Enzymatic Degradation of p-Nitrophenyl Esters, Polyethylene Terephthalate, Cutin, and Suberin by Sub1, a Suberinase Encoded by the Plant Pathogen Streptomyces scabies

The genome of Streptomyces scabies, the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously shown to be specifically induced in the presence of suberin. The sub1 gene was expressed in Escherichia coli and the recombinant protein Sub1 w...

Full description

Saved in:
Bibliographic Details
Published inMicrobes and Environments Vol. 35; no. 1; p. ME19086
Main Authors Simao-Beaunoir, Anne-Marie, Khalil, Mario, Lerat, Sylvain, Moussa, Issam E. Ben, Jabloune, Raoudha, Beaulieu, Carole, Brzezinski, Ryszard
Format Journal Article
LanguageEnglish
Published Japan Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles 2020
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1342-6311
1347-4405
DOI10.1264/jsme2.ME19086

Cover

Loading…
Abstract The genome of Streptomyces scabies, the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously shown to be specifically induced in the presence of suberin. The sub1 gene was expressed in Escherichia coli and the recombinant protein Sub1 was purified and characterized. The enzyme was shown to be versatile because it hydrolyzes a number of natural and synthetic substrates. Sub1 hydrolyzed p-nitrophenyl esters, with the hydrolysis of those harboring short carbon chains being the most effective. The Vmax and Km values of Sub1 for p-nitrophenyl butyrate were 2.36 mol g–1 min–1 and 5.7 10–4 M, respectively. Sub1 hydrolyzed the recalcitrant polymers cutin and suberin because the release of fatty acids from these substrates was observed following the incubation of the enzyme with these polymers. Furthermore, the hydrolyzing activity of the esterase Sub1 on the synthetic polymer polyethylene terephthalate (PET) was demonstrated by the release of terephthalic acid (TA). Sub1 activity on PET was markedly enhanced by the addition of Triton and was shown to be stable at 37°C for at least 20 d.
AbstractList The genome of Streptomyces scabies , the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously shown to be specifically induced in the presence of suberin. The sub1 gene was expressed in Escherichia coli and the recombinant protein Sub1 was purified and characterized. The enzyme was shown to be versatile because it hydrolyzes a number of natural and synthetic substrates. Sub1 hydrolyzed p -nitrophenyl esters, with the hydrolysis of those harboring short carbon chains being the most effective. The V max and K m values of Sub1 for p -nitrophenyl butyrate were 2.36 mol g –1 min –1 and 5.7 10 –4 M, respectively. Sub1 hydrolyzed the recalcitrant polymers cutin and suberin because the release of fatty acids from these substrates was observed following the incubation of the enzyme with these polymers. Furthermore, the hydrolyzing activity of the esterase Sub1 on the synthetic polymer polyethylene terephthalate (PET) was demonstrated by the release of terephthalic acid (TA). Sub1 activity on PET was markedly enhanced by the addition of Triton and was shown to be stable at 37°C for at least 20 d.
The genome of Streptomyces scabies, the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously shown to be specifically induced in the presence of suberin. The sub1 gene was expressed in Escherichia coli and the recombinant protein Sub1 was purified and characterized. The enzyme was shown to be versatile because it hydrolyzes a number of natural and synthetic substrates. Sub1 hydrolyzed p-nitrophenyl esters, with the hydrolysis of those harboring short carbon chains being the most effective. The Vmax and Km values of Sub1 for p-nitrophenyl butyrate were 2.36 mol g–1 min–1 and 5.7 10–4 M, respectively. Sub1 hydrolyzed the recalcitrant polymers cutin and suberin because the release of fatty acids from these substrates was observed following the incubation of the enzyme with these polymers. Furthermore, the hydrolyzing activity of the esterase Sub1 on the synthetic polymer polyethylene terephthalate (PET) was demonstrated by the release of terephthalic acid (TA). Sub1 activity on PET was markedly enhanced by the addition of Triton and was shown to be stable at 37°C for at least 20 d.
The genome of Streptomyces scabies, the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously shown to be specifically induced in the presence of suberin. The sub1 gene was expressed in Escherichia coli and the recombinant protein Sub1 was purified and characterized. The enzyme was shown to be versatile because it hydrolyzes a number of natural and synthetic substrates. Sub1 hydrolyzed p-nitrophenyl esters, with the hydrolysis of those harboring short carbon chains being the most effective. The V and K values of Sub1 for p-nitrophenyl butyrate were 2.36 mol g min and 5.7 10 M, respectively. Sub1 hydrolyzed the recalcitrant polymers cutin and suberin because the release of fatty acids from these substrates was observed following the incubation of the enzyme with these polymers. Furthermore, the hydrolyzing activity of the esterase Sub1 on the synthetic polymer polyethylene terephthalate (PET) was demonstrated by the release of terephthalic acid (TA). Sub1 activity on PET was markedly enhanced by the addition of Triton and was shown to be stable at 37°C for at least 20 d.
Author Moussa, Issam E. Ben
Simao-Beaunoir, Anne-Marie
Lerat, Sylvain
Jabloune, Raoudha
Brzezinski, Ryszard
Khalil, Mario
Beaulieu, Carole
Author_xml – sequence: 1
  fullname: Simao-Beaunoir, Anne-Marie
  organization: Département de Biologie, Université de Sherbrooke
– sequence: 1
  fullname: Khalil, Mario
  organization: Département de Biologie, Université de Sherbrooke
– sequence: 1
  fullname: Lerat, Sylvain
  organization: Département de Biologie, Université de Sherbrooke
– sequence: 1
  fullname: Moussa, Issam E. Ben
  organization: Département de Biologie, Université de Sherbrooke
– sequence: 1
  fullname: Jabloune, Raoudha
  organization: Département de Biologie, Université de Sherbrooke
– sequence: 1
  fullname: Beaulieu, Carole
  organization: Département de Biologie, Université de Sherbrooke
– sequence: 1
  fullname: Brzezinski, Ryszard
  organization: Département de Biologie, Université de Sherbrooke
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32101840$$D View this record in MEDLINE/PubMed
BookMark eNp1ktuL1DAUxousuBd99FUCvk7XXHp9EWS2XmDVgV2fw2l6Ou3QJjVJhfoH-XfamekMKviSHM73O98JfLkOLrTRGAQvGb1lPIne7FyP_PZzwXKaJU-CKyaiNIwiGl8cah4mgrHL4Nq5HaVCxCl_FlwKzijLInoV_Cr0z6kH3ypyh1sL1VwaTUxNhvBL660ZGtRTRwrn0boV2ZhuQt9MHWokj2hxaHwDHXhckfXoW70ioCvyMJZoW03KaV-yuXlqgUNSaGUqrPaqb5BsOtCebMA3ZouaPPjZ1Zt-UuiIU1C26J4HT2voHL5Y7pvg2_vicf0xvP_64dP63X2o4jzzIVYAEGUCkUOeJpDHSEuVlxjVLAOaKqQcEqYYTWqaC65UUjLMoU5TqsooFzfB26PvMJY9Vgq1t9DJwbY92EkaaOXfim4buTU_ZMpoxLN4Nni9GFjzfUTn5c6MVs9vllykacpZltCZevXnmrP_KZcZEEdAWeOcxVqq1h-imbe2nWRU7tOXh_Tlkv48Ff4zdTL-H78-8jvnYYtnGuz8HzpcaBFLtj-WqbOqGrAStfgNXCTOPA
CitedBy_id crossref_primary_10_3390_bioengineering9030098
crossref_primary_10_1007_s11270_024_07464_z
crossref_primary_10_4491_eer_2022_716
crossref_primary_10_1007_s00449_022_02793_x
crossref_primary_10_1007_s11274_021_03089_0
crossref_primary_10_1016_j_jhazmat_2025_137177
crossref_primary_10_1016_j_bcab_2021_102263
crossref_primary_10_1007_s10532_023_10062_1
crossref_primary_10_3389_fmicb_2022_1001750
crossref_primary_10_1016_j_jece_2024_112926
crossref_primary_10_3389_fmicb_2024_1466927
crossref_primary_10_1016_j_jafr_2025_101788
crossref_primary_10_1016_j_matpr_2022_08_285
crossref_primary_10_1038_s42003_024_06414_z
crossref_primary_10_3390_molecules30061255
crossref_primary_10_1002_bit_27984
crossref_primary_10_1002_smtd_202400230
crossref_primary_10_1093_jimb_kuad010
crossref_primary_10_1016_j_biortech_2022_126697
crossref_primary_10_1016_j_enzmictec_2021_109868
crossref_primary_10_1016_j_ecoenv_2024_117419
crossref_primary_10_1016_j_chemosphere_2025_144166
crossref_primary_10_3390_environments10120207
crossref_primary_10_3390_fermentation9010027
crossref_primary_10_1128_Spectrum_00976_21
crossref_primary_10_1016_j_trac_2024_117667
crossref_primary_10_1002_jobm_202200428
crossref_primary_10_1002_jctb_6745
crossref_primary_10_1016_j_scitotenv_2023_166165
crossref_primary_10_1016_j_jenvman_2023_119433
crossref_primary_10_1016_j_scitotenv_2024_173963
crossref_primary_10_57634_RCR5069
crossref_primary_10_1002_jctb_6675
crossref_primary_10_1007_s11270_021_05301_1
crossref_primary_10_1126_sciadv_abl9734
crossref_primary_10_1186_s42269_024_01241_y
crossref_primary_10_3389_fmicb_2023_1127308
crossref_primary_10_3390_ijms25010593
crossref_primary_10_1016_j_scitotenv_2021_149338
crossref_primary_10_1139_cjm_2023_0171
crossref_primary_10_3389_fmicb_2025_1541913
crossref_primary_10_1016_j_procbio_2023_10_020
crossref_primary_10_1039_D4RA00844H
crossref_primary_10_3390_ijms222011257
crossref_primary_10_1016_j_envres_2023_115988
crossref_primary_10_1016_j_biortech_2024_131167
crossref_primary_10_1016_j_heliyon_2023_e15104
crossref_primary_10_1007_s00203_023_03560_6
crossref_primary_10_1016_j_jbc_2021_101302
crossref_primary_10_1016_j_scp_2024_101595
crossref_primary_10_1016_j_scitotenv_2024_178105
crossref_primary_10_1016_j_envres_2023_116281
crossref_primary_10_3390_microorganisms9010094
crossref_primary_10_1007_s11270_023_06190_2
crossref_primary_10_1016_j_psep_2024_07_002
crossref_primary_10_1016_j_scitotenv_2020_143536
crossref_primary_10_1007_s10532_023_10048_z
crossref_primary_10_1007_s11356_021_17451_0
crossref_primary_10_1007_s11356_024_35472_3
crossref_primary_10_1007_s00203_024_03895_8
crossref_primary_10_1007_s11540_023_09660_6
crossref_primary_10_1016_j_scitotenv_2022_154868
crossref_primary_10_1016_j_trac_2023_117189
crossref_primary_10_3389_fmicb_2021_777727
Cites_doi 10.1016/0003-9861(73)90429-3
10.1096/fj.09-144766
10.1111/j.1365-3059.2011.02434.x
10.1080/07060660509507192
10.1128/AEM.02103-08
10.1007/s13593-011-0035-z
10.1007/s10658-016-0983-x
10.2225/vol1-issue3-fulltext-8
10.1002/(SICI)1097-0290(1999)66:1<17::AID-BIT2>3.0.CO;2-F
10.1128/AEM.62.2.456-460.1996
10.1128/AEM.00239-13
10.1126/science.aad6359
10.1073/pnas.1718804115
10.1016/j.procbio.2008.09.008
10.1139/w99-072
10.1016/j.pbi.2012.03.003
10.1007/s10295-008-0356-3
10.1016/j.biotechadv.2013.09.005
10.1111/j.1365-3059.2011.02435.x
10.1186/1477-5956-12-35
10.1021/ja9046697
10.1021/bi00167a011
10.1094/MPMI.1997.10.1.21
10.1264/jsme2.ME16110
10.1007/BF02532176
10.1007/BF02358244
10.1016/S0885-5765(03)00041-9
10.1007/s12010-015-1953-z
10.1016/0003-2697(76)90527-3
10.1074/jbc.M800848200
10.1111/j.1364-3703.2008.00493.x
10.1139/b02-017
10.1128/JB.169.5.1967-1971.1987
10.1021/bi00760a025
10.1016/0141-0229(79)90041-3
10.1099/00221287-146-4-767
10.1128/AEM.04111-14
10.1007/s00253-018-9149-4
10.1007/s11745-002-0946-7
10.1016/0076-6879(81)71078-4
10.1016/j.jbiotec.2009.07.008
10.1016/S0031-9422(98)80052-6
10.1139/cjm-2012-0741
10.1016/j.jbiotec.2005.06.015
ContentType Journal Article
Copyright 2020 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles.
Copyright Japan Science and Technology Agency 2020
2020 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles. 2020
Copyright_xml – notice: 2020 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles.
– notice: Copyright Japan Science and Technology Agency 2020
– notice: 2020 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles. 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
F1W
H95
L.G
M7N
5PM
DOI 10.1264/jsme2.ME19086
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
DocumentTitleAlternate Sub1, a suberinase from Streptomyces scabies
EISSN 1347-4405
ExternalDocumentID PMC7104285
32101840
10_1264_jsme2_ME19086
article_jsme2_35_1_35_ME19086_article_char_en
Genre Journal Article
GroupedDBID 123
2WC
53G
ACPRK
ADBBV
ADRAZ
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
CS3
DIK
DU5
E3Z
HYE
JSF
JSH
KQ8
M48
OK1
PGMZT
RJT
RPM
RZJ
TKC
TR2
WBO
~02
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
C1K
F1W
H95
L.G
M7N
5PM
ID FETCH-LOGICAL-c598t-edaaa483ee2a976a95e0bc9be4f18a07ce02a61c106f0932cc6b1e9af770cb493
IEDL.DBID M48
ISSN 1342-6311
IngestDate Thu Aug 21 13:58:26 EDT 2025
Mon Jun 30 08:24:02 EDT 2025
Thu Jan 02 22:59:16 EST 2025
Tue Jul 01 03:52:13 EDT 2025
Thu Apr 24 23:01:13 EDT 2025
Wed Sep 03 06:17:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords actinobacteria
common scab
esterase
cutinase
potato
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-edaaa483ee2a976a95e0bc9be4f18a07ce02a61c106f0932cc6b1e9af770cb493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1264/jsme2.ME19086
PMID 32101840
PQID 2377721860
PQPubID 1976392
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104285
proquest_journals_2377721860
pubmed_primary_32101840
crossref_citationtrail_10_1264_jsme2_ME19086
crossref_primary_10_1264_jsme2_ME19086
jstage_primary_article_jsme2_35_1_35_ME19086_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020
2020-00-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Japan
PublicationPlace_xml – name: Japan
– name: Miyagi
PublicationTitle Microbes and Environments
PublicationTitleAlternate Microbes Environ.
PublicationYear 2020
Publisher Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
Japan Science and Technology Agency
Publisher_xml – name: Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
– name: Japan Science and Technology Agency
References Sambrook, J.F., and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Faber, M.D. (1979) Microbial degradation of recalcitrant compounds and synthetic aromatic polymers. Enzyme Microb Technol 1: 226–232.
Beaulieu, C., Sidibé, A., Jabloune, R., Simao-Beaunoir, A.-M., Lerat, S., Monga, E., and Bernards, M.A. (2016) Physical, chemical and proteomic evidence of potato suberin degradation by the plant pathogenic bacterium Streptomyces scabiei. Microbes Environ 31: 427–434.
Carvalho, C.M.L., Aires-Barros, M.R., and Cabral, J.M.S. (1998) Cutinase structure, function and biocatalytic applications. Electron J Biotechnol 1: 160–173.
Monu, and Meena, L.S. (2016) Roles of triolein and lipolytic protein in the pathogenesis and survival of Mycobacterium tuberculosis: a novel therapeutic approach. Appl Biochem Biotechnol 178: 1377–1389.
Austin, H.P., Allen, M.D., Donohoe, B.S., Rorrer, N.A., Kearns, F.L., Silveira, R.L., et al. (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci U S A 115: E4350–E4357.
Kolattukudy, P.E., and Agrawal, V.P. (1974) Structure and composition of aliphatic constituents of potato tuber skin (suberin). Lipids 9: 682–691.
Beauséjour, J., Goyer, C., Vachon, J., and Beaulieu, C. (1999) Production of thaxtomin A by Streptomyces scabies strains in plant extract containing media. Can J Microbiol 45: 764–768.
Beisson, F., Li-Beisson, Y., and Pollard, M. (2012) Solving the puzzles of cutin and suberin polymer biosynthesis. Curr Opin Plant Biol 15: 329–337.
Kontkanen, H., Westerholm-Parvinen, A., Saloheimo, M., Bailey, M., Rättö, M., Mattila, I., et al. (2009) Novel Coprinopsis cinerea polyesterase that hydrolyzes cutin and suberin. Appl Environ Microbiol 75: 2148–2157.
Lacombe-Harvey, M.-È., Brzezinski, R., and Beaulieu, C. (2018) Chitinolytic functions in actinobacteria : ecology, enzymes, and evolution. Appl Microbiol Biotechnol 102: 7219–7230.
Khatri, B.B., Tegg, R.S., Brown, P.H., and Wilson, C.R. (2011) Temporal association of potato tuber development with susceptibility to common scab and Streptomyces scabiei-induced responses in the potato periderm. Plant Pathol 60: 776–786.
Komeil, D., Simao-Beaunoir, A.-M., and Beaulieu, C. (2013) Detection of potential suberinase-encoding genes in Streptomyces scabiei strains and other actinobacteria. Can J Microbiol 59: 294–303.
Loria, R., Coombs, J., Yoshida, M., Kers, J.A., and Bukhalid, R.A. (2003) A paucity of bacterial root diseases : Streptomyces succeeds where others fail. Physiol Mol Plant Pathol 62: 65–72.
Purdy, R.E., and Kolattukudy, P.E. (1973) Depolymerization of a hydroxy fatty acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani f. pisi: isolation and some properties of the enzyme. Arch Biochem Biophys 159: 61–69.
Bernards, M.A., and Lewis, N.G. (1998) The macromolecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry 47: 915–933.
Hill, J., and Lazarovits, G. (2005) A mail survey of growers to estimate potato common scab prevalence and economic loss in Canada. Can J Plant Pathol 27: 46–52.
Chen, S., Tong, X., Woodard, R.W., Du, G., Wu, J., and Chen, J. (2008) Identification and characterization of bacterial cutinase. J Biol Chem 283: 25854–25862.
Martinez, C., Nicolas, A., van Tilbeurgh, H., Egloff, M.P., Cudrey, C., Verger, R., and Cambillau, C. (1994) Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry 33: 83–89.
Chahinian, H., Nini, L., Boitard, E., Dubès, J.-P., Comeau, L.-C., and Sarda, L. (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37: 653–662.
Bernards, M.A. (2002) Demystifying suberin. Can J Bot 80: 227–240.
Carvalho, C.M.L., Aires-Barros, M.R., and Cabral, J.M.S. (1999) Cutinase: from molecular level to bioprocess development. Biotechnol Bioeng 66: 17–34.
Chen, S., Su, L., Chen, J., and Wu, J. (2013) Cutinase: characteristics, preparation, and application. Biotechnol Adv 31: 1754–1767.
Komeil, D., Padilla-Reynaud, R., Lerat, S., Simao-Beaunoir, A.-M., and Beaulieu, C. (2014) Comparative secretome analysis of Streptomyces scabiei during growth in the presence or absence of potato suberin. Proteome Sci 12: 35.
Su, L., Woodard, R.W., Chen, J., and Wu, J. (2013) Extracellular location of Thermobifida fusca cutinase expressed in Escherichia coli BL21(DE3) without mediation of a signal peptide. Appl Environ Microbiol 79: 4192–4198.
Tyner, D.N., Hocart, M.J., Lennard, J.H., and Graham, D.C. (1997) Periderm and lenticel characterization in relation to potato cultivar, soil moisture and tuber maturity. Potato Res 40: 181–190.
Walton, T.J., and Kolattukudy, P.E. (1972) Determination of the structures of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry. Biochemistry 11: 1885–1897.
Fiers, M., Edel-Hermann, V., Chatot, C., Le Hingrat, Y., Alabouvette, C., and Steinberg, C. (2012) Potato soil-borne diseases. A review. Agron Sustainable Dev 32: 93–132.
Nimchua, T., Eveleigh, D.E., Sangwatanaroj, U., and Punnapayak, H. (2008) Screening of tropical fungi producing polyethylene terephthalate-hydrolyzing enzyme for fabric modification. J Ind Microbiol Biotechnol 35: 843–850.
Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., et al. (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351: 1196–1199.
Schué, M., Maurin, D., Dhouib, R., Bakala N’Goma, J.-C., Delorme, V., Lambeau, G., et al. (2010) Two cutinase-like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function. FASEB J 24: 1631–2136.
Vertommen, M.A.M.E., Nierstrasz, V.A., van der Veer, M., and Warmoeskerken, M.M.C.G. (2005) Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol 120: 376–386.
Feng, J., Hwang, R., Hwang, S.-F., Gaudet, D., and Strelkov, S.E. (2011) Molecular characterization of a Stagonospora nodorum lipase gene LIP1. Plant Pathol 60: 698–708.
Kolattukudy, P., Purdy, R., and Maiti, I. (1981) Cutinases from fungi and pollen. Methods Enzymol 71: 652–664.
Murphy, C.A., Cameron, J.A., Huang, S.J., and Vinopal, R.T. (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol 62: 456–460.
Dutta, K., Sen, S., and Veeranki, V.D. (2009) Production, characterization and applications of microbial cutinases. Process Biochem 44: 127–134.
Eberl, A., Heumann, S., Brückner, T., Araujo, R., Cavaco-Paulo, A., Kaufmann, F., et al. (2009) Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J Biotechnol 143: 207–212.
McQueen, D.A.R., and Schottel, J.L. (1987) Purification and characterization of a novel extracellular esterase from pathogenic Streptomyces scabies that is inducible by zinc. J Bacteriol 169: 1967–1971.
Ribitsch, D., Acero, E.H., Przylucka, A., Zitzenbacher, S., Marold, A., Gamerith, C., et al. (2015) Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Appl Environ Microbiol 81: 3586–3592.
Wang, Y., Chen, J., Li, D.W., Zheng, L., and Huang, J. (2017) CglCUT1 gene required for cutinase activity and pathogenicity of Colletotrichum gloeosporioides causing anthracnose of Camellia oleifera. Eur J Plant Pathol 147: 103–114.
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.
Lauzier, A., Simao-Beaunoir, A.-M., Bourassa, S., Poirier, G.G., Talbot, B., and Beaulieu, C. (2008) Effect of potato suberin on Streptomyces scabies proteome. Mol Plant Pathol 9: 753–762.
van der Vlugt-Bergmans, C.J., Wagemakers, C.A., and van Kan, J.A. (1997) Cloning and expression of the cutinase A gene of Botrytis cinerea. Mol Plant Microbe Interact 10: 21–29.
Liu, Z., Gosser, Y., Baker, P.J., Ravee, Y., Lu, Z., Alemu, G., et al. (2009) Structural and functional studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. J Am Chem Soc 131: 15711–15716.
Wösten, H.A.B., and Willey, J.M. (2000) Surface-active proteins enable microbial aerial hyphae to grow into the air. Microbiology 146: 767–773.
22
44
23
45
24
25
26
27
28
29
P.E. Kolattukudy (20) 1974; 9
30
31
10
32
11
33
12
34
13
35
14
36
15
37
16
38
17
39
18
19
1
2
3
4
5
6
7
8
9
40
41
42
21
43
References_xml – reference: Dutta, K., Sen, S., and Veeranki, V.D. (2009) Production, characterization and applications of microbial cutinases. Process Biochem 44: 127–134.
– reference: McQueen, D.A.R., and Schottel, J.L. (1987) Purification and characterization of a novel extracellular esterase from pathogenic Streptomyces scabies that is inducible by zinc. J Bacteriol 169: 1967–1971.
– reference: Kontkanen, H., Westerholm-Parvinen, A., Saloheimo, M., Bailey, M., Rättö, M., Mattila, I., et al. (2009) Novel Coprinopsis cinerea polyesterase that hydrolyzes cutin and suberin. Appl Environ Microbiol 75: 2148–2157.
– reference: Wang, Y., Chen, J., Li, D.W., Zheng, L., and Huang, J. (2017) CglCUT1 gene required for cutinase activity and pathogenicity of Colletotrichum gloeosporioides causing anthracnose of Camellia oleifera. Eur J Plant Pathol 147: 103–114.
– reference: Lauzier, A., Simao-Beaunoir, A.-M., Bourassa, S., Poirier, G.G., Talbot, B., and Beaulieu, C. (2008) Effect of potato suberin on Streptomyces scabies proteome. Mol Plant Pathol 9: 753–762.
– reference: Vertommen, M.A.M.E., Nierstrasz, V.A., van der Veer, M., and Warmoeskerken, M.M.C.G. (2005) Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol 120: 376–386.
– reference: Murphy, C.A., Cameron, J.A., Huang, S.J., and Vinopal, R.T. (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol 62: 456–460.
– reference: Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.
– reference: Schué, M., Maurin, D., Dhouib, R., Bakala N’Goma, J.-C., Delorme, V., Lambeau, G., et al. (2010) Two cutinase-like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function. FASEB J 24: 1631–2136.
– reference: Nimchua, T., Eveleigh, D.E., Sangwatanaroj, U., and Punnapayak, H. (2008) Screening of tropical fungi producing polyethylene terephthalate-hydrolyzing enzyme for fabric modification. J Ind Microbiol Biotechnol 35: 843–850.
– reference: Chen, S., Su, L., Chen, J., and Wu, J. (2013) Cutinase: characteristics, preparation, and application. Biotechnol Adv 31: 1754–1767.
– reference: Hill, J., and Lazarovits, G. (2005) A mail survey of growers to estimate potato common scab prevalence and economic loss in Canada. Can J Plant Pathol 27: 46–52.
– reference: Chahinian, H., Nini, L., Boitard, E., Dubès, J.-P., Comeau, L.-C., and Sarda, L. (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37: 653–662.
– reference: Feng, J., Hwang, R., Hwang, S.-F., Gaudet, D., and Strelkov, S.E. (2011) Molecular characterization of a Stagonospora nodorum lipase gene LIP1. Plant Pathol 60: 698–708.
– reference: Martinez, C., Nicolas, A., van Tilbeurgh, H., Egloff, M.P., Cudrey, C., Verger, R., and Cambillau, C. (1994) Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry 33: 83–89.
– reference: Komeil, D., Simao-Beaunoir, A.-M., and Beaulieu, C. (2013) Detection of potential suberinase-encoding genes in Streptomyces scabiei strains and other actinobacteria. Can J Microbiol 59: 294–303.
– reference: Wösten, H.A.B., and Willey, J.M. (2000) Surface-active proteins enable microbial aerial hyphae to grow into the air. Microbiology 146: 767–773.
– reference: Su, L., Woodard, R.W., Chen, J., and Wu, J. (2013) Extracellular location of Thermobifida fusca cutinase expressed in Escherichia coli BL21(DE3) without mediation of a signal peptide. Appl Environ Microbiol 79: 4192–4198.
– reference: Chen, S., Tong, X., Woodard, R.W., Du, G., Wu, J., and Chen, J. (2008) Identification and characterization of bacterial cutinase. J Biol Chem 283: 25854–25862.
– reference: Austin, H.P., Allen, M.D., Donohoe, B.S., Rorrer, N.A., Kearns, F.L., Silveira, R.L., et al. (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci U S A 115: E4350–E4357.
– reference: Beaulieu, C., Sidibé, A., Jabloune, R., Simao-Beaunoir, A.-M., Lerat, S., Monga, E., and Bernards, M.A. (2016) Physical, chemical and proteomic evidence of potato suberin degradation by the plant pathogenic bacterium Streptomyces scabiei. Microbes Environ 31: 427–434.
– reference: Kolattukudy, P., Purdy, R., and Maiti, I. (1981) Cutinases from fungi and pollen. Methods Enzymol 71: 652–664.
– reference: Ribitsch, D., Acero, E.H., Przylucka, A., Zitzenbacher, S., Marold, A., Gamerith, C., et al. (2015) Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Appl Environ Microbiol 81: 3586–3592.
– reference: Monu, and Meena, L.S. (2016) Roles of triolein and lipolytic protein in the pathogenesis and survival of Mycobacterium tuberculosis: a novel therapeutic approach. Appl Biochem Biotechnol 178: 1377–1389.
– reference: van der Vlugt-Bergmans, C.J., Wagemakers, C.A., and van Kan, J.A. (1997) Cloning and expression of the cutinase A gene of Botrytis cinerea. Mol Plant Microbe Interact 10: 21–29.
– reference: Bernards, M.A., and Lewis, N.G. (1998) The macromolecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry 47: 915–933.
– reference: Purdy, R.E., and Kolattukudy, P.E. (1973) Depolymerization of a hydroxy fatty acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani f. pisi: isolation and some properties of the enzyme. Arch Biochem Biophys 159: 61–69.
– reference: Eberl, A., Heumann, S., Brückner, T., Araujo, R., Cavaco-Paulo, A., Kaufmann, F., et al. (2009) Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J Biotechnol 143: 207–212.
– reference: Tyner, D.N., Hocart, M.J., Lennard, J.H., and Graham, D.C. (1997) Periderm and lenticel characterization in relation to potato cultivar, soil moisture and tuber maturity. Potato Res 40: 181–190.
– reference: Beisson, F., Li-Beisson, Y., and Pollard, M. (2012) Solving the puzzles of cutin and suberin polymer biosynthesis. Curr Opin Plant Biol 15: 329–337.
– reference: Loria, R., Coombs, J., Yoshida, M., Kers, J.A., and Bukhalid, R.A. (2003) A paucity of bacterial root diseases : Streptomyces succeeds where others fail. Physiol Mol Plant Pathol 62: 65–72.
– reference: Walton, T.J., and Kolattukudy, P.E. (1972) Determination of the structures of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry. Biochemistry 11: 1885–1897.
– reference: Carvalho, C.M.L., Aires-Barros, M.R., and Cabral, J.M.S. (1998) Cutinase structure, function and biocatalytic applications. Electron J Biotechnol 1: 160–173.
– reference: Kolattukudy, P.E., and Agrawal, V.P. (1974) Structure and composition of aliphatic constituents of potato tuber skin (suberin). Lipids 9: 682–691.
– reference: Beauséjour, J., Goyer, C., Vachon, J., and Beaulieu, C. (1999) Production of thaxtomin A by Streptomyces scabies strains in plant extract containing media. Can J Microbiol 45: 764–768.
– reference: Liu, Z., Gosser, Y., Baker, P.J., Ravee, Y., Lu, Z., Alemu, G., et al. (2009) Structural and functional studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. J Am Chem Soc 131: 15711–15716.
– reference: Sambrook, J.F., and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
– reference: Carvalho, C.M.L., Aires-Barros, M.R., and Cabral, J.M.S. (1999) Cutinase: from molecular level to bioprocess development. Biotechnol Bioeng 66: 17–34.
– reference: Komeil, D., Padilla-Reynaud, R., Lerat, S., Simao-Beaunoir, A.-M., and Beaulieu, C. (2014) Comparative secretome analysis of Streptomyces scabiei during growth in the presence or absence of potato suberin. Proteome Sci 12: 35.
– reference: Khatri, B.B., Tegg, R.S., Brown, P.H., and Wilson, C.R. (2011) Temporal association of potato tuber development with susceptibility to common scab and Streptomyces scabiei-induced responses in the potato periderm. Plant Pathol 60: 776–786.
– reference: Fiers, M., Edel-Hermann, V., Chatot, C., Le Hingrat, Y., Alabouvette, C., and Steinberg, C. (2012) Potato soil-borne diseases. A review. Agron Sustainable Dev 32: 93–132.
– reference: Faber, M.D. (1979) Microbial degradation of recalcitrant compounds and synthetic aromatic polymers. Enzyme Microb Technol 1: 226–232.
– reference: Lacombe-Harvey, M.-È., Brzezinski, R., and Beaulieu, C. (2018) Chitinolytic functions in actinobacteria : ecology, enzymes, and evolution. Appl Microbiol Biotechnol 102: 7219–7230.
– reference: Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., et al. (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351: 1196–1199.
– reference: Bernards, M.A. (2002) Demystifying suberin. Can J Bot 80: 227–240.
– ident: 34
  doi: 10.1016/0003-9861(73)90429-3
– ident: 37
  doi: 10.1096/fj.09-144766
– ident: 16
  doi: 10.1111/j.1365-3059.2011.02434.x
– ident: 18
  doi: 10.1080/07060660509507192
– ident: 24
  doi: 10.1128/AEM.02103-08
– ident: 17
  doi: 10.1007/s13593-011-0035-z
– ident: 43
  doi: 10.1007/s10658-016-0983-x
– ident: 8
  doi: 10.2225/vol1-issue3-fulltext-8
– ident: 9
  doi: 10.1002/(SICI)1097-0290(1999)66:1<17::AID-BIT2>3.0.CO;2-F
– ident: 32
  doi: 10.1128/AEM.62.2.456-460.1996
– ident: 38
  doi: 10.1128/AEM.00239-13
– ident: 45
  doi: 10.1126/science.aad6359
– ident: 1
  doi: 10.1073/pnas.1718804115
– ident: 13
  doi: 10.1016/j.procbio.2008.09.008
– ident: 3
  doi: 10.1139/w99-072
– ident: 4
  doi: 10.1016/j.pbi.2012.03.003
– ident: 33
  doi: 10.1007/s10295-008-0356-3
– ident: 12
  doi: 10.1016/j.biotechadv.2013.09.005
– ident: 19
  doi: 10.1111/j.1365-3059.2011.02435.x
– ident: 23
  doi: 10.1186/1477-5956-12-35
– ident: 27
  doi: 10.1021/ja9046697
– ident: 29
  doi: 10.1021/bi00167a011
– ident: 40
  doi: 10.1094/MPMI.1997.10.1.21
– ident: 2
  doi: 10.1264/jsme2.ME16110
– volume: 9
  start-page: 682
  issn: 0024-4201
  year: 1974
  ident: 20
  publication-title: Lipids
  doi: 10.1007/BF02532176
– ident: 39
  doi: 10.1007/BF02358244
– ident: 28
  doi: 10.1016/S0885-5765(03)00041-9
– ident: 31
  doi: 10.1007/s12010-015-1953-z
– ident: 7
  doi: 10.1016/0003-2697(76)90527-3
– ident: 11
  doi: 10.1074/jbc.M800848200
– ident: 26
  doi: 10.1111/j.1364-3703.2008.00493.x
– ident: 36
– ident: 6
  doi: 10.1139/b02-017
– ident: 30
  doi: 10.1128/JB.169.5.1967-1971.1987
– ident: 42
  doi: 10.1021/bi00760a025
– ident: 15
  doi: 10.1016/0141-0229(79)90041-3
– ident: 44
  doi: 10.1099/00221287-146-4-767
– ident: 35
  doi: 10.1128/AEM.04111-14
– ident: 25
  doi: 10.1007/s00253-018-9149-4
– ident: 10
  doi: 10.1007/s11745-002-0946-7
– ident: 21
  doi: 10.1016/0076-6879(81)71078-4
– ident: 14
  doi: 10.1016/j.jbiotec.2009.07.008
– ident: 5
  doi: 10.1016/S0031-9422(98)80052-6
– ident: 22
  doi: 10.1139/cjm-2012-0741
– ident: 41
  doi: 10.1016/j.jbiotec.2005.06.015
SSID ssj0033572
Score 2.451774
Snippet The genome of Streptomyces scabies, the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously...
The genome of Streptomyces scabies , the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously...
SourceID pubmedcentral
proquest
pubmed
crossref
jstage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage ME19086
SubjectTerms actinobacteria
Bacterial Proteins - genetics
Bacterial Proteins - isolation & purification
Bacterial Proteins - metabolism
Carboxylic Ester Hydrolases - genetics
Carboxylic Ester Hydrolases - isolation & purification
Carboxylic Ester Hydrolases - metabolism
common scab
Cutin
Cutinase
E coli
Enzymes
Esterase
Esterases
Esters
Fatty acids
Fatty Acids - metabolism
Genomes
Hydrolysis
Incubation period
Molecular chains
p-Nitrophenyl butyrate
Pathogens
Phthalic Acids - metabolism
Plant Diseases - microbiology
Polyethylene
Polyethylene terephthalate
Polymers
Polymers - metabolism
potato
Potato common scab
Potatoes
Proteins
Recombinant Proteins - genetics
Recombinant Proteins - isolation & purification
Recombinant Proteins - metabolism
Recombinants
Regular Paper
Solanum tuberosum - microbiology
Streptomyces
Streptomyces - enzymology
Streptomyces - genetics
Sub1 gene
Substrates
Terephthalic acid
Title Enzymatic Degradation of p-Nitrophenyl Esters, Polyethylene Terephthalate, Cutin, and Suberin by Sub1, a Suberinase Encoded by the Plant Pathogen Streptomyces scabies
URI https://www.jstage.jst.go.jp/article/jsme2/35/1/35_ME19086/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/32101840
https://www.proquest.com/docview/2377721860
https://pubmed.ncbi.nlm.nih.gov/PMC7104285
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Microbes and Environments, 2020, Vol.35(1), pp.ME19086
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF1B-VAviG8CpdoD4hQXr3e9sSUQQsVVhZQoh0bqzdq1Z0kr1w6JkTA_iN_JjGMbAuVCDlbkHSeS5-3Om7XnDWOvpLZhoHLtQaTBUy53nlG5QYfI3IjAShlSofB0pk8X6tN5eP5LUqi7gZtrUzvqJ7VYF0ffvjTvccK_a7URtHpzubmC4GiaYGyL9E12C4OSJoBP1fBAAf-y7eMkpAo8LYXo5Db_unyf3aWqFsp7diLV7Uska5_hOh765-uUv8Wnk_vsXkcs-YctEh6wG1A-ZHeSVpS6ecR-JOX3ppVn5R9JH2LbSolXjq-82UW9JnmBsil4QsIJmzGfV0UD6EQMSsDPYA2rZb00BTLTMT9GsJZjbsqc47pD9YPcNvRV4Mn-FEZHnpRUMZ_TKPJMTg2Saj5HzlkhbDk9EF_V1VWDSxXfZMZi0v6YLU6Ss-NTr-vR4GVhHNUe5MYYFUmAwCCzMXEIvs1iC8qJyPiTDPzAaJFh5ul85IpZpq2A2LjJxM-siuUTtldWJTxjXDihcfnFjxMKrIulAxdYnYc6Dm0uRmzc-yPNOgFz6qNRpJTIoCfT1pNp58kRez2Yr7bKHf8yfLt17mDWTdrOTIapoENnPoxSWRyuLSN20EMi7eGbBnKCaYuItD9iT7foGH69x9eITXZwMxiQ4vfuSHmxbJW_kQ5iuhg-_-8rX7D9gDYM2j2kA7ZXr7_CS2RVtT1s5wseZ_PpYbvp9RPhpikZ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymatic+Degradation+of+p-Nitrophenyl+Esters%2C+Polyethylene+Terephthalate%2C+Cutin%2C+and+Suberin+by+Sub1%2C+a+Suberinase+Encoded+by+the+Plant+Pathogen+Streptomyces+scabies&rft.jtitle=Microbes+and+Environments&rft.au=Simao-Beaunoir%2C+Anne-Marie&rft.au=Khalil%2C+Mario&rft.au=Lerat%2C+Sylvain&rft.au=Moussa%2C+Issam+E.+Ben&rft.date=2020&rft.pub=Japanese+Society+of+Microbial+Ecology+%2F+Japanese+Society+of+Soil+Microbiology+%2F+Taiwan+Society+of+Microbial+Ecology+%2F+Japanese+Society+of+Plant+Microbe+Interactions+%2F+Japanese+Society+for+Extremophiles&rft.issn=1342-6311&rft.eissn=1347-4405&rft.volume=35&rft.issue=1&rft.spage=ME19086&rft_id=info:doi/10.1264%2Fjsme2.ME19086&rft.externalDocID=article_jsme2_35_1_35_ME19086_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-6311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-6311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-6311&client=summon