Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM

Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiti...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in human neuroscience Vol. 9; p. 259
Main Authors Wang, Yanlu, Li, Tie-Qiang
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Research Foundation 08.05.2015
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiting factor of ICA is the uncertainty of the number of independent components (NIC). We aim to develop a framework based on support vector machines (SVM) and optimized feature-selection for automated classification of independent components (ICs) and use the framework to investigate the effects of input NIC on the ICA results. Seven different resting-state fMRI datasets were studied. 18 features were devised by mimicking the empirical criteria for manual evaluation. The five most significant (p < 0.01) features were identified by general linear modeling and used to generate a classification model for the framework. This feature-optimized classification of ICs with SVM (FOCIS) framework was used to classify both group and single subject ICA results. The classification results obtained using FOCIS and previously published FSL-FIX were compared against manually evaluated results. On average the false negative rate in identifying artifact contaminated ICs for FOCIS and FSL-FIX were 98.27 and 92.34%, respectively. The number of artifact and functional network components increased almost linearly with the input NIC. Through tracking, we demonstrate that incrementing NIC affects most ICs when NIC < 33, whereas only a few limited ICs are affected by direct splitting when NIC is incremented beyond NIC > 40. For a given IC, its changes with increasing NIC are individually specific irrespective whether the component is a potential resting-state functional network or an artifact component. Using FOCIS, we investigated experimentally the ICA dimensionality of resting-state fMRI datasets and found that the input NIC can critically affect the ICA results of resting-state fMRI data.
AbstractList Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiting factor of ICA is the uncertainty of the number of independent components (NIC). We aim to develop a framework based on support vector machines (SVM) and optimized feature-selection for automated classification of independent components (ICs) and use the framework to investigate the effects of input NIC on the ICA results. Seven different resting-state fMRI datasets were studied. 18 features were devised by mimicking the empirical criteria for manual evaluation. The five most significant (p<0.01) features were identified by general linear modeling and used to generate a classification model for the framework. This feature-optimized classification of ICs with SVM (FOCIS) framework was used to classify both group and single subject ICA results. The classification results obtained using FOCIS and previously published FSL-FIX were compared against manually evaluated results. On average the false negative rate in identifying artifact contaminated ICs for FOCIS and FSL-FIX were 98.27% and 92.34%, respectively. The number of artifact and functional network components increased almost linearly with the input NIC. Through tracking, we demonstrate that incrementing NIC affects most ICs when NIC<33, whereas only a few limited ICs are affected by direct splitting when NIC is incremented beyond NIC>40. For a given IC, its changes with increasing NIC are individually specific irrespective whether the component is a potential resting-state functional network or an artifact component. Using FOCIS, we investigated experimentally the ICA dimensionality of resting-state fMRI datasets and found that the input NIC can critically affect the ICA results of resting-state fMRI data.
Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiting factor of ICA is the uncertainty of the number of independent components (NIC). We aim to develop a framework based on support vector machines (SVM) and optimized feature-selection for automated classification of independent components (ICs) and use the framework to investigate the effects of input NIC on the ICA results. Seven different resting-state fMRI datasets were studied. 18 features were devised by mimicking the empirical criteria for manual evaluation. The five most significant ( p < 0.01) features were identified by general linear modeling and used to generate a classification model for the framework. This feature-optimized classification of ICs with SVM (FOCIS) framework was used to classify both group and single subject ICA results. The classification results obtained using FOCIS and previously published FSL-FIX were compared against manually evaluated results. On average the false negative rate in identifying artifact contaminated ICs for FOCIS and FSL-FIX were 98.27 and 92.34%, respectively. The number of artifact and functional network components increased almost linearly with the input NIC. Through tracking, we demonstrate that incrementing NIC affects most ICs when NIC < 33, whereas only a few limited ICs are affected by direct splitting when NIC is incremented beyond NIC > 40. For a given IC, its changes with increasing NIC are individually specific irrespective whether the component is a potential resting-state functional network or an artifact component. Using FOCIS, we investigated experimentally the ICA dimensionality of resting-state fMRI datasets and found that the input NIC can critically affect the ICA results of resting-state fMRI data.
Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiting factor of ICA is the uncertainty of the number of independent components (NIC). We aim to develop a framework based on support vector machines (SVM) and optimized feature-selection for automated classification of independent components (ICs) and use the framework to investigate the effects of input NIC on the ICA results. Seven different resting-state fMRI datasets were studied. 18 features were devised by mimicking the empirical criteria for manual evaluation. The five most significant (p40. For a given IC, its changes with increasing NIC are individually specific irrespective whether the component is a potential resting-state functional network or an artifact component. Using FOCIS, we investigated experimentally the ICA dimensionality of resting-state fMRI datasets and found that the input NIC can critically affect the ICA results of resting-state fMRI data.
Author Li, Tie-Qiang
Wang, Yanlu
AuthorAffiliation 2 Unit of Medical Imaging, Function, and Technology, Department of Medical Physics, Karolinska University Hospital Huddinge, Sweden
1 Department of Clinical Science, Intervention and Technology, Karolinska Institute Stockholm, Sweden
AuthorAffiliation_xml – name: 2 Unit of Medical Imaging, Function, and Technology, Department of Medical Physics, Karolinska University Hospital Huddinge, Sweden
– name: 1 Department of Clinical Science, Intervention and Technology, Karolinska Institute Stockholm, Sweden
Author_xml – sequence: 1
  givenname: Yanlu
  surname: Wang
  fullname: Wang, Yanlu
– sequence: 2
  givenname: Tie-Qiang
  surname: Li
  fullname: Li, Tie-Qiang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26005413$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:131437948$$DView record from Swedish Publication Index
BookMark eNp1kslv1DAYxSNURBe4c0KWuHDJ4CW2kwsSKttIrZDYrpbt2DMeEnuwnVbDhX8dz1LUqcQlsZ7f--lLvndenfjgTVU9R3BGSNu9tn45jTMMEZ1BiGn3qDpDjOGaIoZO7p1Pq_OUVhAyzCh6Up1iBiFtEDmr_rxzo_HJBS8HlzcgWDC_fAucB9Gk7PyiTllmA-z1l3lRb7biogg9UBtgjcxTNCCssxvd7yLqQabkrNMyF-SW5nxv1qY8fAY6jOvyAT4ncOvyEnz9cf20emzlkMyzw_ui-v7h_bfLT_XV549lkKta067NdY8apTXXCtuu40xSa5DirdaE95zgnrWwVx3sLWkZwQ22plVIq5ZRwmSHMbmo5ntuH-RKrKMbZdyIIJ3YCSEuhIzZ6cEIZm23DXFNTaMg6yzkTDVEa8yJkqaw6j0r3Zr1pI5oB-lnORlBEcGUF_-bvb_cjKbX5QdEORzFjm-8W4pFuBFNg5uWwQJ4dQDE8GsqKxCjS9oMg_QmTEkg1hJCSUuaYn35wLoKUyzLTQLjDjWcsx3wxf2J_o1y14tiYHuDjiGlaKzQLu92WgZ0g0BQbAsodgUU2wKKXQFLED4I3rH_G_kL6ivh1Q
CitedBy_id crossref_primary_10_1016_j_artmed_2019_06_003
crossref_primary_10_1038_srep21183
crossref_primary_10_1016_j_compbiomed_2019_103495
crossref_primary_10_3389_fnagi_2021_766703
crossref_primary_10_1007_s00429_024_02820_5
crossref_primary_10_1016_j_nicl_2019_101864
crossref_primary_10_3389_fnhum_2016_00075
crossref_primary_10_3389_fnins_2020_00118
crossref_primary_10_1016_j_jneumeth_2019_108451
crossref_primary_10_1016_j_nicl_2023_103387
crossref_primary_10_1523_ENEURO_0173_23_2024
crossref_primary_10_3389_fnagi_2021_781465
crossref_primary_10_1016_j_mri_2019_11_012
crossref_primary_10_1016_j_mri_2020_10_013
crossref_primary_10_3389_fnhum_2022_965602
crossref_primary_10_3389_fneur_2022_921984
crossref_primary_10_1007_s10548_021_00831_7
crossref_primary_10_3389_fnins_2023_1265815
crossref_primary_10_1080_00325481_2019_1663706
crossref_primary_10_3389_fnins_2021_602170
crossref_primary_10_1016_j_nicl_2016_08_014
crossref_primary_10_3389_fnins_2022_867243
crossref_primary_10_1038_s41598_021_96333_4
crossref_primary_10_1016_j_dib_2021_107333
crossref_primary_10_1016_j_pscychresns_2024_111945
crossref_primary_10_1118_1_4940123
crossref_primary_10_1016_j_neurobiolaging_2025_02_005
crossref_primary_10_1016_j_psyneuen_2023_106666
crossref_primary_10_3389_fnins_2021_768418
crossref_primary_10_4103_1673_5374_300450
crossref_primary_10_1002_hbm_23516
crossref_primary_10_1016_j_neuroimage_2016_12_037
crossref_primary_10_1109_TBME_2017_2715281
crossref_primary_10_1002_jvc2_359
crossref_primary_10_1016_j_neuroimage_2016_12_018
Cites_doi 10.1109/TAC.1974.1100705
10.1145/1961189.1961199
10.1023/B:STCO.0000035301.49549.88
10.1073/pnas.0601417103
10.1002/hbm.1048
10.1016/j.neuroimage.2009.01.026
10.1016/j.neuroimage.2012.02.020
10.1007/s10334-010-0212-0
10.3389/fnhum.2013.00343
10.1016/j.neuroimage.2014.09.013
10.1073/pnas.0905267106
10.1016/j.neuroimage.2014.08.022
10.1109/TMI.2003.822821
10.1016/j.neuroimage.2010.04.246
10.1111/j.1749-6632.2010.05947.x
10.3389/fnsys.2011.00037
10.1098/rstb.2005.1634
10.1109/72.788643
10.2307/2528964
10.1016/j.neuroimage.2006.08.041
10.1016/j.mri.2010.04.002
10.1016/S0925-2312(02)00517-9
10.1016/j.neuroimage.2005.07.054
10.1371/journal.pone.0095493
10.18637/jss.v011.i09
10.1016/j.neuroimage.2013.07.035
10.1002/hbm.1061
10.1002/hbm.20929
10.1152/jn.00338.2011
10.1016/j.neuroimage.2008.10.055
10.1016/j.neuroimage.2010.11.002
10.1016/j.neuroimage.2011.09.015
10.1137/S1052623498345075
10.1016/j.neuroimage.2004.12.012
10.1016/j.neuroimage.2004.08.044
10.1016/j.neuroimage.2013.11.046
10.1016/j.neuroimage.2004.07.051
10.1016/j.neuroimage.2014.03.034
10.1016/j.neucom.2008.04.003
10.1016/j.neuroimage.2011.12.028
10.1002/hbm.20359
10.1016/j.mri.2006.09.042
10.3389/fnsys.2011.00002
10.1371/journal.pone.0076315
10.1002/hbm.20813
ContentType Journal Article
Copyright 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2015 Wang and Li. 2015
Copyright_xml – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2015 Wang and Li. 2015
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTPV
AOWAS
D8T
ZZAVC
DOA
DOI 10.3389/fnhum.2015.00259
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5161
EndPage 259
ExternalDocumentID oai_doaj_org_article_6ff96a927c5e4b069f076b43cc273bae
oai_swepub_ki_se_513257
PMC4424860
26005413
10_3389_fnhum_2015_00259
Genre Journal Article
GeographicLocations Sweden
GeographicLocations_xml – name: Sweden
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABIVO
ABUWG
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EMOBN
F5P
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
M~E
O5R
O5S
OK1
OVT
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
TR2
C1A
IPNFZ
NPM
PQGLB
RIG
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTPV
AOWAS
D8T
PUEGO
ZZAVC
ID FETCH-LOGICAL-c598t-d14bcc7cb2f9976a5fe1b78cc37d732d680db90df3863242fe8b1cb86536a9223
IEDL.DBID M48
ISSN 1662-5161
IngestDate Wed Aug 27 00:38:08 EDT 2025
Mon Sep 01 03:24:02 EDT 2025
Thu Aug 21 13:35:43 EDT 2025
Fri Jul 11 07:48:11 EDT 2025
Fri Jul 25 11:41:39 EDT 2025
Mon Jul 21 05:54:27 EDT 2025
Thu Apr 24 23:01:08 EDT 2025
Tue Jul 01 03:44:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords image processing
pattern classification
independent component analysis
magnetic resonance imaging
signal processing
functional neuroimaging
machine learning
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c598t-d14bcc7cb2f9976a5fe1b78cc37d732d680db90df3863242fe8b1cb86536a9223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Daniel S. Margulies, Max Planck Institute for Human Cognitive and Brain Sciences, Germany
Reviewed by: Danilo Bzdok, Research Center Jülich, Germany; R. Matthew Hutchison, Harvard University, USA
OpenAccessLink https://www.proquest.com/docview/2291477660?pq-origsite=%requestingapplication%
PMID 26005413
PQID 2291477660
PQPubID 4424408
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_6ff96a927c5e4b069f076b43cc273bae
swepub_primary_oai_swepub_ki_se_513257
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4424860
proquest_miscellaneous_1683353834
proquest_journals_2291477660
pubmed_primary_26005413
crossref_citationtrail_10_3389_fnhum_2015_00259
crossref_primary_10_3389_fnhum_2015_00259
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-08
PublicationDateYYYYMMDD 2015-05-08
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-08
  day: 08
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in human neuroscience
PublicationTitleAlternate Front Hum Neurosci
PublicationYear 2015
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Wig (B46) 2011; 1224
Kiviniemi (B28) 2009; 30
Schopf (B35) 2010; 23
Sochat (B40) 2014; 9
Chang (B14) 2011; 2
Cordes (B17) 2006; 29
Cordes (B16) 2000; 21
Salimi-Khorshidi (B34) 2014; 90
Calhoun (B12) 2005; 25
Vapnik (B43) 1997; 9
Li (B30) 2007; 28
Bhaganagarapu (B10) 2013; 7
Damoiseaux (B18) 2006; 103
Abou Elseoud (B1) 2010; 31
Beckmann (B8) 2005; 360
Wang (B44) 2013; 8
Abou Elseoud (B2) 2011; 5
Allen (B4) 2011; 5
Xu (B49) 2014; 103
Bartels (B6) 2005; 24
Formisano (B22) 2002; 49
De Martino (B19) 2007; 34
Elseoud (B21) 2011; 5
Lin (B31) 1999; 9
Smola (B39) 2004; 14
Wig (B45) 2014; 93(Pt 2)
Kundu (B29) 2012; 60
Sui (B41) 2009; 46
Caputo (B13) 2002
Mangasarian (B32) 1999; 10
Jenkinson (B24) 2012; 62
Akaike (B3) 1974; 19
Perlbarg (B33) 2007; 25
Woolrich (B47) 2009; 45
Jo (B25) 2010; 52
Smith (B38) 2004; 23(Suppl. 1)
Calhoun (B11) 2001; 14
Smith (B37) 2009; 106
Andrews (B5) 1972; 28
Schultz (B36) 2014; 102(Pt 2)
Suzuki (B42) 2002; 15
Beckmann (B9) 2004; 23
Douglas (B20) 2011; 56
Karatzoglou (B26) 2007
Beckmann (B7) 2012; 62
Griffanti (B23) 2014; 95
Chen (B15) 2010; 28
Xie (B48) 2009; 72
Yeo (B50) 2011; 106
Karatzoglou (B27) 2004; 11
14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52
25150630 - Neuroimage. 2014 Nov 15;102 Pt 2:620-36
20063361 - Hum Brain Mapp. 2010 Aug;31(8):1207-16
16202626 - Neuroimage. 2006 Jan 1;29(1):145-54
19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
21073969 - Neuroimage. 2011 May 15;56(2):544-53
20655157 - Magn Reson Imaging. 2010 Nov;28(9):1344-52
11747100 - Hum Brain Mapp. 2002 Jan;15(1):54-66
15627577 - Neuroimage. 2005 Jan 15;24(2):339-49
11559959 - Hum Brain Mapp. 2001 Nov;14(3):140-51
21442040 - Front Syst Neurosci. 2011 Feb 04;5:2
19059349 - Neuroimage. 2009 Mar;45(1 Suppl):S173-86
15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
19457398 - Neuroimage. 2009 May 15;46(1):73-86
16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13
20521082 - MAGMA. 2010 Dec;23(5-6):317-25
17274023 - Hum Brain Mapp. 2007 Nov;28(11):1251-66
17070708 - Neuroimage. 2007 Jan 1;34(1):177-94
17222713 - Magn Reson Imaging. 2007 Jan;25(1):35-46
24389422 - Neuroimage. 2014 Apr 15;90:449-68
23876247 - Neuroimage. 2014 Jun;93 Pt 2:276-91
23847511 - Front Hum Neurosci. 2013 Jul 10;7:343
21486299 - Ann N Y Acad Sci. 2011 Apr;1224:126-46
24657355 - Neuroimage. 2014 Jul 15;95:232-47
21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65
24204612 - PLoS One. 2013 Oct 18;8(10):e76315
25225001 - Neuroimage. 2014 Dec;103:33-47
21687724 - Front Syst Neurosci. 2011 Jun 03;5:37
22369997 - Neuroimage. 2012 Aug 15;62(2):891-901
16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
22209809 - Neuroimage. 2012 Apr 15;60(3):1759-70
21979382 - Neuroimage. 2012 Aug 15;62(2):782-90
20420926 - Neuroimage. 2010 Aug 15;52(2):571-82
18252605 - IEEE Trans Neural Netw. 1999;10(5):1032-7
24748378 - PLoS One. 2014 Apr 18;9(4):e95493
15784432 - Neuroimage. 2005 Apr 1;25(2):527-38
19507160 - Hum Brain Mapp. 2009 Dec;30(12):3865-86
11039342 - AJNR Am J Neuroradiol. 2000 Oct;21(9):1636-44
References_xml – volume: 19
  start-page: 716
  year: 1974
  ident: B3
  article-title: A new look at the statistical model identification
  publication-title: Autom. Control IEEE Trans
  doi: 10.1109/TAC.1974.1100705
– volume: 21
  start-page: 1636
  year: 2000
  ident: B16
  article-title: Mapping functionally related regions of brain with functional connectivity MR imaging
  publication-title: ANJR Am. J. Neuroradiol
– volume: 2
  start-page: 27
  year: 2011
  ident: B14
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol
  doi: 10.1145/1961189.1961199
– volume: 14
  start-page: 199
  year: 2004
  ident: B39
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 103
  start-page: 13848
  year: 2006
  ident: B18
  article-title: Consistent resting-state networks across healthy subjects
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0601417103
– volume: 14
  start-page: 140
  year: 2001
  ident: B11
  article-title: A method for making group inferences from functional MRI data using independent component analysis
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.1048
– volume: 46
  start-page: 73
  year: 2009
  ident: B41
  article-title: An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.01.026
– volume: 62
  start-page: 891
  year: 2012
  ident: B7
  article-title: Modelling with independent components
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.020
– volume: 23
  start-page: 317
  year: 2010
  ident: B35
  article-title: Group ICA of resting-state data: a comparison
  publication-title: Magnet. Reson. Mater. Phys. Biol. Med
  doi: 10.1007/s10334-010-0212-0
– volume: 7
  issue: 343
  year: 2013
  ident: B10
  article-title: An automated method for identifying artifact in independent component analysis of resting-state fMRI
  publication-title: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2013.00343
– volume: 103
  start-page: 33
  year: 2014
  ident: B49
  article-title: Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.09.013
– volume: 106
  start-page: 13040
  year: 2009
  ident: B37
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci. U.S.A
  doi: 10.1073/pnas.0905267106
– volume: 102(Pt 2)
  start-page: 620
  year: 2014
  ident: B36
  article-title: Template based rotation: a method for functional connectivity analysis with a priori templates
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.08.022
– volume: 23
  start-page: 137
  year: 2004
  ident: B9
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: Med. Imaging IEEE Trans
  doi: 10.1109/TMI.2003.822821
– volume: 52
  start-page: 571
  year: 2010
  ident: B25
  article-title: Mapping sources of correlation in resting state FMRI, with artifact detection and removal
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.04.246
– volume: 9
  start-page: 281
  year: 1997
  ident: B43
  article-title: Support vector method for function approximation, regression estimation, and signal processing
  publication-title: Adv. Neural Inform. Process. Syst
– volume: 1224
  start-page: 126
  year: 2011
  ident: B46
  article-title: Concepts and principles in the analysis of brain networks
  publication-title: Ann. N. Y. Acad. Sci
  doi: 10.1111/j.1749-6632.2010.05947.x
– volume: 5
  issue: 37
  year: 2011
  ident: B2
  article-title: Group-ICA model order highlights patterns of functional brain connectivity
  publication-title: Front. Syst. Neurosci
  doi: 10.3389/fnsys.2011.00037
– volume: 360
  start-page: 1001
  year: 2005
  ident: B8
  article-title: Investigations into resting-state connectivity using independent component analysis
  publication-title: Philos. Trans. R. Soc. B Biol. Sci
  doi: 10.1098/rstb.2005.1634
– volume: 10
  start-page: 1032
  year: 1999
  ident: B32
  article-title: Successive overrelaxation for support vector machines
  publication-title: Neural Netw. IEEE Trans
  doi: 10.1109/72.788643
– volume: 28
  start-page: 125
  year: 1972
  ident: B5
  article-title: Plots of high-dimensional data
  publication-title: Biometrics
  doi: 10.2307/2528964
– volume: 34
  start-page: 177
  year: 2007
  ident: B19
  article-title: Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.08.041
– volume-title: Proceedings of NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision
  year: 2002
  ident: B13
  article-title: Appearance-based Object Recognition using SVMs: which Kernel Should I Use?
– volume: 28
  start-page: 1344
  year: 2010
  ident: B15
  article-title: A new approach to estimating the signal dimension of concatenated resting-state functional MRI data sets
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2010.04.002
– volume: 49
  start-page: 241
  year: 2002
  ident: B22
  article-title: Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00517-9
– volume: 29
  start-page: 145
  year: 2006
  ident: B17
  article-title: Estimation of the intrinsic dimensionality of fMRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.07.054
– volume: 9
  start-page: e95493
  year: 2014
  ident: B40
  article-title: A robust classifier to distinguish noise from fMRI independent components
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0095493
– volume: 11
  start-page: 1
  year: 2004
  ident: B27
  article-title: Kernlab-an S4 package for kernel methods in R
  publication-title: J. Statistical Soft
  doi: 10.18637/jss.v011.i09
– volume: 93(Pt 2)
  start-page: 276
  year: 2014
  ident: B45
  article-title: An approach for parcellating human cortical areas using resting-state correlations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.07.035
– volume: 15
  start-page: 54
  year: 2002
  ident: B42
  article-title: Fast and precise independent component analysis for high field fMRI time series tailored using prior information on spatiotemporal structure
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.1061
– volume: 5
  issue: 37
  year: 2011
  ident: B21
  article-title: Group-ICA model order highlights patterns of functional brain connectivity
  publication-title: Front. Syst. Neurosci
  doi: 10.3389/fnsys.2011.00037
– volume: 31
  start-page: 1207
  year: 2010
  ident: B1
  article-title: The effect of model order selection in group PICA
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.20929
– volume: 106
  start-page: 1125
  year: 2011
  ident: B50
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol
  doi: 10.1152/jn.00338.2011
– volume: 45
  start-page: S173
  year: 2009
  ident: B47
  article-title: Bayesian analysis of neuroimaging data in FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.055
– volume: 56
  start-page: 544
  year: 2011
  ident: B20
  article-title: Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.11.002
– volume: 62
  start-page: 782
  year: 2012
  ident: B24
  article-title: FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– volume: 9
  start-page: 1100
  year: 1999
  ident: B31
  article-title: Newton's method for large bound-constrained optimization problems
  publication-title: SIAM J. Optimiz
  doi: 10.1137/S1052623498345075
– volume: 25
  start-page: 527
  year: 2005
  ident: B12
  article-title: Semi-blind ICA of fMRI: a method for utilizing hypothesis-derived time courses in a spatial ICA analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.12.012
– volume: 24
  start-page: 339
  year: 2005
  ident: B6
  article-title: Brain dynamics during natural viewing conditions -a new guide for mapping connectivity in vivo
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.08.044
– volume: 90
  start-page: 449
  year: 2014
  ident: B34
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 23(Suppl. 1)
  start-page: S208
  year: 2004
  ident: B38
  article-title: Advances in functional and structural MR image analysis and implementation as FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 95
  start-page: 232
  year: 2014
  ident: B23
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.03.034
– volume: 72
  start-page: 1042
  year: 2009
  ident: B48
  article-title: Estimating intrinsic dimensionality of fMRI dataset incorporating an AR (1) noise model with cubic spline interpolation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.04.003
– volume: 60
  start-page: 1759
  year: 2012
  ident: B29
  article-title: Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.028
– volume: 28
  start-page: 1251
  year: 2007
  ident: B30
  article-title: Estimating the number of independent components for functional magnetic resonance imaging data
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.20359
– volume: 25
  start-page: 35
  year: 2007
  ident: B33
  article-title: CORSICA: correction of structured noise in fMRI by automatic identification of ICA components
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2006.09.042
– volume: 5
  issue: 2
  year: 2011
  ident: B4
  article-title: A baseline for the multivariate comparison of resting-state networks
  publication-title: Front. Syst. Neurosci
  doi: 10.3389/fnsys.2011.00002
– volume: 8
  start-page: e76315
  year: 2013
  ident: B44
  article-title: Analysis of whole-brain resting-state fMRI data using hierarchical clustering approach
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0076315
– year: 2007
  ident: B26
  publication-title: The Kernlab Package
– volume: 30
  start-page: 3865
  year: 2009
  ident: B28
  article-title: Functional segmentation of the brain cortex using high model order group PICA
  publication-title: Hum. Brain Mapp
  doi: 10.1002/hbm.20813
– reference: 11747100 - Hum Brain Mapp. 2002 Jan;15(1):54-66
– reference: 19457398 - Neuroimage. 2009 May 15;46(1):73-86
– reference: 14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52
– reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5
– reference: 22369997 - Neuroimage. 2012 Aug 15;62(2):891-901
– reference: 23876247 - Neuroimage. 2014 Jun;93 Pt 2:276-91
– reference: 21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65
– reference: 21979382 - Neuroimage. 2012 Aug 15;62(2):782-90
– reference: 24389422 - Neuroimage. 2014 Apr 15;90:449-68
– reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
– reference: 21442040 - Front Syst Neurosci. 2011 Feb 04;5:2
– reference: 25150630 - Neuroimage. 2014 Nov 15;102 Pt 2:620-36
– reference: 20655157 - Magn Reson Imaging. 2010 Nov;28(9):1344-52
– reference: 19507160 - Hum Brain Mapp. 2009 Dec;30(12):3865-86
– reference: 15627577 - Neuroimage. 2005 Jan 15;24(2):339-49
– reference: 20420926 - Neuroimage. 2010 Aug 15;52(2):571-82
– reference: 24657355 - Neuroimage. 2014 Jul 15;95:232-47
– reference: 11039342 - AJNR Am J Neuroradiol. 2000 Oct;21(9):1636-44
– reference: 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13
– reference: 22209809 - Neuroimage. 2012 Apr 15;60(3):1759-70
– reference: 24204612 - PLoS One. 2013 Oct 18;8(10):e76315
– reference: 21073969 - Neuroimage. 2011 May 15;56(2):544-53
– reference: 20521082 - MAGMA. 2010 Dec;23(5-6):317-25
– reference: 19059349 - Neuroimage. 2009 Mar;45(1 Suppl):S173-86
– reference: 11559959 - Hum Brain Mapp. 2001 Nov;14(3):140-51
– reference: 24748378 - PLoS One. 2014 Apr 18;9(4):e95493
– reference: 20063361 - Hum Brain Mapp. 2010 Aug;31(8):1207-16
– reference: 25225001 - Neuroimage. 2014 Dec;103:33-47
– reference: 21486299 - Ann N Y Acad Sci. 2011 Apr;1224:126-46
– reference: 16202626 - Neuroimage. 2006 Jan 1;29(1):145-54
– reference: 17222713 - Magn Reson Imaging. 2007 Jan;25(1):35-46
– reference: 17070708 - Neuroimage. 2007 Jan 1;34(1):177-94
– reference: 21687724 - Front Syst Neurosci. 2011 Jun 03;5:37
– reference: 15784432 - Neuroimage. 2005 Apr 1;25(2):527-38
– reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19
– reference: 17274023 - Hum Brain Mapp. 2007 Nov;28(11):1251-66
– reference: 18252605 - IEEE Trans Neural Netw. 1999;10(5):1032-7
– reference: 23847511 - Front Hum Neurosci. 2013 Jul 10;7:343
SSID ssj0062651
Score 2.2777474
Snippet Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from...
SourceID doaj
swepub
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 259
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Automation
Classification
Datasets
Functional magnetic resonance imaging
Functional Neuroimaging
image processing
Independent Component Analysis
Learning algorithms
Machine learning
Magnetic Resonance Imaging
Mimicry
Neuroscience
Noise
Pattern Classification
Physiology
Principal components analysis
Signal processing
Studies
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BFhmpqsQh2tjxIzkuhaqttCAVinqzYsemq9IsancP7YW_zoydDY2K4NJb5MSJNTP2fOOMvyFkh3neguMRubWhyIVVSHkrkXVftyxSzsUynbNP6uBEHJ3K01ulvjAnLNEDJ8FNVAi1amqunfTCFqoOEHlbUToHjtc2Hldf8HnrYCqtwYDSJUs_JSEEqyehO1vhsXMWN1CQl_SWE4pc_X8DmHfzJEdsotED7T8mj3roSKdpyE_IA989JZvTDsLmi2u6S2MyZ9wl3yS_PiBrf2LcAJxNF4Ee7k3pvKPHSKvRfc8jyqRhdnxI_3Bt-Jbaa4qwcHXp6WdYTi7mN9AYS2diUlHUY3zbUD53SXFNWXSYkUFxW5d--TZ7Rk72P37dO8j7Wgu5k3W1zFsmrHPaWR5qQCiNDJ5ZXTlX6laXvFVV0dq6aENZIcE7D76yzNlKyRK1w8vnZKODT70k1DrEOY0ttRMYkDXc2toBkihdpZSTGZmshW9cT0SO9TB-GAhIUF0mqsugukxUV0beDT1-JhKOfzz7HvU5PIf02bEBjMr0RmX-Z1QZ2Vpbg-nn9JXhvGZCa6WKjLwdbsNsxF8sTecXqyvDFB5ig6hfZORFMp5hJFgKQAJmyIgemdVoqOM73fwsMn6DHLFYWEZ2kwGOuvRN53DljWQwufSr-xDCa_IQxRqzO6stsrG8XPltQGBL-yZOtt-i_DHa
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauPRSUegjLUWuVCH1EG2cxHZyqhYKgkqLKloqblbs2GXVkgC7e6CX_vXOOE4gasUtcl6WZ8b-Zjz-hpD3zKY1LDx5rLVL4lwLpLzlyLova-Yp53yZztmJODrLP5_z8xBwW4S0yn5O9BN13RqMkU_StGS5lEIkH6-uY6wahburoYTGY7IOU3ABztf63sHJl9N-Lga0zlm3OQmuWDlxzcUKj58zH0hBftJ7i5Hn7P8f0Pw3X3LEKupXosMN8jRASDrtZP6MPLLNJtmaNuA-X97SXeqTOn20fIv8-YTs_R3zBuBt2jp6vD-l84ZiTQ5YtmJ_ooi62ekxtPacG7am-pY661k_aQvTyuX8NzQaxNqYXOTliV-bD2V0lxTT09sGMzMohnfp1--z5-Ts8ODb_lEcai7EhpfFMq5Zro2RRqeuBKRScWeZloUxmaxlltaiSGpdJrXLCiR6T50tNDO6EDwTVQlY4wVZa-BXrwjVBvFOpTNpcnTMqlTr0gCiyEwhhOERmfSDr0wgJMe6GL8UOCYoLuXFpVBcyosrIh-GN646Mo4Hnt1DeQ7PIY22b2hvfqhglUo4V2K3peE214koXSKFzjNjANXpykZku9cGFWx7oe40MSLvhttglbjVUjW2XS0UE3iYDbz_PCIvO-UZeoIlAThgh4jIkVqNujq-08wvPPM3jCMWDYvIbqeAo1dC00-4soozMDL5-uH-vyFPcMB8_maxTdaWNyv7FjDWUu8EQ_oLy9ArNw
  priority: 102
  providerName: ProQuest
Title Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM
URI https://www.ncbi.nlm.nih.gov/pubmed/26005413
https://www.proquest.com/docview/2291477660
https://www.proquest.com/docview/1683353834
https://pubmed.ncbi.nlm.nih.gov/PMC4424860
http://kipublications.ki.se/Default.aspx?queryparsed=id:131437948
https://doaj.org/article/6ff96a927c5e4b069f076b43cc273bae
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge-EFAeMjMCojoUk8hMWJP5IHhLqxsSF1QoOivlmxY28VWwpdK1Fe-Ne5c9KgiAqJlyp1vizfXe539vl3hLxkLq3A8fDYGJ_E3EikvBXIuq8qFijnQpnO0Zk8GfMPEzH5sz26HcCbjaEd1pMaz69e__i-egsG_wYjTvC3-76-XOKmchamR0Rxm2yDX1JopiPerSkAcg_FGJmUEH4B0GkWLTc-oeekApf_JgD6dx5lj200eKjje-RuCy3psNGF--SWqx-QnWENYfX1iu7RkOwZZtF3yK93yOrfMHIADqczT08Ph3RaU6zVAe4sDjuNqB-dn0LrmovDVdSsqHeBDZTO4HNzPf0JjRYxOCYdBTnj06Zded0FxbT1WY0ZGxSnfemnL6OHZHx89PnwJG5rMcRWFPkirhg31iprUl8AgimFd8yo3NpMVSpLK5knlSmSymc5EsCn3uWGWZNLkcmyAAzyiGzV8KonhBqLOKg0mbIcA7YyNaawgDQym0tpRUT214OvbUtUjvUyrjQELCguHcSlUVw6iCsir7o7vjUkHf-49gDl2V2H9NqhYTa_0K21aul9gd1WVjhuEln4REnDM2sB7ZnSRWR3rQ16rbI6TQvGlZIyiciL7jRYKy7BlLWbLW80k7jJLcszHpHHjfJ0PcFSAQIwRURUT616Xe2fqaeXgREcxhGLiUVkr1HA3i1t01c4clowMD719D8G7Bm5g39Ckme-S7YW86V7DkBsYQZk--Do7OP5IExkwO_7CRsEm_sNTHA25w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNcEFAegQJGgkocos3TTg4ItbTVLu2uUGlRbyZ2bLqCJqW7K7Rc-Ef8RmacZGEF6q23yHlZnvE87PH3AbwITVSi40l8pWzgJ4oT5G1KqPuiDB3knKPpHI354CR5d5qersGv7iwMlVV2NtEZ6rLWtEbej6I8TITgPHhz8c0n1ijaXe0oNBq1ODCL75iyTV8Pd1G-L6Nof-_47cBvWQV8nebZzC_DRGkttIpsjr64SK0Jlci0jkUp4qjkWVCqPChtnBGUeWRNpkKtMp7GvMgjAjpAk7-exJjK9GB9Z2_8_qiz_ZgdpGGzGYqpX9631dmcjruHbuGG8FD_cn6OI-B_ge2_9ZkrKKbO8-3fhlttyMq2Gx27A2umugsb2xWm6-cLtsVcEalbnd-An7vEFtAgfWB8z2rLcFDYpGLEAYJu0ncnmJgdHQ2xtcP4MCVTC2aNQxllNZqx88kPbNQU21Mxk9Mf-tpkSds7Y1QOX1dUCcJoOZl9-Di6ByfXIo370KvwVw-BKU3xVaFioRNKBItIqVxjBBPrjHOdetDvBl_qFgCdeDi-SkyESFzSiUuSuKQTlwevlm9cNOAfVzy7Q_JcPkew3a6hvvwsWysgubU5dVvo1CQq4LkNBFdJrDVGkaowHmx22iBbWzKVfzTfg-fL22gFaGunqEw9n8qQ0-G5OIsTDx40yrPsCVEQpBireCBW1Gqlq6t3qsmZQxrHcSSSMg-2GgVceaVt-oJXRqYhTmrx6Or-P4Mbg-PRoTwcjg8ew00aPFc7mm1Cb3Y5N08wvpupp-2kYvDpuufxbzTUaGo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrYS4IKA8AgWMBJU4RJunnRwQatmuupRdVYWi3tzYsekKmpTurtBy4X_x65hxkoUVqLfeIudlecbzsMffB_AiNFGJjifxlbKBnyhOkLcpoe6LMnSQc46mczTm-8fJu5P0ZA1-dWdhqKyys4nOUJe1pjXyXhTlYSIE50HPtmURh_3Bm4tvPjFI0U5rR6fRqMiBWXzH9G36ethHWb-MosHex7f7fssw4Os0z2Z-GSZKa6FVZHP0y0VqTahEpnUsShFHJc-CUuVBaeOMYM0jazIVapXxNOZFHhHoAZr_DYFZUbAOG7t748Ojzg9gppCGzcYopoF5z1Znczr6HrpFHMJG_csROr6A_wW5_9ZqriCaOi84uA232vCV7TT6dgfWTHUXNncqTN3PF2ybuYJSt1K_CT_7xBzQoH5grM9qy3BQ2KRixAeCLtN3p5mYHR0NsbXD-zAlUwtmjUMcZTWatPPJD2zUFOdTYZPTJfraZEnhO2NUGl9XVBXCaGmZffg0ugfH1yKN-7Be4a8eAlOaYq1CxUInlBQWkVK5xmgm1hnnOvWg1w2-1C0YOnFyfJWYFJG4pBOXJHFJJy4PXi3fuGiAQK54dpfkuXyOILxdQ335WbYWQXJrc-q20KlJVMBzGwiuklhrjChVYTzY6rRBtnZlKv_MAg-eL2-jRaBtnqIy9XwqQ04H6eIsTjx40CjPsidER5Bi3OKBWFGrla6u3qkmZw51HMeRCMs82G4UcOWVtukLXhmZhjjBxaOr-_8MbuD8le-H44PHcJPGzpWRZluwPrucmycY6s3U03ZOMTi97mn8G7ScbJ8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimensionality+of+ICA+in+resting-state+fMRI+investigated+by+feature+optimized+classification+of+independent+components+with+SVM&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Wang%2C+Yanlu&rft.au=Li%2C+Tie-Qiang&rft.date=2015-05-08&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=9&rft_id=info:doi/10.3389%2Ffnhum.2015.00259&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnhum_2015_00259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon