Enzymatic Degradation of p-Nitrophenyl Esters, Polyethylene Terephthalate, Cutin, and Suberin by Sub1, a Suberinase Encoded by the Plant Pathogen Streptomyces scabies
The genome of Streptomyces scabies, the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously shown to be specifically induced in the presence of suberin. The sub1 gene was expressed in Escherichia coli and the recombinant protein Sub1 w...
Saved in:
Published in | Microbes and Environments Vol. 35; no. 1; p. ME19086 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Japan
Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles
2020
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1342-6311 1347-4405 |
DOI | 10.1264/jsme2.ME19086 |
Cover
Loading…
Abstract | The genome of Streptomyces scabies, the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously shown to be specifically induced in the presence of suberin. The sub1 gene was expressed in Escherichia coli and the recombinant protein Sub1 was purified and characterized. The enzyme was shown to be versatile because it hydrolyzes a number of natural and synthetic substrates. Sub1 hydrolyzed p-nitrophenyl esters, with the hydrolysis of those harboring short carbon chains being the most effective. The Vmax and Km values of Sub1 for p-nitrophenyl butyrate were 2.36 mol g–1 min–1 and 5.7 10–4 M, respectively. Sub1 hydrolyzed the recalcitrant polymers cutin and suberin because the release of fatty acids from these substrates was observed following the incubation of the enzyme with these polymers. Furthermore, the hydrolyzing activity of the esterase Sub1 on the synthetic polymer polyethylene terephthalate (PET) was demonstrated by the release of terephthalic acid (TA). Sub1 activity on PET was markedly enhanced by the addition of Triton and was shown to be stable at 37°C for at least 20 d. |
---|---|
AbstractList | The genome of
Streptomyces scabies
, the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously shown to be specifically induced in the presence of suberin. The
sub1
gene was expressed in
Escherichia coli
and the recombinant protein Sub1 was purified and characterized. The enzyme was shown to be versatile because it hydrolyzes a number of natural and synthetic substrates. Sub1 hydrolyzed
p
-nitrophenyl esters, with the hydrolysis of those harboring short carbon chains being the most effective. The
V
max
and
K
m
values of Sub1 for
p
-nitrophenyl butyrate were 2.36 mol g
–1
min
–1
and 5.7 10
–4
M, respectively. Sub1 hydrolyzed the recalcitrant polymers cutin and suberin because the release of fatty acids from these substrates was observed following the incubation of the enzyme with these polymers. Furthermore, the hydrolyzing activity of the esterase Sub1 on the synthetic polymer polyethylene terephthalate (PET) was demonstrated by the release of terephthalic acid (TA). Sub1 activity on PET was markedly enhanced by the addition of Triton and was shown to be stable at 37°C for at least 20 d. The genome of Streptomyces scabies, the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously shown to be specifically induced in the presence of suberin. The sub1 gene was expressed in Escherichia coli and the recombinant protein Sub1 was purified and characterized. The enzyme was shown to be versatile because it hydrolyzes a number of natural and synthetic substrates. Sub1 hydrolyzed p-nitrophenyl esters, with the hydrolysis of those harboring short carbon chains being the most effective. The Vmax and Km values of Sub1 for p-nitrophenyl butyrate were 2.36 mol g–1 min–1 and 5.7 10–4 M, respectively. Sub1 hydrolyzed the recalcitrant polymers cutin and suberin because the release of fatty acids from these substrates was observed following the incubation of the enzyme with these polymers. Furthermore, the hydrolyzing activity of the esterase Sub1 on the synthetic polymer polyethylene terephthalate (PET) was demonstrated by the release of terephthalic acid (TA). Sub1 activity on PET was markedly enhanced by the addition of Triton and was shown to be stable at 37°C for at least 20 d. The genome of Streptomyces scabies, the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously shown to be specifically induced in the presence of suberin. The sub1 gene was expressed in Escherichia coli and the recombinant protein Sub1 was purified and characterized. The enzyme was shown to be versatile because it hydrolyzes a number of natural and synthetic substrates. Sub1 hydrolyzed p-nitrophenyl esters, with the hydrolysis of those harboring short carbon chains being the most effective. The V and K values of Sub1 for p-nitrophenyl butyrate were 2.36 mol g min and 5.7 10 M, respectively. Sub1 hydrolyzed the recalcitrant polymers cutin and suberin because the release of fatty acids from these substrates was observed following the incubation of the enzyme with these polymers. Furthermore, the hydrolyzing activity of the esterase Sub1 on the synthetic polymer polyethylene terephthalate (PET) was demonstrated by the release of terephthalic acid (TA). Sub1 activity on PET was markedly enhanced by the addition of Triton and was shown to be stable at 37°C for at least 20 d. |
Author | Moussa, Issam E. Ben Simao-Beaunoir, Anne-Marie Lerat, Sylvain Jabloune, Raoudha Brzezinski, Ryszard Khalil, Mario Beaulieu, Carole |
Author_xml | – sequence: 1 fullname: Simao-Beaunoir, Anne-Marie organization: Département de Biologie, Université de Sherbrooke – sequence: 1 fullname: Khalil, Mario organization: Département de Biologie, Université de Sherbrooke – sequence: 1 fullname: Lerat, Sylvain organization: Département de Biologie, Université de Sherbrooke – sequence: 1 fullname: Moussa, Issam E. Ben organization: Département de Biologie, Université de Sherbrooke – sequence: 1 fullname: Jabloune, Raoudha organization: Département de Biologie, Université de Sherbrooke – sequence: 1 fullname: Beaulieu, Carole organization: Département de Biologie, Université de Sherbrooke – sequence: 1 fullname: Brzezinski, Ryszard organization: Département de Biologie, Université de Sherbrooke |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32101840$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ktuL1DAUxousuBd99FUCvk7XXHp9EWS2XmDVgV2fw2l6Ou3QJjVJhfoH-XfamekMKviSHM73O98JfLkOLrTRGAQvGb1lPIne7FyP_PZzwXKaJU-CKyaiNIwiGl8cah4mgrHL4Nq5HaVCxCl_FlwKzijLInoV_Cr0z6kH3ypyh1sL1VwaTUxNhvBL660ZGtRTRwrn0boV2ZhuQt9MHWokj2hxaHwDHXhckfXoW70ioCvyMJZoW03KaV-yuXlqgUNSaGUqrPaqb5BsOtCebMA3ZouaPPjZ1Zt-UuiIU1C26J4HT2voHL5Y7pvg2_vicf0xvP_64dP63X2o4jzzIVYAEGUCkUOeJpDHSEuVlxjVLAOaKqQcEqYYTWqaC65UUjLMoU5TqsooFzfB26PvMJY9Vgq1t9DJwbY92EkaaOXfim4buTU_ZMpoxLN4Nni9GFjzfUTn5c6MVs9vllykacpZltCZevXnmrP_KZcZEEdAWeOcxVqq1h-imbe2nWRU7tOXh_Tlkv48Ff4zdTL-H78-8jvnYYtnGuz8HzpcaBFLtj-WqbOqGrAStfgNXCTOPA |
CitedBy_id | crossref_primary_10_3390_bioengineering9030098 crossref_primary_10_1007_s11270_024_07464_z crossref_primary_10_4491_eer_2022_716 crossref_primary_10_1007_s00449_022_02793_x crossref_primary_10_1007_s11274_021_03089_0 crossref_primary_10_1016_j_jhazmat_2025_137177 crossref_primary_10_1016_j_bcab_2021_102263 crossref_primary_10_1007_s10532_023_10062_1 crossref_primary_10_3389_fmicb_2022_1001750 crossref_primary_10_1016_j_jece_2024_112926 crossref_primary_10_3389_fmicb_2024_1466927 crossref_primary_10_1016_j_jafr_2025_101788 crossref_primary_10_1016_j_matpr_2022_08_285 crossref_primary_10_1038_s42003_024_06414_z crossref_primary_10_3390_molecules30061255 crossref_primary_10_1002_bit_27984 crossref_primary_10_1002_smtd_202400230 crossref_primary_10_1093_jimb_kuad010 crossref_primary_10_1016_j_biortech_2022_126697 crossref_primary_10_1016_j_enzmictec_2021_109868 crossref_primary_10_1016_j_ecoenv_2024_117419 crossref_primary_10_1016_j_chemosphere_2025_144166 crossref_primary_10_3390_environments10120207 crossref_primary_10_3390_fermentation9010027 crossref_primary_10_1128_Spectrum_00976_21 crossref_primary_10_1016_j_trac_2024_117667 crossref_primary_10_1002_jobm_202200428 crossref_primary_10_1002_jctb_6745 crossref_primary_10_1016_j_scitotenv_2023_166165 crossref_primary_10_1016_j_jenvman_2023_119433 crossref_primary_10_1016_j_scitotenv_2024_173963 crossref_primary_10_57634_RCR5069 crossref_primary_10_1002_jctb_6675 crossref_primary_10_1007_s11270_021_05301_1 crossref_primary_10_1126_sciadv_abl9734 crossref_primary_10_1186_s42269_024_01241_y crossref_primary_10_3389_fmicb_2023_1127308 crossref_primary_10_3390_ijms25010593 crossref_primary_10_1016_j_scitotenv_2021_149338 crossref_primary_10_1139_cjm_2023_0171 crossref_primary_10_3389_fmicb_2025_1541913 crossref_primary_10_1016_j_procbio_2023_10_020 crossref_primary_10_1039_D4RA00844H crossref_primary_10_3390_ijms222011257 crossref_primary_10_1016_j_envres_2023_115988 crossref_primary_10_1016_j_biortech_2024_131167 crossref_primary_10_1016_j_heliyon_2023_e15104 crossref_primary_10_1007_s00203_023_03560_6 crossref_primary_10_1016_j_jbc_2021_101302 crossref_primary_10_1016_j_scp_2024_101595 crossref_primary_10_1016_j_scitotenv_2024_178105 crossref_primary_10_1016_j_envres_2023_116281 crossref_primary_10_3390_microorganisms9010094 crossref_primary_10_1007_s11270_023_06190_2 crossref_primary_10_1016_j_psep_2024_07_002 crossref_primary_10_1016_j_scitotenv_2020_143536 crossref_primary_10_1007_s10532_023_10048_z crossref_primary_10_1007_s11356_021_17451_0 crossref_primary_10_1007_s11356_024_35472_3 crossref_primary_10_1007_s00203_024_03895_8 crossref_primary_10_1007_s11540_023_09660_6 crossref_primary_10_1016_j_scitotenv_2022_154868 crossref_primary_10_1016_j_trac_2023_117189 crossref_primary_10_3389_fmicb_2021_777727 |
Cites_doi | 10.1016/0003-9861(73)90429-3 10.1096/fj.09-144766 10.1111/j.1365-3059.2011.02434.x 10.1080/07060660509507192 10.1128/AEM.02103-08 10.1007/s13593-011-0035-z 10.1007/s10658-016-0983-x 10.2225/vol1-issue3-fulltext-8 10.1002/(SICI)1097-0290(1999)66:1<17::AID-BIT2>3.0.CO;2-F 10.1128/AEM.62.2.456-460.1996 10.1128/AEM.00239-13 10.1126/science.aad6359 10.1073/pnas.1718804115 10.1016/j.procbio.2008.09.008 10.1139/w99-072 10.1016/j.pbi.2012.03.003 10.1007/s10295-008-0356-3 10.1016/j.biotechadv.2013.09.005 10.1111/j.1365-3059.2011.02435.x 10.1186/1477-5956-12-35 10.1021/ja9046697 10.1021/bi00167a011 10.1094/MPMI.1997.10.1.21 10.1264/jsme2.ME16110 10.1007/BF02532176 10.1007/BF02358244 10.1016/S0885-5765(03)00041-9 10.1007/s12010-015-1953-z 10.1016/0003-2697(76)90527-3 10.1074/jbc.M800848200 10.1111/j.1364-3703.2008.00493.x 10.1139/b02-017 10.1128/JB.169.5.1967-1971.1987 10.1021/bi00760a025 10.1016/0141-0229(79)90041-3 10.1099/00221287-146-4-767 10.1128/AEM.04111-14 10.1007/s00253-018-9149-4 10.1007/s11745-002-0946-7 10.1016/0076-6879(81)71078-4 10.1016/j.jbiotec.2009.07.008 10.1016/S0031-9422(98)80052-6 10.1139/cjm-2012-0741 10.1016/j.jbiotec.2005.06.015 |
ContentType | Journal Article |
Copyright | 2020 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles. Copyright Japan Science and Technology Agency 2020 2020 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles. 2020 |
Copyright_xml | – notice: 2020 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles. – notice: Copyright Japan Science and Technology Agency 2020 – notice: 2020 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles. 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL C1K F1W H95 L.G M7N 5PM |
DOI | 10.1264/jsme2.ME19086 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology |
DocumentTitleAlternate | Sub1, a suberinase from Streptomyces scabies |
EISSN | 1347-4405 |
ExternalDocumentID | PMC7104285 32101840 10_1264_jsme2_ME19086 article_jsme2_35_1_35_ME19086_article_char_en |
Genre | Journal Article |
GroupedDBID | 123 2WC 53G ACPRK ADBBV ADRAZ AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CS3 DIK DU5 E3Z HYE JSF JSH KQ8 M48 OK1 PGMZT RJT RPM RZJ TKC TR2 WBO ~02 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL C1K F1W H95 L.G M7N 5PM |
ID | FETCH-LOGICAL-c598t-edaaa483ee2a976a95e0bc9be4f18a07ce02a61c106f0932cc6b1e9af770cb493 |
IEDL.DBID | M48 |
ISSN | 1342-6311 |
IngestDate | Thu Aug 21 13:58:26 EDT 2025 Mon Jun 30 08:24:02 EDT 2025 Thu Jan 02 22:59:16 EST 2025 Tue Jul 01 03:52:13 EDT 2025 Thu Apr 24 23:01:13 EDT 2025 Wed Sep 03 06:17:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | actinobacteria common scab esterase cutinase potato |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c598t-edaaa483ee2a976a95e0bc9be4f18a07ce02a61c106f0932cc6b1e9af770cb493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1264/jsme2.ME19086 |
PMID | 32101840 |
PQID | 2377721860 |
PQPubID | 1976392 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104285 proquest_journals_2377721860 pubmed_primary_32101840 crossref_citationtrail_10_1264_jsme2_ME19086 crossref_primary_10_1264_jsme2_ME19086 jstage_primary_article_jsme2_35_1_35_ME19086_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020 2020-00-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – year: 2020 text: 2020 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Miyagi |
PublicationTitle | Microbes and Environments |
PublicationTitleAlternate | Microbes Environ. |
PublicationYear | 2020 |
Publisher | Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles Japan Science and Technology Agency |
Publisher_xml | – name: Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions / Japanese Society for Extremophiles – name: Japan Science and Technology Agency |
References | Sambrook, J.F., and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Faber, M.D. (1979) Microbial degradation of recalcitrant compounds and synthetic aromatic polymers. Enzyme Microb Technol 1: 226–232. Beaulieu, C., Sidibé, A., Jabloune, R., Simao-Beaunoir, A.-M., Lerat, S., Monga, E., and Bernards, M.A. (2016) Physical, chemical and proteomic evidence of potato suberin degradation by the plant pathogenic bacterium Streptomyces scabiei. Microbes Environ 31: 427–434. Carvalho, C.M.L., Aires-Barros, M.R., and Cabral, J.M.S. (1998) Cutinase structure, function and biocatalytic applications. Electron J Biotechnol 1: 160–173. Monu, and Meena, L.S. (2016) Roles of triolein and lipolytic protein in the pathogenesis and survival of Mycobacterium tuberculosis: a novel therapeutic approach. Appl Biochem Biotechnol 178: 1377–1389. Austin, H.P., Allen, M.D., Donohoe, B.S., Rorrer, N.A., Kearns, F.L., Silveira, R.L., et al. (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci U S A 115: E4350–E4357. Kolattukudy, P.E., and Agrawal, V.P. (1974) Structure and composition of aliphatic constituents of potato tuber skin (suberin). Lipids 9: 682–691. Beauséjour, J., Goyer, C., Vachon, J., and Beaulieu, C. (1999) Production of thaxtomin A by Streptomyces scabies strains in plant extract containing media. Can J Microbiol 45: 764–768. Beisson, F., Li-Beisson, Y., and Pollard, M. (2012) Solving the puzzles of cutin and suberin polymer biosynthesis. Curr Opin Plant Biol 15: 329–337. Kontkanen, H., Westerholm-Parvinen, A., Saloheimo, M., Bailey, M., Rättö, M., Mattila, I., et al. (2009) Novel Coprinopsis cinerea polyesterase that hydrolyzes cutin and suberin. Appl Environ Microbiol 75: 2148–2157. Lacombe-Harvey, M.-È., Brzezinski, R., and Beaulieu, C. (2018) Chitinolytic functions in actinobacteria : ecology, enzymes, and evolution. Appl Microbiol Biotechnol 102: 7219–7230. Khatri, B.B., Tegg, R.S., Brown, P.H., and Wilson, C.R. (2011) Temporal association of potato tuber development with susceptibility to common scab and Streptomyces scabiei-induced responses in the potato periderm. Plant Pathol 60: 776–786. Komeil, D., Simao-Beaunoir, A.-M., and Beaulieu, C. (2013) Detection of potential suberinase-encoding genes in Streptomyces scabiei strains and other actinobacteria. Can J Microbiol 59: 294–303. Loria, R., Coombs, J., Yoshida, M., Kers, J.A., and Bukhalid, R.A. (2003) A paucity of bacterial root diseases : Streptomyces succeeds where others fail. Physiol Mol Plant Pathol 62: 65–72. Purdy, R.E., and Kolattukudy, P.E. (1973) Depolymerization of a hydroxy fatty acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani f. pisi: isolation and some properties of the enzyme. Arch Biochem Biophys 159: 61–69. Bernards, M.A., and Lewis, N.G. (1998) The macromolecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry 47: 915–933. Hill, J., and Lazarovits, G. (2005) A mail survey of growers to estimate potato common scab prevalence and economic loss in Canada. Can J Plant Pathol 27: 46–52. Chen, S., Tong, X., Woodard, R.W., Du, G., Wu, J., and Chen, J. (2008) Identification and characterization of bacterial cutinase. J Biol Chem 283: 25854–25862. Martinez, C., Nicolas, A., van Tilbeurgh, H., Egloff, M.P., Cudrey, C., Verger, R., and Cambillau, C. (1994) Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry 33: 83–89. Chahinian, H., Nini, L., Boitard, E., Dubès, J.-P., Comeau, L.-C., and Sarda, L. (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37: 653–662. Bernards, M.A. (2002) Demystifying suberin. Can J Bot 80: 227–240. Carvalho, C.M.L., Aires-Barros, M.R., and Cabral, J.M.S. (1999) Cutinase: from molecular level to bioprocess development. Biotechnol Bioeng 66: 17–34. Chen, S., Su, L., Chen, J., and Wu, J. (2013) Cutinase: characteristics, preparation, and application. Biotechnol Adv 31: 1754–1767. Komeil, D., Padilla-Reynaud, R., Lerat, S., Simao-Beaunoir, A.-M., and Beaulieu, C. (2014) Comparative secretome analysis of Streptomyces scabiei during growth in the presence or absence of potato suberin. Proteome Sci 12: 35. Su, L., Woodard, R.W., Chen, J., and Wu, J. (2013) Extracellular location of Thermobifida fusca cutinase expressed in Escherichia coli BL21(DE3) without mediation of a signal peptide. Appl Environ Microbiol 79: 4192–4198. Tyner, D.N., Hocart, M.J., Lennard, J.H., and Graham, D.C. (1997) Periderm and lenticel characterization in relation to potato cultivar, soil moisture and tuber maturity. Potato Res 40: 181–190. Walton, T.J., and Kolattukudy, P.E. (1972) Determination of the structures of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry. Biochemistry 11: 1885–1897. Fiers, M., Edel-Hermann, V., Chatot, C., Le Hingrat, Y., Alabouvette, C., and Steinberg, C. (2012) Potato soil-borne diseases. A review. Agron Sustainable Dev 32: 93–132. Nimchua, T., Eveleigh, D.E., Sangwatanaroj, U., and Punnapayak, H. (2008) Screening of tropical fungi producing polyethylene terephthalate-hydrolyzing enzyme for fabric modification. J Ind Microbiol Biotechnol 35: 843–850. Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., et al. (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351: 1196–1199. Schué, M., Maurin, D., Dhouib, R., Bakala N’Goma, J.-C., Delorme, V., Lambeau, G., et al. (2010) Two cutinase-like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function. FASEB J 24: 1631–2136. Vertommen, M.A.M.E., Nierstrasz, V.A., van der Veer, M., and Warmoeskerken, M.M.C.G. (2005) Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol 120: 376–386. Feng, J., Hwang, R., Hwang, S.-F., Gaudet, D., and Strelkov, S.E. (2011) Molecular characterization of a Stagonospora nodorum lipase gene LIP1. Plant Pathol 60: 698–708. Kolattukudy, P., Purdy, R., and Maiti, I. (1981) Cutinases from fungi and pollen. Methods Enzymol 71: 652–664. Murphy, C.A., Cameron, J.A., Huang, S.J., and Vinopal, R.T. (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol 62: 456–460. Dutta, K., Sen, S., and Veeranki, V.D. (2009) Production, characterization and applications of microbial cutinases. Process Biochem 44: 127–134. Eberl, A., Heumann, S., Brückner, T., Araujo, R., Cavaco-Paulo, A., Kaufmann, F., et al. (2009) Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J Biotechnol 143: 207–212. McQueen, D.A.R., and Schottel, J.L. (1987) Purification and characterization of a novel extracellular esterase from pathogenic Streptomyces scabies that is inducible by zinc. J Bacteriol 169: 1967–1971. Ribitsch, D., Acero, E.H., Przylucka, A., Zitzenbacher, S., Marold, A., Gamerith, C., et al. (2015) Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Appl Environ Microbiol 81: 3586–3592. Wang, Y., Chen, J., Li, D.W., Zheng, L., and Huang, J. (2017) CglCUT1 gene required for cutinase activity and pathogenicity of Colletotrichum gloeosporioides causing anthracnose of Camellia oleifera. Eur J Plant Pathol 147: 103–114. Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. Lauzier, A., Simao-Beaunoir, A.-M., Bourassa, S., Poirier, G.G., Talbot, B., and Beaulieu, C. (2008) Effect of potato suberin on Streptomyces scabies proteome. Mol Plant Pathol 9: 753–762. van der Vlugt-Bergmans, C.J., Wagemakers, C.A., and van Kan, J.A. (1997) Cloning and expression of the cutinase A gene of Botrytis cinerea. Mol Plant Microbe Interact 10: 21–29. Liu, Z., Gosser, Y., Baker, P.J., Ravee, Y., Lu, Z., Alemu, G., et al. (2009) Structural and functional studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. J Am Chem Soc 131: 15711–15716. Wösten, H.A.B., and Willey, J.M. (2000) Surface-active proteins enable microbial aerial hyphae to grow into the air. Microbiology 146: 767–773. 22 44 23 45 24 25 26 27 28 29 P.E. Kolattukudy (20) 1974; 9 30 31 10 32 11 33 12 34 13 35 14 36 15 37 16 38 17 39 18 19 1 2 3 4 5 6 7 8 9 40 41 42 21 43 |
References_xml | – reference: Dutta, K., Sen, S., and Veeranki, V.D. (2009) Production, characterization and applications of microbial cutinases. Process Biochem 44: 127–134. – reference: McQueen, D.A.R., and Schottel, J.L. (1987) Purification and characterization of a novel extracellular esterase from pathogenic Streptomyces scabies that is inducible by zinc. J Bacteriol 169: 1967–1971. – reference: Kontkanen, H., Westerholm-Parvinen, A., Saloheimo, M., Bailey, M., Rättö, M., Mattila, I., et al. (2009) Novel Coprinopsis cinerea polyesterase that hydrolyzes cutin and suberin. Appl Environ Microbiol 75: 2148–2157. – reference: Wang, Y., Chen, J., Li, D.W., Zheng, L., and Huang, J. (2017) CglCUT1 gene required for cutinase activity and pathogenicity of Colletotrichum gloeosporioides causing anthracnose of Camellia oleifera. Eur J Plant Pathol 147: 103–114. – reference: Lauzier, A., Simao-Beaunoir, A.-M., Bourassa, S., Poirier, G.G., Talbot, B., and Beaulieu, C. (2008) Effect of potato suberin on Streptomyces scabies proteome. Mol Plant Pathol 9: 753–762. – reference: Vertommen, M.A.M.E., Nierstrasz, V.A., van der Veer, M., and Warmoeskerken, M.M.C.G. (2005) Enzymatic surface modification of poly(ethylene terephthalate). J Biotechnol 120: 376–386. – reference: Murphy, C.A., Cameron, J.A., Huang, S.J., and Vinopal, R.T. (1996) Fusarium polycaprolactone depolymerase is cutinase. Appl Environ Microbiol 62: 456–460. – reference: Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. – reference: Schué, M., Maurin, D., Dhouib, R., Bakala N’Goma, J.-C., Delorme, V., Lambeau, G., et al. (2010) Two cutinase-like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function. FASEB J 24: 1631–2136. – reference: Nimchua, T., Eveleigh, D.E., Sangwatanaroj, U., and Punnapayak, H. (2008) Screening of tropical fungi producing polyethylene terephthalate-hydrolyzing enzyme for fabric modification. J Ind Microbiol Biotechnol 35: 843–850. – reference: Chen, S., Su, L., Chen, J., and Wu, J. (2013) Cutinase: characteristics, preparation, and application. Biotechnol Adv 31: 1754–1767. – reference: Hill, J., and Lazarovits, G. (2005) A mail survey of growers to estimate potato common scab prevalence and economic loss in Canada. Can J Plant Pathol 27: 46–52. – reference: Chahinian, H., Nini, L., Boitard, E., Dubès, J.-P., Comeau, L.-C., and Sarda, L. (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37: 653–662. – reference: Feng, J., Hwang, R., Hwang, S.-F., Gaudet, D., and Strelkov, S.E. (2011) Molecular characterization of a Stagonospora nodorum lipase gene LIP1. Plant Pathol 60: 698–708. – reference: Martinez, C., Nicolas, A., van Tilbeurgh, H., Egloff, M.P., Cudrey, C., Verger, R., and Cambillau, C. (1994) Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry 33: 83–89. – reference: Komeil, D., Simao-Beaunoir, A.-M., and Beaulieu, C. (2013) Detection of potential suberinase-encoding genes in Streptomyces scabiei strains and other actinobacteria. Can J Microbiol 59: 294–303. – reference: Wösten, H.A.B., and Willey, J.M. (2000) Surface-active proteins enable microbial aerial hyphae to grow into the air. Microbiology 146: 767–773. – reference: Su, L., Woodard, R.W., Chen, J., and Wu, J. (2013) Extracellular location of Thermobifida fusca cutinase expressed in Escherichia coli BL21(DE3) without mediation of a signal peptide. Appl Environ Microbiol 79: 4192–4198. – reference: Chen, S., Tong, X., Woodard, R.W., Du, G., Wu, J., and Chen, J. (2008) Identification and characterization of bacterial cutinase. J Biol Chem 283: 25854–25862. – reference: Austin, H.P., Allen, M.D., Donohoe, B.S., Rorrer, N.A., Kearns, F.L., Silveira, R.L., et al. (2018) Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci U S A 115: E4350–E4357. – reference: Beaulieu, C., Sidibé, A., Jabloune, R., Simao-Beaunoir, A.-M., Lerat, S., Monga, E., and Bernards, M.A. (2016) Physical, chemical and proteomic evidence of potato suberin degradation by the plant pathogenic bacterium Streptomyces scabiei. Microbes Environ 31: 427–434. – reference: Kolattukudy, P., Purdy, R., and Maiti, I. (1981) Cutinases from fungi and pollen. Methods Enzymol 71: 652–664. – reference: Ribitsch, D., Acero, E.H., Przylucka, A., Zitzenbacher, S., Marold, A., Gamerith, C., et al. (2015) Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Appl Environ Microbiol 81: 3586–3592. – reference: Monu, and Meena, L.S. (2016) Roles of triolein and lipolytic protein in the pathogenesis and survival of Mycobacterium tuberculosis: a novel therapeutic approach. Appl Biochem Biotechnol 178: 1377–1389. – reference: van der Vlugt-Bergmans, C.J., Wagemakers, C.A., and van Kan, J.A. (1997) Cloning and expression of the cutinase A gene of Botrytis cinerea. Mol Plant Microbe Interact 10: 21–29. – reference: Bernards, M.A., and Lewis, N.G. (1998) The macromolecular aromatic domain in suberized tissue: a changing paradigm. Phytochemistry 47: 915–933. – reference: Purdy, R.E., and Kolattukudy, P.E. (1973) Depolymerization of a hydroxy fatty acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani f. pisi: isolation and some properties of the enzyme. Arch Biochem Biophys 159: 61–69. – reference: Eberl, A., Heumann, S., Brückner, T., Araujo, R., Cavaco-Paulo, A., Kaufmann, F., et al. (2009) Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. J Biotechnol 143: 207–212. – reference: Tyner, D.N., Hocart, M.J., Lennard, J.H., and Graham, D.C. (1997) Periderm and lenticel characterization in relation to potato cultivar, soil moisture and tuber maturity. Potato Res 40: 181–190. – reference: Beisson, F., Li-Beisson, Y., and Pollard, M. (2012) Solving the puzzles of cutin and suberin polymer biosynthesis. Curr Opin Plant Biol 15: 329–337. – reference: Loria, R., Coombs, J., Yoshida, M., Kers, J.A., and Bukhalid, R.A. (2003) A paucity of bacterial root diseases : Streptomyces succeeds where others fail. Physiol Mol Plant Pathol 62: 65–72. – reference: Walton, T.J., and Kolattukudy, P.E. (1972) Determination of the structures of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry. Biochemistry 11: 1885–1897. – reference: Carvalho, C.M.L., Aires-Barros, M.R., and Cabral, J.M.S. (1998) Cutinase structure, function and biocatalytic applications. Electron J Biotechnol 1: 160–173. – reference: Kolattukudy, P.E., and Agrawal, V.P. (1974) Structure and composition of aliphatic constituents of potato tuber skin (suberin). Lipids 9: 682–691. – reference: Beauséjour, J., Goyer, C., Vachon, J., and Beaulieu, C. (1999) Production of thaxtomin A by Streptomyces scabies strains in plant extract containing media. Can J Microbiol 45: 764–768. – reference: Liu, Z., Gosser, Y., Baker, P.J., Ravee, Y., Lu, Z., Alemu, G., et al. (2009) Structural and functional studies of Aspergillus oryzae cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation. J Am Chem Soc 131: 15711–15716. – reference: Sambrook, J.F., and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. – reference: Carvalho, C.M.L., Aires-Barros, M.R., and Cabral, J.M.S. (1999) Cutinase: from molecular level to bioprocess development. Biotechnol Bioeng 66: 17–34. – reference: Komeil, D., Padilla-Reynaud, R., Lerat, S., Simao-Beaunoir, A.-M., and Beaulieu, C. (2014) Comparative secretome analysis of Streptomyces scabiei during growth in the presence or absence of potato suberin. Proteome Sci 12: 35. – reference: Khatri, B.B., Tegg, R.S., Brown, P.H., and Wilson, C.R. (2011) Temporal association of potato tuber development with susceptibility to common scab and Streptomyces scabiei-induced responses in the potato periderm. Plant Pathol 60: 776–786. – reference: Fiers, M., Edel-Hermann, V., Chatot, C., Le Hingrat, Y., Alabouvette, C., and Steinberg, C. (2012) Potato soil-borne diseases. A review. Agron Sustainable Dev 32: 93–132. – reference: Faber, M.D. (1979) Microbial degradation of recalcitrant compounds and synthetic aromatic polymers. Enzyme Microb Technol 1: 226–232. – reference: Lacombe-Harvey, M.-È., Brzezinski, R., and Beaulieu, C. (2018) Chitinolytic functions in actinobacteria : ecology, enzymes, and evolution. Appl Microbiol Biotechnol 102: 7219–7230. – reference: Yoshida, S., Hiraga, K., Takehana, T., Taniguchi, I., Yamaji, H., Maeda, Y., et al. (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351: 1196–1199. – reference: Bernards, M.A. (2002) Demystifying suberin. Can J Bot 80: 227–240. – ident: 34 doi: 10.1016/0003-9861(73)90429-3 – ident: 37 doi: 10.1096/fj.09-144766 – ident: 16 doi: 10.1111/j.1365-3059.2011.02434.x – ident: 18 doi: 10.1080/07060660509507192 – ident: 24 doi: 10.1128/AEM.02103-08 – ident: 17 doi: 10.1007/s13593-011-0035-z – ident: 43 doi: 10.1007/s10658-016-0983-x – ident: 8 doi: 10.2225/vol1-issue3-fulltext-8 – ident: 9 doi: 10.1002/(SICI)1097-0290(1999)66:1<17::AID-BIT2>3.0.CO;2-F – ident: 32 doi: 10.1128/AEM.62.2.456-460.1996 – ident: 38 doi: 10.1128/AEM.00239-13 – ident: 45 doi: 10.1126/science.aad6359 – ident: 1 doi: 10.1073/pnas.1718804115 – ident: 13 doi: 10.1016/j.procbio.2008.09.008 – ident: 3 doi: 10.1139/w99-072 – ident: 4 doi: 10.1016/j.pbi.2012.03.003 – ident: 33 doi: 10.1007/s10295-008-0356-3 – ident: 12 doi: 10.1016/j.biotechadv.2013.09.005 – ident: 19 doi: 10.1111/j.1365-3059.2011.02435.x – ident: 23 doi: 10.1186/1477-5956-12-35 – ident: 27 doi: 10.1021/ja9046697 – ident: 29 doi: 10.1021/bi00167a011 – ident: 40 doi: 10.1094/MPMI.1997.10.1.21 – ident: 2 doi: 10.1264/jsme2.ME16110 – volume: 9 start-page: 682 issn: 0024-4201 year: 1974 ident: 20 publication-title: Lipids doi: 10.1007/BF02532176 – ident: 39 doi: 10.1007/BF02358244 – ident: 28 doi: 10.1016/S0885-5765(03)00041-9 – ident: 31 doi: 10.1007/s12010-015-1953-z – ident: 7 doi: 10.1016/0003-2697(76)90527-3 – ident: 11 doi: 10.1074/jbc.M800848200 – ident: 26 doi: 10.1111/j.1364-3703.2008.00493.x – ident: 36 – ident: 6 doi: 10.1139/b02-017 – ident: 30 doi: 10.1128/JB.169.5.1967-1971.1987 – ident: 42 doi: 10.1021/bi00760a025 – ident: 15 doi: 10.1016/0141-0229(79)90041-3 – ident: 44 doi: 10.1099/00221287-146-4-767 – ident: 35 doi: 10.1128/AEM.04111-14 – ident: 25 doi: 10.1007/s00253-018-9149-4 – ident: 10 doi: 10.1007/s11745-002-0946-7 – ident: 21 doi: 10.1016/0076-6879(81)71078-4 – ident: 14 doi: 10.1016/j.jbiotec.2009.07.008 – ident: 5 doi: 10.1016/S0031-9422(98)80052-6 – ident: 22 doi: 10.1139/cjm-2012-0741 – ident: 41 doi: 10.1016/j.jbiotec.2005.06.015 |
SSID | ssj0033572 |
Score | 2.451774 |
Snippet | The genome of Streptomyces scabies, the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously... The genome of Streptomyces scabies , the predominant causal agent of potato common scab, encodes a potential cutinase, the protein Sub1, which was previously... |
SourceID | pubmedcentral proquest pubmed crossref jstage |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | ME19086 |
SubjectTerms | actinobacteria Bacterial Proteins - genetics Bacterial Proteins - isolation & purification Bacterial Proteins - metabolism Carboxylic Ester Hydrolases - genetics Carboxylic Ester Hydrolases - isolation & purification Carboxylic Ester Hydrolases - metabolism common scab Cutin Cutinase E coli Enzymes Esterase Esterases Esters Fatty acids Fatty Acids - metabolism Genomes Hydrolysis Incubation period Molecular chains p-Nitrophenyl butyrate Pathogens Phthalic Acids - metabolism Plant Diseases - microbiology Polyethylene Polyethylene terephthalate Polymers Polymers - metabolism potato Potato common scab Potatoes Proteins Recombinant Proteins - genetics Recombinant Proteins - isolation & purification Recombinant Proteins - metabolism Recombinants Regular Paper Solanum tuberosum - microbiology Streptomyces Streptomyces - enzymology Streptomyces - genetics Sub1 gene Substrates Terephthalic acid |
Title | Enzymatic Degradation of p-Nitrophenyl Esters, Polyethylene Terephthalate, Cutin, and Suberin by Sub1, a Suberinase Encoded by the Plant Pathogen Streptomyces scabies |
URI | https://www.jstage.jst.go.jp/article/jsme2/35/1/35_ME19086/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/32101840 https://www.proquest.com/docview/2377721860 https://pubmed.ncbi.nlm.nih.gov/PMC7104285 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Microbes and Environments, 2020, Vol.35(1), pp.ME19086 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF1B-VAviG8CpdoD4hQXr3e9sSUQQsVVhZQoh0bqzdq1Z0kr1w6JkTA_iN_JjGMbAuVCDlbkHSeS5-3Om7XnDWOvpLZhoHLtQaTBUy53nlG5QYfI3IjAShlSofB0pk8X6tN5eP5LUqi7gZtrUzvqJ7VYF0ffvjTvccK_a7URtHpzubmC4GiaYGyL9E12C4OSJoBP1fBAAf-y7eMkpAo8LYXo5Db_unyf3aWqFsp7diLV7Uska5_hOh765-uUv8Wnk_vsXkcs-YctEh6wG1A-ZHeSVpS6ecR-JOX3ppVn5R9JH2LbSolXjq-82UW9JnmBsil4QsIJmzGfV0UD6EQMSsDPYA2rZb00BTLTMT9GsJZjbsqc47pD9YPcNvRV4Mn-FEZHnpRUMZ_TKPJMTg2Saj5HzlkhbDk9EF_V1VWDSxXfZMZi0v6YLU6Ss-NTr-vR4GVhHNUe5MYYFUmAwCCzMXEIvs1iC8qJyPiTDPzAaJFh5ul85IpZpq2A2LjJxM-siuUTtldWJTxjXDihcfnFjxMKrIulAxdYnYc6Dm0uRmzc-yPNOgFz6qNRpJTIoCfT1pNp58kRez2Yr7bKHf8yfLt17mDWTdrOTIapoENnPoxSWRyuLSN20EMi7eGbBnKCaYuItD9iT7foGH69x9eITXZwMxiQ4vfuSHmxbJW_kQ5iuhg-_-8rX7D9gDYM2j2kA7ZXr7_CS2RVtT1s5wseZ_PpYbvp9RPhpikZ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymatic+Degradation+of+p-Nitrophenyl+Esters%2C+Polyethylene+Terephthalate%2C+Cutin%2C+and+Suberin+by+Sub1%2C+a+Suberinase+Encoded+by+the+Plant+Pathogen+Streptomyces+scabies&rft.jtitle=Microbes+and+Environments&rft.au=Simao-Beaunoir%2C+Anne-Marie&rft.au=Khalil%2C+Mario&rft.au=Lerat%2C+Sylvain&rft.au=Moussa%2C+Issam+E.+Ben&rft.date=2020&rft.pub=Japanese+Society+of+Microbial+Ecology+%2F+Japanese+Society+of+Soil+Microbiology+%2F+Taiwan+Society+of+Microbial+Ecology+%2F+Japanese+Society+of+Plant+Microbe+Interactions+%2F+Japanese+Society+for+Extremophiles&rft.issn=1342-6311&rft.eissn=1347-4405&rft.volume=35&rft.issue=1&rft.spage=ME19086&rft_id=info:doi/10.1264%2Fjsme2.ME19086&rft.externalDocID=article_jsme2_35_1_35_ME19086_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-6311&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-6311&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-6311&client=summon |