Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM
Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiti...
Saved in:
Published in | Frontiers in human neuroscience Vol. 9; p. 259 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Research Foundation
08.05.2015
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiting factor of ICA is the uncertainty of the number of independent components (NIC). We aim to develop a framework based on support vector machines (SVM) and optimized feature-selection for automated classification of independent components (ICs) and use the framework to investigate the effects of input NIC on the ICA results. Seven different resting-state fMRI datasets were studied. 18 features were devised by mimicking the empirical criteria for manual evaluation. The five most significant (p < 0.01) features were identified by general linear modeling and used to generate a classification model for the framework. This feature-optimized classification of ICs with SVM (FOCIS) framework was used to classify both group and single subject ICA results. The classification results obtained using FOCIS and previously published FSL-FIX were compared against manually evaluated results. On average the false negative rate in identifying artifact contaminated ICs for FOCIS and FSL-FIX were 98.27 and 92.34%, respectively. The number of artifact and functional network components increased almost linearly with the input NIC. Through tracking, we demonstrate that incrementing NIC affects most ICs when NIC < 33, whereas only a few limited ICs are affected by direct splitting when NIC is incremented beyond NIC > 40. For a given IC, its changes with increasing NIC are individually specific irrespective whether the component is a potential resting-state functional network or an artifact component. Using FOCIS, we investigated experimentally the ICA dimensionality of resting-state fMRI datasets and found that the input NIC can critically affect the ICA results of resting-state fMRI data. |
---|---|
AbstractList | Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiting factor of ICA is the uncertainty of the number of independent components (NIC). We aim to develop a framework based on support vector machines (SVM) and optimized feature-selection for automated classification of independent components (ICs) and use the framework to investigate the effects of input NIC on the ICA results. Seven different resting-state fMRI datasets were studied. 18 features were devised by mimicking the empirical criteria for manual evaluation. The five most significant (p<0.01) features were identified by general linear modeling and used to generate a classification model for the framework. This feature-optimized classification of ICs with SVM (FOCIS) framework was used to classify both group and single subject ICA results. The classification results obtained using FOCIS and previously published FSL-FIX were compared against manually evaluated results. On average the false negative rate in identifying artifact contaminated ICs for FOCIS and FSL-FIX were 98.27% and 92.34%, respectively. The number of artifact and functional network components increased almost linearly with the input NIC. Through tracking, we demonstrate that incrementing NIC affects most ICs when NIC<33, whereas only a few limited ICs are affected by direct splitting when NIC is incremented beyond NIC>40. For a given IC, its changes with increasing NIC are individually specific irrespective whether the component is a potential resting-state functional network or an artifact component. Using FOCIS, we investigated experimentally the ICA dimensionality of resting-state fMRI datasets and found that the input NIC can critically affect the ICA results of resting-state fMRI data. Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiting factor of ICA is the uncertainty of the number of independent components (NIC). We aim to develop a framework based on support vector machines (SVM) and optimized feature-selection for automated classification of independent components (ICs) and use the framework to investigate the effects of input NIC on the ICA results. Seven different resting-state fMRI datasets were studied. 18 features were devised by mimicking the empirical criteria for manual evaluation. The five most significant ( p < 0.01) features were identified by general linear modeling and used to generate a classification model for the framework. This feature-optimized classification of ICs with SVM (FOCIS) framework was used to classify both group and single subject ICA results. The classification results obtained using FOCIS and previously published FSL-FIX were compared against manually evaluated results. On average the false negative rate in identifying artifact contaminated ICs for FOCIS and FSL-FIX were 98.27 and 92.34%, respectively. The number of artifact and functional network components increased almost linearly with the input NIC. Through tracking, we demonstrate that incrementing NIC affects most ICs when NIC < 33, whereas only a few limited ICs are affected by direct splitting when NIC is incremented beyond NIC > 40. For a given IC, its changes with increasing NIC are individually specific irrespective whether the component is a potential resting-state functional network or an artifact component. Using FOCIS, we investigated experimentally the ICA dimensionality of resting-state fMRI datasets and found that the input NIC can critically affect the ICA results of resting-state fMRI data. Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiting factor of ICA is the uncertainty of the number of independent components (NIC). We aim to develop a framework based on support vector machines (SVM) and optimized feature-selection for automated classification of independent components (ICs) and use the framework to investigate the effects of input NIC on the ICA results. Seven different resting-state fMRI datasets were studied. 18 features were devised by mimicking the empirical criteria for manual evaluation. The five most significant (p40. For a given IC, its changes with increasing NIC are individually specific irrespective whether the component is a potential resting-state functional network or an artifact component. Using FOCIS, we investigated experimentally the ICA dimensionality of resting-state fMRI datasets and found that the input NIC can critically affect the ICA results of resting-state fMRI data. |
Author | Li, Tie-Qiang Wang, Yanlu |
AuthorAffiliation | 2 Unit of Medical Imaging, Function, and Technology, Department of Medical Physics, Karolinska University Hospital Huddinge, Sweden 1 Department of Clinical Science, Intervention and Technology, Karolinska Institute Stockholm, Sweden |
AuthorAffiliation_xml | – name: 2 Unit of Medical Imaging, Function, and Technology, Department of Medical Physics, Karolinska University Hospital Huddinge, Sweden – name: 1 Department of Clinical Science, Intervention and Technology, Karolinska Institute Stockholm, Sweden |
Author_xml | – sequence: 1 givenname: Yanlu surname: Wang fullname: Wang, Yanlu – sequence: 2 givenname: Tie-Qiang surname: Li fullname: Li, Tie-Qiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26005413$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:131437948$$DView record from Swedish Publication Index |
BookMark | eNp1kslv1DAYxSNURBe4c0KWuHDJ4CW2kwsSKttIrZDYrpbt2DMeEnuwnVbDhX8dz1LUqcQlsZ7f--lLvndenfjgTVU9R3BGSNu9tn45jTMMEZ1BiGn3qDpDjOGaIoZO7p1Pq_OUVhAyzCh6Up1iBiFtEDmr_rxzo_HJBS8HlzcgWDC_fAucB9Gk7PyiTllmA-z1l3lRb7biogg9UBtgjcxTNCCssxvd7yLqQabkrNMyF-SW5nxv1qY8fAY6jOvyAT4ncOvyEnz9cf20emzlkMyzw_ui-v7h_bfLT_XV549lkKta067NdY8apTXXCtuu40xSa5DirdaE95zgnrWwVx3sLWkZwQ22plVIq5ZRwmSHMbmo5ntuH-RKrKMbZdyIIJ3YCSEuhIzZ6cEIZm23DXFNTaMg6yzkTDVEa8yJkqaw6j0r3Zr1pI5oB-lnORlBEcGUF_-bvb_cjKbX5QdEORzFjm-8W4pFuBFNg5uWwQJ4dQDE8GsqKxCjS9oMg_QmTEkg1hJCSUuaYn35wLoKUyzLTQLjDjWcsx3wxf2J_o1y14tiYHuDjiGlaKzQLu92WgZ0g0BQbAsodgUU2wKKXQFLED4I3rH_G_kL6ivh1Q |
CitedBy_id | crossref_primary_10_1016_j_artmed_2019_06_003 crossref_primary_10_1038_srep21183 crossref_primary_10_1016_j_compbiomed_2019_103495 crossref_primary_10_3389_fnagi_2021_766703 crossref_primary_10_1007_s00429_024_02820_5 crossref_primary_10_1016_j_nicl_2019_101864 crossref_primary_10_3389_fnhum_2016_00075 crossref_primary_10_3389_fnins_2020_00118 crossref_primary_10_1016_j_jneumeth_2019_108451 crossref_primary_10_1016_j_nicl_2023_103387 crossref_primary_10_1523_ENEURO_0173_23_2024 crossref_primary_10_3389_fnagi_2021_781465 crossref_primary_10_1016_j_mri_2019_11_012 crossref_primary_10_1016_j_mri_2020_10_013 crossref_primary_10_3389_fnhum_2022_965602 crossref_primary_10_3389_fneur_2022_921984 crossref_primary_10_1007_s10548_021_00831_7 crossref_primary_10_3389_fnins_2023_1265815 crossref_primary_10_1080_00325481_2019_1663706 crossref_primary_10_3389_fnins_2021_602170 crossref_primary_10_1016_j_nicl_2016_08_014 crossref_primary_10_3389_fnins_2022_867243 crossref_primary_10_1038_s41598_021_96333_4 crossref_primary_10_1016_j_dib_2021_107333 crossref_primary_10_1016_j_pscychresns_2024_111945 crossref_primary_10_1118_1_4940123 crossref_primary_10_1016_j_neurobiolaging_2025_02_005 crossref_primary_10_1016_j_psyneuen_2023_106666 crossref_primary_10_3389_fnins_2021_768418 crossref_primary_10_4103_1673_5374_300450 crossref_primary_10_1002_hbm_23516 crossref_primary_10_1016_j_neuroimage_2016_12_037 crossref_primary_10_1109_TBME_2017_2715281 crossref_primary_10_1002_jvc2_359 crossref_primary_10_1016_j_neuroimage_2016_12_018 |
Cites_doi | 10.1109/TAC.1974.1100705 10.1145/1961189.1961199 10.1023/B:STCO.0000035301.49549.88 10.1073/pnas.0601417103 10.1002/hbm.1048 10.1016/j.neuroimage.2009.01.026 10.1016/j.neuroimage.2012.02.020 10.1007/s10334-010-0212-0 10.3389/fnhum.2013.00343 10.1016/j.neuroimage.2014.09.013 10.1073/pnas.0905267106 10.1016/j.neuroimage.2014.08.022 10.1109/TMI.2003.822821 10.1016/j.neuroimage.2010.04.246 10.1111/j.1749-6632.2010.05947.x 10.3389/fnsys.2011.00037 10.1098/rstb.2005.1634 10.1109/72.788643 10.2307/2528964 10.1016/j.neuroimage.2006.08.041 10.1016/j.mri.2010.04.002 10.1016/S0925-2312(02)00517-9 10.1016/j.neuroimage.2005.07.054 10.1371/journal.pone.0095493 10.18637/jss.v011.i09 10.1016/j.neuroimage.2013.07.035 10.1002/hbm.1061 10.1002/hbm.20929 10.1152/jn.00338.2011 10.1016/j.neuroimage.2008.10.055 10.1016/j.neuroimage.2010.11.002 10.1016/j.neuroimage.2011.09.015 10.1137/S1052623498345075 10.1016/j.neuroimage.2004.12.012 10.1016/j.neuroimage.2004.08.044 10.1016/j.neuroimage.2013.11.046 10.1016/j.neuroimage.2004.07.051 10.1016/j.neuroimage.2014.03.034 10.1016/j.neucom.2008.04.003 10.1016/j.neuroimage.2011.12.028 10.1002/hbm.20359 10.1016/j.mri.2006.09.042 10.3389/fnsys.2011.00002 10.1371/journal.pone.0076315 10.1002/hbm.20813 |
ContentType | Journal Article |
Copyright | 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2015 Wang and Li. 2015 |
Copyright_xml | – notice: 2015. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2015 Wang and Li. 2015 |
DBID | AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTPV AOWAS D8T ZZAVC DOA |
DOI | 10.3389/fnhum.2015.00259 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5161 |
EndPage | 259 |
ExternalDocumentID | oai_doaj_org_article_6ff96a927c5e4b069f076b43cc273bae oai_swepub_ki_se_513257 PMC4424860 26005413 10_3389_fnhum_2015_00259 |
Genre | Journal Article |
GeographicLocations | Sweden |
GeographicLocations_xml | – name: Sweden |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABIVO ABUWG ACGFO ACGFS ACXDI ADBBV ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EMOBN F5P GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM TR2 C1A IPNFZ NPM PQGLB RIG 3V. 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTPV AOWAS D8T PUEGO ZZAVC |
ID | FETCH-LOGICAL-c598t-d14bcc7cb2f9976a5fe1b78cc37d732d680db90df3863242fe8b1cb86536a9223 |
IEDL.DBID | M48 |
ISSN | 1662-5161 |
IngestDate | Wed Aug 27 00:38:08 EDT 2025 Mon Sep 01 03:24:02 EDT 2025 Thu Aug 21 13:35:43 EDT 2025 Fri Jul 11 07:48:11 EDT 2025 Fri Jul 25 11:41:39 EDT 2025 Mon Jul 21 05:54:27 EDT 2025 Thu Apr 24 23:01:08 EDT 2025 Tue Jul 01 03:44:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | image processing pattern classification independent component analysis magnetic resonance imaging signal processing functional neuroimaging machine learning |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c598t-d14bcc7cb2f9976a5fe1b78cc37d732d680db90df3863242fe8b1cb86536a9223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Daniel S. Margulies, Max Planck Institute for Human Cognitive and Brain Sciences, Germany Reviewed by: Danilo Bzdok, Research Center Jülich, Germany; R. Matthew Hutchison, Harvard University, USA |
OpenAccessLink | https://www.proquest.com/docview/2291477660?pq-origsite=%requestingapplication% |
PMID | 26005413 |
PQID | 2291477660 |
PQPubID | 4424408 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6ff96a927c5e4b069f076b43cc273bae swepub_primary_oai_swepub_ki_se_513257 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4424860 proquest_miscellaneous_1683353834 proquest_journals_2291477660 pubmed_primary_26005413 crossref_citationtrail_10_3389_fnhum_2015_00259 crossref_primary_10_3389_fnhum_2015_00259 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-08 |
PublicationDateYYYYMMDD | 2015-05-08 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Lausanne |
PublicationTitle | Frontiers in human neuroscience |
PublicationTitleAlternate | Front Hum Neurosci |
PublicationYear | 2015 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Wig (B46) 2011; 1224 Kiviniemi (B28) 2009; 30 Schopf (B35) 2010; 23 Sochat (B40) 2014; 9 Chang (B14) 2011; 2 Cordes (B17) 2006; 29 Cordes (B16) 2000; 21 Salimi-Khorshidi (B34) 2014; 90 Calhoun (B12) 2005; 25 Vapnik (B43) 1997; 9 Li (B30) 2007; 28 Bhaganagarapu (B10) 2013; 7 Damoiseaux (B18) 2006; 103 Abou Elseoud (B1) 2010; 31 Beckmann (B8) 2005; 360 Wang (B44) 2013; 8 Abou Elseoud (B2) 2011; 5 Allen (B4) 2011; 5 Xu (B49) 2014; 103 Bartels (B6) 2005; 24 Formisano (B22) 2002; 49 De Martino (B19) 2007; 34 Elseoud (B21) 2011; 5 Lin (B31) 1999; 9 Smola (B39) 2004; 14 Wig (B45) 2014; 93(Pt 2) Kundu (B29) 2012; 60 Sui (B41) 2009; 46 Caputo (B13) 2002 Mangasarian (B32) 1999; 10 Jenkinson (B24) 2012; 62 Akaike (B3) 1974; 19 Perlbarg (B33) 2007; 25 Woolrich (B47) 2009; 45 Jo (B25) 2010; 52 Smith (B38) 2004; 23(Suppl. 1) Calhoun (B11) 2001; 14 Smith (B37) 2009; 106 Andrews (B5) 1972; 28 Schultz (B36) 2014; 102(Pt 2) Suzuki (B42) 2002; 15 Beckmann (B9) 2004; 23 Douglas (B20) 2011; 56 Karatzoglou (B26) 2007 Beckmann (B7) 2012; 62 Griffanti (B23) 2014; 95 Chen (B15) 2010; 28 Xie (B48) 2009; 72 Yeo (B50) 2011; 106 Karatzoglou (B27) 2004; 11 14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52 25150630 - Neuroimage. 2014 Nov 15;102 Pt 2:620-36 20063361 - Hum Brain Mapp. 2010 Aug;31(8):1207-16 16202626 - Neuroimage. 2006 Jan 1;29(1):145-54 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 21073969 - Neuroimage. 2011 May 15;56(2):544-53 20655157 - Magn Reson Imaging. 2010 Nov;28(9):1344-52 11747100 - Hum Brain Mapp. 2002 Jan;15(1):54-66 15627577 - Neuroimage. 2005 Jan 15;24(2):339-49 11559959 - Hum Brain Mapp. 2001 Nov;14(3):140-51 21442040 - Front Syst Neurosci. 2011 Feb 04;5:2 19059349 - Neuroimage. 2009 Mar;45(1 Suppl):S173-86 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 19457398 - Neuroimage. 2009 May 15;46(1):73-86 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 20521082 - MAGMA. 2010 Dec;23(5-6):317-25 17274023 - Hum Brain Mapp. 2007 Nov;28(11):1251-66 17070708 - Neuroimage. 2007 Jan 1;34(1):177-94 17222713 - Magn Reson Imaging. 2007 Jan;25(1):35-46 24389422 - Neuroimage. 2014 Apr 15;90:449-68 23876247 - Neuroimage. 2014 Jun;93 Pt 2:276-91 23847511 - Front Hum Neurosci. 2013 Jul 10;7:343 21486299 - Ann N Y Acad Sci. 2011 Apr;1224:126-46 24657355 - Neuroimage. 2014 Jul 15;95:232-47 21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65 24204612 - PLoS One. 2013 Oct 18;8(10):e76315 25225001 - Neuroimage. 2014 Dec;103:33-47 21687724 - Front Syst Neurosci. 2011 Jun 03;5:37 22369997 - Neuroimage. 2012 Aug 15;62(2):891-901 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 22209809 - Neuroimage. 2012 Apr 15;60(3):1759-70 21979382 - Neuroimage. 2012 Aug 15;62(2):782-90 20420926 - Neuroimage. 2010 Aug 15;52(2):571-82 18252605 - IEEE Trans Neural Netw. 1999;10(5):1032-7 24748378 - PLoS One. 2014 Apr 18;9(4):e95493 15784432 - Neuroimage. 2005 Apr 1;25(2):527-38 19507160 - Hum Brain Mapp. 2009 Dec;30(12):3865-86 11039342 - AJNR Am J Neuroradiol. 2000 Oct;21(9):1636-44 |
References_xml | – volume: 19 start-page: 716 year: 1974 ident: B3 article-title: A new look at the statistical model identification publication-title: Autom. Control IEEE Trans doi: 10.1109/TAC.1974.1100705 – volume: 21 start-page: 1636 year: 2000 ident: B16 article-title: Mapping functionally related regions of brain with functional connectivity MR imaging publication-title: ANJR Am. J. Neuroradiol – volume: 2 start-page: 27 year: 2011 ident: B14 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol doi: 10.1145/1961189.1961199 – volume: 14 start-page: 199 year: 2004 ident: B39 article-title: A tutorial on support vector regression publication-title: Stat. Comput doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 103 start-page: 13848 year: 2006 ident: B18 article-title: Consistent resting-state networks across healthy subjects publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0601417103 – volume: 14 start-page: 140 year: 2001 ident: B11 article-title: A method for making group inferences from functional MRI data using independent component analysis publication-title: Hum. Brain Mapp doi: 10.1002/hbm.1048 – volume: 46 start-page: 73 year: 2009 ident: B41 article-title: An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.01.026 – volume: 62 start-page: 891 year: 2012 ident: B7 article-title: Modelling with independent components publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.020 – volume: 23 start-page: 317 year: 2010 ident: B35 article-title: Group ICA of resting-state data: a comparison publication-title: Magnet. Reson. Mater. Phys. Biol. Med doi: 10.1007/s10334-010-0212-0 – volume: 7 issue: 343 year: 2013 ident: B10 article-title: An automated method for identifying artifact in independent component analysis of resting-state fMRI publication-title: Front. Hum. Neurosci doi: 10.3389/fnhum.2013.00343 – volume: 103 start-page: 33 year: 2014 ident: B49 article-title: Denoising the speaking brain: toward a robust technique for correcting artifact-contaminated fMRI data under severe motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.09.013 – volume: 106 start-page: 13040 year: 2009 ident: B37 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0905267106 – volume: 102(Pt 2) start-page: 620 year: 2014 ident: B36 article-title: Template based rotation: a method for functional connectivity analysis with a priori templates publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.08.022 – volume: 23 start-page: 137 year: 2004 ident: B9 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: Med. Imaging IEEE Trans doi: 10.1109/TMI.2003.822821 – volume: 52 start-page: 571 year: 2010 ident: B25 article-title: Mapping sources of correlation in resting state FMRI, with artifact detection and removal publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.04.246 – volume: 9 start-page: 281 year: 1997 ident: B43 article-title: Support vector method for function approximation, regression estimation, and signal processing publication-title: Adv. Neural Inform. Process. Syst – volume: 1224 start-page: 126 year: 2011 ident: B46 article-title: Concepts and principles in the analysis of brain networks publication-title: Ann. N. Y. Acad. Sci doi: 10.1111/j.1749-6632.2010.05947.x – volume: 5 issue: 37 year: 2011 ident: B2 article-title: Group-ICA model order highlights patterns of functional brain connectivity publication-title: Front. Syst. Neurosci doi: 10.3389/fnsys.2011.00037 – volume: 360 start-page: 1001 year: 2005 ident: B8 article-title: Investigations into resting-state connectivity using independent component analysis publication-title: Philos. Trans. R. Soc. B Biol. Sci doi: 10.1098/rstb.2005.1634 – volume: 10 start-page: 1032 year: 1999 ident: B32 article-title: Successive overrelaxation for support vector machines publication-title: Neural Netw. IEEE Trans doi: 10.1109/72.788643 – volume: 28 start-page: 125 year: 1972 ident: B5 article-title: Plots of high-dimensional data publication-title: Biometrics doi: 10.2307/2528964 – volume: 34 start-page: 177 year: 2007 ident: B19 article-title: Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2006.08.041 – volume-title: Proceedings of NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision year: 2002 ident: B13 article-title: Appearance-based Object Recognition using SVMs: which Kernel Should I Use? – volume: 28 start-page: 1344 year: 2010 ident: B15 article-title: A new approach to estimating the signal dimension of concatenated resting-state functional MRI data sets publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2010.04.002 – volume: 49 start-page: 241 year: 2002 ident: B22 article-title: Spatial independent component analysis of functional magnetic resonance imaging time-series: characterization of the cortical components publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00517-9 – volume: 29 start-page: 145 year: 2006 ident: B17 article-title: Estimation of the intrinsic dimensionality of fMRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.07.054 – volume: 9 start-page: e95493 year: 2014 ident: B40 article-title: A robust classifier to distinguish noise from fMRI independent components publication-title: PLoS ONE doi: 10.1371/journal.pone.0095493 – volume: 11 start-page: 1 year: 2004 ident: B27 article-title: Kernlab-an S4 package for kernel methods in R publication-title: J. Statistical Soft doi: 10.18637/jss.v011.i09 – volume: 93(Pt 2) start-page: 276 year: 2014 ident: B45 article-title: An approach for parcellating human cortical areas using resting-state correlations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.07.035 – volume: 15 start-page: 54 year: 2002 ident: B42 article-title: Fast and precise independent component analysis for high field fMRI time series tailored using prior information on spatiotemporal structure publication-title: Hum. Brain Mapp doi: 10.1002/hbm.1061 – volume: 5 issue: 37 year: 2011 ident: B21 article-title: Group-ICA model order highlights patterns of functional brain connectivity publication-title: Front. Syst. Neurosci doi: 10.3389/fnsys.2011.00037 – volume: 31 start-page: 1207 year: 2010 ident: B1 article-title: The effect of model order selection in group PICA publication-title: Hum. Brain Mapp doi: 10.1002/hbm.20929 – volume: 106 start-page: 1125 year: 2011 ident: B50 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol doi: 10.1152/jn.00338.2011 – volume: 45 start-page: S173 year: 2009 ident: B47 article-title: Bayesian analysis of neuroimaging data in FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.055 – volume: 56 start-page: 544 year: 2011 ident: B20 article-title: Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.11.002 – volume: 62 start-page: 782 year: 2012 ident: B24 article-title: FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.09.015 – volume: 9 start-page: 1100 year: 1999 ident: B31 article-title: Newton's method for large bound-constrained optimization problems publication-title: SIAM J. Optimiz doi: 10.1137/S1052623498345075 – volume: 25 start-page: 527 year: 2005 ident: B12 article-title: Semi-blind ICA of fMRI: a method for utilizing hypothesis-derived time courses in a spatial ICA analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.12.012 – volume: 24 start-page: 339 year: 2005 ident: B6 article-title: Brain dynamics during natural viewing conditions -a new guide for mapping connectivity in vivo publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.08.044 – volume: 90 start-page: 449 year: 2014 ident: B34 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.11.046 – volume: 23(Suppl. 1) start-page: S208 year: 2004 ident: B38 article-title: Advances in functional and structural MR image analysis and implementation as FSL publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.07.051 – volume: 95 start-page: 232 year: 2014 ident: B23 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.03.034 – volume: 72 start-page: 1042 year: 2009 ident: B48 article-title: Estimating intrinsic dimensionality of fMRI dataset incorporating an AR (1) noise model with cubic spline interpolation publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.04.003 – volume: 60 start-page: 1759 year: 2012 ident: B29 article-title: Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.028 – volume: 28 start-page: 1251 year: 2007 ident: B30 article-title: Estimating the number of independent components for functional magnetic resonance imaging data publication-title: Hum. Brain Mapp doi: 10.1002/hbm.20359 – volume: 25 start-page: 35 year: 2007 ident: B33 article-title: CORSICA: correction of structured noise in fMRI by automatic identification of ICA components publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2006.09.042 – volume: 5 issue: 2 year: 2011 ident: B4 article-title: A baseline for the multivariate comparison of resting-state networks publication-title: Front. Syst. Neurosci doi: 10.3389/fnsys.2011.00002 – volume: 8 start-page: e76315 year: 2013 ident: B44 article-title: Analysis of whole-brain resting-state fMRI data using hierarchical clustering approach publication-title: PLoS ONE doi: 10.1371/journal.pone.0076315 – year: 2007 ident: B26 publication-title: The Kernlab Package – volume: 30 start-page: 3865 year: 2009 ident: B28 article-title: Functional segmentation of the brain cortex using high model order group PICA publication-title: Hum. Brain Mapp doi: 10.1002/hbm.20813 – reference: 11747100 - Hum Brain Mapp. 2002 Jan;15(1):54-66 – reference: 19457398 - Neuroimage. 2009 May 15;46(1):73-86 – reference: 14964560 - IEEE Trans Med Imaging. 2004 Feb;23(2):137-52 – reference: 19620724 - Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5 – reference: 22369997 - Neuroimage. 2012 Aug 15;62(2):891-901 – reference: 23876247 - Neuroimage. 2014 Jun;93 Pt 2:276-91 – reference: 21653723 - J Neurophysiol. 2011 Sep;106(3):1125-65 – reference: 21979382 - Neuroimage. 2012 Aug 15;62(2):782-90 – reference: 24389422 - Neuroimage. 2014 Apr 15;90:449-68 – reference: 16945915 - Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53 – reference: 21442040 - Front Syst Neurosci. 2011 Feb 04;5:2 – reference: 25150630 - Neuroimage. 2014 Nov 15;102 Pt 2:620-36 – reference: 20655157 - Magn Reson Imaging. 2010 Nov;28(9):1344-52 – reference: 19507160 - Hum Brain Mapp. 2009 Dec;30(12):3865-86 – reference: 15627577 - Neuroimage. 2005 Jan 15;24(2):339-49 – reference: 20420926 - Neuroimage. 2010 Aug 15;52(2):571-82 – reference: 24657355 - Neuroimage. 2014 Jul 15;95:232-47 – reference: 11039342 - AJNR Am J Neuroradiol. 2000 Oct;21(9):1636-44 – reference: 16087444 - Philos Trans R Soc Lond B Biol Sci. 2005 May 29;360(1457):1001-13 – reference: 22209809 - Neuroimage. 2012 Apr 15;60(3):1759-70 – reference: 24204612 - PLoS One. 2013 Oct 18;8(10):e76315 – reference: 21073969 - Neuroimage. 2011 May 15;56(2):544-53 – reference: 20521082 - MAGMA. 2010 Dec;23(5-6):317-25 – reference: 19059349 - Neuroimage. 2009 Mar;45(1 Suppl):S173-86 – reference: 11559959 - Hum Brain Mapp. 2001 Nov;14(3):140-51 – reference: 24748378 - PLoS One. 2014 Apr 18;9(4):e95493 – reference: 20063361 - Hum Brain Mapp. 2010 Aug;31(8):1207-16 – reference: 25225001 - Neuroimage. 2014 Dec;103:33-47 – reference: 21486299 - Ann N Y Acad Sci. 2011 Apr;1224:126-46 – reference: 16202626 - Neuroimage. 2006 Jan 1;29(1):145-54 – reference: 17222713 - Magn Reson Imaging. 2007 Jan;25(1):35-46 – reference: 17070708 - Neuroimage. 2007 Jan 1;34(1):177-94 – reference: 21687724 - Front Syst Neurosci. 2011 Jun 03;5:37 – reference: 15784432 - Neuroimage. 2005 Apr 1;25(2):527-38 – reference: 15501092 - Neuroimage. 2004;23 Suppl 1:S208-19 – reference: 17274023 - Hum Brain Mapp. 2007 Nov;28(11):1251-66 – reference: 18252605 - IEEE Trans Neural Netw. 1999;10(5):1032-7 – reference: 23847511 - Front Hum Neurosci. 2013 Jul 10;7:343 |
SSID | ssj0062651 |
Score | 2.2777474 |
Snippet | Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from... |
SourceID | doaj swepub pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 259 |
SubjectTerms | Accuracy Algorithms Artificial intelligence Automation Classification Datasets Functional magnetic resonance imaging Functional Neuroimaging image processing Independent Component Analysis Learning algorithms Machine learning Magnetic Resonance Imaging Mimicry Neuroscience Noise Pattern Classification Physiology Principal components analysis Signal processing Studies |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BFhmpqsQh2tjxIzkuhaqttCAVinqzYsemq9IsancP7YW_zoydDY2K4NJb5MSJNTP2fOOMvyFkh3neguMRubWhyIVVSHkrkXVftyxSzsUynbNP6uBEHJ3K01ulvjAnLNEDJ8FNVAi1amqunfTCFqoOEHlbUToHjtc2Hldf8HnrYCqtwYDSJUs_JSEEqyehO1vhsXMWN1CQl_SWE4pc_X8DmHfzJEdsotED7T8mj3roSKdpyE_IA989JZvTDsLmi2u6S2MyZ9wl3yS_PiBrf2LcAJxNF4Ee7k3pvKPHSKvRfc8jyqRhdnxI_3Bt-Jbaa4qwcHXp6WdYTi7mN9AYS2diUlHUY3zbUD53SXFNWXSYkUFxW5d--TZ7Rk72P37dO8j7Wgu5k3W1zFsmrHPaWR5qQCiNDJ5ZXTlX6laXvFVV0dq6aENZIcE7D76yzNlKyRK1w8vnZKODT70k1DrEOY0ttRMYkDXc2toBkihdpZSTGZmshW9cT0SO9TB-GAhIUF0mqsugukxUV0beDT1-JhKOfzz7HvU5PIf02bEBjMr0RmX-Z1QZ2Vpbg-nn9JXhvGZCa6WKjLwdbsNsxF8sTecXqyvDFB5ig6hfZORFMp5hJFgKQAJmyIgemdVoqOM73fwsMn6DHLFYWEZ2kwGOuvRN53DljWQwufSr-xDCa_IQxRqzO6stsrG8XPltQGBL-yZOtt-i_DHa priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZauPRSUegjLUWuVCH1EG2cxHZyqhYKgkqLKloqblbs2GXVkgC7e6CX_vXOOE4gasUtcl6WZ8b-Zjz-hpD3zKY1LDx5rLVL4lwLpLzlyLova-Yp53yZztmJODrLP5_z8xBwW4S0yn5O9BN13RqMkU_StGS5lEIkH6-uY6wahburoYTGY7IOU3ABztf63sHJl9N-Lga0zlm3OQmuWDlxzcUKj58zH0hBftJ7i5Hn7P8f0Pw3X3LEKupXosMN8jRASDrtZP6MPLLNJtmaNuA-X97SXeqTOn20fIv8-YTs_R3zBuBt2jp6vD-l84ZiTQ5YtmJ_ooi62ekxtPacG7am-pY661k_aQvTyuX8NzQaxNqYXOTliV-bD2V0lxTT09sGMzMohnfp1--z5-Ts8ODb_lEcai7EhpfFMq5Zro2RRqeuBKRScWeZloUxmaxlltaiSGpdJrXLCiR6T50tNDO6EDwTVQlY4wVZa-BXrwjVBvFOpTNpcnTMqlTr0gCiyEwhhOERmfSDr0wgJMe6GL8UOCYoLuXFpVBcyosrIh-GN646Mo4Hnt1DeQ7PIY22b2hvfqhglUo4V2K3peE214koXSKFzjNjANXpykZku9cGFWx7oe40MSLvhttglbjVUjW2XS0UE3iYDbz_PCIvO-UZeoIlAThgh4jIkVqNujq-08wvPPM3jCMWDYvIbqeAo1dC00-4soozMDL5-uH-vyFPcMB8_maxTdaWNyv7FjDWUu8EQ_oLy9ArNw priority: 102 providerName: ProQuest |
Title | Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26005413 https://www.proquest.com/docview/2291477660 https://www.proquest.com/docview/1683353834 https://pubmed.ncbi.nlm.nih.gov/PMC4424860 http://kipublications.ki.se/Default.aspx?queryparsed=id:131437948 https://doaj.org/article/6ff96a927c5e4b069f076b43cc273bae |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge-EFAeMjMCojoUk8hMWJP5IHhLqxsSF1QoOivlmxY28VWwpdK1Fe-Ne5c9KgiAqJlyp1vizfXe539vl3hLxkLq3A8fDYGJ_E3EikvBXIuq8qFijnQpnO0Zk8GfMPEzH5sz26HcCbjaEd1pMaz69e__i-egsG_wYjTvC3-76-XOKmchamR0Rxm2yDX1JopiPerSkAcg_FGJmUEH4B0GkWLTc-oeekApf_JgD6dx5lj200eKjje-RuCy3psNGF--SWqx-QnWENYfX1iu7RkOwZZtF3yK93yOrfMHIADqczT08Ph3RaU6zVAe4sDjuNqB-dn0LrmovDVdSsqHeBDZTO4HNzPf0JjRYxOCYdBTnj06Zded0FxbT1WY0ZGxSnfemnL6OHZHx89PnwJG5rMcRWFPkirhg31iprUl8AgimFd8yo3NpMVSpLK5knlSmSymc5EsCn3uWGWZNLkcmyAAzyiGzV8KonhBqLOKg0mbIcA7YyNaawgDQym0tpRUT214OvbUtUjvUyrjQELCguHcSlUVw6iCsir7o7vjUkHf-49gDl2V2H9NqhYTa_0K21aul9gd1WVjhuEln4REnDM2sB7ZnSRWR3rQ16rbI6TQvGlZIyiciL7jRYKy7BlLWbLW80k7jJLcszHpHHjfJ0PcFSAQIwRURUT616Xe2fqaeXgREcxhGLiUVkr1HA3i1t01c4clowMD719D8G7Bm5g39Ckme-S7YW86V7DkBsYQZk--Do7OP5IExkwO_7CRsEm_sNTHA25w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V2wNcEFAegQJGgkocos3TTg4ItbTVLu2uUGlRbyZ2bLqCJqW7K7Rc-Ef8RmacZGEF6q23yHlZnvE87PH3AbwITVSi40l8pWzgJ4oT5G1KqPuiDB3knKPpHI354CR5d5qersGv7iwMlVV2NtEZ6rLWtEbej6I8TITgPHhz8c0n1ijaXe0oNBq1ODCL75iyTV8Pd1G-L6Nof-_47cBvWQV8nebZzC_DRGkttIpsjr64SK0Jlci0jkUp4qjkWVCqPChtnBGUeWRNpkKtMp7GvMgjAjpAk7-exJjK9GB9Z2_8_qiz_ZgdpGGzGYqpX9631dmcjruHbuGG8FD_cn6OI-B_ge2_9ZkrKKbO8-3fhlttyMq2Gx27A2umugsb2xWm6-cLtsVcEalbnd-An7vEFtAgfWB8z2rLcFDYpGLEAYJu0ncnmJgdHQ2xtcP4MCVTC2aNQxllNZqx88kPbNQU21Mxk9Mf-tpkSds7Y1QOX1dUCcJoOZl9-Di6ByfXIo370KvwVw-BKU3xVaFioRNKBItIqVxjBBPrjHOdetDvBl_qFgCdeDi-SkyESFzSiUuSuKQTlwevlm9cNOAfVzy7Q_JcPkew3a6hvvwsWysgubU5dVvo1CQq4LkNBFdJrDVGkaowHmx22iBbWzKVfzTfg-fL22gFaGunqEw9n8qQ0-G5OIsTDx40yrPsCVEQpBireCBW1Gqlq6t3qsmZQxrHcSSSMg-2GgVceaVt-oJXRqYhTmrx6Or-P4Mbg-PRoTwcjg8ew00aPFc7mm1Cb3Y5N08wvpupp-2kYvDpuufxbzTUaGo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrYS4IKA8AgWMBJU4RJunnRwQatmuupRdVYWi3tzYsekKmpTurtBy4X_x65hxkoUVqLfeIudlecbzsMffB_AiNFGJjifxlbKBnyhOkLcpoe6LMnSQc46mczTm-8fJu5P0ZA1-dWdhqKyys4nOUJe1pjXyXhTlYSIE50HPtmURh_3Bm4tvPjFI0U5rR6fRqMiBWXzH9G36ethHWb-MosHex7f7fssw4Os0z2Z-GSZKa6FVZHP0y0VqTahEpnUsShFHJc-CUuVBaeOMYM0jazIVapXxNOZFHhHoAZr_DYFZUbAOG7t748Ojzg9gppCGzcYopoF5z1Znczr6HrpFHMJG_csROr6A_wW5_9ZqriCaOi84uA232vCV7TT6dgfWTHUXNncqTN3PF2ybuYJSt1K_CT_7xBzQoH5grM9qy3BQ2KRixAeCLtN3p5mYHR0NsbXD-zAlUwtmjUMcZTWatPPJD2zUFOdTYZPTJfraZEnhO2NUGl9XVBXCaGmZffg0ugfH1yKN-7Be4a8eAlOaYq1CxUInlBQWkVK5xmgm1hnnOvWg1w2-1C0YOnFyfJWYFJG4pBOXJHFJJy4PXi3fuGiAQK54dpfkuXyOILxdQ335WbYWQXJrc-q20KlJVMBzGwiuklhrjChVYTzY6rRBtnZlKv_MAg-eL2-jRaBtnqIy9XwqQ04H6eIsTjx40CjPsidER5Bi3OKBWFGrla6u3qkmZw51HMeRCMs82G4UcOWVtukLXhmZhjjBxaOr-_8MbuD8le-H44PHcJPGzpWRZluwPrucmycY6s3U03ZOMTi97mn8G7ScbJ8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimensionality+of+ICA+in+resting-state+fMRI+investigated+by+feature+optimized+classification+of+independent+components+with+SVM&rft.jtitle=Frontiers+in+human+neuroscience&rft.au=Wang%2C+Yanlu&rft.au=Li%2C+Tie-Qiang&rft.date=2015-05-08&rft.issn=1662-5161&rft.eissn=1662-5161&rft.volume=9&rft_id=info:doi/10.3389%2Ffnhum.2015.00259&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnhum_2015_00259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5161&client=summon |