Croon, M. and Hagenaars, J. (2004) Estimating latent structure models with categorical variables: one-step versus three-step estimators. Polit. Anal., 12, 3-27.
Agresti, A. (2002) Categorical Data Analysis. New York: Wiley.
ISTAT (2008) Condizioni di salute e ricorso di servizi sanitari-Nota metodologica. ISTAT, Rome. (Available from http://www.istat.it/it/archivio/10836.)
Mesbah, M. (2004) Measurement and analysis of health related quality of life and environmental data. Envirometrics, 15, 473-481.
Fabrizi, E. and Trivisano, C. (2010) Robust linear mixed models for small area estimation. J. Statist. Planng Inf., 140, 433-443.
Chung, H., Flaherty, B. P. and Schafer, J. L. (2006) Latent class logistic regression: application to marijuana use and attitudes among high school seniors. J. R. Statist. Soc. A, 169, 723-743.
Cabrero-Garcìa, J. and Lòpez-Pina, J. A. (2008) Aggregated measures of functional disability in a nationally representative sample of disabled people: analysis of dimensionality according to gender and severity of disability. Qual. Life Res., 17, 425-436.
Rao, J. (2003) Small Area Estimation. New York: Wiley.
Lazarsfeld, P. and Henry, N. (1968) Latent Structure Analysis. Boston, Houghton Mifflin.
Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc. B, 64, 583-639.
1963; 185
2013; 28
2009; 53
2001
2002; 64
2004; 15
2004; 12
2008; 17
2011; 20
2008
2007
2014; 79
2006; 6
2010; 140
2011; 67
2006; 1
2003
2002
2009; 3
2008; 70
1968
2006; 169
2005; 14
1996; 11
Fabrizi (2023022804490710300_) 2010; 140
Thomas (2023022804490710300_) 2006; 6
Chung (2023022804490710300_) 2006; 169
Agresti (2023022804490710300_) 2002
Opsomer (2023022804490710300_) 2008; 70
Hagenaars (2023022804490710300_) 2002
ISTAT (2023022804490710300_) 2008
Cabrero-Garcìa (2023022804490710300_) 2008; 17
Mesbah (2023022804490710300_) 2004; 15
Ruppert (2023022804490710300_) 2003
Montanari (2023022804490710300_) 2011; 20
Pan (2023022804490710300_) 2014; 79
Eilers (2023022804490710300_) 1996; 11
Ghosh (2023022804490710300_) 2011; 67
Brown (2023022804490710300_) 2001
Crespi (2023022804490710300_) 2009; 53
Pfeffermann (2023022804490710300_) 2013; 28
Spiegelhalter (2023022804490710300_) 2002; 64
Crainiceanu (2023022804490710300_) 2005; 14
Bolck (2023022804490710300_) 2004; 12
Gelman (2023022804490710300_) 2006; 1
Nychka (2023022804490710300_) 1996; 11
Rao (2023022804490710300_) 2003
Katz (2023022804490710300_) 1963; 185
Erosheva (2023022804490710300_) 2002
Aitkin (2023022804490710300_) 2009; 3
Statistics Canada (2023022804490710300_) 2007
Lazarsfeld (2023022804490710300_) 1968
References_xml – reference: Chung, H., Flaherty, B. P. and Schafer, J. L. (2006) Latent class logistic regression: application to marijuana use and attitudes among high school seniors. J. R. Statist. Soc. A, 169, 723-743.
– reference: Statistics Canada (2007) 2005 Survey of Financial Security-Public Use Microdata File User Guide. Ottawa: Statistics Canada. (Available from http://www.statcan.gc.ca/pub/13f0026m/13f0026m2007001-eng.htm.)
– reference: Pan, J.-C. and Huang, G.-H. (2014) Bayesian inferences of latent class models with an unknown number of classes. Psychometrika, 79, 621-646.
– reference: Ruppert, D., Wand, M. P. and Carroll, R. J. (2003) Semiparametric Regression. New York: Cambridge University Press.
– reference: Cabrero-Garcìa, J. and Lòpez-Pina, J. A. (2008) Aggregated measures of functional disability in a nationally representative sample of disabled people: analysis of dimensionality according to gender and severity of disability. Qual. Life Res., 17, 425-436.
– reference: Pfeffermann, D. (2013) New important developments in small area estimation. Statist. Sci., 28, 40-68.
– reference: Rao, J. (2003) Small Area Estimation. New York: Wiley.
– reference: ISTAT (2008) Condizioni di salute e ricorso di servizi sanitari-Nota metodologica. ISTAT, Rome. (Available from http://www.istat.it/it/archivio/10836.)
– reference: Lazarsfeld, P. and Henry, N. (1968) Latent Structure Analysis. Boston, Houghton Mifflin.
– reference: Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models. Baysn Anal., 1, 515-533.
– reference: Crainiceanu, C., Ruppert, D. and Wand, M. P. (2005) Bayesian analysis for penalized spline regression using winbugs. J. Statist. Softwr., 14, 1-24.
– reference: Crespi, C. and Boscardin, W. (2009) Bayesian model checking for multivariate outcome data. Computnl Statist. Data Anal., 53, 3765-3772.
– reference: Eilers, P. H. C. and Marx, B. D. (1996) Flexible smoothing with B-splines and penalties. Statist. Sci., 11, 89-121.
– reference: Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and van der Linde, A. (2002) Bayesian measures of model complexity and fit (with discussion). J. R. Statist. Soc. B, 64, 583-639.
– reference: Ghosh, J., Herring, A. H. and Siega-Riez, A. M. A. (2011) Bayesian variable selection for latent class models. Biometrics, 67, 917-925.
– reference: Thomas, A., O'Hara, B., Ligges, U. and Sturz, S. (2006) Making bugs open. R News, 6, 12-17.
– reference: Aitkin, M., Liu, C. and Chadwick, T. (2009) Bayesian model comparison and model averaging for small-area estimation. Ann. Appl. Statist., 3, 199-221.
– reference: Montanari, G. E., Ranalli, M. G. and Eusebi, P. (2011) Latent variable modeling of disability in people aged 65 or more. Statist. Meth. Applic., 20, 49-63.
– reference: Katz, S., Ford, A. B., Moskowitz, R. W., Jackson, B. A. and Jaffe, M. W. (1963) Studies of illness in the aged-the index of ADL: a standardized measure of biological and psychosocial function. J. Am. Med. Ass., 185, 914-919.
– reference: Opsomer, J. D., Claeskens, G., Ranalli, M. G., Kauermann, G. and Breidt, F. J. (2008) Non-parametric small area estimation using penalized spline regression. J. R. Statist. Soc. B, 70, 265-286.
– reference: Fabrizi, E. and Trivisano, C. (2010) Robust linear mixed models for small area estimation. J. Statist. Planng Inf., 140, 433-443.
– reference: Mesbah, M. (2004) Measurement and analysis of health related quality of life and environmental data. Envirometrics, 15, 473-481.
– reference: Bolck, A., Croon, M. and Hagenaars, J. (2004) Estimating latent structure models with categorical variables: one-step versus three-step estimators. Polit. Anal., 12, 3-27.
– reference: Agresti, A. (2002) Categorical Data Analysis. New York: Wiley.
– reference: Nychka, D. and Cummins, D. (1996) Flexible smoothing with B-splines and penalties-comment. Statist. Sci., 11, 104-105.
– reference: Hagenaars, J. A. and McCutcheon, A. L. (2002) Applied Latent Class Analysis. Cambridge: Cambridge University Press.
– volume: 53
  start-page: 3765
  year: 2009
  end-page: 3772
  article-title: Bayesian model checking for multivariate outcome data
  publication-title: Computnl Statist. Data Anal.
– volume: 28
  start-page: 40
  year: 2013
  end-page: 68
  article-title: New important developments in small area estimation
  publication-title: Statist. Sci.
– volume: 15
  start-page: 473
  year: 2004
  end-page: 481
  article-title: Measurement and analysis of health related quality of life and environmental data
  publication-title: Envirometrics
– volume: 20
  start-page: 49
  year: 2011
  end-page: 63
  article-title: Latent variable modeling of disability in people aged 65 or more
  publication-title: Statist. Meth. Applic.
– volume: 11
  start-page: 104
  year: 1996
  end-page: 105
  article-title: Flexible smoothing with B‐splines and penalties—comment
  publication-title: Statist. Sci.
– year: 1968
– year: 2001
– year: 2007
– volume: 6
  start-page: 12
  year: 2006
  end-page: 17
  article-title: Making bugs open
  publication-title: R News
– year: 2003
– volume: 64
  start-page: 583
  year: 2002
  end-page: 639
  article-title: Bayesian measures of model complexity and fit (with discussion)
  publication-title: J. R. Statist. Soc. B
– volume: 67
  start-page: 917
  year: 2011
  end-page: 925
  article-title: Bayesian variable selection for latent class models
  publication-title: Biometrics
– volume: 14
  start-page: 1
  year: 2005
  end-page: 24
  article-title: Bayesian analysis for penalized spline regression using winbugs
  publication-title: J. Statist. Softwr.
– volume: 140
  start-page: 433
  year: 2010
  end-page: 443
  article-title: Robust linear mixed models for small area estimation
  publication-title: J. Statist. Planng Inf.
– volume: 185
  start-page: 914
  year: 1963
  end-page: 919
  article-title: Studies of illness in the aged—the index of ADL: a standardized measure of biological and psychosocial function
  publication-title: J. Am. Med. Ass.
– volume: 17
  start-page: 425
  year: 2008
  end-page: 436
  article-title: Aggregated measures of functional disability in a nationally representative sample of disabled people: analysis of dimensionality according to gender and severity of disability
  publication-title: Qual. Life Res.
– volume: 169
  start-page: 723
  year: 2006
  end-page: 743
  article-title: Latent class logistic regression: application to marijuana use and attitudes among high school seniors
  publication-title: J. R. Statist. Soc. A
– year: 2002
– volume: 1
  start-page: 515
  year: 2006
  end-page: 533
  article-title: Prior distributions for variance parameters in hierarchical models
  publication-title: Baysn Anal.
– volume: 79
  start-page: 621
  year: 2014
  end-page: 646
  article-title: Bayesian inferences of latent class models with an unknown number of classes
  publication-title: Psychometrika
– volume: 11
  start-page: 89
  year: 1996
  end-page: 121
  article-title: Flexible smoothing with B‐splines and penalties
  publication-title: Statist. Sci.
– year: 2008
– volume: 3
  start-page: 199
  year: 2009
  end-page: 221
  article-title: Bayesian model comparison and model averaging for small‐area estimation
  publication-title: Ann. Appl. Statist.
– volume: 12
  start-page: 3
  year: 2004
  end-page: 27
  article-title: Estimating latent structure models with categorical variables: one‐step versus three‐step estimators
  publication-title: Polit. Anal.
– volume: 70
  start-page: 265
  year: 2008
  end-page: 286
  article-title: Non‐parametric small area estimation using penalized spline regression
  publication-title: J. R. Statist. Soc. B
– volume: 11
  start-page: 104
  year: 1996
  ident: 2023022804490710300_
  article-title: Flexible smoothing with B-splines and penalties—comment
  publication-title: Statist. Sci.
– volume: 14
  start-page: 1
  year: 2005
  ident: 2023022804490710300_
  article-title: Bayesian analysis for penalized spline regression using winbugs
  publication-title: J. Statist. Softwr.
– volume: 53
  start-page: 3765
  year: 2009
  ident: 2023022804490710300_
  article-title: Bayesian model checking for multivariate outcome data
  publication-title: Computnl Statist. Data Anal.
  doi: 10.1016/j.csda.2009.03.024
– volume: 64
  start-page: 583
  year: 2002
  ident: 2023022804490710300_
  article-title: Bayesian measures of model complexity and fit (with discussion)
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/1467-9868.00353
– volume: 169
  start-page: 723
  year: 2006
  ident: 2023022804490710300_
  article-title: Latent class logistic regression: application to marijuana use and attitudes among high school seniors
  publication-title: J. R. Statist. Soc. A
  doi: 10.1111/j.1467-985X.2006.00419.x
– volume: 185
  start-page: 914
  year: 1963
  ident: 2023022804490710300_
  article-title: Studies of illness in the aged—the index of ADL: a standardized measure of biological and psychosocial function
  publication-title: J. Am. Med. Ass.
  doi: 10.1001/jama.1963.03060120024016
– volume-title: Small Area Estimation
  year: 2003
  ident: 2023022804490710300_
  doi: 10.1002/0471722189
– volume-title: Applied Latent Class Analysis
  year: 2002
  ident: 2023022804490710300_
  doi: 10.1017/CBO9780511499531
– volume: 12
  start-page: 3
  year: 2004
  ident: 2023022804490710300_
  article-title: Estimating latent structure models with categorical variables: one-step versus three-step estimators
  publication-title: Polit. Anal.
  doi: 10.1093/pan/mph001
– volume: 6
  start-page: 12
  year: 2006
  ident: 2023022804490710300_
  article-title: Making bugs open
  publication-title: R News
– volume: 70
  start-page: 265
  year: 2008
  ident: 2023022804490710300_
  article-title: Non-parametric small area estimation using penalized spline regression
  publication-title: J. R. Statist. Soc. B
  doi: 10.1111/j.1467-9868.2007.00635.x
– volume: 140
  start-page: 433
  year: 2010
  ident: 2023022804490710300_
  article-title: Robust linear mixed models for small area estimation
  publication-title: J. Statist. Planng Inf.
  doi: 10.1016/j.jspi.2009.07.022
– volume: 17
  start-page: 425
  year: 2008
  ident: 2023022804490710300_
  article-title: Aggregated measures of functional disability in a nationally representative sample of disabled people: analysis of dimensionality according to gender and severity of disability
  publication-title: Qual. Life Res.
  doi: 10.1007/s11136-008-9313-x
– volume-title: Condizioni di salute e ricorso di servizi sanitari—Nota metodologica
  year: 2008
  ident: 2023022804490710300_
– volume-title: Semiparametric Regression
  year: 2003
  ident: 2023022804490710300_
  doi: 10.1017/CBO9780511755453
– volume-title: Categorical Data Analysis
  year: 2002
  ident: 2023022804490710300_
  doi: 10.1002/0471249688
– volume: 20
  start-page: 49
  year: 2011
  ident: 2023022804490710300_
  article-title: Latent variable modeling of disability in people aged 65 or more
  publication-title: Statist. Meth. Applic.
  doi: 10.1007/s10260-010-0148-6
– volume: 15
  start-page: 473
  year: 2004
  ident: 2023022804490710300_
  article-title: Measurement and analysis of health related quality of life and environmental data
  publication-title: Envirometrics
  doi: 10.1002/env.680
– volume: 1
  start-page: 515
  year: 2006
  ident: 2023022804490710300_
  article-title: Prior distributions for variance parameters in hierarchical models
  publication-title: Baysn Anal.
– volume: 67
  start-page: 917
  year: 2011
  ident: 2023022804490710300_
  article-title: Bayesian variable selection for latent class models
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2010.01502.x
– volume-title: Latent Structure Analysis
  year: 1968
  ident: 2023022804490710300_
– volume: 3
  start-page: 199
  year: 2009
  ident: 2023022804490710300_
  article-title: Bayesian model comparison and model averaging for small-area estimation
  publication-title: Ann. Appl. Statist.
  doi: 10.1214/08-AOAS205
– volume: 79
  start-page: 621
  year: 2014
  ident: 2023022804490710300_
  article-title: Bayesian inferences of latent class models with an unknown number of classes
  publication-title: Psychometrika
  doi: 10.1007/s11336-013-9368-7
– volume-title: Proc. Symp. Achieving Data Quality in a Statistical Agency: a Methodological Perspective
  year: 2001
  ident: 2023022804490710300_
– volume: 28
  start-page: 40
  year: 2013
  ident: 2023022804490710300_
  article-title: New important developments in small area estimation
  publication-title: Statist. Sci.
  doi: 10.1214/12-STS395
– volume: 11
  start-page: 89
  year: 1996
  ident: 2023022804490710300_
  article-title: Flexible smoothing with B-splines and penalties
  publication-title: Statist. Sci.
  doi: 10.1214/ss/1038425655
– volume-title: 2005 Survey of Financial Security—Public Use Microdata File User Guide
  year: 2007
  ident: 2023022804490710300_
– volume-title: PhD Dissertation
  year: 2002
  ident: 2023022804490710300_
SSID ssj0000077
Score 2.1476734
Snippet We consider the estimation of the number of severely disabled people by using data from the Italian survey on 'Health conditions and appeal to Medicare'. In...
Summary We consider the estimation of the number of severely disabled people by using data from the Italian survey on ‘Health conditions and appeal to...
We consider the estimation of the number of severely disabled people by using data from the Italian survey on ‘Health conditions and appeal to Medicare’. In...
SourceID proquest
crossref
wiley
jstor
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103
SubjectTerms Appeals
Bayesian analysis
Classification
Computer simulation
Counting
Demmler-Reinsch bases
Disabilities
Disability
Estimating techniques
Health interview survey
Markov analysis
Mathematical models
Medicare
Monte Carlo simulation
Non-parametric regression
Penalized splines
Small area estimation
Statistics
Tasks
Unit level model
Title A hierarchical latent class model for predicting disability small area counts from survey data
URI https://api.istex.fr/ark:/67375/WNG-P7CB868J-0/fulltext.pdf
https://www.jstor.org/stable/43965798
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Frssa.12112
https://www.proquest.com/docview/1754896831
https://www.proquest.com/docview/1845808254
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1da9VAEB1KfakPaqvFaC0riqCQsrlJ9gN8uZbWUmiR1mJfNGx29770Ni1Jrlh_vTObj96KCPoWyASS3ZnsmezJOQCvXeJ5JrmJEfqLOHPYsBonTVw6zbXDBc0GO5-jY3Fwlh2e5-cr8H74F6bThxg_uFFlhPc1Fbgpm6Uir5vGkDZCsBgmshYhopMl7SgebBcRomfEplC9NinReG4vvbMa3aOB_TEQE-9AzmXgGlae_YfwdbjnjnBysbNoyx378zc5x_99qEfwoIekbNrl0Dqs-GoD7h-Neq7NBqwRJu0knR_DtykjA-2wBYEzzOYIV6uWWcLhLDjrMETC7LqmPSBiVTPXC_m2N6y5NPM5MwhVWbCpaBj94MKaRf3d3zDiqz6Bs_29z7sHcW_TENucuKtSphqbKj_xVkjhhC3J_Vd6weXMa-5mAutc6InDdJDeSKmNmcxUmfFSKJurdBNWq6vKPwXmZspwk_k08Qk1tnriE2y5UsOV9Qm3EbwdpquwvYY5WWnMi6GXoQEswgBG8GqMve6UO_4Y9SbM-hhi6gviusm8-HL8sfgkdz8ooQ4LHsFmSIsxEJGcyKVWEWwNeVL09d8UCMoypYVKkwhejqexcmk7xlT-aoExKstV6NAjeBeS4i_3WZycnk7D0bN_CX4Oa4jw-m9GW7Da1gv_AlFUW26HavkFclUWaA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2h9kA5FChUDZRiBEICKZWzSfxx3BbKUror1A_RUy3H9l66pFWSRZRfj8fJhi1CSHCLtBNpY8_Eb-yX9wBe2cTRjFMde-jP4sz6hlVbruPCSiqtX9BMsPMZT9joLDs8z887bg5-C9PqQ_QbblgZ4X2NBY4b0ktVXtW1RnEE9BheRUtvNDB4d7ykHkWD8aIH6RnyKUSnTopEnl_33lqPVnFovy-oibdA5zJ0DWvPwf3WYLUOkoVIObncnTfFrvnxm6Djfz_WA1jvUCkZtmn0EO64cgPujXtJ13oD1hCWtqrOj-BiSNBDO5xC-EkmM49Yy4YYhOIkmOsQD4bJdYXHQEisJrbT8m1uSP1Vz2ZEe7RKglNFTfAbF1LPq2_uhiBl9TGcHbw_3R_FnVNDbHKkr3KeSt9XuYEzjDPLTIEGwNwxyqdOUjtlvtSZHFifEdxpzqXWg6koMlowYXKRbsJKeVW6LSB2KjTVmUsTl2BvKwcu8V1XqqkwLqEmgjeL-VKmkzFHN42ZWrQzOIAqDGAEL_vY61a8449Rr8O09yG6ukS6G8_Vl8kH9Znv7wkmDhWNYDPkRR_owRzLuRQRbC8SRXWvgFp5XJYJyUSaRPCi_9kXL57I6NJdzX2MyHIRmvQI3oas-Mv_VMcnJ8Nw9eRfgp_D3dHp-EgdfZx8egprHvB1W0jbsNJUc_fMg6qm2Aml8xPFGhqC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD6MDWQ--GM6rJsaUQSFjvS2TVLw5Tq9zukuY3O4lxnSJH3ZXXdpe8X515uT_vBORNC3Qk8hTc5JvpOcfB_AcxNZmnCqQgf9WZgYl7Aqw1WYm4xmxi1o2sv5HEzZ3kmyf5qersDr_i5Myw8xbLhhZPj5GgN8boqlIK_qWiE3AkoMryXMRQtCoqMl8ijqdRcdRk-wnEJ05KRYx_Pr22vL0Rr27Pe-MvEa5lxGrn7pmdyGs77RbcXJ-c6iyXf0j9_4HP_3r-7ArQ6TknHrRHdhxZYbcPNgIHStN2AdQWnL6XwPvo4JKmj7Mwg3xGTm8GrZEI1AnHhpHeKgMJlXeAiEZdXEdEy-zRWpL9RsRpTDqsTrVNQEb7iQelF9s1cEC1bvw8nk3efdvbDTaQh1isWrnMeZy6rsyGrGmWE6R_lfbhnlhc2oKZgLdJaNjPMHbhXnmVKjQuQJzZnQqYg3YbW8LO0DIKYQiqrExpGNMLPNRjZyOVesqNA2ojqAl_1wSd2RmKOWxkz2yQx2oPQdGMCzwXbeUnf80eqFH_XBRFXnWOzGU_ll-l4e8t03gol9SQPY9G4xGDoox1KeiQC2ez-R3QRQS4fKEpExEUcBPB1eu9DF8xhV2suFsxFJKnyKHsAr7xR_aac8Oj4e-6eH_2L8BG4cvp3ITx-mH7dg3aG9bv9oG1abamEfOUTV5I994PwEfmwZOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hierarchical+latent+class+model+for+predicting+disability+small+area+counts+from+survey+data&rft.jtitle=Journal+of+the+Royal+Statistical+Society.+Series+A%2C+Statistics+in+society&rft.au=Fabrizi%2C+Enrico&rft.au=Montanari%2C+Giorgio+E&rft.au=Ranalli%2C+M+Giovanna&rft.date=2016-01-01&rft.pub=Oxford+University+Press&rft.issn=0964-1998&rft.eissn=1467-985X&rft.volume=179&rft.issue=1&rft.spage=103&rft_id=info:doi/10.1111%2Frssa.12112&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3915526811
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-1998&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-1998&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-1998&client=summon