大光斑LiDAR全波形数据小波变换的高斯递进分解
高斯分解是波形激光雷达数据预处理的常用方法,但在应用于大光斑全波形激光雷达数据中的叠加波时却难以发挥作用,为此提出一种基于小波变换的高斯递进波形分解方法.首先,利用小波变换多尺度分析特性检测出目标地物并准确估算组分特征参数,进而建立高斯模型优化特征参数;然后通过拟合精度指标,判断是否需要添加新组分进行逐级递进分解,确定最终模型及其组分构成,最终实现全波形激光雷达数据的波形分解.为了验证算法的有效性,分别对实验数据使用本文算法和常用的基于拐点匹配的高斯分解法进行分析,结果表明,本文算法提取的目标数几乎是拐点匹配算法的2倍,可以有效地从叠加波中检测出目标组分,且拟合精度高于98%....
Saved in:
Published in | 红外与毫米波学报 Vol. 36; no. 6; pp. 749 - 755 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
中国科学院大学,北京100049%中国科学院遥感与数字地球研究所数字地球重点实验室,北京,100094%中山大学地理科学与规划学院,广东广州,510275
2017
中国科学院遥感与数字地球研究所数字地球重点实验室,北京100094 |
Subjects | |
Online Access | Get full text |
ISSN | 1001-9014 |
DOI | 10.11972/j.issn.1001-9014.2017.06.019 |
Cover
Summary: | 高斯分解是波形激光雷达数据预处理的常用方法,但在应用于大光斑全波形激光雷达数据中的叠加波时却难以发挥作用,为此提出一种基于小波变换的高斯递进波形分解方法.首先,利用小波变换多尺度分析特性检测出目标地物并准确估算组分特征参数,进而建立高斯模型优化特征参数;然后通过拟合精度指标,判断是否需要添加新组分进行逐级递进分解,确定最终模型及其组分构成,最终实现全波形激光雷达数据的波形分解.为了验证算法的有效性,分别对实验数据使用本文算法和常用的基于拐点匹配的高斯分解法进行分析,结果表明,本文算法提取的目标数几乎是拐点匹配算法的2倍,可以有效地从叠加波中检测出目标组分,且拟合精度高于98%. |
---|---|
Bibliography: | YANG Xue-Bo1,2, WANG Cheng1 , XI Xiao-Huan1, TIAN Jian-Lin3, NIE Sheng1 , ZHU Xiao-Xiao1,2 ( 1. Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China) Gaussian decomposition is a commonly used method for waveform analysis,which is a key post-processing step for the applications of large footprint LiDAR data. However,it usually fails to detect the overlapping pulses of large-footprint waveform data. Therefore,a Gaussian progressive decomposition method based on wavelet transform was proposed in this study to address this issue and applied to Ice,Cloud,and land Elevation Satellite/Geoscience Laser Altimeter System( ICESat/GLAS) data.The new proposed method mainly consists of three key steps. First,the wavelet transform was adopted to detect the target features and estimate the |
ISSN: | 1001-9014 |
DOI: | 10.11972/j.issn.1001-9014.2017.06.019 |